杆件与结构的内力计算

合集下载

杆件的内力分析与内力图

杆件的内力分析与内力图

F M
y
0 0
C
F l a FS FA l F l a M FA x x l
由其右边分离体的平衡条件同样可得 a FA m F 0

F
y
FB B
FS F FB 0 F l a FS F FB l
A y FA
x
m
m M 切向应力的合力, C A 称为剪力 x m FS x FS m MC 0 M C m M F a x FB l x 0
1 1 FN1
60kN
2
A
30kN
B
x
FN2
2
C
60kN
解:1、计算杆件各段的轴力。 AB 段
X 0
BC 段
FN1 30 0
FN1=30kN
1 30kN
2
X 0
FN2 60 0
FN2= 60kN
+
FN图
2、绘制轴力图。

60kN
| FN |max=60 kN
第三节 扭转和扭矩图
x
Fab l
由剪力、弯矩图知: 在集中力作用点,弯 矩图发生转折,剪力 图发生突变,其突变 值等于集中力的大小, 从左向右作图,突变 方向沿集中力作用的 方向。
Fa l
x
M
三. 弯矩、剪力与分布荷载集度之间的关系及其应用
y O m m x q(x) n n dx F Me x M ( x) m FS(x) m n M(x)+dM(x) C n FS(x)+dFS(x)
1分钟me作功
W ' M e M e (2n 1) 2nMe

工程力学第六章杆件与结构的内力计算

工程力学第六章杆件与结构的内力计算

M
M
弯矩为正
M
M
弯矩为负
试确定截面C及截面D上的剪力和弯矩
FA
A
MA
FA
A
MA
2Fl
lC
l
FCs
l
C MC
2Fl
FCs
MC
C
l
F
B D
FCs F FCs F
M C Fl MC Fl
M C 2Fl Fl 0
F
B
D
FDs
MD
F
DB
FDs F MD 0
1.剪力、弯矩方程:
FS FS (x) M M (x)
F
拉杆
FF
F
压杆
§6–1轴向拉压杆的内力 轴力图
物体在受到外力作用而变形时,其内部各 质点间的相对位置将有变化。与此同时,各质 点间相互作用的力也发生了改变。相互作用力 由于物体受到外力作用而引起的改变量,就是 附加内力,简称内力。
内力分析是解决构件强度,刚度与稳定
性问题的基础。
§6–1轴向拉压杆的内力 轴力图
图和弯矩图。
q
解: 1、求支反力
A
x
B
l
FA
FB
由对称性知: ql
FA FB 2
ql / 2
2、建立剪力方程和弯矩方程
FS
FS (x)
FA
qx
ql 2
qx
ql / 2
M (x)
FA x
qx2 2
qLx 2
qx2 2
M
ql2 / 8
FS ,max
ql 2
M max
ql 2 8
例题 在图示简支梁AB的C点处作用一集中力F,作该

杆系结构的内力计算—杆件的基本变形及内力的概念

杆系结构的内力计算—杆件的基本变形及内力的概念

F
F
轴向压缩
变形特点概化图
a
轴线
d
l
a
横截面形状
轴向拉伸

F
F
lʹ > l


dʹ < d
aʹ < a
轴向伸长
横向收缩
a
轴线
d
a
横截面形状
l
轴向压缩

F
F
lʹ < l

dʹ > d

aʹ > a
轴向变形杆的内力分析


1添加标题
1.内力的基本概念
10
CD段
x
෍ =
2、绘制轴力图。
= =
讨论题
1.图示阶梯杆AD受三个集中力F作用,设AB、BC、
CD段的横截面面积分别为A、2A、3A,则三段杆的横
截面上轴力值分别是
,如果把三段杆换成等值
杆,则各横截面上轴力值分别是

D
C
B
A
F
F
C
B
A
F
F
F
F
D
杆件的基本变形


1
刚体与变形体
2
杆件的基本变形
添加标题
1.刚体与变形体
刚体
变形固体
忽略物体变形
回归实际情况
外力系的合成
与平衡问题
材料强度、刚度与
稳定性的问题

简支梁
1、变形固体的概念
通常将在外力作用下能产生一定变形的固体称为变形固体。
变形固体的变形按其性质可分为两种:
一是弹性变形,即外力解除后,变形也随之消失;

第3章 杆件的内力分析

第3章 杆件的内力分析


50
基本概念:
外力、内力、内力分量、轴力、剪力、 弯矩、扭矩、内力函数、内力图、 轴力、 扭转、平面弯曲。
内力图的作法及特点:
(1)直杆受轴向拉伸或压缩时的内力图--轴力图
剪力 Fy 0 RA Q 0
Fb Q RA l
弯矩
对截面m-m上的形心O取矩,得:
Mo 0
M RA x 0
Fb M RA x x l

40
按照同样方法,在2-2处将梁截开为左右两部分, 仍取左段为分离体,就可求出2-2截面上的内力及 内力矩。

41
③ 剪力和弯矩的符号 截面上的剪力对梁上任意 一点的矩为顺时针转向时, 剪力为正;反之为负。
点击图标播放

24
(3)力偶矩的计算及横截面上的内力
1)外力偶矩
直接计算:

25
按输入功率和转速计算
P Fv
v R P F R T
2n 2n Tn P T T =T = 60 60 9.55
2n n 60 30
30 P P T 9.55 n n
PC 15 TC 9.55 9.55 0.478 n 300
kN· m
PD 25 m TD 9.55 9.55 0.796 kN· n 300
(3)求出各段的扭矩 BC段:Tn1-TB=0, Tn1=TB=0.318 kN· m; CA段:Tn2-TB-TC=0,Tn2=TB+TC=0.796 kN· m; AD段:Tn3+TD=0, Tn3=-TD=-0.796 kN· m。
第3章 杆件的内力分析
外力与内力的平衡 内力分量 内力分析与内力图

第六章 杆件的内力与内力图

第六章 杆件的内力与内力图

截面法求内力举例:求杆AB段和BC段的内力
FP1=2.5kN A FP1=2.5kN 1 FP2=4kN C FN1 2 FP3=1.5kN
1
2
B
x
Σ X = 0 → FN1 - FP1 = 0
FP1=2.5kN FP2=4kN
FN1=2.5kN
FN2
Σ X = 0 → FN 2 + FP 2 - FP1 = 0
适用于求桁架中某些指定杆件的内力
求 解 要 点
例6-4 试求图中桁架中杆1和杆2的轴力。
Ⅰ Ⅱ
4m 2 1 A Ⅰ 8kN 16kN Ⅱ 16kN 4x3m 16kN FN1 A 8kN 8kN 16kN
B
Σ Fy = 0 FN 1 = -8kN
FN2 B 8kN 16kN
Σ Fy = 0 FN 2 5 = ´ 8kN = 10kN 4
FN2=-1.5kN
6-1-2 轴力图
表示轴力沿杆件轴线方向变化的图形,称为 轴力图(diagram of normal force)。
A
1 B 1Fp2
2 C 2 Fp3
Fp1
Fp1
FN1 FN2 Fp2 FN3
已知Fp1=6kN;Fp2=18kN; Fp3=8kN;Fp4=4kN;试画出 Fp4 图示杆件的轴力图。 3 解:1、计算各段的轴力。 Σ Fx = 0 AB段 FN1 = Fp1 = 6kN
例传动轴如图所示,主动轮A输入功率PA= 36KW,从动轮B、 C、D输出功率分别为 PB= PC =11KW , PD= 14KW,转速 n = 300r/min。试作该轴的扭矩图。
MeC MeA MeD
先计算外力偶矩
PA 1146 N m n P M eB M eC 9549 B 350 N m n P M eD 9549 D 446 N m n M eA 9549

第五章 杆件的内力与内力图

第五章 杆件的内力与内力图

Mz (x) = m - FRAx = m (l -x ) / l (a < x≤ l ) 3°画 FQy (x)图和 Mz (x)图。
四、剪力、弯矩和荷载集度之间的关系
y FP
q(x) MZ(x) q(x) MZ(x)+d MZ(x) C FQY(x)+d FQY(x) dx
x
x dx
FQY(x)
FRA FQy
(KN)
FRB
60 20 x = 3.6m
Mz6 = 72 ×12 - 160 - 20×10 ×5 = 0
88
当FQY(x)=0时, Mz (x)有极值。
Mz x = 3.6m处, FQY(x)=0 。(KNm)
16 113.6 144
80

Mz7 = 72 ×5.6 - 160 - 20×3.6 ×3.6 / 2 = 113.6 KNm
MZ —— 弯矩
A FRA
x
m
C
MZ
m FQY
规 定:
∑FP
FQY 下剪力正, 反之为负
∑M
MZ
MZ
∑M
MZ:
上凹下凸弯矩正, 反之为负
a A
FP1
m m
FP2 B
由∑Fyi=0, FRA- FP1 - FQY =0
x
FRA y A
x
FRB FP1
m
C
得 FQY = FRA- FP1
x = 2m 时 , FN (x) = - 1KN。
3KN
A 2m 3
B 2KN/ m C 2m 2m
D 1KN
FN (KN) 1
规律:没有力作用的杆段,轴力为常数;
分布荷载为常数的杆段,轴力线性变化;

工程力学杆件的内力分析和内力图

工程力学杆件的内力分析和内力图

工程力学
第五章 杆件的内力分析与内力图
2. 截面法旳基本环节:
例3: 截面法求内力
F
截开:
替代: 平衡:
F F
FS
F 0
上刀刃 n
n 下刀刃
F Fs 0 Fs F
工程力学
第五章 杆件的内力分析与内力图
2. 截面法旳基本环节总结:
① 截开:在所求内力旳截面处,假想地用截面将杆件一分为二。
②替代:任取一部分为研究对象,将弃去部分对留下部分旳作用, 作用在截开面上相应旳内力(力或力偶)替代。
写剪力方程和弯矩方程旳措施和前面简介旳求内力分量旳措施 和过程相同,所不同旳,目前旳指定横截面是坐标为x旳任意 横截面。x是变量,FS(x)、M(x)是函数。
2. 剪力图和弯矩图:
剪力图
Fs Fs(x) 旳图线表达 例题5-4
弯矩图
M M (x) 旳图线表达 例题5-5
工程力学
第五章 杆件的内力分析与内力图
工程力学 5.2.2 扭矩和扭矩图
第五章 杆件的内力分析与内力图
工程力学
第五章 杆件的内力分析与内力图
5.2.2 扭矩和扭矩图
扭转变形是指杆件受到大小相等,方向相反且作用平面垂直于
杆件轴线旳力偶作用,使杆件旳横截面绕轴线产生转动。
A
B O
一、传动轴旳外力偶矩
A
BO
m
m
1.由定义直接计算
外力偶矩: Me=Fd
L CB段
Fs( x)
RA
P
a L
P(a
x
L)
x M (x) Pa b Px(a x L) L
③根据方程画内力图
工程力学
第五章 杆件的内力分析与内力图

杆件的内力和内力图

杆件的内力和内力图

4.3.2剪力和弯矩 4.3.2.1平面弯曲的概念
第4章 杆件的内力和内力图
1 建筑力学基础 2 平面力系简化 3 截面几何性质 4 内力和内力图 5 应力和强度 6 变形计算 7 内力计算 8 压杆稳定
为使左段满足 Fy 0 截面m-m上必然有与 FRA
等值、平行且反向的
切向内力,即剪力F
存在;
4.2 杆件横截面上的内力 4.2.1内力的概念
物体在外力作用下,内部各质点的相 对位置将发生改变,其质点的相互作 用力也会发生变化。 这种由于外力作用而引起的物体内部 相互作用力的改变量,简称内力(或 附加内力)。
第4章 杆件的内力和内力图
1 建筑力学基础 2 平面力系简化 3 截面几何性质 4 内力和内力图 5 应力和强度 6 变形计算 7 内力计算 8、 压杆稳定
【例4.2】简支梁如图所示。已知P1=30kN, P2 =30kN,试求截面1-1上的剪力和弯矩。
【解】:(1)求支座反力,考虑梁的整体平衡
MB 0 P 1 5 P 2 2 F R A 6 0 MA0 P 1 1 P 2 4 F R B 6 0
FRA 35k(↑N ), FRB 25kN(↑)
第4章 杆件的内力和内力图
1 建筑力学基础 2 平面力系简化 3 截面几何性质 4 内力和内力图 5 应力和强度 6 变形计算 7 内力计算 8 压杆稳定
4.2.2 截面法
分析计算杆件内力,一般采用截面法。 截面法的基本步骤为:
(1)在所求内力的截面处,假想地用一截面 将杆件切成两部分;
(2)取出任一部分为研究对象,并在切开面 上用一组内力代替弃去部分对该部分的作用;
S
为满足MO 0
截面m-m上也必然有一个与力矩 FRA a 大小相等且转向相反的 内力偶矩,即弯矩

《建筑力学》_第六章_静定结构的内力计算

《建筑力学》_第六章_静定结构的内力计算

(2) 用截面法求D截面的内力。
(3)应用静力学平衡方程求解 杆件内力的值。
F x0 , F A xF0
M A(F)0, F B yaFa 20
F y 0 , F A y F B y 0
解得:
FF FAxF,FAy2,FBy2
F x 0 ,F N F A x 0 ,F N F
F F y0, F sF A y0, F s2
3.内力图的符号规定: (1)正的轴力和剪力画在 x 上侧,负的轴力和剪力画在 x 下侧; 若不画坐标轴,则需:正的标注符号(+);负的标注符号(-)。 (2) 将弯矩图画在杆件的受拉侧(图不必标正或负)。
编辑课件
11
第二节 内力方程·内力图
作 AC 杆的内力图
轴力方程 剪力方程 弯矩方程
FN(x)F
CB 段 FsBFBa lF, MB0
b
a b
F sC 右 = F sC R F B = lF , M C R F B b编l辑F 课件
20
第二节 内力方程·内力图
[例题 6–5] 用简便法绘制梁的剪力图和弯矩图。
解:
(1)求支座反力。
FA
FB
Me l
C
(2) 将梁分为AC、CB 两段,
分析AC、CB 两段的内力图形状。
注意剪力图和弯矩图的特征:
1. 集中载荷作用处,剪力有突变,弯矩连续,但呈现一个尖点;
2. 集中力偶作用处,弯矩有突变,剪力连续;
3. 剪力图和弯矩图是封闭的图形。
4. 剪力为零处,有极值。 编辑课件
19
第二节 内力方程·内力图
[例题 6–4] 试用简便法绘制梁的剪力图和弯矩图。
解:
(1)求支座反力。 F B

求杆件的内力方法

求杆件的内力方法

求杆件的内力方法
杆件的内力方法主要有以下几种:
1. 静力法:通过平衡条件,分析杆件的受力情况,求解各个连接点的内力。

2. 切割法:将杆件沿着一条或多条截面切割,分析切割面的内力平衡关系,求解切割面上的内力。

3. 弯矩法:将杆件看作是梁,根据梁的弯曲理论,通过计算弯矩来求解杆件内力。

4. 变形法:根据杆件的变形情况,利用杆件的本构关系和变形方程,求解杆件内力。

5. 外力法:根据外力作用在杆件上的情况,利用杆件的受力平衡条件,求解杆件内力。

根据具体的杆件结构和受力情况,可以选择合适的内力方法来求解杆件的内力。

不同的方法适用于不同的情况,有时也需要结合多种方法进行分析。

第二章 杆件的内力与内力图

第二章  杆件的内力与内力图

第二章 杆件的内力与内力图§2-1 杆件内力的概念与杆件变形的基本形式一、杆件的内力与内力分量内力是工程力学中一个非常重要的概念。

内力从广义上讲,是指杆件内部各粒子之间的相互作用力。

显然,无荷载作用时,这种相互作用力也是存在的。

在荷载作用下,杆件内部粒子的排列发生了改变,这时粒子间相互的作用力也发生了改变。

这种由于荷载作用而产生的粒子间相互作用力的改变量,称为附加内力,简称内力。

需要指出的是:受力杆件某横截面上的内力实际上是分布在截面上的各点的分布力系,而工程力学分析杆件某截面上的内力时,一般将分布内力先表示成分布内力向截面的形心简化所得的主矢分量和主矩分量进行求解,而内力的具体分布规律放在下一步(属于本书第二篇中的内容)考虑。

受力杆件横截面上可能存在的内力分量最多有四类六个:轴力N F 、剪力y Q F )(和z Q F )(、扭矩x M 、弯矩y M 和z M 。

轴力N F 是沿杆件轴线方向(与横截面垂直)的内力分量。

剪力y Q F )(和z Q F )(是垂直于杆件轴线方向(与横截面相切)的内力分量。

扭矩xM 是力矩矢量沿杆件轴线方向的内力矩分量。

弯矩y M 和z M 是力矩矢量与杆件轴线方向垂直的内力矩分量。

二、杆件变形的基本形式实际的构件受力后将发生形状、尺寸的改变,构件这种形状、尺寸的改变称为变形。

杆件受力变形的基本形式有四种:轴向拉伸和压缩、扭转、剪切、弯曲。

1、轴向拉伸和压缩变形轴向拉伸和压缩简称为轴向拉压。

其受力特点是:外力沿杆件的轴线方向。

其变形特点是:拉伸——沿轴线方向伸长而横向尺寸缩小,压缩——沿轴线方向缩短而横向尺寸增大,如图4-1所示。

轴向受拉的杆件称为拉杆,轴向受压的杆件压杆。

图2-1 图2-2 土木工程结构中的桁架,由大量的拉压杆组成,如图2-2所示。

内燃机中的连杆、压缩机中的活塞杆等均属此类。

它们都可以简化成图2-1所示的计算简图。

2、剪切变形工程中的拉压杆件有时是由几部分联接而成的。

《结构力学》静定结构的内力分析(上)

《结构力学》静定结构的内力分析(上)

解:(1)先计算支座反力 (2)求控制截面弯矩值
RA 17 kN
RB 7kN
M D 17 2 81 26 kN m
M F 7 2 16 30 kN m
取GB部分为隔离体, 可计算得:
MGr 71 7 kN m
M
l G

7 1 16

23kN m
M m
(3)积分关系 由d Q = – q·d x
q(x)
MA
MB
QB
QA
xBq(x) dx
xA
由d M = Q·d x
QA
QB
M B
MA
xBQ(x) dx
xA
几种典型弯矩图和剪力图
q
P
m
l /2
P 2
l /2
P 2
Pl 4
1、集中荷载作用点 M图有一夹角,荷载向 下夹角亦向下; Q 图有一突变,荷载 向下突变亦向下。
主要任务 :要求灵活运用隔离体的平衡条件,熟练掌握静定 梁内力图的作法。 分析方法:按构造特点将结构拆成杆单元,把结构的受力分析 问题转化为杆件的受力分析问题。
一、截面上内力符号的规定
轴力:截面上应力沿杆轴切线方
向的合力,使杆产生伸长变形为
N
N 正,画轴力图要注明正负号;
剪力:截面上应力沿杆轴法线
结论:截面上内力求解简单方法
1、轴力等于该截面任一侧所有外力沿该截面轴线方向投影的 代数和。外力背离截面投影取正,指向该截面投影为负。
2、剪力等于该截面任一侧所有外力沿该截面切线方向投影的 代数和。如外力使隔离体对该截面有顺时针转动趋势,其投影取 正,反之为负。
3、弯矩等于该截面任一侧所有外力对该截面形心之矩代数和。 如外力矩产生的弯矩标在拉伸变形侧。

混凝土杆件的设计原理与计算

混凝土杆件的设计原理与计算

混凝土杆件的设计原理与计算一、混凝土杆件的定义及分类混凝土杆件是由混凝土制成的直线构件,常用于桥梁、隧道、建筑物等结构中。

根据杆件的用途和形状,混凝土杆件可以分为直杆、弯杆、斜杆等多种类型。

二、混凝土杆件的设计原理1. 基本假设混凝土杆件的设计基于以下假设:(1)杆件是直线构件,不受侧向位移的影响;(2)杆件的截面尺寸足够小,可以忽略杆件的横向变形;(3)混凝土杆件的荷载是轴向载荷,不考虑弯矩和剪力的影响。

2. 构件的内力计算混凝土杆件在受到荷载作用时,会产生轴向力和应力。

根据杆件的几何形状和荷载的大小,可以确定杆件内部的轴向力大小和分布情况。

轴向力的大小可以通过静力平衡方程计算,分布情况可以通过截面受力分析确定。

3. 材料的力学特性混凝土杆件的设计需要考虑混凝土的力学特性。

混凝土的强度是其最重要的力学特性之一,可以通过试验获得。

混凝土的强度受到多种因素的影响,包括混凝土的配合比、水灰比、龄期等。

混凝土的强度可以通过试验获得,也可以根据已有试验数据进行估算。

4. 构件的稳定性混凝土杆件在受到轴向力作用时,容易出现失稳现象。

为了保证杆件的稳定性,需要考虑杆件的截面形状、材料强度、荷载大小等因素。

常用的稳定性分析方法包括欧拉公式、极限承载力法等。

5. 构件的设计混凝土杆件的设计包括截面设计和长度设计两个方面。

截面设计主要是确定杆件的截面尺寸和形状,需要考虑杆件的荷载大小、材料的强度、稳定性等因素。

长度设计主要是确定杆件的长度,需要考虑杆件的荷载大小、材料的强度、稳定性等因素。

三、混凝土杆件的计算方法混凝土杆件的计算方法包括受力计算、稳定性分析、截面设计和长度设计等方面。

1. 受力计算混凝土杆件的受力计算涉及到轴向力、应力、变形等多个参数。

轴向力的大小可以通过静力平衡方程计算,应力和变形的大小可以通过截面受力分析确定。

2. 稳定性分析混凝土杆件的稳定性分析需要考虑杆件的截面形状、材料强度、荷载大小等因素。

02第2章杆件的内力与内力图

02第2章杆件的内力与内力图

第2章 杆件的内力和内力图
◎ 扭矩与扭矩图
第2章 杆件的内力和内力图 扭转的概念
受力特征
◎ 扭矩与扭矩图
在杆的两端垂直于杆轴的平面内,作用着大小相等、 方向相反的一对力偶。 变形特征
杆件的各横截面环 绕轴线发生相对的转动。
扭转角 任意两横截面间相 对转过的角度。
第2章 杆件的内力和内力图 工程中承受扭转的圆轴
◎ 轴力与轴力图
一些机器和结构中所用的各种紧固螺栓,在紧固时,要 对螺栓施加预紧力,螺栓承受轴向拉力,将发生伸长变形。
第2章 杆件的内力和内力图 工 程 实 例
◎ 轴力与轴力图
由汽缸、活塞、 连杆所组成的机构中, 不仅连接汽缸缸体和 汽缸盖的螺栓承受轴 向拉力,带动活塞运 动的连杆由于两端都 是铰链约束,因而也 是承受轴向载荷的杆 件。
FN
+
FN

第2章 杆件的内力和内力图
◎ 轴力与轴力图
绘制轴力图的方法与步骤
首先,确定作用在杆件上的外载荷与约束力; 其次,根据杆件上作用的载荷及约束力,轴力图的分段点: 在有集中力作用处即为轴力图的分段点; 第三,应用截面法,用假想截面从控制面处将杆件截开, 在截开的截面上,画出未知轴力,并假设为正方向;对截开 的部分杆件建立平衡方程,确定轴力的大小与正负:产生拉 伸变形的轴力为正,产生压缩变形的轴力为负; 最后,建立FN-x坐标系,将所求得的轴力值标在坐标系 中,画出轴力图。
2.求扭矩 应用截面法由平 衡方程确定
M
x
0
第2章 杆件的内力和内力图
◎ 扭矩与扭矩图
3.画扭矩图 建 立 Mx-x 坐 标
系。将所求得的各段
的扭矩值,标在Mxx坐标系中,得到相

轴向拉压杆件内力计算公式

轴向拉压杆件内力计算公式

轴向拉压杆件内力计算公式在工程力学中,轴向拉压杆件是一种常见的结构元件,它在工程实践中被广泛应用于各种机械设备和建筑结构中。

轴向拉压杆件内力计算公式是用来计算轴向拉压杆件在受力作用下内部产生的拉力或压力的公式,它是工程设计和分析中非常重要的一部分。

在本文中,我们将介绍轴向拉压杆件内力计算公式的推导和应用,希望能够帮助读者更好地理解和应用这一重要的工程知识。

一、轴向拉压杆件的受力分析。

轴向拉压杆件是一种受拉或受压的结构元件,它通常由材料制成,具有一定的截面形状和尺寸。

当轴向拉压杆件受到外部力的作用时,内部会产生拉力或压力,这种内力的大小和方向是由外部力和结构本身的特性共同决定的。

在进行轴向拉压杆件的内力计算时,需要先进行受力分析,确定受力情况和受力方向。

通常情况下,轴向拉压杆件受到的外部力可以分为两种情况,拉力和压力。

对于受拉的轴向拉压杆件,外部力的方向和内部拉力的方向相同;对于受压的轴向拉压杆件,外部力的方向和内部压力的方向相反。

在受力分析的基础上,可以得到轴向拉压杆件内力计算的基本公式:N = A σ。

其中,N为轴向拉压杆件的内力,A为截面积,σ为应力。

根据受力分析的结果,可以确定σ的正负号,从而确定N的正负号,进而确定内力的方向。

二、轴向拉压杆件内力计算公式的推导。

1. 受拉的轴向拉压杆件。

对于受拉的轴向拉压杆件,外部拉力的方向和内部拉力的方向相同,因此内力的大小可以直接由外部拉力计算得到。

假设外部拉力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。

因此,受拉的轴向拉压杆件内力计算公式为:N = P。

2. 受压的轴向拉压杆件。

对于受压的轴向拉压杆件,外部压力的方向和内部压力的方向相反,因此内力的大小需要考虑结构的稳定性。

假设外部压力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。

然而,受压的轴向拉压杆件在实际应用中往往需要考虑结构的稳定性,因此需要引入材料的材料的屈服强度和稳定性系数,从而得到更加精确的内力计算公式。

4 杆件的内力与内力图

4 杆件的内力与内力图

离开截面
扭矩正负规定:
右手螺旋法则
右手拇指指向外法线方向为 正(+),反之为 负(-)。
例1: 计算该轴的扭矩。
已知:
m A 76.4 N m
mB 191 N m
mC 114.6 N m
A
B
C
mA
m
T1
X
0
mc
T1 m A 0
T2
X
计算扭矩: AB段: T1设为正的 BC段: T2设为正的
(2): 留下左半段或右半段
(3): 将抛掉部分对留下部 分的作用用内力代替 (4): 对留下部分写平衡方 程求出内力即轴力的值
X 0
N F 0 NF
m F F
m
F N N F
轴力正负号规定:拉 伸为正、压缩为负。
X 0
N F 0 NF
例:求杆AB段和BC段的内力?
2P A 1 P B 2 2 N1 C P
4、小变形假设:认为构件的变形量与其原始 尺寸相比可以忽略。
四、内力和截面法的概念:
内力 (Internal Forces) :构件因受力作用而变形,其内部各部 分(各点)之间因相对位置改变而引起的相互作用力。
m P m P
P
m m
m' m'
P
内力性质:内力由外力引起,随外力而变化
内力形式:轴力、扭矩、剪力与弯矩
依方程画出剪力图和弯矩图。
3.
例题4
a
M
b
试写出剪力方程和弯矩方程,并 画出剪力图和弯矩图。(图示简支 梁C点受集中力偶作用。) B
FB
A x1
YA
C
x2
l
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FS F Fl
| FS |max F | M |max Fl
M
例题 图示简支梁受均布荷载q的作用,作该梁的剪 力图和弯矩图。
q
A
解: 1、求支反力
B
x
FA
由对称性知: FA FB ql 2
l
FB
ql / 2
2、建立剪力方程和弯矩方程
ql FS ( x) FA qx 2 qx qx2 qLx qx2 M ( x) F x A 2 2 2
M /l
FS
Mb/ l
M
Ma / l
试确定截面C及截面D上的剪力和弯矩
FA
A
2Fl
C D
F
B
FCs F
FCs F
MC Fl
MC Fl
l
l
FCs
MA FA
A
MC 2Fl Fl 0
l
C
MC
MA
FCs
2Fl
MC
C D
FDs F
F
B
MD 0
l
FDs
MD
F
D

B
弯曲内力
FS ( x) FS ( x) dFS ( x) q( x) dx 0
dFS ( x ) q( x ) dx
d2 M ( x) dx
2
q( x )
目录
这些式子的几何意义是: 1、剪力图上某点处切线斜率等于该点处的横向荷载集度, 但符号相反; 2、弯矩图上某点处切线斜率等于该点处的剪力。
A
x
M
a
C
B b
FA
M M ; FB l l
FA
l
FB
2、建立剪力方程和弯矩方程
M 0 x a FS ( x) FA l AC段 : M ( x) F x Mx 0 x a A l
M a x l FS ( x ) FB l CB段 : M ( x ) FB l x M l x a x l l
轴向拉压杆的内力

轴力图
轴力图表示轴力与截面位置关系的图形。 习惯上将正值的轴力画在上侧,负值画在下 侧。 轴力只与外力有关,截面形状变化不会改变 轴力大小。

例题 2.3
F F 2F 2F
2F
1 F A 3F
2 2F
9KN 4KN
3KN 2KN
1
B
2
C
F 2F
4KN
5KN
2KN
作图示杆件的轴力图,并指出| FN |max
1、求反力(悬臂梁可不必求反力)。 2、分段 凡外力不连续处均应作为分段点, 如集中力及力偶作用点两侧的截面、均布荷 载起讫点及中间若干点等,用截面法求出这 些截面的内力值,并将它们在内力图的基线 上用竖标绘出。这样就定出了内力图的各控 制点。 3、联线 根据各段梁内力图的形状,分别用 直线或曲线将各控制点依次相联,即得所求 内力图。
M M M M
弯矩为正
弯矩为负
1.剪力、弯矩方程:
FS FS ( x ) M M ( x)
2.剪力、弯矩图:剪力、弯矩方程的图形,横轴 沿轴线方向表示截面的位置,纵轴为内力的大小。 例题 作图示悬臂梁AB的剪力图和弯矩图。
F
A l x B
剪力、弯矩方程: FS ( x) F M ( x) Fx
dx
O
x
M(x) FS(x)
M(x)+dM(x)
x
y
FS(x)+dFS(x)
q(x)
1 M ( x) dM ( x) M ( x) FS ( x) dx q( x) dx2 0 2 dM ( x)
M
O
0:
F
dx
FS ( x)
Y
0
假设:在荷载连续分布的直杆上截取微段 ,x轴以向右为正,y轴以向下为正,荷载 垂直梁轴线,荷载集度q(x)向下为正
50
F y 350 n n
F
G Ay
FNy
F Ay FNy 0
FNy F Ay 50 2.46 y
58.6
kN
弯曲
受力特点:力偶或外力作用垂直于轴线。 变形特点:杆件的轴线由直线变为曲线。 弯曲为主要变形的杆称为梁。
M F RA RB
M
梁按支承方法的分类
悬臂梁 简支梁
外伸梁
固定梁
连续梁
半固定梁
弯曲内力
杆件承受垂直于其轴线方向的外力,或在 其轴线平面内作用有外力偶时, 杆的轴线变为 曲线.以轴线变弯为主要特征的变形称为弯曲。
弯曲内力
以弯曲为主要变形的杆件,通常称为梁。梁 是一类常用的构件几乎在工程中都占有重要 地位。 静定梁:支座反力可以由静力平衡方程来求 解的梁。 超静定梁:支座反力仅由静力平衡方程不能 求解的梁。
Fl / 4
目录
练习
检查下列剪力弯矩图是否正确
Fa a x l FS ( x ) FB l CB段 : M ( x ) FA l x Fa l x a x l l
FS
Fa / l
M
Fab/ l
在图示简支梁AB的C点处作用一集中力偶M,作该梁 的剪力图和弯矩图。 解: 1、求支反力
FS
ql / 2
M
ql 2 / 8
FS , max M max
ql 2 ql 2 8
例题 在图示简支梁AB的C点处作用一集中力F,作该 梁的剪力图和弯矩图。 解: 1、求支反力
x
F A a C l B
b
FA
Fb Fa ; FB l l
FA
FB
Fb / l
2、建立剪力方程和弯矩方程
Fb FS ( x ) FA l 0 x a AC 段 : M ( x ) F x Fbx 0 x a A l

1.无荷载区段,M为直线
直线 2.受匀布荷载 q 作用时,M为抛物线,且凸向与 q 方向一致
ql 2 8 ql 2 8
3. 受集中荷载P作用时,M为折线,折点在集中力作用点处, 且凸向与P方向一致。
P P
4. 受集中力偶 m 作用时,在m作用点处M有跳跃(突变),跳 跃量为m,且左右直线均平行。
FN 1
FN 2
FN 1 0
1
FN 2 40kN
求图示直杆1-1和2-2截面上的轴力
1 2F 2
2F
F
F
1
2F
2
2 F
2
轴向拉压杆的内力

轴力图
当杆受到多个轴向外力作用时,在杆的不 同横截面上的轴力将各不相同。 为了表明横截面上的轴力随横截面位置而 变化的情况,可用平行于杆轴线的坐标表示 横截面的位置,用垂直于杆轴线的坐标表示 横截面上的轴力的数值,从而绘出表示轴力 与截面位置关系的图线,称为轴力图。
压力为负
轴向拉压杆的内力

轴力图
注意: (1)在采用截面法之前不允许使用力 的可传性原理;
轴向拉压杆的内力
轴力图
(2) 在采用截面法之前不允许预先将 杆上荷载用一个静力等效的相当力系代替。
一直杆受力如图示,试求1-1和2-2截面上的轴力。
20KN
20KN 1
40KN
2
20KN 20KN
1 1
2 40KN
轴向拉压杆的内力
轴力图
轴向拉压杆的内力称为轴力.其作用线与杆 的轴线重合,用符号 FN 表示
1、切开; 2、代力; 、平衡。 3
F
FN
FN
F
FN F
轴向拉压杆的内力

轴力图
轴力的箭头背离截面为拉力,对应杆段伸长; 轴力的箭头指向截面为压力,对应杆段缩短。
FN FN

FN
FN
拉力为正
FN

FN
外力情况 剪力图上的特 征 弯矩图上的特 征 q (向下) ↘(向下斜直线) (下凸抛物线) 无荷载段 水平线 斜直线 集中力F作用 处: 突变,突变值 为F 有尖角 集中力偶M作 用处: 不变 有突变,突变 值为M 弯矩突变的某 一侧
最大弯矩可 能 剪力为零的截面 的截面位置
剪力突变的截 面
绘制内力图的一般步骤是:
用叠加法作弯矩图
当变形为微小时,可采用变形前尺寸进行计 算。 叠加原理:当所求参数与梁上荷载为线性关 系时,由几项荷载共同作用时所引起的某一 参数,就等于每项荷载单独作用时所引起的 该参数值的叠加。 弯矩可叠加,则弯矩图也可叠加。

例题
F
x
q
B
A
M
c
0:
l
F
M(x)
1 2 M ( x) Fl ql 0 2
Fl / 4
作图示简支梁的弯矩图。
2F A C B
F
l/2
l/2
l/2
Fl / 2
Fl / 2
Fl / 2
4kN· m
4kN
8kN· m
2kN/m
3m
3m
3m
3m
2m
(1)集中荷载作用下
(1)悬臂段分布荷载作用下
4kN· m 2kN· m
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(2)跨中集中力偶作用下
II
150kN 100kN
I
50kN
I 50kN I II FN2 100kN II FN2= 100kN FN1 FN1=50kN
相关文档
最新文档