整式乘除提升练习题
整式乘除专项训练(二)(北师版)(含答案)
整式乘除专项训练(二)(北师版)一、单选题(共10道,每道10分)
1.计算的结果是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:整式的乘除
2.计算的结果是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:整式的乘除
3.计算的结果是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:整式的乘除
4.计算的结果是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:整式的乘除
5.计算的结果是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:整式的乘除
6.计算的结果是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:整式的乘除
7.计算的结果是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:整式的乘除
8.计算的结果是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:整式的乘除
9.已知一个多项式与单项式的积为,则这个多项式为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:整式的乘除
10.当,时,代数式的值为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:化简求值。
整式的乘除测试题练习8套(含答案)
整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
(完整版)整式的乘除提高练习(最新整理)
《整式的乘除》技巧性习题训练一、逆用幂的运算性质1. .2005200440.25⨯=2.( )2002×(1.5)2003÷(-1)2004=________。
233.若,则 .23n x =6n x =4.已知:,求、的值。
2,3==n m x x n m x 23+n m x 23-5.已知:,,则=________。
a m =2b n =32n m 1032+二、式子变形求值1.若,,则 .10m n +=24mn =22m n +=2.已知,,求的值.9ab =3a b -=-223a ab b ++3.已知,求的值。
0132=+-x x 221x x +4.已知:,则= .()()212-=---y x x x xy y x -+2225.的结果为 .24(21)(21)(21)+++6.如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为_______________。
7.若则210,n n +-=3222008_______.n n ++=8.已知,求的值。
099052=-+x x 1019985623+-+x x x9.已知,则代数式的值是_______________。
0258622=+--+b a b a ba ab -10.已知:,则_________,_________。
0106222=+++-y y x x =x =y 11.已知:,,,20072008+=x a 20082008+=x b 20092008+=x c 求的值。
ac bc ab c b a ---++222三、式子变形判断三角形的形状1.已知:、、是三角形的三边,且满足,则a b c 0222=---++ac bc ab c b a 该三角形的形状是_________________________.2.若三角形的三边长分别为、、,满足,则这个三a b c 03222=-+-b c b c a b a 角形是___________________。
难点突破“整式乘除(提高)”压轴题50道(含详细解析)
难点突破“整式乘除(提高)”压轴题50道(含详细解析)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 .3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 . 4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 .5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --=6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= .7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= ; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数;(2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).10.对于任何实数,我们规定符号a cb d 的意义是:a cad bc b d =-.按照这个规定请你计算:当2310x x -+=时,1231x x x x +--的值.11.根据以下10个乘积,回答问题: 1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯;1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯;1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方;(2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: . (2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块, 块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想.17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2)(34)53i i i ++-=-.(1)填空:3i = ,4i = .(2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值. (4)试一试:请利用以前学习的有关知识将11i i+-化简成a bi +的形式. 18.阅读理解题阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是 7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数)则该数可表示为10a b +,另一因数可表示为10(10)a b +-.两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.)问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数)(3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出.如:100(1)(10)a a b b ++-的运算式.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数.(1)根据计算结果填写下表:(2)已知22(3)()x x mx n +++既不含二次项,也不含一次项,求m n +的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为 .20.阅读材料解决问题:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <. (1)用“>”或“<”填空:(1)(1)a a +-- 0,(1)a ∴+ (1)a -;(2)已知n 为自然数,(1)(4)P n n =++,(2)(3)Q n n =++,试比P 与Q 的大小;(3)已知654321654324A =⨯,654322654323B =⨯,直接写出A 与B 的大小比较结果.21.(1)如图1,阴影部分的面积是 .(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是 .(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式: .(4)应用公式计算:222222111111(1)(1)(1)(1)(1)(1)234520172018----⋯--.22.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式 .(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形z 张边长分别为a 、b 的长方形纸片拼出一个面积为(57)(94)a b a b ++长方形,则x y z ++= .23.已知将32()(34)x mx n x x ++-+展开的结果不含3x 和2x 项.(m ,n 为常数)(1)求m 、n 的值;(2)在(1)的条件下,求22()()m n m mn n +-+的值.24.如图①所示是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于 .(2)请用两种不同的方法表示图②中阴影部分的面积.方法① ;方法② .(3)观察图②,请写出2()m n +、2()m n -、mn 这三个代数式之间的等量关系: .(4)若6a b +=,5ab =,则求a b -的值.25.(1)若27a ab m +=+,29b ab m +=-.求a b +的值.(2)若实数x y ≠,且220x x y -+=,220y y x -+=,求x y +的值.26.如图1是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)图2的阴影部分的正方形的边长是 .(2)用两种不同的方法求图中阴影部分的面积.【方法1】S =阴影 ;【方法2】S =阴影 ;(3)观察如图2,写出2()a b +,2()a b -,ab 这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决问题:若10x y +=,16xy =,求x y -的值.27.某同学在计算23(41)(41)++时,把3写成41-后,发现可以连续运用两数和乘以这两数差公式计算:222223(41)(41)(41)(41)(41)(41)(41)161255++=-++=-+=-=.请借鉴该同学的经验,计算:2481511111(1)(1)(1)(1)22222+++++. 28.如图,在长方形ABCD 中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a ,宽为b ,且a b >.(1)用含a 、b 的代数式表示长方形ABCD 的长AD 、宽AB ;(2)用含a 、b 的代数式表示阴影部分的面积.29.(1)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).(2)运用你所得到的公式,计算(2)(2)a b c a b c +---.30.已知a ,b ,c 为实数,且多项式32x ax bx c +++能被多项式234x x +-整除,(1)求4a c +的值;(2)求22a b c --的值;(3)若a ,b ,c 为整数,且1c a >,试确定a ,b ,c 的值.31.已知6()m n a a =,23()m n a a a ÷=(1)求mn 和2m n -的值;(2)求224m n +的值.32.(1)计算并观察下列各式:第1个:()()a b a b -+= ;第2个:22()()a b a ab b -++= ;第3个:3223()()a b a a b ab b -+++= ;⋯⋯这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n 为大于1的正整数,则12322321()()n n n n n n a b a a b a b a b ab b -------+++⋯⋯+++= ;(3)利用(2)的猜想计算:12332222221n n n ---+++⋯⋯+++= .(4)拓广与应用:12332333331n n n ---+++⋯⋯+++= .33.你会求2018201720162(1)(1)a a a a a a -+++⋯+++的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:2(1)(1)1a a a -+=-23(1)(1)1a a a a -++=-324(1)(1)1a a a a a -+++=-(1)由上面的规律我们可以大胆猜想,得到2018201720162(1)(1)a a a a a a -+++⋯+++= 利用上面的结论求(2)2018201720162222221+++⋯+++的值.(3)求201820172016255554+++⋯++的值.34.计算:(1)22(2)(22)a a a -++;3223(2)(222)a a a a -+++.(2)猜测122321(2)(2222)n n n n n a a a a a ------+++⋯++= ;(3)运用(2)的结论计算:12232132323232n n n n n -----+++⋯++35.(1)填空:()()a b a b -+=22()()a b a ab b -++=3223()()a b a a b ab b -+++=(2)猜想:1221()()n n n n a b a a b ab b -----++⋯++= (其中n 为正整数,且2)n .(3)利用(2)猜想的结论计算:98732333333-+-⋯+-+.36.(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①: ;方法②: ;(2)根据(1)写出一个等式: ;(3)若8x y +=, 3.75xy =,利用(2)中的结论,求x ,y ;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了22(2)()23m n m n m mn n ++=++.试画出一个几何图形,使它的面积能表示22(2)(2)252m n m n m mn n ++=++.37.对于任意有理数a 、b 、c 、d ,我们规定符号(a ,)(b c ⊗,)d ad bc =-, 例如:(1,3)(2⊗,4)14232=⨯-⨯=-.(1)求(2-,3)(4⊗,5)的值为 ;(2)求(31a +,2)(2a a -+⊗,3)a -的值,其中2410a a -+=.38.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼成一个长为2a b +,宽为a b +的大长方形,则需要A 、B 、C 类卡片各多少张?39.“杨辉三角”揭示了()(n a b n +为非负数)展开式的各项系数的规律.在欧洲,这个表叫做帕斯卡三角形,帕斯卡是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年,请仔细观察“杨辉三角”中每个数字与上一行的左右两个数字之和的关系:根据上述规律,完成下列各题:(1)将5()a b +展开后,各项的系数和为 .(2)将()n a b +展开后,各项的系数和为 .(3)6()a b += .下图是世界上著名的“莱布尼茨三角形”,类比“杨辉三角”,根据你发现的规律,回答下列问题:(4)若(,)m n 表示第m 行,从左到右数第n 个数,如(4,2)表示第四行第二个数是112,则(6,2)表示的数是 ,(8,3)表示的数是 .40.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()(n a b n +为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着33222()33a b a a b ab b +=+++展开式中的系数等等.(1)根据上面的规律,则5()a b +的展开式.(2)利用上面的规律计算:5432252102102521+⨯+⨯+⨯+⨯+.(3)若52(1)(2)(x x ax b a ++-、b 为常数)的展开式中不含2x 和x 的项,求a 、b 的值.41.如图,大小两个正方形边长分别为a 、b .(1)用含a 、b 的代数式阴影部分的面积S ;(2)如果9a b +=,6ab =,求阴影部分的面积.42.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF 、CF 、AC .(1)用含a 、b 的代数式表示GC = ;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长;(3)若8a =,AFC ∆的面积为S ,则S = .43.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下: ①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式⨯商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.例如:计算432(671)(21)x x x x ---÷+,可用竖式除法如图:所以432671x x x ---除以21x +,商式为323521x x x -+-,余式为0.根据阅读材料,请回答下列问题(直接填空):(1)32(44)(2)x x x x --+÷-= ;(2)2(24)(1)x x x ++÷-,余式为 ;(3)322x ax bx ++-能被222x x ++整除,则a = ,b = .44.解答题(1)已知4x y +=,2xy =,求2()x y -的值(2)已知2()7a b +=,2()3a b -=,求22a b +的值(3)若22m n mn -=,求2222m n n m +的值. 45.你能化简9998972(1)(1)a a a a a a -+++⋯+++吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(1)(1)a a -+= ;2(1)(1)a a a -++= ;32(1)(1)a a a a -+++= ;⋯由此猜想:9998972(1)(1)a a a a a a -+++⋯+++=(2)利用这个结论,请你解决下面的问题:①求1991981972222221+++⋯+++ 的值;②若76543210a a a a a a a +++++++=,则a 等于多少?46.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1: 这个图形的面积可以表示成:2()a b +或 222a ab b ++222()2a b a ab b ∴+=++这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:332123+=?如图2,A 表示1个11⨯的正方形,即:31111⨯⨯=B 表示1个22⨯的正方形,C 与D 恰好可以拼成1个22⨯的正方形,因此:B 、C 、D 就可以表示2个22⨯的正方形,即:32222⨯⨯=而A 、B 、C 、D 恰好可以拼成一个(12)(12)+⨯+的大正方形.由此可得:332212(12)3+=+=尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:333123++= .(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:3333123n +++⋯+= .(直接写出结论即可,不必写出解题过程)47.阅读下列材料,并解决后面的问题.材料:我们知道,n 个相同的因数a 相乘na a a ⋯可记为n a ,如328=,此时,3叫做以2为底8的对数,记为2log 8(即2log 83)=,一般地,若n a b = (0a >且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式?2log 4、2log 16、2log 64之间又满足怎样的关系式?(3)根据(2)的结果,我们可以归纳出:log log log a a a M N M += (0N a >且1a ≠,0M >,0)N >请你根据幂的运算法则:m n m n a a a +=以及对数的定义证明该结论.48.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了()(n a b n +为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:7()a b +的展开式共有 项,()n a b +的展开式共有 项,各项的系数和是 .49.观察下列各式:3312189+=+=,而2(12)9+=,33212(12)∴+=+; 33312336++=,而2(123)36++=,3332123(123)∴++=++; 33331234100+++=,而2(1234)100+++=,333321234(1234)∴+++=+++; 3333312345(∴++++= 2)= . 根据以上规律填空:(1)3333123(n +++⋯+= 2)[= 2].(2)猜想:333331112131415++++= .50.已知5210a b ==,求11a b +的值.。
整式的乘除测试题(3套)及答案
第一章整式的乘除单元测试卷(一)一、精心选一选(每小题3分,共21分)43 31•多项式xy 2x y 9xy 8的次数是A. 3B. 4C. 5D. 62•下列计算正确的是 ()A. 2x 26x 412x 84 mB . y3mmyy C .x y 2 x 22 , 2y D. 4a 2a33.计算a ba b 的结果是()A. b 2 a 2B.2 ,2a bC. a 22ab b 2D.a 2 2ab b 224. 3a 5a1与 2a 2 3a 4的和为()A. 5a 22a 3 2小B. a 8a3 C.2a3a 52小D. a 8a55.下列结果正确的是()21 A.-1 B. 9 50C.53.7 01D. 2 31398m^n26.右 a b8 6a b,那么m 22n 的值是()A. 10B. 52C. 20D. 327•要使式子9x 225y 2成为一个完全平方式,则需加上( )二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)班级 ____ 姓名 ______ 学号 ________ 得分 ________A. 15xyB. 15xyC. 30xyD. 30xy1•在代数式3xy 2 ,个,多项式有一2m ,6a个。
2a 3 , 12 , 4x yz1 2xy 2 , 中,单项式有 5 3ab2•单项式 5x 2y 4z 的系数是,次数是 。
,413•多项式3ab ab 有项,它们分别是。
54•⑴ x 2 x 5。
34⑵y 3。
23⑶2a b。
⑷x 5y24。
93⑸a a。
⑹ 10 5 2 40z 1 2 635.⑴ mnmn。
⑵x 5 x 5。
3 5⑶(2a b )25 。
⑷ 12x 3小 2y3xy 。
/、m32m6•⑴ aa a。
⑵ 22a 8a242…。
20062 220051 ⑶ x y x y x y。
⑷3。
3三、精心做一做(每题5分,共15分)1. 4x 2 y 5xy 7x5x 2 y 4xy x2 2 32. 2a 23a 2 2a 1 4a 32 ^343.2x y 6x y 8xy 2xy1. X 1 2x 1 x 22. 2x 3y 5 2x 3y 5四、计算题(每题6分,共12分)1五、化简再求值:XX 2y x 12 2x,其中X -,y 25。
整式乘除练习题及答案
整式乘除练习题及答案整式乘除是数学中的一个重要概念和技能,它在代数运算中扮演着重要的角色。
掌握整式乘除的方法和技巧,可以帮助我们解决各种实际问题,提高数学运算能力和逻辑思维能力。
以下是一些整式乘除的练习题及其答案,供大家练习和参考。
练习题一:将下列整式相乘并化简。
(3x^2 + 4y)(2x - 5y)解答:首先,我们可以使用分配律来展开整式的乘法。
(3x^2 + 4y)(2x - 5y) = 3x^2 * 2x - 5y * 3x^2 + 4y * 2x - 5y * 4y= 6x^3 - 15x^2y + 8xy - 20y^2所以,答案为6x^3 - 15x^2y + 8xy - 20y^2。
练习题二:将下列整式相除并化简。
(9x^3 - 8y^3)/(3x - 2y)解答:首先,我们可以使用长除法的方法来进行整式的除法运算。
________3x - 2y | 9x^3 + 0x^2 - 8y^3 + 0xy- (9x^3 - 6xy^2)_______6xy^2 - 8y^3 + 0xy- (6xy^2 - 4y^2)_______-4y^2 + 0xy-(-4y^2 + 2y)_______-2y所以,答案为商式为3x^2 + 2y^2 - 2y。
练习题三:将下列整式乘法公式化简。
(x - y)^2解答:我们可以利用乘法公式 (a - b)^2 = a^2 - 2ab + b^2 来展开整式的乘法。
(x - y)^2 = x^2 - 2xy + y^2所以,答案为x^2 - 2xy + y^2。
练习题四:将下列整式除法公式化简。
(x^3 + y^3)/(x + y)解答:我们可以利用除法公式 (a^3 + b^3)/(a + b) = a^2 - ab + b^2 来进行整式的除法。
(x^3 + y^3)/(x + y) = x^2 - xy + y^2所以,答案为商式为x^2 - xy + y^2。
完整word版整式的乘除提高练习
《整式的乘除》拔高题专项练习【题型1】1、若2x 5y 3 ____________________ 0,则4x 32y的值为m 3 m 1 4m 72、如果9 27 3 81,那么m= ________ .【变式练习】1、若5X—3y—2=0,则105x 103y= _________ .2、若32 92a 127a 181,求a 的值.3、如果2 8X 16x222,贝V x的值为_______________ .【题型2】1、___________________________________________________ 若10m 3, 10n 2,则102m 3n的值为 ________________________2、若a2n3,则a3n 4的值为________________ .3、 已知 x n 5, y n 4,贝V xy 2n = _________________ .4、 若 3m =6, 9n =2,求 32fm 4n +1 的值。
【变式练习】1、已知2m 3,2n 4,则23m 2n 的值为 ____________________2、若2x 3,4x 5,则2x 2y 的值为 _______________3、己知 2n =a , 3n =b,则 6n = ______________,t . —m . n亠 E —3m 2n 14、若 2 3,4 8,则 2 = _____ .【题型3】1、 若 x 2m+102=x 5,则 m 的值为()A.OB.1C.2 3 2、 已知 2|x29,则 x = __________ .【变式练习】 1、求下列各式中的x :①a x 3 a 2x1(a 0,a 1) •,②p x p 6 D.3p 2x (p 0,p 1).2、已知2 X 2329,则x的值是 ______________ .【题型4】1、在ax 3y与x y的积中,不想含有xy项,则a必须为____________________ .【变式练习】2 2 11. 当k= ________ 时,多项式x 3kxy 3y xy 8中不含xy项.32、若a2 pa 8 a2 3a q中不含有a3和a2项,贝U p _______________ ,q ______【题型5】1、若x26, x y 3,则x y =2 22、已知a b 11, a b 7,则ab的值是__________________________3、已知a b 5, ab 3,贝V a2 b2的值为 _____________________21 14、已知x —3,贝y x - 的值为_________________x x5、(3x 2y)2 ___________ =(3x 2y)2.6、若ab 2, a b 3,贝V a b 2的值为【变式练习】2 2 4、若 x y 8, xy 10 ,则 x y =4 42 5、若1 4 -2 0,则2的值为 ____________x x x1 1 16 .已知 a 1,贝U a 2= ___________________ ; a 4= _________________ a a a【题型6】 1、计算 a 2 ab b 2 a 2 ab b 2 的结果是 _____________________________________1、已知x 9, x y 2 5,则xy 的值为2 22 .若 m n 10, mn 24,则 m n3、若 x y 0, xy 11,则x 2 xy y 2的值为【变式练习】1、计算3x 2y 1 3x 2y 1的结果为________________________________【题型7】21、若4x mx 9是一个完全平方式,则m的值为____________________ .2、若代数式x2 y214x 2y 50的值为0,则x ____________ ,y ________【变式练习】2 21、已知4x 12x m 是一个完全平方式,则m的值为________________________ .2、若x22(m 3) 16是关于x的完全平方式,则m __________ .2 23、若m n 3,则2m 4mn 2n 6的值为 ____________________________24、若 m 2 n 8n 16 0,贝U m _____ ,n _________15•已知 a2 b 2 2a 6b 1。
整式的乘除提高练习题
整式的乘除之阳早格格创做例1:已知2017)2018()2016(=-⋅-a a ,供22)2018()2016(a a -+-的值. 剖析:类比“2=⋅n m ,4=-n m ,供22n m +的值”那类题的解法. 训练:1、已知7)(2=+b a ,3)(2=-b a ,则=++ab b a 22.2、已知2522=+y x ,7=+y x 且y x >,则=-y x .3、已知32=-a a ,32=-b b 且b a ≠,则=-b a .例2:已知201738+=x a ,201838+=x b ,201938+=x c ,供bc ac ab c b a ---++222的值.训练:1、若1232=++c b a ,且bc ac ab c b a ++=++222,则=++32c b a .2、已知014642222=+-+-++z y x z y x ,则=--2018)(z y x .3、假如x 没有为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小闭系是.4、估计2222222210099654321-++-+-+- =.例3:若多项式1634-++nx mx x 能被)2)(1(--x x 整除,供m 、n 的值.训练:1、若3223+-kx x 被12+x 除后余2,则=k .2、若多项式b x ax x x +++-73224能被22-+x x 整除,则a=,b=. 三、1、瞅察下列算式:①1432312-=-=-⨯②1983422-=-=-⨯③116154532-=-=-⨯④……(1)请您按以上顺序写出第4个算式;(2)把那个顺序用含字母的式子表示出去;(3)您认为(2)中所写的式子一定创制吗?并证明缘由.2、如果一个正整数能表示为二个连绝奇数的仄圆好,那么称那个正整数为“神秘数”.如:22024-=,222412-=,224620-=,果此4、12、20皆是“神秘数.(1)28战2012那二个数是“神秘数”吗?为什么?(2)设二个连绝奇数为22+k 战k 2(其中k 与非背整数),由那二个连绝奇数构制的神秘数是4的倍数吗?为什么?3、如表是由从1启初的连绝自然数组成,瞅察顺序并完毕各题的解问.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36(1)表中第8止的末尾一个数是,它是自然数的仄圆,第8止同有个数.(2)用含n 的代数式表示:第n 止的第一个数是,末尾一个数是,第n 止同有个数;(3)供第n 止各数之战.。
(完整word)《整式的乘除》提高测试题加答案
整式的乘除 提高测试(二)选择题(每小题2分,共计16分)13.计算(-a )3·(a 2)3·(-a )2的结果正确的是……………………………( )(A )a 11 (B )a 11 (C )-a 10 (D )a 1314.下列计算正确的是………………………………………………………………( )(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2(C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =115.4m ·4n 的结果是……………………………………………………………………() (A )22(m +n ) (B )16mn (C )4mn (D )16m +n16.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………() (A )5 (B )25(C )25 (D )1017.下列算式中,正确的是………………………………………………………………() (A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(31)-2=231=91(C )(0.00001)0=(9999)0 (D )3.24×10-4=0.000032418.(-a +1)(a +1)(a 2+1)等于………………………………………………() (A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4(四)计算(每小题5分,共10分)23.9972-1001×999.22.(1-221)(1-231)(1-241)…(1-291)(1-2011)的值.(五)解答题(每小题5分,共20分)23.已知x +x 1=2,求x 2+21x ,x 4+41x 的值.24.已知(a -1)(b -2)-a (b -3)=3,求代数式222b a -ab 的值.25.已知x 2+x -1=0,求x 3+2x 2+3的值.26.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.13, 【答案】B .14【答案】C . 15【答案】A .16 【答案】A .17 【答案】C .18 【答案】D .(四)计算(每小题5分,共10分)23.9972-1001×999.【提示】原式=9972-(1000+1)(1000-1)=9972-10002+1=(1000-3)2-10002+1=10002+6000+9-10002+.【答案】-5990.22.(1-221)(1-231)(1-241)…(1-291)(1-2011)的值. 【提示】用平方差公式化简,原式=(1-21)(1+21)(1-31)(1+31)…(1-91)(1+91)(1-101)(1+101)=21·23·32·34·43…·89·910·1011=21·1·1·1·…·1011. 【答案】2011. (五)解答题(每小题5分,共20分)23.已知x +x 1=2,求x 2+21x ,x 4+41x的值. 【提示】x 2+21x =(x +x 1)2-2=2,x 4+41x =(x 2+21x )2-2=2.【答案】2,2. 24.【答案】由已知得a -b =1,原式=2)(2b a -=21,或用a =b +1代入求值. 25.已知x 2+x -1=0,求x 3+2x 2+3的值.【答案】4.【提示】将x 2+x -1=0变形为(1)x 2+x =1,(2)x 2=1-x ,将x 3+2x 2+3凑成含(1),(2)的形式,再整体代入,降次求值.26.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.【答案】展开原式=x 4+(p -2)x 3+(q -2p -3)x 2-(3p +28)x -3q ,x 2、x 3项系数应为零,得⎩⎨⎧=--=-.03202p q p ∴ p =2,q =7.。
(完整版)整式的乘除测试题(提高)
数学幂的运算测试卷(提高卷)一、选择题(每题3分,共15分)1.下列各式中(n 为正整数),错误的有 ( )①a n +a n =2 a 2n ;②a n ·a n =2a 2n ;③a n +a n = a 2n ;④a n ·a n =a 2nA .4个B .3个C .2个D .1个2.下列计算错误的是 ( )A .(-a )2·(-a )=-a 3B .(xy 2) 2=x 2y 4C .a 7÷a 7=1D .2a 4·3a 2=6a 43.x 15÷x 3等于 ( )A .x 5B .x 45C .x 12D .x 184.计算2009201220111-2332)()()(??的结果是 ( )A .23 B .32 C .-23 D .-32二、填空题(每题3分,共21分)6.计算:a 2·a ·a 3 =___________;(x 2) 3÷(x ·x 2) 2=__________.7.计算:[(-n 3)] 2=__________;92×9×81-310=___________.8.若2a +3b=3,则9a ·27b 的值为_____________.9.若x 3=-8a 9b 6,则x=______________.10.计算:[(m 2) 3·(-m 4) 3]÷(m ·m 2) 2÷m 12__________.11.用科学记数法表示0.000 507,应记作___________.二、解答题(共64分)13.(本题满分12分)计算:(1) a 3÷a ·a 2; (2)(-2a )3-(-a )·(3a )2(3)t 8÷(t 2·t 5); (4)x 5·x 3-x 7·x+x 2·x 6+x 4·x 4.14.(本题满分16分)计算:(1)0.252008×(-4)2009 (2)(a -b) 2·(a -b) 10·(b -a );(3)2(a 4)3+(a 3) 2·(a 2) 3+a 2a 10 (4)x3n+4÷(-x n+12) 2÷x n .15.(本题满分16分)计算:(1).2202211(2)()()[(2)]22;(2)32236222()()()()x x x x x(3)333)31()32()9(;(4)19981999)532()135(.17.(本题满分4分)一般地,我们说地震的震级为10级,是指地震的强度是1010,地震的震级为8级,是指地震的强度是108.1992年4月,荷兰发生了5级地震,其后12天加利福尼亚发生了7级地震.问加利福尼亚的地震强度是荷兰地震强度的多少倍?18.(本题满分6分)已知5m =2,5n =4,求52m -n 和25m+n 的值.19.(本题满分4分)观察、分析、猜想并对猜想的正确性予以说明.1×2×3×4+l =52 2×3×4×5+1=112 3×4×5×6+1=1924×5×6×7+1=292 n(n+1)(n+2)(n+3)+1=__________(n 为整数).。
难点突破“整式乘除(提高)”压轴题50道(含详细解析)
难点突破“整式乘除(提高)”压轴题50道(含详细解析)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 .3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 . 4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 .5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --=6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= .7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= ; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数;(2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).10.对于任何实数,我们规定符号a cb d 的意义是:a cad bc b d =-.按照这个规定请你计算:当2310x x -+=时,1231x x x x +--的值.11.根据以下10个乘积,回答问题: 1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯;1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯;1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方;(2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: . (2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块, 块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想.17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2)(34)53i i i ++-=-.(1)填空:3i = ,4i = .(2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值. (4)试一试:请利用以前学习的有关知识将11i i+-化简成a bi +的形式. 18.阅读理解题阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是 7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数)则该数可表示为10a b +,另一因数可表示为10(10)a b +-.两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.)问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数)(3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出.如:100(1)(10)a a b b ++-的运算式.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数.(1)根据计算结果填写下表:(2)已知22(3)()x x mx n +++既不含二次项,也不含一次项,求m n +的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为 .20.阅读材料解决问题:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <. (1)用“>”或“<”填空:(1)(1)a a +-- 0,(1)a ∴+ (1)a -;(2)已知n 为自然数,(1)(4)P n n =++,(2)(3)Q n n =++,试比P 与Q 的大小;(3)已知654321654324A =⨯,654322654323B =⨯,直接写出A 与B 的大小比较结果.21.(1)如图1,阴影部分的面积是 .(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是 .(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式: .(4)应用公式计算:222222111111(1)(1)(1)(1)(1)(1)234520172018----⋯--.22.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式 .(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形z 张边长分别为a 、b 的长方形纸片拼出一个面积为(57)(94)a b a b ++长方形,则x y z ++= .23.已知将32()(34)x mx n x x ++-+展开的结果不含3x 和2x 项.(m ,n 为常数)(1)求m 、n 的值;(2)在(1)的条件下,求22()()m n m mn n +-+的值.24.如图①所示是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于 .(2)请用两种不同的方法表示图②中阴影部分的面积.方法① ;方法② .(3)观察图②,请写出2()m n +、2()m n -、mn 这三个代数式之间的等量关系: .(4)若6a b +=,5ab =,则求a b -的值.25.(1)若27a ab m +=+,29b ab m +=-.求a b +的值.(2)若实数x y ≠,且220x x y -+=,220y y x -+=,求x y +的值.26.如图1是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)图2的阴影部分的正方形的边长是 .(2)用两种不同的方法求图中阴影部分的面积.【方法1】S =阴影 ;【方法2】S =阴影 ;(3)观察如图2,写出2()a b +,2()a b -,ab 这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决问题:若10x y +=,16xy =,求x y -的值.27.某同学在计算23(41)(41)++时,把3写成41-后,发现可以连续运用两数和乘以这两数差公式计算:222223(41)(41)(41)(41)(41)(41)(41)161255++=-++=-+=-=.请借鉴该同学的经验,计算:2481511111(1)(1)(1)(1)22222+++++. 28.如图,在长方形ABCD 中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a ,宽为b ,且a b >.(1)用含a 、b 的代数式表示长方形ABCD 的长AD 、宽AB ;(2)用含a 、b 的代数式表示阴影部分的面积.29.(1)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).(2)运用你所得到的公式,计算(2)(2)a b c a b c +---.30.已知a ,b ,c 为实数,且多项式32x ax bx c +++能被多项式234x x +-整除,(1)求4a c +的值;(2)求22a b c --的值;(3)若a ,b ,c 为整数,且1c a >,试确定a ,b ,c 的值.31.已知6()m n a a =,23()m n a a a ÷=(1)求mn 和2m n -的值;(2)求224m n +的值.32.(1)计算并观察下列各式:第1个:()()a b a b -+= ;第2个:22()()a b a ab b -++= ;第3个:3223()()a b a a b ab b -+++= ;⋯⋯这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n 为大于1的正整数,则12322321()()n n n n n n a b a a b a b a b ab b -------+++⋯⋯+++= ;(3)利用(2)的猜想计算:12332222221n n n ---+++⋯⋯+++= .(4)拓广与应用:12332333331n n n ---+++⋯⋯+++= .33.你会求2018201720162(1)(1)a a a a a a -+++⋯+++的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:2(1)(1)1a a a -+=-23(1)(1)1a a a a -++=-324(1)(1)1a a a a a -+++=-(1)由上面的规律我们可以大胆猜想,得到2018201720162(1)(1)a a a a a a -+++⋯+++= 利用上面的结论求(2)2018201720162222221+++⋯+++的值.(3)求201820172016255554+++⋯++的值.34.计算:(1)22(2)(22)a a a -++;3223(2)(222)a a a a -+++.(2)猜测122321(2)(2222)n n n n n a a a a a ------+++⋯++= ;(3)运用(2)的结论计算:12232132323232n n n n n -----+++⋯++35.(1)填空:()()a b a b -+=22()()a b a ab b -++=3223()()a b a a b ab b -+++=(2)猜想:1221()()n n n n a b a a b ab b -----++⋯++= (其中n 为正整数,且2)n .(3)利用(2)猜想的结论计算:98732333333-+-⋯+-+.36.(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①: ;方法②: ;(2)根据(1)写出一个等式: ;(3)若8x y +=, 3.75xy =,利用(2)中的结论,求x ,y ;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了22(2)()23m n m n m mn n ++=++.试画出一个几何图形,使它的面积能表示22(2)(2)252m n m n m mn n ++=++.37.对于任意有理数a 、b 、c 、d ,我们规定符号(a ,)(b c ⊗,)d ad bc =-, 例如:(1,3)(2⊗,4)14232=⨯-⨯=-.(1)求(2-,3)(4⊗,5)的值为 ;(2)求(31a +,2)(2a a -+⊗,3)a -的值,其中2410a a -+=.38.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼成一个长为2a b +,宽为a b +的大长方形,则需要A 、B 、C 类卡片各多少张?39.“杨辉三角”揭示了()(n a b n +为非负数)展开式的各项系数的规律.在欧洲,这个表叫做帕斯卡三角形,帕斯卡是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年,请仔细观察“杨辉三角”中每个数字与上一行的左右两个数字之和的关系:根据上述规律,完成下列各题:(1)将5()a b +展开后,各项的系数和为 .(2)将()n a b +展开后,各项的系数和为 .(3)6()a b += .下图是世界上著名的“莱布尼茨三角形”,类比“杨辉三角”,根据你发现的规律,回答下列问题:(4)若(,)m n 表示第m 行,从左到右数第n 个数,如(4,2)表示第四行第二个数是112,则(6,2)表示的数是 ,(8,3)表示的数是 .40.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()(n a b n +为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着33222()33a b a a b ab b +=+++展开式中的系数等等.(1)根据上面的规律,则5()a b +的展开式.(2)利用上面的规律计算:5432252102102521+⨯+⨯+⨯+⨯+.(3)若52(1)(2)(x x ax b a ++-、b 为常数)的展开式中不含2x 和x 的项,求a 、b 的值.41.如图,大小两个正方形边长分别为a 、b .(1)用含a 、b 的代数式阴影部分的面积S ;(2)如果9a b +=,6ab =,求阴影部分的面积.42.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF 、CF 、AC .(1)用含a 、b 的代数式表示GC = ;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长;(3)若8a =,AFC ∆的面积为S ,则S = .43.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下: ①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式⨯商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.例如:计算432(671)(21)x x x x ---÷+,可用竖式除法如图:所以432671x x x ---除以21x +,商式为323521x x x -+-,余式为0.根据阅读材料,请回答下列问题(直接填空):(1)32(44)(2)x x x x --+÷-= ;(2)2(24)(1)x x x ++÷-,余式为 ;(3)322x ax bx ++-能被222x x ++整除,则a = ,b = .44.解答题(1)已知4x y +=,2xy =,求2()x y -的值(2)已知2()7a b +=,2()3a b -=,求22a b +的值(3)若22m n mn -=,求2222m n n m +的值. 45.你能化简9998972(1)(1)a a a a a a -+++⋯+++吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(1)(1)a a -+= ;2(1)(1)a a a -++= ;32(1)(1)a a a a -+++= ;⋯由此猜想:9998972(1)(1)a a a a a a -+++⋯+++=(2)利用这个结论,请你解决下面的问题:①求1991981972222221+++⋯+++ 的值;②若76543210a a a a a a a +++++++=,则a 等于多少?46.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1: 这个图形的面积可以表示成:2()a b +或 222a ab b ++222()2a b a ab b ∴+=++这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:332123+=?如图2,A 表示1个11⨯的正方形,即:31111⨯⨯=B 表示1个22⨯的正方形,C 与D 恰好可以拼成1个22⨯的正方形,因此:B 、C 、D 就可以表示2个22⨯的正方形,即:32222⨯⨯=而A 、B 、C 、D 恰好可以拼成一个(12)(12)+⨯+的大正方形.由此可得:332212(12)3+=+=尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:333123++= .(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:3333123n +++⋯+= .(直接写出结论即可,不必写出解题过程)47.阅读下列材料,并解决后面的问题.材料:我们知道,n 个相同的因数a 相乘na a a ⋯可记为n a ,如328=,此时,3叫做以2为底8的对数,记为2log 8(即2log 83)=,一般地,若n a b = (0a >且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式?2log 4、2log 16、2log 64之间又满足怎样的关系式?(3)根据(2)的结果,我们可以归纳出:log log log a a a M N M += (0N a >且1a ≠,0M >,0)N >请你根据幂的运算法则:m n m n a a a +=以及对数的定义证明该结论.48.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了()(n a b n +为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:7()a b +的展开式共有 项,()n a b +的展开式共有 项,各项的系数和是 .49.观察下列各式:3312189+=+=,而2(12)9+=,33212(12)∴+=+;33312336++=,而2(123)36++=,3332123(123)∴++=++;33331234100+++=,而2(1234)100+++=,333321234(1234)∴+++=+++; 3333312345(∴++++= 2)= .根据以上规律填空:(1)3333123(n +++⋯+= 2)[= 2].(2)猜想:333331112131415++++= .50.已知5210a b ==,求11a b +的值.难点突破“整式乘除(提高)”压轴题50道(含详细解析)参考答案与试题解析一.选择题(共1小题)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 【解答】解:令23201215555S =++++⋯+,则2320122013555555S =+++⋯++,2013515S S -=-+,2013451S =-, 则2013514S -=. 故选:D .二.填空题(共6小题)2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 510 .【解答】解:222122015(1)(1)(1)1510m m m -+-+⋯+-=,1m ,2m ,⋯,2015m 是从0,1,2这三个数中取值的一列数,1m ∴,2m ,⋯,2015m 中为1的个数是20151510505-=,1220151525m m m ++⋯+=,2∴的个数为(1525505)2510-÷=个.故答案为:510.3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 1- . 【解答】解:a bad bcc d=-, ∴原式(1)(23)2(1)3x x x x x =+---=-,2440x x -+=,2(2)0x ∴-=,解得2x =,∴原式341=-=-.4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 2或0 .【解答】解:2()(2)(2)2x m x x m x m +-=-+-+x m +与2x -的乘积是一个关于x 的二次二项式,20m ∴-=或20m =,解得2m =或0.故答案为:2或0.5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --= 2【解答】解:2222(20172018)[(2017)(2018)]15(2017)(2018)222a a a a a a -+---+----=-=-=. 故答案是:2.6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= 12017-. 【解答】解:6192x =,32192y =,6192326x ∴==⨯,32192326y ==⨯,1632x -∴=,1326y -=,11(6)6x y --∴=,(1)(1)1x y ∴--=,(1)(1)211(2017)(2017)2017x y ----∴-=-=- 7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= 49; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)【解答】解:(1)h (1)23=,()()()h m n h m h n +=, h ∴(2)224(11)339h =+=⨯=; (2)h (1)(0)k k =≠,()()()h m n h m h n +=,20172017()(2017)n n h n h k k k +∴==. 故答案为:49;2017n k +. 三.解答题(共43小题)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= 9025 ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.【解答】解:(1)2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯, 295910100259025∴=⨯⨯+=.(2)2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯,2(105)(1)10025100(1)25a a a a a ∴+=⨯+⨯+=++.(3)①219519201002538025=⨯⨯+=.②8981⨯ (854)(854)=+⨯- 22854=-891002516=⨯⨯+- 72002516=+- 7209=故答案为:9025、100(1)25a a ++. 9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数; (2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).【解答】解:(1)当1n =时,多项式1()a b +的展开式是一次二项式,此时第三项的系数为:1002⨯=, 当2n =时,多项式2()a b +的展开式是二次三项式,此时第三项的系数为:2112⨯=, 当3n =时,多项式3()a b +的展开式是三次四项式,此时第三项的系数为:3232⨯=, 当4n =时,多项式4()a b +的展开式是四次五项式,此时第三项的系数为:4362⨯=, ⋯∴多项式()n a b +的展开式是一个n 次1n +项式,第三项的系数为:(1)2n n -;(2)预测一下多项式()n a b +展开式的各项系数之和为:2n ;(3)当1n =时,多项式1()a b +展开式的各项系数之和为:11122+==, 当2n =时,多项式2()a b +展开式的各项系数之和为:212142++==, 当3n =时,多项式3()a b +展开式的各项系数之和为:3133182+++==, 当4n =时,多项式4()a b +展开式的各项系数之和为:414641162++++==,⋯∴多项式()n a b +展开式的各项系数之和:2n S =.10.对于任何实数,我们规定符号a cb d的意义是:a c ad bcb d=-.按照这个规定请你计算:当2310x x -+=时,1231x x xx +--的值.【解答】解:13(1)(1)3(2)21x xx x x x x x +=+-----,22136x x x =--+, 2261x x =-+-,2310x x -+=, 231x x ∴-=-,∴原式22(3)1211x x =---=-=.11.根据以下10个乘积,回答问题:1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯; 1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来; (3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)【解答】解:(1)221129209⨯=-;221228208⨯=-;221327207⨯=-; 221426206⨯=-;221525205⨯=-;221624204⨯=-; 221723203⨯=-;221822202⨯=-;221921201⨯=-; 222020200⨯=- ⋯(4分)例如,1129⨯;假设1129⨯=□2-〇2, 因为□2-〇2(=□+〇)(□-〇); 所以,可以令□-〇11=,□+〇29=.解得,□20=,〇9=.故221129209⨯=-. (或221129(209)(209)209⨯=-+=-(2)这10个乘积按照从小到大的顺序依次是:1129122813271426152516241723182219212020⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯(3)①若40a b +=,a ,b 是自然数,则220400ab =. ②若40a b +=,则220400ab =. ⋯(8分)③若a b m +=,a ,b 是自然数,则2()2mab .④若a b m +=,则2()2mab .⑤若a ,b 的和为定值,则ab 的最大值为2()2a b +. ⑥若11223340n n a b a b a b a b +=+=+=⋯=+=.且 112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯. ⋯(10分) ⑦若112233n n a b a b a b a b m +=+=+=⋯=+=.且 112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯. ⑧若a b m +=,a ,b 差的绝对值越大,则它们的积就越小.说明:给出结论①或②之一的得(1分);给出结论③、④或⑤之一的得(2分); 给出结论⑥、⑦或⑧之一的得(3分). 12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯; 1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 【解答】解:(1)221129209⨯=-;221228208⨯=-;221327207⨯=-; 221426206⨯=-;221525205⨯=-;221624204⨯=-; 221723203⨯=-;221822202⨯=-;221921201⨯=-;222020200⨯=-.(4分) 例如,1129⨯;假设1129⨯=□2-〇2, 因为□2-〇2(=□+〇)(□-〇); 所以,可以令□-〇11=,□+〇29=.解得,□20=,〇9=.故221129209⨯=-.(5分) (或221129(209)(209)209⨯=-+=-.5分)(2)这10个乘积按照从小到大的顺序依次是:1129122813271426152516241723182219212020⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯.(7分)(3)①若40a b +=,a 、b 是自然数,则220400ab =.(8分) ②若40a b +=,则220400ab =.(8分)③若a b m +=,a 、b 是自然数,则2()2mab .(9分)④若a b m +=,则2()2mab .(9分)⑤若11223340n n a b a b a b a b +=+=+=+=.且 112233||||||||n n a b a b a b a b ----,则112233n n a b a b a b a b .(10分)⑥若112233n n a b a b a b a b m +=+=+=+=.且112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯.(10分)说明:给出结论①或②之一的得(1分);给出结论③或④之一的得(2分); 给出结论⑤或⑥之一的得(3分).13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?【解答】解:(1)设28和2012都是“神秘数”,设28是x 和2x -两数的平方差得到, 则22(2)28x x --=, 解得:8x =,26x ∴-=, 即222886=-,设2012是y 和2y -两数的平方差得到, 则22(2)2012y y --=, 解得:504y =, 2502y -=,即222012504502=-, 所以28,2012都是神秘数.(2)22(22)(2)(222)(222)4(21)k k k k k k k +-=+-++=+, ∴由22k +和2k 构造的神秘数是4的倍数,且是奇数倍.(3)设两个连续奇数为21k +和21k -, 则22(21)(21)842k k k k +--==⨯,即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.∴两个连续奇数的平方差不是神秘数.14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方; (2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值. 【解答】解:(1)242x x -+的三种配方分别为:2242(2)2x x x -+=--,2242(4)x x x x -+=+-,22242x x x -+=-;(2)222()a ab b a b ab ++=+-,222213()24a ab b a b b ++=++;(3)222324a b c ab b c ++---+,222213()(33)(21)44a ab b b b c c =-++-++-+,222213()(44)(21)44a ab b b b c c =-++-++-+,22213()(2)(1)024a b b c =-+-+-=,从而有102a b -=,20b -=,10c -=,即1a =,2b =,1c =,4a b c ∴++=.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: 22(2)(2)252a b a b a ab b ++=++. .(2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块,块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=【解答】解:(1)图③可以解释为等式:2222(2)(2)242252a b a b a ab ab b a ab b ++=+++=++ 故答案为:22(2)(2)252a b a b a ab b ++=++. (2)22(3)(2)273a b a b a ab b ++=++ 故答案为:2;7;3. (3)224m n xy -= ∴①正确;x y m +=∴②正确;x y m +=,x y n -=()()x y x y mn ∴+-=,即22x y mn -=,故③正确;22222222()()222()m n x y x y x y x y +=++-=+=+∴④正确.故答案为:①②③④.16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= 2 ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想. 【解答】解:(1)2log 42=,2log 164=,2log 646=;(2)222log 4log 16log 64+=;(3)猜想log log log ()a a a M N MN +=.证明:设1log a M b =,2log a N b =,则1b a M =,2b a N =, 故可得1212b b b b MN a a a +==,12log ()a b b MN +=, 即log log log ()a a a M N MN +=. 17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似. 例如计算:(2)(34)53i i i ++-=-. (1)填空:3i = i - ,4i = . (2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值.(4)试一试:请利用以前学习的有关知识将11ii+-化简成a bi +的形式. 【解答】解:(1)21i =-, 321i i i i i ∴==-=-,4221(1)1i i i ==--=,(2)①2(2)(2)4145i i i +-=-+=+=; ②22(2)4414434i i i i i +=++=-++=+;(3)()3(1)x y i x yi ++=--, 1x y x ∴+=-,3y =-,2x ∴=,3y =-;(4)21(1)(1)(1)21(1)(1)22i i i i i i i i i ++++====--+.18.阅读理解题 阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数) 则该数可表示为10a b +,另一因数可表示为10(10)a b +-. 两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.) 问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 10a a + .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数) (3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出. 如:100(1)(10)a a b b ++-的运算式.【解答】解:(1)47432⨯+=,4312⨯=,44733212∴⨯=.(2)十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为10a a +, 另一因数的十位数字是b ,则该数可以表示为10(10)b b +-. 故答案为10a a +、10(10)b b +-.(3)设其中一个因数的十位数字为a ,个位数字也是a 则该数可表示为10a a +,设另一因数的十位数字是b ,则该数可以表示为10(10)(b b a +-,b 表示1到9的整数). 两数相乘可得:(10)[10(10)]10010(10)10(10)a a b b ab a b ab a b ++-=+-++- 100100(10)ab a a b =++- 100(1)(10)a b a b =++-.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数. (1)根据计算结果填写下表:。
2020年秋八年级整式乘除能力提升训练
2020秋八年级整式乘除能力提升训练1.下列各式运算正确的是( )A .34123515y y y =B .5210()ab ab =C .3223()()a a =D .4610()()x x x --=-2.已知3181a =,4127b =,619c =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.若13(1)1x x --=,则x 的取值有( )个.A .0B .1C .2D .34.已知n 是大于1的自然数,则11()()n n c c -+--等于( )A .21()n c --B .2nc -C .2n c -D .2n c5.若长方形的面积是2482a ab a ++,它的一边长为2a ,则它的周长为( )A .241a b ++B .24a b +C .441a b ++D .882a b ++6.已知3(1)6x a x +--能被2x -整除,则a 的值为( )A .1B .1-C .0D .27.用科学记数法表示:0.00000507= ;362(0.510)(810)⨯⨯⨯的结果是 .8.已知4100x =,25100y =.则11x y+= . 9.计算:(1)2732()()[()]x y y x x y ---- (2)32523(3)3(2)a a a a ----10.解答下列问题(1)已知2x a =,2y b =,求2x y +的值;(2)已知35m =,32n =,求3213m n ++的值;(3)若3430x y +-=,求2781x y 的值.11.(1)已知4m a =,8n b =,用含a ,b 的式子表示下列代数式: ①求:232m n +的值②求:462m n -的值(2)已知2328162x ⨯⨯=,求x 的值.12.(1)已知4m a =,8n b =,用含a ,b 的式子表示下列代数式: ①求:232m n +的值②求:462m n -的值(2)已知2328162x ⨯⨯=,求x 的值.11.阅读下面的文字,回答后面的问题:求231005555+++⋯+的值.解:令231005555S =+++⋯+(1),将等式两边同时乘以5得到:23410155555S =+++⋯+(2),(2)-(1)得:101455S =-,∴101554S -= 问题:(1)求231002222+++⋯+的值;(2)求404123643+++⋯+⨯的值.。
(完整word版)整式乘除提高练习题
整式的乘除例 1:已知(2016a) (2018a)2017,求 ( 2016 a) 2(2018 a)2的值。
分析:类比“ m n 2 , m n 4 ,求m2n 2的值”这种题的解法。
练习: 1、已知( a b) 27, (a b) 23,则 a 2b2ab。
2、已知x2y225 , x y7且 x y ,则 x y。
3、已知a2 a 3 , b 2b3且a b ,则 a b。
例 2:已知 a8 x2017, b8 x2018, c8 x2019 ,求333a 2b2c2ab ac bc的值。
练习:1、若 a2b 3c12 ,且a2b2 c 2ab ac bc ,则 a b2 c 3。
2、已知x2y 2z2 2 x 4 y6z140 ,则 (x y z)2018。
3、若x是不为 0 的有理数,已知M( x22x 1)( x 22x 1) ,N (x 2x1)( x 2x1) ,则M与N的大小关系是。
4、计算12223242526299 21002=。
例 3:若多项式x 4mx3nx16 能被( x1)( x 2) 整除,求m、n的值。
: 1、若2x3kx2 3 被2x1除后余 2, k。
2、若多式2x43x ax27x b 能被 x 2x 2整除, a=,b=.三、 1、察以下算式:① 1 3 22 3 41② 2 4 328 91③ 3 5 4 215 161④⋯⋯(1)你按以上律写出第 4 个算式;(2)把个律用含字母的式子表示出来;(3)你( 2)中所写的式子必定建立?并明原因。
2、假如一个正整数能表示两个偶数的平方差,那么称个正整数“神秘数”。
如: 4 2 202,124222,206242,所以4、12、20都是“神秘数。
(1) 28 和 2012 两个数是“神奇数” ?什么?(2)两个偶数 2k 2 和 2k(此中 k 取非整数),由两个偶数结构的神奇数是 4 的倍数?什么?3、如表是由从 1 开始的自然数成,察律并达成各的解答。
七年级整式的乘除提高测试
七年级整式的乘除提高测试(一)填空题(每题2分,共计24分)1.a 6·a 2÷(-a 2)3=________.【答案】-a 2.2.( )2=a 6b4n -2.【答案】a 3b 2n -1. 3. ______·xm -1=x m +n +1.【答案】x n +2. 4.(2x 2-4x -10xy )÷( )=21x -1-25y .【答案】4x . 5.x 2n -x n +________=( )2.【答案】41;x n -21. 6.假设3m ·3n =1,那么m +n =_________.【答案】0.7.已知x m ·x n ·x 3=(x 2)7,那么当n =6时m =_______.【答案】5.8.假设x +y =8,x 2y 2=4,那么x 2+y 2=_________.【答案】60或68.9.假设3x =a ,3y =b ,那么3x -y =_________.【答案】b a . 10.[3(a +b )2-a -b ]÷(a +b )=_________.【答案】3(a +b )-1.11.假设2×3×9m =2×311,那么m =___________.【答案】5.12.代数式4x 2+3mx +9是完全平方式那么m =___________.【答案】±4.(二)选择题(每题2分,共计16分)13.计算(-a )3·(a 2)3·(-a )2的结果正确的选项是……………………………( )(A )a 11 (B )a 11 (C )-a 10 (D )a 13【答案】B .14.以下计算正确的选项是………………………………………………………………( )(A )x 2(m +1)÷xm +1=x 2 (B )(xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =1【答案】C .15.4m ·4n 的结果是……………………………………………………………………( )(A )22(m +n ) (B )16mn (C )4mn (D )16m +n 【答案】A . 16.假设a 为正整数,且x 2a =5,那么(2x 3a )2÷4x 4a 的值为………………………( )(A )5 (B )25 (C )25 (D )10【答案】A . 17.以下算式中,正确的选项是………………………………………………………………( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(31)-2=231=91 (C )()0=(9999)0 (D )×10-4= 【答案】C .18.(-a +1)(a +1)(a 2+1)等于………………………………………………( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4【答案】D . 19.假设(x +m )(x -8)中不含x 的一次项,那么m 的值为………………………( )(A )8 (B )-8 (C )0 (D )8或-820.已知a +b =10,ab =24,那么a 2+b 2的值是 …………………………………() (A )148 (B )76 (C )58 (D )52【答案】D .(三)计算(19题每题4分,共计24分)21.(1)(32a 2b )3÷(31ab 2)2×43a 3b 2;【答案】2a 7b .(2)(4x+3y )2-(4x -3y )2; 【提示】运用平方差公式. 【答案】3xy .(3)(2a -3b +1)2;【答案】4a 2+9b 2+1-12ab +4a -6b .(4)(x 2-2x -1)(x 2+2x -1);【答案】x 4-6x 2+1.(5)(a -61b )(2a +31b )(3a 2+121b 2);【提示】原式=2(a -61b )(a +61b )(3a 2+121b 2)=6a 4-2161b 4.【答案】6a 4-2161b 4.(6)[(a -b )(a +b )]2÷(a 2-2ab +b 2)-2ab .【提示】原式=(a -b )2(c +b )2÷(a -b )2-2ab =a 2+b 2.【答案】a 2+b 2.22.化简求值(此题6分)[(x +21y )2+(x -21y )2](2x 2-21y 2),其中x =-3,y =4.【提示】化简结果4x 4-41y 4.【答案】260.(四)计算(每题5分,共10分)23.9972-1001×999.【提示】原式=9972-(1000+1)(1000-1)=9972-10002+1=(1000-3)2-10002+1=10002+6000+9-10002+.【答案】-5990.22.(1-221)(1-231)(1-241)…(1-291)(1-2011)的值. 【提示】用平方差公式化简,原式=(1-21)(1+21)(1-31)(1+31)…(1-91)(1+91)(1-101)(1+101)=21.23.32.34.43....89.910.1011=21.1.1.1.. (10)11. 【答案】2011. (五)解答题(每题5分,共20分)23.已知x +x 1=2,求x 2+21x ,x 4+41x的值. 【提示】x 2+21x =(x +x 1)2-2=2,x 4+41x =(x 2+21x )2-2=2. 【答案】2,2.24.已知(a -1)(b -2)-a (b -3)=3,求代数式222b a +-ab 的值. 【答案】由已知得a -b =1,原式=2)(2b a -=21,或用a =b +1代入求值. 25.已知x 2+x -1=0,求x 3+2x 2+3的值.【答案】4.【提示】将x 2+x -1=0变形为(1)x 2+x =1,(2)x 2=1-x ,将x 3+2x 2+3凑成含(1),(2)的形式,再整体代入,降次求值.26.假设(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.【答案】展开原式=x 4+(p -2)x 3+(q -2p -3)x 2-(3p +28)x -3q , x 2、x 3项系数应为零,得⎩⎨⎧=--=-.03202p q p ∴ p =2,q =7.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——七年级(下)每日一练+基础巩固XRS几何活动交流群:141424717青岛学而思培优1. 填空:⑴ 54x x x ÷⨯= ; ⑵()()()324a a a -⋅-⋅-= ; ⑵ ()()2322a b b ⋅-= ; ⑷()()3223x x x --⋅=2. 填空:()4m m x x ÷=;()224m a a +⋅=;()234nn n n a b =;()()()284n a a a ⎡⎤==⎣⎦3. 计算:⑴ ()623x x x ÷⋅; ⑵()1243x x x ⋅÷4. 计算:⑴()()()5246a a a a -⋅-⋅-⋅-; ⑵54189t t t t ⋅-÷; ⑶()()()3232a a a -⋅---5. 速算比赛:A 组:⑴1020a a ⋅;⑵1002()a ;⑶10202()a b ;⑷1002a a ÷,其中0a ≠,0b ≠.B 组:⑴32()()x x -⋅-; ⑵3223()()a a -⋅-;⑵ 224(2)(4)a a -⋅-;⑷2232(2)()(3)m n n x y x y xy -⋅-⋅-6. 计算: ⑴()()()24143 6.526313⎛⎫--⨯+-÷-= ⎪⎝⎭__________ (2)43()()x y x y ++ =(3)53(3)(3)a b b a -- ⑷43()()()m n n m n m ---1. 已知:a 、b 、c 是有理数,满足215(51)0a b c -+++-=,求()()1271132a b c a b c ⨯⨯÷⨯⨯值.2. 已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于2,试求:220032003()()()x a b cd x a b cd -+++++-的值.3. 已知a 、b 互为倒数,a 、c 互为相反数,d 的绝对值为1,则31()2ab a c d ++-4. 化简234992222...2+++++5. 如果2339.48 1.5610=⨯,则20.3948=( )6. 已知2m a =,3n a =,求32m n a +的值.1. 若2530x y +-=,求432x y ⋅.2. 已知23m =,25n =,求322m n -的值.3. 已知3m a =,2n a =,m 、n 是正整数且m n >.求下列各式的值:①1m a +; ②32m n a -.4. 已知22n a =,求3222(2)3()n n a a -的值5. 已知:5n a =,3n b =,求2()n ab .6. 已知232122192x x ++-=,求x .1. 比较503,404,305的大小.2. 比较大小:⑴42(2)_____(4)--;⑵355_____(3)--;3. 比较552、443、335、226四个数的大小.4. 比较555444333345,,的大小关系5. 已知221410103498a b c d ====,,,,则a b c d ,,,的大小关系为6.设503a =,404b =,305c =,比较a ,b ,c 的大小.7. 比较下列各题中幂的大小.(1)比较大小:20.4a =-,24b -=-,214c -=(-),014d =(-).(2) 知3181a =,4127b =,619c =,比较a ,b ,c 的大小关系.(3) 比较552,443,335,226这4个数的大小关系.(4) 已知999999P =,990119Q =,比较P 、Q 的大小关系.1. 你能比较两个数20092008和20082009的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较1n n +与(1)n n +的大小(n 是自然数),然后,我们分析2n =,2n =,3n =,…中发现规律,经归纳,猜想得出结论. ⑴通过计算,比较下列各组中两个数的大小(在空格中填写“>”、“=”、“<”号) ①21 12;②32 23;③43 34;④54 45;⑤65 56…第⑴题的结果经过归纳,可以猜想出1n n +和1nn +()的大小关系是 . 据上面归纳猜想得到的一般结论,试比较下列两个数的大小20092008 20082009.2. 化简()y d b c ---; 1212()n nn x x x x ++⋅-+; ()(2)x y x y +-233222()()x y x y x y -⋅-; (2)(2)(21)a a a -++3. 先化简,在求值:()()()()22215423125a a a a a a a -⋅------,其中1a =-4. 化简:()()()12282a b a b b a b +---5. 计算2332536()()()()1245x y x y x y y x ⎡⎤+⋅--⋅--⋅-⎢⎥⎣⎦.6. 计算322(25)(231)x x x x -+--+1. 计算:242422(32)(523)(53)(33)x x x x x x +++-+++2. 设2475f mx x g x n =+-=-+,,若f g ⋅中不含有2x 的项,并且x 项的系数为13-,则当5x =-时,f g ⋅的值为3. 已知22()()26x my x ny x xy y ++=+-,求()m n mn +的值.4. 已知()()223x px q x x q ++-+的结果中不含23x x ,项,求p q ,的值5. 若()()22345x x ax bx c +-=-+,则a = ,b = ,c = .6. 已知多项式432222(1)(2)x x x x mx x nx +++≡++++,求m 与n 的值.7. 已知21ax bx ++与2231x x -+的积不含3x 的项,也不含x 的项,试求a 与b 的值.8. 使22(8)(3)x px x x q ++-+的积中不含2x 和3x ,求p ,q 的值.1. 计算:⑴222(4)8x y y ÷; ⑵2322393m n m n n m a b c a b ---÷.⑶ 3232213()()34a b ab ÷; ⑷2322(0.8)(4)n n x y x y ÷2. 计算:222222224(3)()(4)89xy x y x y y x y --÷+.3. 将一多项式()()221734x x ax bx c ⎡⎤-+-++⎣⎦,除以()56x +后,得商式为()21x +余式为0.求a b c --= .4. 已知a 、b 互为相反数,c 、d 互为负倒数,x 的绝对值等于它相反数的2倍.求3x abcdx a bcd ++- 的值.5. 化简2349922222++++⋅⋅⋅+(结果用幂的形式表示)6. 有一张厚度为0.3毫米的纸,你能将它连续对折10次吗?如果能,10次后将有多厚?7. 计算20052004(2)3(2)-+⨯-的值为( )1. 若15m x =,3n x =,求3m n x +的值. 2. 若2340x y +-=,求927x y ⋅的值.3. 比较5553、4444、3335的大小.4. 已知3181a =,4127b =,619c =,比较a ,b ,c 的大小.5. 计算:223)(1)(1)x x x x -+-+(6. 计算:22221112222x y x y x y ⎡⎤⎛⎫⎛⎫⎛⎫-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦7. 若不论x 取何值,多项式32241x x x ---与2(1)()x x mx n +++都相等,求m ,n .1. 计算:422222(2)(35)(62)(2)x y x y x y x y x y +---÷2. 计算:()()()2226969x x x x +-÷++= ;3. 计算:()()()()3331113323326⎛⎫⎛⎫--+---⨯-÷--- ⎪ ⎪⎝⎭⎝⎭4. 若22(1)(1)0a b -++=,则20042005a b += .5. 如图,从边长为a 的正方形内去掉一个边长为b 的小正方形,然后将剩余部分拼成一个长方形,上述操作所能验证的公式是__________.6. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.7. 填空:⑴ ()()22552516a a a b +-=- ⑵()22121453259x y x y ⎛⎫-=-⎪⎝⎭1. 计算:⑴11114545m n m n x y x y ⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭ ⑵()()a b c a b c +--+2. 运用平方差公式计算:⑴2211()()22x y x y -+;⑵(41)(41)a a ---+;⑶()()m n m n a b a b +-3. 如果()()22122163a b a b +++-=,那么a b +的值是4. 利用平方差公式简化计算:⑴59.860.2⨯ ⑵10298⨯⑷ 2123461234512347-⨯ ⑷11411515⨯5. 计算:⑴2(3)(3)(9)x x x +-+; ⑵(23)(45)(23)(54)a b a b a b b a ++--6. 设()()()()()248162121212121N =+++++,求N 的各位数字7. 求积A 的个位数字:()()()()()()()24816326421212121212121A =+++++++1. 计算:2222222212345699100-+-+-++- 的值是2. 计算:()()()()2432212121211+++++3. 计算:2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4. (第16届希望杯2试)如果22()()4a b a b +--=,则一定成立的是( )A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数5. 计算2244()()()()a b a b a b a b -+++6. 计算:2481632(31)(31)(31)(31)(31)(31)++++++7. 计算:2222222212345699100-+-+-++- 的值是( )1. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a 、b 的恒等式___________.a bb a2. 请设计一个几何图形,验证222()2a b a ab b -=-+.ba-bb 2a-bb3. 如果a ,b ,c 是ABC △三边的长,且22()a b ab c a b c +-=+-,那么ABC △是( )A. 等边三角形.B. 直角三角形.C. 钝角三角形.D. 形状不确定.4. 下列各式中,计算正确的是( )A .()222p q p q -=-B .()22222a b a ab b +=++ C .()2242121a a a +=++ D .()2222s t s st t --=-+5. 计算:⑴2(811)a b -+;⑵2(23)x y --6. 若把代数式222x x +-化为2()x m k ++的形式,其中m k ,为常数,则m k +的值为( )A .2-B .4-C . 2D .47. 计算:⑴2(4)m n +;⑵21()2x -;⑶2(32)x y -;⑷21(4)4y --1. 如果多项式219x kx ++是一个完全平方式,那么k 的值为2. 如果多项式24x kx -+是一个完全平方式,那么k 的值为3. 若243(2)25x a x --+是完全平方式,求a 的值.4. 如果2249x axy y ++是完全平方式,试求a 的值.5. 计算:⑴222(30.5)a b ab +; ⑵2(1113)m n a b -; ⑶2(25)(52)(25)x x x ----(4)2()a b c ++;⑸2()a b c --; ⑹2(23)a b c -+6. 利用乘法公式计算:⑴21992⎛⎫- ⎪⎝⎭; ⑵2238.977.848.948.9-⨯+7. 计算:⑴22(2)(2)x x +-;⑵(59)(59)x y x y +--+;⑶()()a b c a b c ++--8. 先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-1. 已知22690x xy y -+=,求代数式 2235(2)4x yx y x y +⋅+-的值.2. 先化简后求值:2()()()2x y x y x y x ⎡⎤-++-÷⎣⎦,其中3x =, 1.5y =.3. 计算:(22)(22)x y y x -+-+. 2122x y z ⎛⎫-- ⎪⎝⎭ ()()22a b c b c a --+-4. 已知3a b +=,2230a b ab +=-,则2211a ab b -++= .5. 已知实数a 、b 满足2()1a b +=,2()25a b -=,求22a b ab ++的值.1. 已知2(1)()5a a a b ---=-,求222a b ab +-的值.2. 已知12020a x =+,11920b x =+,12120c x =+,求代数式222a b c ab bc ca ++---的值.3. 已知35a b b c -=-=,2221a b c ++=,求ab bc ca ++的值.4. 已知三个数a b c ,,满足方程222214229221b ac c ab a bc ⎧+=⎪+=⎨⎪+=⎩,求a b c ++.5. 已知2()2210x y x y +--+=,则999()x y +=___________.6. 已知:2217a a +=,求1a a+的值.7. 已知:2213a a +=,求1a a-的值.1. 如图所示的几何图形可以表示的公式是_____________.b 2a 2ab ab a b ba2. 计算:7373()()2424x y x y -+3. 计算:(35)(35)x y x y ---+4. 计算:242(21)(21)(21)(21)n ++++5. 计算:23221111(1)(1)(1)(1)23410----6. 计算:22222221009998979621-+-++-7. 计算:224682008123420061234200512342007-⨯1.计算:2(23)x y-+2.计算:(2)(2)a b b a--3.计算:2222()()a ab b a ab b++-+ 4.计算:(22)(22)x y y x-+-+5.计算:2()()()x y x y x y--+-;6.计算:3131(2)(2)5353x y z y z x---+;7.计算:2222()()a ab b a ab b++-+;1. 已知9a b +=,12ab =,求下列式的值:22a ab b -+= ;2()a b -=2. 填空:⑴222_____4(2)x y x y ++=+;⑵2229_____121(3___)a b a -+=- ⑶2244____(2___)m mn m ++=+;⑷2_____6______(3)xy x y ++=+3. 如果多项式219x kx ++是一个完全平方式,试求k 的值.4. 如果2249x axy y ++是完全平方式,试求a 的值.5. 若243(2)25x a x --+是完全平方式,求a 的值.6. 求224243a b a b +--+的最值.7. 求下列式子的最值:当x 为何值时,2615x x -+-有最大值.8. 填空:6()______________________________________________a b +=;9. 填空:6()______________________________________________a b -=.1. 计算:⑴2(35)x y z -+2. 计算:2(59)x y --3. 若1990a =,1991b =,1992c =,则222a b c ab bc ac ++---= .4. 如果()()22122163a b a b +++-=,那么a b +的值是5.利用平方差公式简化计算:59.860.2⨯ 10298⨯6. 计算:2123461234512347-⨯7. 计算:11411515⨯8. 计算:2(3)(3)(9)x x x +-+;9. 计算:(23)(45)(23)(54)a b a b a b b a ++--;。