初三数学一元二次方程的应用(一)导学案 (6)

合集下载

初三数学因式分解法解一元二次方程导学案

初三数学因式分解法解一元二次方程导学案

初三数学因式分解法解一元二次方程导学案一、学习目标:1、会用因式分解法(提公因式法、公式法)法解某些简单的数字系数的一元二次方程。

2、能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性。

二.学习重点与难点重点: 用因式分解法解一元二次方程难点:正确理解AB=0〈=〉A=0或B=0( A 、B 表示两个因式)三、学习过程:(一)温故解惑1、我们已经学过了几种解一元二次方程的方法?2、(7)x 2-19x+18 (8)2x 2-19x+93、创设情境一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?(二)探究新知:1、你能用因式分解法解下列方程吗(1) x 2-4=0; (2)(x+1)2-25=0(3)x 2-3x -10=0 (4)(2x -3)2+14(2x -3)-15=02.快速回答:下列各方程的根分别是多少?归纳总结:1、对于一元二次方程,先因式分解使方程化为_________________的形式,再使________________________________,从而实现_________________,这种解法叫做__________________。

2、如果0a b ⋅=,那么0a =或0b =,这是因式分解法的根据。

如:如果(1)(1)0x x +-=,那么10x +=或_______,即1x =-或________。

注意点:1、因式分解法是解一元二次方程最简单的方法,但只适用于左边易因式分解而右边是0的一元二次方程。

2、因式分解法的根据是:如果0a b ⋅=,那么0a =或0b =。

据此把一元二次方程化为两个一元一次方程来解,达到降次..的目的。

3、跟踪练习:解下列方程: (1) 2540x x -= (2) 3(3)x x x -=- (3) 2(5)315x x +=+ (4)(3x -1)(x -2)=(4x+1)(x -2) (5)3(x-2)-x (x-2)=0. (6)222(3)9x x -=- (三)整合拓展 (1)2(3)2(3)150x x -+--= (2)2220x mx m ++= (四)信息反馈:课堂小测 1、方程(3)0x x +=的根是( ) A.10x = 20x = B.13x = 23x = C.10x =23x = D.10x = 23x =- 2、下列方程适合用因式分解法的是( ) A.210x x ++= B.22310x x -+= C.2230x x ++= D.2(1)1x x -=- 3、方程22(1)1x x +=+的根是________________。

九年级数学下册《一元二次方程的应用》教案(一) 新人教版

九年级数学下册《一元二次方程的应用》教案(一) 新人教版

《一元二次方程的应用》教案(一)一、素质教育目标(-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.(三)德育渗透点:通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性.二、教学重点、难点1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.2.教学难点:根据数与数字关系找等量关系.三、教学步骤(一)明确目标初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题,一元二次方程的应用——有关数字方面的问题.(二)整体感知:本小节是“一元一次方程的应用”的继续和发展.由于能用一元一次方程(或一次方程组)解的应用题,一般都可以用算术方法解,而需用一元二次方程来解的应用题,一般说是不能用算术方法来解的,所以,讲解本小节可以使学生认识到用代数方法解应用题的优越性与必要性.从列方程解应用题的方法来说,列出的一元二次方程解应用题与列出一元一次方程解应用题类似,都是根据问题中的相等关系列出方程、解方程、判断根是否适合题意、作出正确的答案.列出一元二次方程解应用问题,其应用相当广泛,如在几何、物理及其他学科中都有大量问题存在;其数量关系也比可以用一元一次方程解决的问题复杂的多.通过本节课的学习,渗透设未知数、列方程的代数方法,领略知识从实践中来到实践中去.例1是已知两个连续奇数求这两个数的问题,讲清这个问题的关键是搞清楚“两连续奇数”的意义,能用代数式分别表示出两个连续奇数,问题就可以解决,启发学生用不同的方法去解,并加以对比,从而开拓思路.(三)重点、难点的学习和目标完成过程1.复习提问(1)列方程解应用问题的步骤?①审题,②设未知数,③列方程,④解方程,⑤答.(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).2.例1 两个连续奇数的积是323,求这两个数.分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法).设较小的奇数为x,则另一奇数为x+2,设较小的奇数为x-1,则另一奇数为x+1;设较小的奇数为2x-1,则另一个奇数2x+1.以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.解法(一)设较小奇数为x,另一个为x+2,据题意,得x(x+2)=323.整理后,得x2+2x-323=0.解这个方程,得x1=17,x2=-19.由x=17得x+2=19,由x=-19得x+2=-17,答:这两个奇数是17,19或者-19,-17.解法(二)设较小的奇数为x-1,则较大的奇数为x+1.据题意,得(x-1)(x+1)=323.整理后,得x2=324.解这个方程,得x1=18,x2=-18.当x=18时,18-1=17,18+1=19.当x=-18时,-18-1=-19,-18+1=-17.答:两个奇数分别为17,19;或者-19,-17.解法(三)设较小的奇数为2x-1,则另一个奇数为2x+1.据题意,得(2x-1)(2x+1)=323.整理后,得4x2= 324.解得,2x=18,或2x=-18.当2x=18时,2x-1=18-1=17;2x+1=18+1=19.当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17答:两个奇数分别为17,19;-19,-17.引导学生观察、比较、分析解决下面三个问题:1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?2.解题中的x出现了负值,为什么不舍去?答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种.练习1.两个连续整数的积是210,求这两个数.2.三个连续奇数的和是321,求这三个数.3.已知两个数的和是12,积为23,求这两个数.学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.分析:数与数字的关系是:两位数=十位数字×10+个位数字.三位数=百位数字×100+十位数字×10+个位数字.解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.据题意,得10(x-2)+x=3x(x-2),整理,得3x2-17x+20=0,当x=4时,x-2=2,10(x-2)+x=24.答:这个两位数是24.以上分析,解答,教师引导,板书,学生回答,体会,评价.注意:在求得解之后,要进行实际题意的检验.练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35,53)2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.教师引导,启发,学生笔答,板书,评价,体会.(四)总结,扩展1.列一元二次方程解应用题,步骤与以前列方程解应用题一样,其中审题是解决问题的基础,找等量关系列方程是关键,恰当灵活地设元直接影响着列方程与解法的难易,它可以为正确合理的答案提供有利的条件.方程的解必须进行实际题意的检验.2.奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.数与数字的关系两位数=(十位数字×10)+个位数字.三位数=(百位数字×100)+(十位数字×10)+个位数字.……3.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、布置作业教材P.42中A1、2、五、课后记从列方程解应用题的方法来说,列出的一元二次方程解应用题与列出一元一次方程解应用题类似,都是根据问题中的相等关系列出方程、解方程、判断根是否适合题意、作出正确的答案.列出一元二次方程解应用问题,其应用相当广泛,如在几何、物理及其他学科中都有大量问题存在;其数量关系也比可以用一元一次方程解决的问题复杂的多.通过本节课的学习,渗透设未知数、列方程的代数方法,领略知识从实践中来到实践中去.。

(九年级数学教案)一元二次方程应用导学设计

(九年级数学教案)一元二次方程应用导学设计

一元二次方程应用导学设计九年级数学教案【学习目标】:1、会分析实际问题中的等量关系,并能够用一元二次方程解决实际问题2、经历用方程解决实际问题的过程,知道解应用题的一般步骤和关键所在3、通过对实际问题的分析,进一步理解方程是刻画客观世界的有效模式,培养在生活中发现问题,解决问题的能力【学习重点】:列一元二次方程解“动态”问题.【学习难点】:理解“动态”中的变化过程,寻找正确的等量关系一、课前预习问题1、一根长4m的绳子。

(1)能否围成面积是1m2的矩形?分析:如果设这根绳子围成的矩形的长是xm,那么矩形的宽是__________。

根据相等关系:矩形的长×矩形的宽=矩形的面积,可以列出方程求解。

解:(2)能否围成面积是1.2 m2的矩形?(3)这根铁丝围成的矩形中,面积最大的是多少?●二、典型例题1、学校生物课外活动小组要在兔舍外面开辟一个面积为20平方米的长方形活动场地.它的一边靠墙,其余三边利用长13m的旧围栏.已知兔舍墙面宽6m,问围成长方形的长和宽各是多少?2、如图,在矩形abcd中,ab=6 cm,bc=12 cm,点p从点a沿边ab向点b 以1cm/s的速度移动;同时,点q从点b沿边bc向点c以2cm/s的速度移动,问几秒后△pbq的面积等于8 cm2?●三、反思与小结●四、课堂检测1、用长为100 cm的金属丝制作一个矩形框子。

框子各边多长时,框子的面积是600 cm2?能制成面积是800 cm2的矩形框子吗?2、如图,a、b、c、d为矩形的四个顶点,ab=16cm,bc=6cm,动点p、q 分别从点a、c出发,点p以3cm/s的速度向点b移动,一直到达b为止;点q 以2cm/s的速度向点d移动。

经过多长时间p、q两点之间的距离是10cm?3、如图,在rt△abc中,ab=bc=12cm,点d从点a开始沿边ab以2cm/s 的速度向点b移动,移动过程中始终保持de∥bc,df∥ac,问点d出发几秒后四边形dfce的面积为20cm2?五、课后作业1、一根长22cm的铁丝。

一元二次方程的应用(1)

一元二次方程的应用(1)
即辆
解:
规律总结:增长率(或降低率)问题的规律
(1)增长率问题:设基数为a,平均增长率为x,则一次增长后的值为a(1+x),两次增长后的值为a(1+x)2,依次类推,n次增长后的值为a(1+x)n
(2)降低率问题:设基数为a,平均降低率为x,则则一次降低后的值为a(1-x),两次降低后的值为a(1-x)2,依次类推,n次降低后的值为a(1-x)n
跟踪训练:
1、小明家承包的土地前年的粮食产量是50吨,前年、去年、今年的总产量是175吨,小明家去年、今年平均每年的粮食产量增长率是多少?
2、某企业向银行贷款200万元用于生产某种新产品,约定两年到期时一次性还本付息,两年总利息为本金的8%,由于产销对路,两年到期时,该企业除还清贷款的本金和利息外,还盈余72万元。假定该企业在生产这种新产品期间,每年比上一年资金增长的百分率相同,则这个百分率是多少?
里辛一中“分层互助”导学案
初三数学 课题:一元二次方程的应用(1)备课时间:2014-03-24
课堂寄语:自觉是进步之母,自贱是堕落之源,故自觉不可无,自贱不可有。人应该支配习惯,而绝不能让习惯支配人;一个人若不能去掉它的坏习惯,那简直一文不值。
学习
目标
1、掌握列一元二次方程解应用题的一般步骤
2、能够熟练应用常见基本图形的面积公式、体积公式,会利用一元二次方程解决几何中一些与面积有关的问题
2、列一元二次方程解应用题的一般步骤
①审②设③列④解⑤验⑥答
二、【自主学习】
自学课本62页,并写出小明和小亮设计方案的一元二次方程
小明:
小亮:
三、【探究新知】
探究一:面积问题
某校为了美化校园,准备在一块长16米,宽12米的长方形场地上修筑若干条道路,余下部分作草坪,使草坪面积是长方形场地面积的一半,根据图中设计方案列出方程,求图中道路的宽分别是多少?

初三一元二次方程的应用导学案

初三一元二次方程的应用导学案

一元二次方程的应用1一、自主学习:1.五月份产值是20万元,经过连续两次涨价(每次涨10%),则七月份的产值是_________________________万元。

2.8月份产值是20万元,经过连续两次降价(每次降10%),则10月份的产值是_________________________万元。

二.合作探究:1.增长率或降低率问题:讨论:(1)增长率问题:设基数为α,平均增长率为x,则一次增长后的值为,两次增长后的值为。

以此类推,n次增长后的值为(2)降低率问题:设基数为α,平均降低率为x,则一次降低后的值为,两次降低后的值为。

以此类推,n次降低后的值为应用:(1).某公司2006年的产值为500万元,2008年的产值为720万元,设平均每年的产值增长率为x,则由题意列方程为(2).某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,则由题意列方程为(3).为了有效地控制沙尘暴等恶劣天气对人类生存环境的破坏,我国北方某地决定加快植树造林的速度,计划用两年时间将防风林的面积从现在的2万亩扩大到2.42万亩.求平均每年增长的百分率.三.随堂检测:1.某中学的学生人数在两年的时间内从100人增加到900人,若设增长率为 x, 则可列方程为2.某商品的原价是100元,如果经过两次降价后为81元,且每次降价的百分率都是m, 则可列方程为4.某公司一月份营业额100万元,第一季度总营业额为331万元,求该公司二、三月份营业额平均增长率是多少?四.作业:1. 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.2、一个小组有若干人,新年互送贺卡,若全组共送了 72 张,则这个小组共有多少人?一元二次方程的应用2一、自主学习:1.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,列方程为_________________2.一个两位数,十位数字与个位数字之和为5,把这个数的十位数字与个位数字对调后,所得的新两位数与原两位数乘积为736,设个位数字为m,则十位数字为,原数为,新数为可列方程为4.如图,在宽20m,长30m的矩形地面上建筑两条同样长和同样宽且互相垂直的道路,余下部分作为耕地,耕地面积为551m²,设道路的宽为x,可列方程二.合作探究:(1).数字问题:有一个两位数,它十位上的数字与个位上的数字的和是8。

九年级一元二次方程应用导学案

九年级一元二次方程应用导学案

九年级一元二次方程导学案教学目标:通过对一元二次方程的进一步理解,找到实际问题中等量关系从而求解实际问题。

教学重点:实际问题中的等量关系如何找教学难点:根据等量关系设未知数列方程教学过程:(1)解应用题步骤:1.审题;2.设未知数,包括直接设未知数和间接设未知数两种;3.找等量关系列方程;4.解方程;5.判断解是否符合题意;6.写出正确的解.(2)常见类型1、循环问题(※中考热点考点)(a) 传播问题有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?解:设每轮传染中平均一个人传染了x个人可传染人数共传染人数第0轮1(传染源) 1第1轮x x+1第2轮x(x+1) 1+x+ x(x+1)列方程1+x+ x(x+1)=121解方程,得X1=10,X2=-12X2=-12不符合题意,所以原方程的解是x=10答:每轮传染中平均一个人传染了10个人。

类似问题还有树枝开叉等。

(b) 循环问题(又可分为单循环问题,双循环问题和复杂循环问题)a.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?b.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?c.一个正八边形,它有多少条对角线?2、平均率问题(※中考热点考点)最后产值、基数、平均增长率或降低率、增长或降低次数的基本关系:M=a(1±x)n n为增长或降低次数M为最后产量,a为基数,x为平均增长率或降低率平均率和时间相关,必须弄清楚从何年何月何日到何年何月何日的增长或降低率。

(a)平均增长率问题某电脑公司2000年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2002年经营总收入要达到2160万元,且计划从2000年到2002年,每年经营总收入的年增长率相同,问2001年预计经营总收入为多少万元? 解:设每年经营总收入的年增长率为a. 列方程, 600÷40%×(1+a)2=2160解方程, a 1=0.2 a 2=-2.2,(不符合题意,舍去) ∴每年经营总收入的年增长率为0.2 则 2001年预计经营总收入为:600÷40%×(1+0.2)=600÷40%×1.2=1800 答:2001年预计经营总收入为1800万元. (b )平均下降率问题从盛满20升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样升数的混合液后,这时容器里剩下纯酒精5升.问每次倒出溶液的升数?剖析:第一次倒出的是纯酒精,而第二次倒出的就不是纯酒精了.若设每次倒出x 升,则第一次倒出纯酒精x 升,第二次倒出纯酒精(2020x-·x )升.根据20升纯酒精减去两次倒出的纯酒精,就等于容器内剩下的纯酒精的升数.20-x -2020x-·x =5. 3、商品销售问题(中考常考)常用关系式:售价—进价=利润 一件商品的利润×销售量=总利润 单价×销售量=销售额)(a )给出关系式1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X 销售量P ,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件? (b)一个“+” 一个“—”3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

初三数学专题复习7——一元二次方程及其应用(学案)

初三数学专题复习7——一元二次方程及其应用(学案)

专题复习七一元二次方程及其应用学案一、知识梳理1、一元二次方程的定义: .一元二次方程的一般形式: .问题:方程x2+2x+1=x(x+1)是一元二次方程吗?2、一元二次方程的解法:等四种。

(1)因式分解法解一元二次方程是通过把一元二次方程化成两个的形式,从而把解一元二次方程的问题转化为解的问题。

(2)一元二次方程ax2+bx+c=0(a≠0)的求根公式为 .3、一元二次方程的根的判别式是: .当时一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根;当时一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根;当时一元二次方程ax2+bx+c=0(a≠0)没有实数根.4、当解含字母已知数的一元一次方程和一元二次方程时要注意什么?5、利用一元二次方程求根公式对二次三项式ax2+bx+c进行因式分解时要注意什么?二、经典例题学习例1.指出方程5x2−5x−2=0的二次项系数,一次项系数和常数项。

变式练习:指出方程(1−2x)(x+2)=3x2+1的二次项系数,一次项系数和常数项。

例2.用直接开平方法解方程4x2=9 .变式练习:用直接开平方法解49(x.-)22=5例3. 用因式分解法解方程x2+x−6=0 .变式练习:用因式分解法解方程x2+2x−8=0例4 .用配方法解方程x2−2x−4=0.变式练习:用配方法解方程4x2+12x−7=0 .例5. 用公式法解方程x2−2x=4 .例6.当m取何值时,关于x的一元二次方程mx2−3x+5=0有两个不相等的实数根?变式练习:当m取何值时,关于x的一元二次方程mx2−3x+5=0有两个相等的实数根?没有实数根?例7. 解关于x的方程ax+x=2(x−2) .例8. 在实数范围内因式分解 .(1)x2+3x−1 (2)2x2−3xy−3y2四、课后作业 .。

九年级数学: 21.3 一元二次方程的应用(1)导学案

九年级数学: 21.3 一元二次方程的应用(1)导学案

21.3.1 实际问题与一元二次方程(1)导学案
备课人:编号:
学习目标:
1. 会列出一元二次方程解决传播类、增长率类等实际问题,
【自主探究】
1:有一人患了流感,经过两轮传染后共有121人患了流感,
(1)每轮传染中平均一个人传染了几个人?
(2)如果按照这样的传染速度,三轮后有多少人患流感?
2:某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?
【尝试应用】
3:两年前生产1吨甲种药品的成本是5000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,请问药品成本的年平均下降率多大?(精确到0.001)
4:青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产9000kg,求水稻每公顷产量的年平均增长率.
【拓展延伸】
5. 某次会议中,参加的人员每两人握一次手,共握手190次,求参加会议共有多少人?
6. 一个菱形两条对角线长的和是10cm,面积是12 cm2,求菱形的周长。

教后(学后)反思:
21.3.1 实际问题与一元二次方程(1)补偿作业
姓名:
1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,试问全组有多少名同学?
2.为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元
(1)求该学校为新增电脑投资的年平均增长率;
(2)从2009年到2011年,该中学三年为新增电脑共投资多少万元?
教师评价。

数学九年级上册《一元二次方程(1)》导学案

数学九年级上册《一元二次方程(1)》导学案

数学九年级上册《一元二次方程(1)》导学案设计人:审核人:【学习目标】1、要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

2、引导学生分析实际问题中的数量关系,类比一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

3、通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。

【学习重点】由实际问题列出一元二次方程和一元二次方程的概念。

【学习难点】由实际问题列出一元二次方程,准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。

【学习方法】在自学中通过探究实际问题得到一元二次方程概念,通过分析讨论感知一元二次方程的定义,在研学中能找出问题的易错点,及解决问题的方法和规律。

自学阅读课本第1页至第4页练习部分,独立完成下列问题:1、方程①、②、③有什么共同点?2、判断一个方程是一元二次方程应满足哪些条件,并回答为什么规定a≠0?3、一元二次方程和一元一次方程有什么区别与联系?得出一元二次方程的定义运用了那种数学方法?4、请写出一元二次方程的一般形式,并回答等号左边是几次几项式,等号右边是什么式子?5、一个数要是一元二次方程的解(根)应满足什么条件?三、1、完成课后练习12、方程x (x-1)=2的两根为( ).A x 1=0,x 2=1B x 1=0,x 2=-1C x 1=1,x 2=2D x 1=-1,x 2=2 我自学中的困惑:研学1.将自学内容中的收获与困惑与同伴交流。

2、能力提升中考聚焦判断下列方程是否为一元二次方程,并说明理由。

(1)2x 2+3x-1=0;(2)2(x 2-1)=3y ;(3)5x 2-1=4x (4)02112=-+xx ; (5) 4x 2=81 (6)3x(x-1)=5(x+2); (7)关于x 的方程mx 2-3x +2=0;示学展示一:展示自学部分问题较多的题目。

展示二:展示研学能力提升。

导学案_数学_九年级上册_一元二次方程的应用

导学案_数学_九年级上册_一元二次方程的应用

一元二次方程的应用组名:姓名:一、学习目标:1、会建立一元二次方程的模型解决实际问题;2、提高分析问题和解决问题的能力;二、预习检测1、说一说菱形有哪些性质。

2、已知一个菱形的两条对角线的长分别为6cm、cm,这个菱形的边长为,面积为。

3、列方程解应用题的一般步骤有:审、设、找、列、解、。

三、自主学习1、一种铁栅栏护窗的正面是高为120cm.、宽为100cm的矩形,在中间有一个由4根铁条组成的菱形,如下图所示。

菱形的水平方向的对角线比竖直方向的对角线长20cm,且菱形的面积是护窗正面矩形面积的1/5。

(1)求菱形的两条对角线长。

(2)求组成菱形的每一根铁条的长度。

解题思路:菱形的面积与对角线的关系是:如果设菱形竖直方向的对角线长x cm,则水平方向的对角线长 Cm,根据题意可列出方程:解此方程得:检验解的合理性:。

作答:。

(2)菱形的边长的计算:在运用一元二次方程解实际问题时,一定要注意检验所求得的解是否。

2、如图,一块长和宽分别是40cm,28cm的矩形铁皮,在它的四角分别截去四个完全一样的小正方形,折成一个无盖的长方体盒子,使得它的底面积为364cm3,本题中的等量关系是:若设截去的小正方形边长为x cm,则底面长 cm,宽 cm。

于是可以列出方程解此方程得:检验解的合理性:。

作答:。

四、合作探究1、用长8m 的铝材做一个日字型窗框,高和宽各为多少米时窗户的透光面积为38 m 2?2、小湖村的一块矩形水稻田的长为50m ,宽为30m ,在田中有一横两纵的等宽田埂,如图所示,这块田的种植面积为1445.5m 2,求田埂的宽。

五、课堂检测1、一条长64cm 的铁丝被剪成两段,每段均折成正方形。

若两个正方形的面积和等于160cm 2,则这两个正方形的边长分别是多少?2、用长为100 cm 的金属丝制作一个矩形框子。

框子各边多长时,框子的面积是600 cm 2?能制成面积是800 cm 2的矩形框子吗?3、在矩形ABCD 中,AB=6 cm ,BC=12 cm ,点P 从点A 沿边AB 向点B 以1cm/s 的速度移动;同时,点Q 从点B 沿边BC 向点C 以2cm/s 的速度移动,问几秒后△PBQ 的面积等于8 cm 2?P QC B A D。

数学教案一元二次方程的应用(6篇)

数学教案一元二次方程的应用(6篇)

数学教案一元二次方程的应用(6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!数学教案一元二次方程的应用(6篇)在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。

初中数学人教版九年级上册:第21章《一元二次方程》全章导学案

初中数学人教版九年级上册:第21章《一元二次方程》全章导学案

初中数学人教版九年级上册实用资料第二十一章 一元二次方程 21.1 一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题. 2.掌握一元二次方程的一般形式ax 2+bx +c =0(a ≠0)及有关概念. 3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索. 难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟) 问题1:如图,有一块矩形铁皮,长100 cm ,宽50 cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm 2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为__(100-2x)cm __,宽为__(50-2x)cm __.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛1场,所以全部比赛共x (x -1)2__场.列方程__x (x -1)2=28__,化简整理,得__x 2-x -56=0__.② 探究:(1)方程①②中未知数的个数各是多少?__1个__. (2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: ax 2+bx +c =0(a ≠0).这种形式叫做一元二次方程的一般形式.其中__ax 2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a ≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 1.判断下列方程,哪些是一元二次方程?(1)x 3-2x 2+5=0; (2)x 2=1; (3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1);(5)x 2-2x =x 2+1; (6)ax 2+bx +c =0. 解:(2)(3)(4). 点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程. 2.将方程3x(x -1)=5(x +2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x 2-3x =5x +10.移项,合并同类项,得3x 2-8x -10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,无论m 取何值,该方程都是一元二次方程.证明:m 2-8m +17=(m -4)2+1, ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0.∴无论m 取何值,该方程都是一元二次方程. 点拨精讲:要证明无论m 取何值,该方程都是一元二次方程,只要证明m 2-8m +17≠0即可.2.下面哪些数是方程2x 2+10x +12=0的根? -4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 1.判断下列方程是否为一元二次方程.(1)1-x 2=0; (2)2(x 2-1)=3y ; (3)2x 2-3x -1=0; (4)1x 2-2x=0;(5)(x +3)2=(x -3)2; (6)9x 2=5-4x. 解:(1)是;(2)不是;(3)是; (4)不是;(5)不是;(6)是.2.若x =2是方程ax 2+4x -5=0的一个根,求a 的值. 解:∵x =2是方程ax 2+4x -5=0的一个根,∴4a +8-5=0, 解得a =-34.3.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求长方形的长x.解:(1)4x 2=25,4x 2-25=0;(2)x(x -2)=100,x 2-2x -100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程. 2.一元二次方程的一般形式ax 2+bx +c =0(a ≠0),特别强调a ≠0. 3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2 解一元二次方程 21.2.1 配方法(1)1. 使学生会用直接开平方法解一元二次方程.2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x +m)2=n(n ≥0)的方程;领会降次——转化的数学思想. 难点:通过根据平方根的意义解形如x 2=n(n ≥0)的方程,知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500 dm 2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm ,则一个正方体的表面积为__6x 2__dm 2,根据一桶油漆可刷的面积列出方程:__10×6x 2=1500__, 由此可得__x 2=25__,根据平方根的意义,得x =__±5__, 即x 1=__5__,x 2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm . 探究:对照问题1解方程的过程,你认为应该怎样解方程(2x -1)2=5及方程x 2+6x +9=4?方程(2x -1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x -1=±5__,即将方程变为__2x -1=5和__2x -1=-5__两个一元一次方程,从而得到方程(2x -1)2=5的两个解为x 1=__1+52,x 2=__1-52__.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x 2+6x +9=4的左边是完全平方式,这个方程可以化成(x +__3__)2=4,进行降次,得到 __x +3=±2__ ,方程的根为x 1= __-1__,x 2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x 2=p(p ≥0)或(mx +n)2=p(p ≥0)的形式,那么可得x =±p 或mx +n =±p. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y 2=8; (2)2(x -8)2=50; (3)(2x -1)2+4=0; (4)4x 2-4x +1=0.解:(1)2y 2=8, (2)2(x -8)2=50, y 2=4, (x -8)2=25, y =±2, x -8=±5,∴y 1=2,y 2=-2; x -8=5或x -8=-5, ∴x 1=13,x 2=3;(3)(2x -1)2+4=0, (4)4x 2-4x +1=0, (2x -1)2=-4<0, (2x -1)2=0, ∴原方程无解; 2x -1=0, ∴x 1=x 2=12.点拨精讲:观察以上各个方程能否化成x 2=p(p ≥0)或(mx +n)2=p(p ≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程: (1)(3x +1)2=7; (2)y 2+2y +1=24; (3)9n 2-24n +16=11.解:(1)-1±73;(2)-1±26;(3)4±113.点拨精讲:运用开平方法解形如(mx +n)2=p(p ≥0)的方程时,最容易出错的是漏掉负根.2.已知关于x 的方程x 2+(a 2+1)x -3=0的一个根是1,求a 的值.解:±1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 用直接开平方法解下列方程:(1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)(x +5)2=25; (7)x 2+2x +1=4.解:(1)x 1=1+2,x 2=1-2; (2)x 1=2+5,x 2=2-5; (3)x 1=-1,x 2=13;(4)x 1=16,x 2=-16;(5)x 1=92,x 2=-92;(6)x 1=0,x 2=-10;(7)x 1=1,x 2=-3.学生总结本堂课的收获与困惑.(2分钟)1.用直接开平方法解一元二次方程. 2.理解“降次”思想.3.理解x 2=p(p ≥0)或(mx +n)2=p(p ≥0)中,为什么p ≥0?学习至此,请使用本课时对应训练部分.(10分钟)21.2.1 配方法(2)1.会用配方法解数字系数的一元二次方程.2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x -a)2=b 的过程.(2分钟)1.填空:(1)x 2-8x +__16__=(x -__4__)2; (2)9x 2+12x +__4__=(3x +__2__)2; (3)x 2+px +__(p 2)2__=(x +__p2__)2.2.若4x 2-mx +9是一个完全平方式,那么m 的值是__±12__.一、自学指导.(10分钟)问题1:要使一块矩形场地的长比宽多6 m ,并且面积为16 m 2,场地的长和宽分别是多少米?设场地的宽为x m ,则长为__(x +6)__m ,根据矩形面积为16 m 2,得到方程__x(x +6)=16__,整理得到__x 2+6x -16=0__.探究:怎样解方程x 2+6x -16=0?对比这个方程与前面讨论过的方程x 2+6x +9=4,可以发现方程x 2+6x +9=4的左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程;而方程x 2+6x -16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x 2+6x =16,两边都加上__9__即__(62)2__,使左边配成x 2+bx +(b2)2的形式,得__x 2__+6__x__+9=16+__9__,左边写成平方形式,得__(x +3)2=25__,开平方,得__x +3=±5__, (降次)即 __x +3=5__或__x +3=-5__,解一次方程,得x 1=__2__,x 2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程:(1)3x 2-1=5; (2)4(x -1)2-9=0; (3)4x 2+16x +16=9.解:(1)x =±2;(2)x 1=-12,x 2=52;(3)x 1=-72,x 2=-12.归纳:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式ax 2+bx +c =0;(2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空:(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x +__1__)2.2.解下列方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0; (3)(1+x)2+2(1+x)-4=0.解:(1)移项,得x 2+6x =-5,配方得x 2+6x +32=-5+32,(x +3)2=4, 由此可得x +3=±2,即x 1=-1,x 2=-5. (2)移项,得2x 2+6x =-2,二次项系数化为1,得x 2+3x =-1, 配方得x 2+3x +(32)2=(x +32)2=54,由此可得x +32=±52,即x 1=52-32,x 2=-52-32. (3)去括号,整理得x 2+4x -1=0, 移项得x 2+4x =1, 配方得(x +2)2=5,x +2=±5,即x 1=5-2,x 2=-5-2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x 的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,在Rt △ABC 中,∠C =90°,AC =8 m ,CB =6 m ,点P ,Q 同时由A ,B 两点出发分别沿AC ,BC 方向向点C 匀速移动,它们的速度都是1 m /s ,几秒后△PCQ 的面积为Rt △ABC 面积的一半?解:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半.根据题意可列方程: 12(8-x)(6-x)=12×12×8×6, 即x 2-14x +24=0, (x -7)2=25, x -7=±5,∴x 1=12,x 2=2,x 1=12,x 2=2都是原方程的根,但x 1=12不合题意,舍去.答:2秒后△PCQ 的面积为Rt △ABC 面积的一半. 点拨精讲:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.用配方法解下列关于x 的方程:(1)2x 2-4x -8=0; (2)x 2-4x +2=0; (3)x 2-12x -1=0 ; (4)2x 2+2=5.解:(1)x 1=1+5,x 2=1-5; (2)x 1=2+2,x 2=2-2; (3)x 1=14+174,x 2=14-174;(4)x 1=62,x 2=-62. 2.如果x 2-4x +y 2+6y +z +2+13=0,求(xy)z 的值.解:由已知方程得x 2-4x +4+y 2+6y +9+z +2=0,即(x -2)2+(y +3)2+z +2=0,∴x =2,y =-3,z =-2.∴(xy)z =[2×(-3)]-2=136.学生总结本堂课的收获与困惑.(2分钟)1.用配方法解一元二次方程的步骤. 2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2 公式法1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用. 难点:一元二次方程求根公式的推导.(2分钟)用配方法解方程:(1)x 2+3x +2=0; (2)2x 2-3x +5=0. 解:(1)x 1=-2,x 2=-1; (2)无解.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac2a.分析:因为前面具体数字已做得很多,现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)x =-b±b 2-4ac 2a叫做一元二次方程ax 2+bx +c =0(a ≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b 2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x 2-3x =0; (2)3x 2-23x +1=0; (3)4x 2+x +1=0.解:(1)x 1=0,x 2=32;有两个不相等的实数根;(2)x 1=x 2=33;有两个相等的实数根; (3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.当m 为何值时,方程(m +1)x 2-(2m -3)x +m +1=0, (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?解:(1)m <14; (2)m =14; (3)m >14.3. 已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根.证明:∵x 2+2x -m +1=0没有实数根, ∴4-4(1-m)<0,∴m <0.对于方程x 2+mx =1-2m ,即x 2+mx +2m -1=0, Δ=m 2-8m +4,∵m <0,∴Δ>0,∴x 2+mx =1-2m 必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.利用判别式判定下列方程的根的情况: (1)2x 2-3x -32=0; (2)16x 2-24x +9=0;(3)x 2-42x +9=0 ; (4)3x 2+10x =2x 2+8x. 解:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)无实数根;(4)有两个不相等的实数根. 2.用公式法解下列方程:(1)x 2+x -12=0 ; (2)x 2-2x -14=0;(3)x 2+4x +8=2x +11; (4)x(x -4)=2-8x ; (5)x 2+2x =0 ; (6)x 2+25x +10=0. 解:(1)x 1=3,x 2=-4; (2)x 1=2+32,x 2=2-32; (3)x 1=1,x 2=-3;(4)x 1=-2+6,x 2=-2-6;(5)x 1=0,x 2=-2; (6)无实数根.点拨精讲:(1)一元二次方程ax 2+bx +c =0(a ≠0)的根是由一元二次方程的系数a ,b ,c 确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b 2-4ac ≥0的前提下,把a ,b ,c 的值代入x =-b±b 2-4ac 2a(b 2-4ac ≥0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a ,b ,c 的值,再算.出b 2-4ac 的值、最后代.入求根公式求解. 3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3 因式分解法1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am +bm +cm =(__a +b +c__)m ; (2)a 2-b 2=__(a +b)(a -b)__; (3)a 2±2ab +b 2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10 m /s 的速度竖直上抛,那么经过x s 物体离地的高度(单位:m )为10x -4.9x 2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s )设物体经过x s 落回地面,这时它离地面的高度为0,即10x -4.9x 2=0, ① 思考:除配方法或公式法以外,能否找到更简单的方法解方程①? 分析:方程①的右边为0,左边可以因式分解得: x(10-4.9x)=0,于是得x =0或10-4.9x =0, ② ∴x 1=__0__,x 2≈2.04.上述解中,x 2≈2.04表示物体约在2.04 s 时落回地面,而x 1=0表示物体被上抛离开地面的时刻,即0 s 时物体被抛出,此刻物体的高度是0 m .点拨精讲: (1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b =0,那么a =0或b =0,这是因式分解法的根据.如:如果(x +1)(x -1)=0,那么__x +1=0或__x -1=0__,即__x =-1__或__x =1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)x(x -8)=0; (2)(3x +1)(2x -5)=0. 解:(1)x 1=0,x 2=8; (2)x 1=-13,x 2=52.2.用因式分解法解下列方程: (1)x 2-4x =0; (2)4x 2-49=0;(3)5x 2-20x +20=0.解:(1)x 1=0,x 2=4; (2)x 1=72,x 2=-72;(3)x 1=x 2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5x 2-4x =0; (2)3x(2x +1)=4x +2; (3)(x +5)2=3x +15. 解:(1)x 1=0,x 2=45;(2)x 1=23,x 2=-12;(3)x 1=-5,x 2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4x 2-144=0;(2)(2x -1)2=(3-x)2; (3)5x 2-2x -14=x 2-2x +34;(4)3x 2-12x =-12.解:(1)x 1=6,x 2=-6; (2)x 1=43,x 2=-2;(3)x 1=12,x 2=-12;(4)x 1=x 2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.用因式分解法解下列方程: (1)x 2+x =0; (2)x 2-23x =0; (3)3x 2-6x =-3; (4)4x 2-121=0; (5)(x -4)2=(5-2x)2. 解:(1)x 1=0,x 2=-1; (2)x 1=0,x 2=23; (3)x 1=x 2=1;(4)x 1=112,x 2=-112;(5)x 1=3,x 2=1.点拨精讲:因式分解法解一元二次方程的一般步骤:(1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__;(3)令每个因式分别为__0__,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m . 则可列方程2πx 2=π(x +5)2.解得x 1=5+52,x 2=5-52(舍去). 答:小圆形场地的半径为(5+52) m .学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab =0得 a =0或b =0,即“二次降为一次”. 2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4 一元二次方程的根与系数的关系1. 理解并掌握根与系数的关系:x 1+x 2=-b a ,x 1x 2=ca .2. 会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟) 方程 x 1 x 2 x 1+x 2 x 1x 2 x 2-5x +6=0 2 3 5 6 x 2+3x -10=02-5-3-10问题:你发现什么规律? ①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项. ②x 2+px +q =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-p ,x 1x 2=q. 自学2:完成下表: 方程 x 1 x 2 x 1+x 2 x 1x 2 2x 2-3x -2=02-1232-13x 2-4x +1=013143 13问题:上面发现的结论在这里成立吗?(不成立) 请完善规律:①用语言叙述发现的规律; 答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax 2+bx +c =0的两根x 1,x 2用式子表示你发现的规律.答:x 1+x 2=-b a ,x 1x 2=ca.自学3:利用求根公式推导根与系数的关系.(韦达定理) ax 2+bx +c =0的两根x 1=__-b +b 2-4ac 2a __,x 2=__-b -b 2-4ac 2a__.x 1+x 2=-b a ,x 1x 2=ca.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积. (1)x 2-3x -1=0 ; (2)2x 2+3x -5=0; (3)13x 2-2x =0. 解:(1)x 1+x 2=3,x 1x 2=-1; (2)x 1+x 2=-32,x 1x 2=-52;(3)x 1+x 2=6,x 1x 2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)3x 2+7x -9=0; (3)5x -1=4x 2.解:(1)x 1+x 2=6,x 1x 2=-15; (2)x 1+x 2=-73,x 1x 2=-3;(3)x 1+x 2=54,x 1x 2=14.点拨精讲:先将方程化为一般形式,找对a ,b ,c.2.已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 解:另一根为32,k =3.点拨精讲:本题有两种解法,一种是根据根的定义,将x =-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程x 2-3x -5=0的两根,不解方程,求下列代数式的值.(1)1α+1β; (2)α2+β2; (3)α-β.解:(1)-35;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.不解方程,求下列方程的两根和与两根积:(1)x 2-3x =15; (2)5x 2-1=4x 2; (3)x 2-3x +2=10; (4)4x 2-144=0. 解:(1)x 1+x 2=3,x 1x 2=-15; (2)x 1+x 2=0,x 1x 2=-1; (3)x 1+x 2=3,x 1x 2=-8; (4)x 1+x 2=0,x 1x 2=-36.2.两根均为负数的一元二次方程是( C ) A .7x 2-12x +5=0 B .6x 2-13x -5=0 C .4x 2+21x +5=0 D .x 2+15x -8=0 点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值. 1.先化成一般形式,再确定a ,b ,c.2.当且仅当b 2-4ac ≥0时,才能应用根与系数的关系.3.要注意比的符号:x 1+x 2=-b a (比前面有负号),x 1x 2=ca(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟)21.3 实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理. 3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题. 难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x 个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x +1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x +1)(x +1)__人患了流感.则列方程:__(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得x1=__2__,x2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550B.x(x-1)=2550C.2x(x+1)=2550D.x(x-1)=2550×2分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2. 对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则11月份的营业额为__5000(1+x)__元,12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2;n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其他依此类推.解:设这种存款方式的年利率为x,则1000+2000x·80%+(1000+2000x·80%)x·80%=1320,整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,解得x1=-2(不符,舍去),x2=0.125=12.5%.答:所求的年利率是12.5%.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)青山村种的水稻2011年平均每公顷产7200 kg,2013年平均每公顷产8460 kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为x,则有7200(1+x)2=8460,解得x1=0.08,x2=-2.08(舍).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟)1. 列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2. 若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(3)1. 能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.并能根据具体问题的实际意义,检验结果是否合理.2. 列一元二次方程解有关特殊图形问题的应用题.重点:根据面积与面积之间的等量关系建立一元二次方程的数学模型并运用它解决实际。

【范文】一元二次方程的应用(1)导学案 (新版新人教版)

【范文】一元二次方程的应用(1)导学案 (新版新人教版)

一元二次方程的应用(1)导学案(新版新人教版)本资料为woRD文档,请点击下载地址下载全文下载地址www.5ykj.com 第8课时一元二次方程的应用(1)一、学习目标会列出一元二次方程解应用题;学会用列一元二次方程的方法解决传播问题、增长率问题和几何图形问题;通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.二、知识回顾.解一元二次方程有哪些方法?直接开平方法、配方法、公式法、因式分解法.2.列一元一次方程解应用题的步骤是什么?(1)审:弄清题意和题目中的数量关系;(2)设:用字母表示题目中的一个未知数;(3)找:找出能够表示应用题全部含义的一个等量关系;(4)列:根据这个等量关系列出代数式,从而列出方程;(5)解:解所列的方程,求出未知数的值;(6)验:检验方程的解是否符合题意;(7)答:写出答案(包括单位名称).三、新知讲解列一元二次方程解应用题的一般步骤审:指读懂题目,审清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系;设:指设元,即设未知数,设元分直接设元和间接设元,直接设元就是问什么设什么,间接设元是间接地设一个与所求的量有关系的量作为未知数,进而求出所求的量;列:指列一元二次方程,这是非常重要的步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程;解:指解方程,即求出所列方程的解;验:指检验方程的解能否保证实际问题有意义,符合题意,应注意的是,一元二次方程的解有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%,等等.答:写出答案.列一元二次方程解应用题的常见题型传播问题、增长率问题、几何图形问题、数字问题、营销问题、利息问题等.四、典例探究.一元二次方程的应用——传播问题【例1】(XX秋&#8226;剑阁县校级期中)“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?总结:传播问题的基本特征是:以相同速度逐轮传播.解决此类问题的关键是:明确每轮传播中的传染源个数,以及这一轮被传染的总数.练1.(XX秋&#8226;集美区校级期末)为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n 个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有111人参与了传播活动,则n的值是多少?2.一元二次方程的应用——增长率问题【例2】(XX&#8226;珠海)白溪镇XX年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,XX年达到82.8公顷.(1)求该镇XX至XX年绿地面积的年平均增长率;若年增长率保持不变,XX年该镇绿地面积能否达到100公顷?总结:增长率问题会涉及到最后产量、基数、平均增长率或平均降低率.若平均增长(或降低)百分率为x,增长(或降低)前基数为a,增长(或降低)n次后的最后产量是b,则它们的数量关系可表示为an=b,其中增长取“+”,降低取“-”,注意1与x的位置不能调换.增长率问题中,解方程一般用直接开平方法,注意方程根的取舍问题.练2.(XX秋&#8226;丹江口市校级月考)一种药品经过两次降价,由每盒60元调至48.6元,平均每次降价的百分率是多少?3.一元二次方程的应用——与图形有关的问题【例3】(XX秋&#8226;番禺区校级月考)如图,在宽为20m,长为32m的矩形耕地上,修筑宽度一样的三条道路(如图),把耕地分成大小相等的6块作为试验田,要使试验田面积为504m2,求每条道路的宽度为多少米.总结:解决几何图形问题的关键是掌握常见几何图形的面积、体积公式,并能熟练计算由基本图形构成的组合图形的面积.对于不规则图形的面积问题,往往通过平移、割补等方法把不规则图形转化为规则图形,运用规则图形的面积公式列出方程.练3.(XX&#8226;金湾区校级一模)某幼儿园有一道长为16米的墙,计划用32米长的围栏利用一面墙如图围成一个矩形草坪ABcD.(1)当矩形草坪面积为120平方米时候,求该矩形草坪Bc边的长.(2)怎样围能得到面积最大的草坪?五、课后小测一、选择题.(XX&#8226;山西模拟)九(1)班同学毕业的时候,每人都必须与其他任何一位同学合照一张双人照,全班共照相片780张,则九(1)班的人数是()A.39B.40c.50D.602.(XX&#8226;兰州二模)有一人患了流感,经过两轮穿然后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x的值为()A.5B.6c.7D.83.(XX&#8226;泰安模拟)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x%B.1+2x%c.(1+x%)&#8226;x%D.(2+x%)&#8226;x%4.(XX&#8226;江岸区校级模拟)为提高民生,让人民更好的享受经济和社会发展的成果,今年多数药品生产的企业对某些药品实行降价,其中某种药品经过再次降价,每盒下降了36%.假设每次降价的百分率相同,降价前的药品价格为100元,则第一次降价后的价格为()A.18元B.36元c.64元D.80元5.(XX&#8226;槐荫区三模)如图,矩形ABcD是由三个矩形拼接成的.如果AB=8,阴影部分的面积是24,另外两个小矩形全等,那么小矩形的长为()A.7B.6c.5D.4二、填空题6.(XX春&#8226;信州区校级月考)有一人患了流感,经过两轮传染后共有81人患了流感,如果不及时控制,第三轮将又有人被传染.7.(XX春&#8226;富阳市校级月考)甲菜农计划以每千克5元的价格对外批发某种蔬菜,由于部分菜农盲目扩大种植这种蔬菜,造成这种蔬菜滞销.甲菜农为加快销售,减少损失,对这种蔬菜的价格经过两次下调,最后以每千克3.2元的单价对外批发销售,则他平均每次下调的百分率是.8.(XX&#8226;东西湖区校级模拟)如图,某广场一角的矩形花草区,其长为40m,宽为26m,其间有三条等宽的路,一条直路,两条曲路,路以外的地方全部种上花草,要使花草的面积为864m2,求路的宽度为m.三、解答题9.(XX&#8226;襄阳区校级模拟)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,每个支干长出多少小分支?0.(XX&#8226;东海县模拟)有一人患流感,经过两轮传染后,共有49人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?1.(XX&#8226;泗县校级模拟)某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?2.(XX春&#8226;淮阴区校级月考)前一阶段,我校成功的举办了首届数学节,某种活动所需材料经过两次降价后,从原来的20元减少到12.8元,若两次降价的百分率相同,请你求出降价的百分率.3.(XX&#8226;香洲区校级一模)据媒体报道,我国XX 年公民出境旅游总人数约5000万人,XX年公民出境旅游总人数约7200万人,若XX年、XX年公民出境旅游总人数逐年递增,请解答如下问题:(1)求这两年我国公民出境旅游总人数的年平均增长(2)如果XX年仍保持相同的年平均增长率,请你预测XX年我国公民出境旅游总人数约多少万人?4.(XX&#8226;红塔区模拟)如图,在长为80米,宽为60米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为4524米2,则道路的宽应为多少米?15.(XX&#8226;长宁区二模)如图,为了给小区居民增加锻炼场所,物业拟在一宽为40米、长为60米的矩形区域内的四周修建宽度相同的鹅卵石小路,阴影部分用作绿化.当阴影部分面积为800平方米时,小路宽x为多少米.16.(XX&#8226;赣州模拟)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:依据规律在第6个图中,黑色瓷砖有28 块,白色瓷砖有42 块;(2)某新学校教室要装修,每间教室面积为68m2,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?典例探究答案:【例1】(XX秋&#8226;剑阁县校级期中)“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?分析:(1)设每轮传染中平均每人传染了x人,根据经过两轮传染后共有121人患病,可求出x,(2)进而求出第三轮过后,又被感染的人数.解答:解:(1)设每轮传染中平均每人传染了x人,+x+x(x+1)=121,x=10或x=﹣12(舍去).答:每轮传染中平均一个人传染了10个人;(2)121+121×10=1331(人).答:第三轮后将有1331人被传染.点评:本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人是解题关键.练1.(XX秋&#8226;集美区校级期末)为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n 个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有111人参与了传播活动,则n的值是多少?分析:设邀请了n个好友转发倡议书,第一轮传播了n 个人,第二轮传播了n2个人,根据两轮传播后,共有111人参与列出方程求解即可.解答:解:由题意,得n+n2+1=111,解得:n1=﹣11(舍去),n2=10.故n的值是10.点评:本题考查了一元二次方程的应用,解答时先由条件表示出第一轮增加的人数和第二轮增加的人数,根据两轮总人数为111人建立方程是关键.【例2】(XX&#8226;珠海)白溪镇XX年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,XX年达到82.8公顷.(1)求该镇XX至XX年绿地面积的年平均增长率;(2)若年增长率保持不变,XX年该镇绿地面积能否达到100公顷?分析:(1)设每绿地面积的年平均增长率为x,就可以表示出XX年的绿地面积,根据XX年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解答:解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8,解得x1=0.2,x2=﹣2.2(不合题意,舍去).答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36(万元)答:XX年该镇绿地面积不能达到100公顷.点评:本题考查了增长率问题的数量关系的运用,关键是运用增长率的数量关系建立一元二次方程求解.练2.(XX秋&#8226;丹江口市校级月考)一种药品经过两次降价,由每盒60元调至48.6元,平均每次降价的百分率是多少?分析:设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是60(1﹣x),第二次后的价格是60(1﹣x)2,据此即可列方程求解.解答:解:设平均每次降价的百分率是x,依题意得:60(1﹣x)2=48.6,解方程得:x1=0.1=10%,x2=1.9(舍去),答:平均每次降价的百分率是10%.故答案为:10%.点评:此题主要考查了一元二次方程的应用﹣﹣增长率(下降率)问题,关键是读懂题意,掌握公式:“a(1±x)n=b”,理解公式是解决本题的关键.【例3】(XX秋&#8226;番禺区校级月考)如图,在宽为20m,长为32m的矩形耕地上,修筑宽度一样的三条道路(如图),把耕地分成大小相等的六块作为试验田,要使试验田面积为504m2,求每条道路的宽度为多少米?分析:试验田的面积=矩形耕地的面积﹣三条道路的面积+道路重叠部分的两个小正方形的面积.如果设道路宽x,可根据此关系列出方程求出x的值,然后将不合题意的舍去即可.解答:解:设道路为x米宽,由题意得20×32﹣20x×2﹣32x+2x2=504,整理得x2﹣36x+68=0,解得x=2,x=34,经检验x=2,x=34都是原方程的解,但是x=34>20,因此不合题意舍去.答:每条道路的宽度为2m.点评:此题主要考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.另外应熟悉以下关系:整体面积=各部分面积之和;剩余面积=原面积﹣截去的面积.本题也可通过平移,把分散的小路集中到一起,得到的试验田为一个矩形,由此可得出方程(x-2x)(20-x)=504,并求解.练3.(XX&#8226;金湾区校级一模)某幼儿园有一道长为16米的墙,计划用32米长的围栏利用一面墙如图围成一个矩形草坪ABcD.(1)当矩形草坪面积为120平方米时候,求该矩形草坪Bc边的长.(2)怎样围能得到面积最大的草坪?分析:(1)可设矩形草坪Bc边的长为x米,则AB的长是,根据长方形的面积公式列出一元二次方程求解;(2)根据配方法即可得到怎样围能得到面积最大的草坪.解答:解:(1)设矩形草坪Bc边的长为x米,则x&#8226;=120,解得x1=12,x2=20(舍去).故该矩形草坪Bc边的长为12米,.(2)s=x&#8226;=﹣x2+16x=﹣(x﹣16)2+128,故当矩形草坪长为16米,宽为8米的时候,所围的草坪面积最大.点评:本题考查了一元二次方程的应用,注意得出结果后要判断所求的解是否符合题意,舍去不合题意的解.注意本题表示出矩形草坪的长和宽是解题的关键.课后小测答案:一、选择题.(XX&#8226;山西模拟)九(1)班同学毕业的时候,每人都必须与其他任何一位同学合照一张双人照,全班共照相片780张,则九(1)班的人数是()A.39B.40c.50D.60解:设九(1)班共有x人,根据题意得:x(x﹣1)=780,解之得x1=40,x2=﹣39(舍去),答:九(1)班共有40名学生.故选B.2.(XX&#8226;兰州二模)有一人患了流感,经过两轮穿然后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x的值为()A.5B.6c.7D.8解:根据题意得:1+x+x(1+x)=49,解得:x=6或x=﹣8(舍去),则x的值为6.故选:B.3.(XX&#8226;泰安模拟)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x%B.1+2x%c.(1+x%)&#8226;x%D.(2+x%)&#8226;x%解:根据题意得:第三季度的产值比第一季度增长了(2+x%)&#8226;x%,故选D4.(XX&#8226;江岸区校级模拟)为提高民生,让人民更好的享受经济和社会发展的成果,今年多数药品生产的企业对某些药品实行降价,其中某种药品经过再次降价,每盒下降了36%.假设每次降价的百分率相同,降价前的药品价格为100元,则第一次降价后的价格为()A.18元B.36元c.64元D.80元解:∵原价为100元的药品经过两次降价后下降了36%,∴降价后的药品价格为100(1﹣36%)=64元,设平均每次降价的百分率是x,依题意得:00(1﹣x)2=64,解方程得:x1=0.2=20%,x2=1.8(舍去),第一次降价的价格为100×(1﹣20%)=80元.故选D.5.(XX&#8226;槐荫区三模)如图,矩形ABcD是由三个矩形拼接成的.如果AB=8,阴影部分的面积是24,另外两个小矩形全等,那么小矩形的长为()A.7B.6c.5D.4解:设小矩形的长为x,则小矩形的宽为8﹣x,根据题意得:x[x﹣(8﹣x)]=24,解得:x=6或x=﹣2(舍去),故选B.二、填空题6.(XX春&#8226;信州区校级月考)有一人患了流感,经过两轮传染后共有81人患了流感,如果不及时控制,第三轮将又有648 人被传染.解:设一个患者一次传染给x人,由题意,得x(x+1)+x+1=81,解得:x1=8,x2=﹣10(舍去),第三轮被传染的人数是:81×8=648人.故答案为:648.7.(XX春&#8226;富阳市校级月考)甲菜农计划以每千克5元的价格对外批发某种蔬菜,由于部分菜农盲目扩大种植这种蔬菜,造成这种蔬菜滞销.甲菜农为加快销售,减少损失,对这种蔬菜的价格经过两次下调,最后以每千克3.2元的单价对外批发销售,则他平均每次下调的百分率是20% .解:设平均每次下调的百分率是x.由题意,得5(1﹣x)2=3.2.解得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.故答案为:20%.8.(XX&#8226;东西湖区校级模拟)如图,某广场一角的矩形花草区,其长为40m,宽为26m,其间有三条等宽的路,一条直路,两条曲路,路以外的地方全部种上花草,要使花草的面积为864m2,求路的宽度为 2 m.解:设路的宽度是xm.根据题意,得(40﹣2x)(26﹣x)=864,x2﹣46x+88=0,(x﹣2)(x﹣44)=0,x=2或x=44(不合题意,应舍去).答:路的宽度是2m.三、解答题9.(XX&#8226;襄阳区校级模拟)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=91,解得:x=9或x=﹣10(不合题意,应舍去);∴x=9;答:每支支干长出9个小分支.0.(XX&#8226;东海县模拟)有一人患流感,经过两轮传染后,共有49人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?解:(1)设每轮传染中平均每人传染了x人,+x+x(x+1)=49x=6或x=﹣8(舍去).答:每轮传染中平均一个人传染了6个人;(2)49×6=294(人).答:第三轮将又有294人被传染.1.(XX&#8226;泗县校级模拟)某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?解:设该公司二、三月份营业额平均增长率是x.根据题意得100+100(1+x)+100(1+x)2=331,解得x1=0.1,x2=﹣3.1(不合题意,舍去).答:该公司二、三月份营业额平均增长率是10%.2.(XX春&#8226;淮阴区校级月考)前一阶段,我校成功的举办了首届数学节,某种活动所需材料经过两次降价后,从原来的20元减少到12.8元,若两次降价的百分率相同,请你求出降价的百分率.解:设平均每次降价的百分率为x,根据题意得:20(1﹣x)2=12.8解得:x1=0.2,x2=1.8(不符合题意舍去).答:每次降价的百分率为:20%.3.(XX&#8226;香洲区校级一模)据媒体报道,我国XX 年公民出境旅游总人数约5000万人,XX年公民出境旅游总人数约7200万人,若XX年、XX年公民出境旅游总人数逐年递增,请解答如下问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果XX年仍保持相同的年平均增长率,请你预测XX年我国公民出境旅游总人数约多少万人?解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2=7200,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果XX年仍保持相同的年平均增长率,则XX年我国公民出境旅游总人数为7200(1+x)=7200×(1+20%)=8640(万人次).答:预测XX年我国公民出境旅游总人数约8640万人次.4.(XX&#8226;红塔区模拟)如图,在长为80米,宽为60米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为4524米2,则道路的宽应为多少米?解:设道路的宽应为x米.由题意得:(80﹣x)(60﹣x)=4524,化简得:x2﹣140x+276=0,解得:x1=2,x2=138(不符合题意舍去).答:道路的宽应为2米.5.(XX&#8226;长宁区二模)如图,为了给小区居民增加锻炼场所,物业拟在一宽为40米、长为60米的矩形区域内的四周修建宽度相同的鹅卵石小路,阴影部分用作绿化.当阴影部分面积为800平方米时,小路宽x为多少米.解:设小路的宽为x米,根据题意得:(40﹣2x)(60﹣2x)=800,解得:x=10或x=40(舍去)答:小路的宽为10米.6.(XX&#8226;赣州模拟)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:依据规律在第6个图中,黑色瓷砖有28 块,白色瓷砖有42 块;(2)某新学校教室要装修,每间教室面积为68m2,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?解:(1)通过观察图形可知,当n=1时,黑色瓷砖有8块,白瓷砖2块;当n=2时,黑色瓷砖有12块,白瓷砖6块;当n=3时,黑色瓷砖有16块,用白瓷砖12块;则在第n个图形中,黑色瓷砖的块数可用含n的代数式表示为4(n+1),白瓷砖的块数可用含n的代数式表示为n (n+1),当n=6时,黑色瓷砖的块数有4×(6+1)=28块,白色瓷砖有6×(6+1)=42块;故答案为:28,42;(2)设白色瓷砖的行数为n,根据题意,得:0.52×n(n+1)+0.5×0.25×4(n+1)=68,解得n1=15,n2=﹣18(不合题意,舍去),白色瓷砖块数为n(n+1)=240,黑色瓷砖块数为4(n+1)=64,所以每间教室瓷砖共需要:20×240+10×64=5440元.答:每间教室瓷砖共需要5440元.www.5ykj.com。

九年级一元二次方程的应用的导学案

九年级一元二次方程的应用的导学案

班级:姓名:一、学习目标:1、记得列方程解决实际问题的一般步骤;2、能列一元二次方程解答循环问题的应用题。

二、学习重点:会解答循环问题的应用题。

学习难点:能在循环问题问题中找出等量关系来列方程。

三、【学习过程】(一)温故知新:1、你记得吗?(列方程解决实际问题的一般步骤是怎样?)(1)审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系.(2)设:是在理清题意的前提下,进行未知量的假设(分直接与间接).(3)列:是指列方程,根据等量关系列出方程.(4)解:就是解所列方程,求出未知量的值.(5)验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去.(6)答:即写出答案,不要忘记单位名称.总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键.2、你可以了解:(常见与一元二次方程有关的应用题类型有:传播问题、循环问题、增长率问题、面积问题、行程问题、商品销售问题).(二)问题探究:(1)你能读懂吗?(请看课本P45探究1)(2)你猜猜:这是问题的应用题?(注意:树枝开叉、循环等也属这类应用题)(3)怎样解答此类问题?(思考:课本P45的分析中的问题)。

(4)经验之谈:你对传播中的数字问题有了什么认识?(三)学以至用:1、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?2、参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?3、一个正八边形,它有多少条对角线?4、有一个人收到短信后,再用手机转发短消息,每个人又转发一次,经过两轮转发后共有111人收到短消息,问每轮转发中平均一人转发给几个人?(四)整理归纳:(1)本节课你有什么收获?(2)还有什么困惑?(五)巩固提高(作业):第48页第4、6题;第53页第7题班级:姓名:一、学习目标:能列一元二次方程解答增长率问题的应用题;二、学习重点:如何解答增长率有关的应用题。

九年级数学一轮复习导学案一元二次方程及其应用

九年级数学一轮复习导学案一元二次方程及其应用

九年级数学一轮复习导学案《6 一元二次方程及其应用》姓名班级一、知识梳理1.一元二次方程的概念:(1)下列方程中是关于x的一元二次方程的是 ( )A.B. C. D.)(2)方程是一元二次方程,求m的值。

2.一元二次方程的解法:(3)解下列方程: x(x-2)+x-2=0 -4x+1=03.一元二次方程根的判别式:关于x的方程有两个不相等的实数根,则;有两个相等的实数根,则;没有实数根,则。

(4)不解方程,判断下列方程根的情况:x2-2mx+4(m-1)=04.一元二次方程根与系数的关系:关于x的方程有两个实数根、,则+=;=。

(5)若、是一元二次方程+4x+3=0的两个根,则+=;=。

5.一元二次方程的应用:如图,邻边不等..的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是m(可利用的围墙长度超过6m).二、例题讲解例1:已知关于x的方程(a-1)-2x+1=0,(1)此方程是一元二次方程,求a的取值范围。

(2)此方程有实数根,求a的取值范围。

(3)此方程有两个不相等的实数根,求a的取值范围。

(4)若x=2是方程的一个根,求a的值及方程的另一根。

例2:若、是一元二次方程的两个根,(1)求b的值;(2)求的值。

例3:某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元。

(1)填表(不需化简)(2)第二个月的单价定为多少元时,批发商能获得最大利润?最大利润是多少元?(3)第二个月的单价定为多少元时,批发商能获得8750元的利润?三、当堂检测A组(1)解下列方程:4x(2x-1)=3(2x-1)(2)若关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,求m的取值范围。

初中数学最新版《一元二次方程的应用》精品导学案(2022年版)

初中数学最新版《一元二次方程的应用》精品导学案(2022年版)

一元二次方程的应用教学目标:1.经历把实际问题中的等量关系抽象为一元二次方程的过程,体会一元二次方程是刻画现实世界中等量关系的有效的数学模型。

2.会列出一元二次方程解决简单实际问题,培养应用意识和分析问题、解决问题的能力。

3.能根据具体问题的实际意义,检验方程的解是否合理。

教学重点:根据题意列一元二次方程解决简单的实际问题。

教学难点:如何分析题意,找出等量关系,列方程。

教学过程:一.复习引入:与一元一次方程、分式方程一样,一元二次方程也有着广泛的应用,现实生活与生产中有许多问题可以归结为一元二次方程来解决。

想一想,列方程解应用题的关键是什么?二、新授局部例1 将一根长为64 cm的铁丝剪成两段,再将每段分别围成正方形〔图4-2〕,如果两个正方形的面积的和等于160 cm2,求两个正方形的边长.例2 某花圃用花盆培育某种花卉,经市场调查发现,出售一盆花的盈利与该盆中花的棵数有关. 当每盆栽种3棵时,平均每棵盈利3元. 以同样的栽培条件,每盆增加1棵,平均每棵盈利将减少0.5元. 要使每盆的盈利到达10元,每盆应当种植该种花卉多少棵?随堂练习1. 天泉村方案建造如以下图的矩形蔬菜温室. 要求长宽的比为3∶1. 在温室内,沿前后两侧内墙各留3 m宽的空地放置工具,其他两侧内墙各留1 m宽的通道. 当矩形温室的长与宽多少时,蔬菜种植区的面积是300 m2?⊥AB交CD于点E. 动点P从点A出发,以2 cm/s的速度沿AB向点B运动;另一动点Q 同时从点O出发,以3 cm/s的速度沿OE向点E运动. 经过多少秒时,△POQ 的面积为1 800 cm2?3.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减...少库存...,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.假设商场平均每天要盈利1200元,每件衬衫应降价多少元?三、小结:本节课的收获?四、课后作业1、.如图,在宽为20 m、长为36 m的矩形草地上修建两条同样宽且互相垂直的道路,剩余草地的面积是540 m2. 求道路的宽2.如图,AB与BC分别是东西方向和南北方向的道路,AB = 1 000 m . 晨练时,小莹从点A出发,以每分钟150 m的速度向东跑;小亮同时从点B出发,以每分钟200 m的速度向北跑. 经过几分钟时,他们之间的直线距离仍然是1 000 m?3. 某商场销售某种冰箱,每台进货价为2500元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学一元二次方程的应用(一)导学案
【学习目标】
掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.
一、 复习:
1.直角三角形的面积公式是__________.•
一般三角形的面积公式是________.
2.正方形的面积公式是___________长方形的面积公式是__________.
3.梯形的面积公式是______________.
4.平行四边形的面积公式是____________.
5.圆的面积公式是________________.
二.自主探究: 课本P62
1、 在一块长16米,宽12米的矩形土地上,要建造一个花园,使花园所占面积为矩形土地面积的一半,你能设
计出方案吗?
总结:______________________________________________
2.练习:
上题中,如按图设计,求出x 的值。

三.拓展延伸:
某农场要建一个矩形鸡场一边靠墙(墙长25m ),另三边用木栏围成,木栏长40m
1、鸡场的面积能达到180cm 吗?200cm 呢
2、鸡场大的面积能达到250cm吗?如能,请你给出设计方案;如不能请说明理由
四.巩固练习:
课本P63。

1,2
五.总结:
六.当堂检测:
1.直角三角形两条直角边的和为7,面积为6,则斜边为().
A B.5 C D.7
2.有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是().
A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;
B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;
C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;
D.以上都不对
3.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8cm2D.64cm2
4.矩形的周长为1,则矩形的长和宽分别为________.
5.长方形的长比宽多4cm,面积为60cm2,则它的周长为________.
2、在一块长16米,宽12米的矩形土地上,要建造一个花园,使花园所占面积为矩形土地面积的一半,你能设
计出方案吗?
探究点一:如何根据面积公式建立等式关系
问题1、一幅长90㎝,宽为40㎝的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72﹪,那么金色纸边的宽应该是多少?
分析:如果设金色纸边的宽为x㎝,那挂图的宽是()㎝,长是()㎝,那么挂图的面积是()㎝2,那挂图面积的72﹪是()㎝2,,这样就可以根据题意列出方程。

2、一块矩形草地的长和宽分别为20米和5米,在它的四周外围环绕着宽度相等的小路。

已知小路的面积为246㎡,求小路的宽。

归纳总结:
【拓展提升】
1、如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为多少?
2、某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,那平均增长率是多少?
巩固练习
一元二次方程的应用》教学设计
(第一课时)
牌楼中学程旺国
教学目标
1.要求学生掌握列一元二次方程应用题的一般步骤。

2.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题。

3.利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题。

重难点
1.•重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.
2.•难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型.
教学过程
一、复习引入
1.直角三角形的面积公式是什么?•一般三角形的面积公式是什么呢?
2.正方形的面积公式是什么呢?长方形的面积公式又是什么?
3.梯形的面积公式是什么?
4.平行四边形的面积公式是什么?
5.圆的面积公式是什么?
二、探索新知
现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.
问题1.在长32米,宽20米的矩形地面上修筑同样宽的两条互相垂直的“十”字形道路(如图),余下的部分做绿地,要使绿地面积为540平方米,路宽为多少?
解法一: 设道路的宽为xm,我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横两条路移动一下,使图形转化为右图,直接表示草地的面积,
则可列方程:(20-x)(32-x)=540
整理,得:x2-52x+100=0解得:x
1=2,x
2
=50(不合题意,舍去)答:(略)
解法二:(表示道路的面积)32X+20X-X2=32×20-540
让学生比较两种列式方程的优劣,从而让学生领悟到图形动起来,使问题更加简化,轻松列出方程。

(见课本p20 问题2—再次温习巩固)
类似问题:
1、课本P37 例1
2、如图,用一块长80㎝,宽60㎝的薄钢片,在四个角上截去四个相同的小正方形,然后做成如图所示的底面积为1500㎝2的没有盖的长方体盒子,如果设截去的小正方形的边长为xcm那么长方体盒子底面的长
为,底面的宽为,为了求出x的值,可列出方程
3、一块长方形铁板,长是宽的2倍,如果在4个角上截去边长为5cm的小正方形,然后把四边折起来,做成一个没有盖的盒子,盒子的容积是3000 ,求铁板的长和宽.
问题2:某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.
(1)渠道的上口宽与渠底宽各是多少?
(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?
分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,•渠底为(x+0.4)m,那么,根据梯形的面积公式便可建模.
解:(1)设渠深为xm
则渠底为(x+0.4)m,上口宽为(x+2)m
依题意,得:(x+2+x+0.4)x=1.6
整理,得:5x2+6x-8=0
解得:x
1= =0.8m,x
2
=-2(舍)
∴上口宽为2.8m,渠底为1.2m.
(2) 1/2*(1.2+2.8)*0.8*750/48=25(天)
答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.
类似问题:
1、有一块面积为150米2的长方形场鸡场的一边靠墙(墙长18米),另一边用竹篱笆围成,如果竹篱笆长35米,鸡场的长与宽各是多少?
2、有一块长60米,宽40米的长方形草坪,要在它的中间开出一个小长方形花坛,使四周留的草坪宽度一样,并且使花坛的面积占四周草坪面积的一半,求草坪的宽度.
总结:1.列一元二次方程解应用题的一般步骤,审、设、列、解、研、答。

2.根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.
3.应注意问题:1找等量关系2单位问题
4.列方程得出方程的两个根要检验其是否合理,是否符合实际问题的要求,使学生认识到检验的重要性和必要性。

布置作业
1. p42第三题
2.补充:在一幅长80cm,宽50cm的矩形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如图所示,
如果要使整个挂图的面积是5400cm2,求金色纸边的宽度。

相关文档
最新文档