例谈高师三角函数教学中2的使用
专题17 三角函数概念与诱导公式 (教师版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】知识点一:三角函数基本概念1.角的概念(1)任意角:①高中数学53个题型归纳与方法技巧总结篇专题17三角函数概念与诱导公式定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是{}Z k k S ∈+︒⋅==,αββ360.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(4)象限角的集合表示方法:2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:rad 180π=︒,rad 1801π=︒,π︒=180rad 1.(3)扇形的弧长公式:r l ⋅=α,扇形的面积公式:22121r lr S ⋅==α.3.任意角的三角函数(1)定义:任意角α的终边与单位圆交于点)(y x P ,时,则y =αsin ,x =αcos ,)0(tan ≠=x xyα.(2)推广:三角函数坐标法定义中,若取点P )(y x P ,是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则r y =αsin ,r x =αcos ,)0(tan ≠=x xyα三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号αsin R ++--αcos R+--+αtan }2|{Z k k ∈+≠,ππαα+-+-记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦.4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线知识点二:同角三角函数基本关系1.同角三角函数的基本关系(1)平方关系:1cos sin 22=+αα.(2)商数关系:)2(tan cos sin ππααααk +≠=;知识点三:三角函数诱导公式公式一二三四五六角)(2Z k k ∈+απαπ+α-απ-απ-2απ+2正弦αsin αsin -αsin -αsin αcos αcos 余弦αcos αcos -αcos αcos -αsin αsin -正切αtan αtan αtan -αtan -口诀函数名不变,符号看象限函数名改变,符号看象限【记忆口诀】奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.【方法技巧与总结】1.利用1cos sin 22=+αα可以实现角α的正弦、余弦的互化,利用αααtan cos sin =可以实现角α的弦切互化.2.“ααααααcos sin cos sin cos sin -+,,”方程思想知一求二.222(sin cos )sin cos 2sin cos 1sin 2ααααααα+=++=+222(sin cos )sin cos 2sin cos 1sin 2ααααααα-=+-=-22(sin cos )(sin cos )2αααα++-=【题型归纳目录】题型一:终边相同的角的集合的表示与区别题型二:等分角的象限问题题型三:弧长与扇形面积公式的计算题型四:三角函数定义题题型五:象限符号与坐标轴角的三角函数值题型六:同角求值—条件中出现的角和结论中出现的角是相同的题型七:诱导求值与变形【典例例题】题型一:终边相同的角的集合的表示与区别例1.(2022·全国·高三专题练习)与角94π的终边相同的角的表达式中,正确的是()A .245k π+ ,k Z ∈B .93604k π⋅+,k Z ∈C .360315k ⋅- ,k Z ∈D .54k ππ+,k Z ∈【答案】C 【解析】【分析】要写出与94π的终边相同的角,只要在该角上加2π的整数倍即可.【详解】首先角度制与弧度制不能混用,所以选项AB 错误;又与94π的终边相同的角可以写成92()4k k Z ππ+∈,所以C 正确.故选:C .例2.(2022·全国·高三专题练习)若角α的终边在直线y x =-上,则角α的取值集合为()A .2,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z B .32,4k k πααπ⎧⎫=+∈⎨⎬⎩⎭Z C .3,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z D .,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z 【答案】D 【解析】【分析】根据若,αβ终边相同,则2,k k Z βπα=+∈求解.【详解】解:,由图知,角α的取值集合为:()32,2,4421,2,44,4k k Z k k Z k k Z k k Z k k Z ππααπααπππααπααππααπ⎧⎫⎧⎫=+∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫==+-∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==-∈⎨⎬⎩⎭故选:D.【点睛】本题主要考查终边相同的角,还考查了集合的运算能力,属于基础题.例3.(2022·上海市嘉定区第二中学高一阶段练习)设集合{}{}|45180,|135180,A k k Z k k Z αααα==︒+⋅︒∈⋃=︒+⋅︒∈,集合{}|4590,B k k Z ββ==︒+⋅︒∈,则()A .AB =∅ B .A BC .B AD .A B=【答案】D 【解析】【分析】考虑A 中角的终边的位置,再考虑B 中角的终边的位置,从而可得两个集合的关系.【详解】.45180,k k Z α=︒+⋅︒∈表示终边在直线y x =上的角,135180,k k Z α=︒+⋅︒∈表示终边在直线y x =-上的角,而4590,k k Z β=︒+⋅︒∈表示终边在四条射线上的角,四条射线分别是射线,0;,0;,0;,0y x x y x x y x x y x x =≥=-≤=≤=-≥,它们构成直线y x =、直线y x =-,故A B =.故选:D.【点睛】本题考查终边相同的角,注意180k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线,而90k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线或相互垂直,本题属于中档题.(多选题)例4.(2022·全国·高三专题练习)如果角α与角45γ+︒的终边相同,角β与45γ-︒的终边相同,那么αβ-的可能值为()A .90︒B .360︒C .450︒D .2330︒【答案】AC 【解析】根据终边相同可得角与角之间的关系,从而可得αβ-的代数形式,故可得正确的选项.【详解】因为角α与角45γ+︒的终边相同,故45360k γα ,其中k Z ∈,同理145360k βγ=-︒+⋅︒,其中1k Z ∈,故90360n αβ-=︒+⋅︒,其中n Z ∈,当0n =或1n =时,90αβ-=︒或450αβ-=︒,故AC 正确,令36090360n ︒=︒+⋅︒,此方程无整数解n ;令903060233n =︒+⋅︒︒即569n =,此方程无整数解n ;故BD 错误.故选:AC.(多选题)例5.(2022·全国·高三专题练习)下列条件中,能使α和β的终边关于y 轴对称的是()A .90αβ+=︒B .180αβ+=︒C .()36090k k αβ+=⋅︒+︒∈ZD .()()21180k k αβ+=+⋅︒∈Z 【答案】BD 【解析】【分析】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z ,逐一判断正误即可.【详解】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z 可知,选项B 中,180αβ+=︒符合题意;选项D 中,()()21180k k αβ+=+⋅︒∈Z 符合题意;选项AC 中,可取0,90αβ=︒=︒时显然可见α和β的终边不关于y 轴对称.故选:BD.例6.(2022·全国·高三专题练习)写出两个与113π-终边相同的角___________.【答案】3π,53π-(其他正确答案也可)【解析】【分析】利用终边相同的角的定义求解.【详解】设α是与113π-终边相同的角,则112,3k k Z παπ=-∈,令1k =,得53πα=-,令2k =,得3πα=,故答案为:3π,53π-(其他正确答案也可)【方法技巧与总结】(1)终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2)注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.题型二:等分角的象限问题例7.(2022·浙江·高三专题练习)若18045,k k Z α=⋅+∈ ,则α的终边在()A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限【答案】A 【解析】【分析】分21,k n n Z =+∈和2,k n n =∈Z 讨论可得角的终边所在的象限.【详解】解:因为18045,k k Z α=⋅+∈ ,所以当21,k n n Z =+∈时,218018045360225,n n n Z α=⋅++=⋅+∈ ,其终边在第三象限;当2,k n n =∈Z 时,21804536045,n n n Z α=⋅+=⋅+∈ ,其终边在第一象限.综上,α的终边在第一、三象限.故选:A.例8.(2022·全国·高三专题练习(理))角α的终边属于第一象限,那么3α的终边不可能属于的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】【分析】由题意知,222k k ππαπ<<+,k Z ∈,即可得3α的范围,讨论3k n =、31k n =+、32k n =+()n Z ∈对应3α的终边位置即可.【详解】∵角α的终边在第一象限,∴222k k ππαπ<<+,k Z ∈,则223363k k παππ<<+,k Z ∈,当3()k n n Z =∈时,此时3α的终边落在第一象限,当31()k n n Z =+∈时,此时3α的终边落在第二象限,当32()k n n Z =+∈时,此时3α的终边落在第三象限,综上,角α的终边不可能落在第四象限,故选:D.例9.(2022·全国·高三专题练习)θ是第二象限角,则下列选项中一定为负值的是()A .sin2θB .cos2θC .sin 2θD .cos 2θ【答案】C 【解析】表示出第二象限角的范围,求出2θ和2θ所在象限,确定函数值的符号.【详解】因为θ是第二象限角,所以22,2k k k Z ππθππ+<<+∈,则4242,k k k Z ππθππ+<<+∈,所以2θ为第三或第四象限角或终边在y 轴负半轴上,,所以sin 2θ<0.而,422k k k Z πθπππ+<<+∈,2θ是第一象限或第三象限角,正弦余弦值不一定是负数.故选:C .例10.(2022·全国·高三专题练习)已知角α第二象限角,且cos cos22αα=-,则角2α是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】【分析】由α是第二象限角,知2α在第一象限或在第三象限,再由coscos22αα=-,知cos02α≤,由此能判断出2α所在象限.【详解】因为角α第二象限角,所以()90360180360Z k k k α+⋅<<+⋅∈,所以()4518090180Z 2k k k α+⋅<<+⋅∈,当k 是偶数时,设()2Z k n n =∈,则()4536090360Z 2n n n α+⋅<<+⋅∈,此时2α为第一象限角;当k 是奇数时,设()21Z k n n =+∈,则()225360270360Z 2n n n α+⋅<<+⋅∈,此时2α为第三象限角.;综上所述:2α为第一象限角或第三象限角,因为coscos22αα=-,所以cos02α≤,所以2α为第三象限角.故选:C .【方法技巧与总结】先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示.题型三:弧长与扇形面积公式的计算例11.(2022·浙江·镇海中学模拟预测)《九章算术》是中国古代的数学名著,其中《方田》章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 及其所对弦AB 围成的图形.若弧田的弦AB 长是2,弧所在圆心角的弧度数也是2,则弧田的弧AB 长为_______,弧田的面积为_________.【答案】2sin1;211sin 1tan1-.【解析】【分析】(1)利用弧长公式解决,那么需要算出半径和圆心角;(2)用扇形的面积减去三角形的面积即可.【详解】由题意可知:111,,sin1sin1tan1tan1======AC BC BC AC AO OC ,所以弧AB 长122sin1sin1=⨯=,弧田的面积22111111222sin12tan1sin 1tan1⎛⎫=-=⨯⨯-⨯⨯=- ⎪⎝⎭扇形AOB AOB S S ,故答案为:2sin1;211sin 1tan1-.例12.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在 AB 上,CD AB ⊥.“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CDs AB OA=+.当2,60OA AOB =∠=︒时,s =()A B C D 【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线,即2OD OA OB ===,又60AOB ∠=︒,所以2AB OA OB ===,则OC =2CD =所以()22222CD s AB OA =+=+=故选:B.例13.(2022·全国·高三专题练习)中国传统扇文化有着极其深厚的底蕴.按如下方法剪裁,扇面形状较为美观.从半径为r 的圆面中剪下扇形OAB ,使剪下扇形OAB,再从扇形OAB 中剪下扇环形ABDC 制作扇面,使扇环形ABDC 的面积与扇形OAB.则一个按上述方法制作的扇环形装饰品(如图)的面积与圆面积的比值为()ABCD2-【答案】D 【解析】【分析】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,根据扇形面积公式,弧长公式,以及题中条件,即可计算出结果.【详解】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,由题意可得,2112S r α=,21S S =2S r π=,所以()122124S Srαππ==,因为剪下扇形OAB ,所以22r r r παπ-=(3απ=,所以()()()2113244S S απππ====.故选:D.例14.(2022·浙江·赫威斯育才高中模拟预测)“圆材埋壁”是我国古代的数学著作《九章算术》中的一个问题,现有一个“圆材埋壁”的模型,其截面如图所示,若圆柱形材料的底面半径为1,截面圆圆心为O ,墙壁截面ABCD 为矩形,且1AD =,则扇形OAD 的面积是__________.【答案】6π##16π【解析】【分析】计算AOD ∠,再利用扇形的面积公式求解.【详解】由题意可知,圆O 的半径为1,即1OA OD ==,又1AD =,所以OAD △为正三角形,∴3AOD π∠=,所以扇形OAD 的面积是221112236S r AOD ππ=⨯⨯∠=⨯⨯=.故答案为:6π例15.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π【解析】【分析】设扇形ABC 的半径为r cm ,弧长为l cm ,根据扇形ABC 的面积S 为22225cm π,由212252rl π=得到rl ,然后由纸叠扇的周长2C r l =+,利用基本不等式求解.【详解】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =.由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长260C r l π=+≥==,当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立,所以()15BD DA cm π+=.又2BD DA =,所以()1152BD BD cm π+=,所以()3152BD cm π=,故()10BD cm π=.故答案为:10π例16.(2022·全国·高三专题练习)已知扇形的周长为4cm ,当它的半径为________cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________cm 2.【答案】121【解析】【详解】24l r +=,则()21142222S lr r r r r ==-=-+,则1,2r l ==时,面积最大为1,此时圆心角2lrα ,所以答案为1;2;1.【方法技巧与总结】(1)熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2)掌握简单三角形,特别是直角三角形的解法题型四:三角函数定义题例17.(2022·广东·深圳市光明区高级中学模拟预测)已知角θ的终边过点()1,1A -,则sin()6πθ-=()ABCD【答案】D 【解析】【分析】由任意三角形的定义求出sin ,cos θθ,由两角差的正弦公式代入即可求出sin()6πθ-.【详解】因为角θ的终边过点()1,1A -,由任意三角形的定义知:sin θθ==sin()sin cos cos sin 666πππθθθ-=-=故选:D.例18.(2022·河北衡水·高三阶段练习)已知角α的终边经过点(-,则()tan sin 232πααπ⎛⎫++-= ⎪⎝⎭()A .32B .34-C.D【答案】D 【解析】【分析】利用三角函数的定义、诱导公式、二倍角公式以及弦化切可求得所求代数式的值.【详解】依题意,由三角函数的定义可知tan α=()22sin cos 2sin cos 2tan sin 23sin 22sin sin cos cos 2παπαααααπαπαααα⎛⎫+ ⎪⎛⎫⎝⎭++-=-=-- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭22212sin cos 2tan tan sin cos tan 1ααααααα=--===++故选:D.例19.(2022·湖北武汉·模拟预测)已知角α的始边与x 轴非负半轴重合,终边上一点()sin 3,cos3P ,若02απ≤≤,则α=()A .3B .32π-C .532π-D .32π-【答案】C【分析】根据三角函数的定义求出tan α,结合诱导公式即可得解,注意角所在的象限.【详解】解:因为角α的终边上一点()sin 3,cos3P ,所以cos31tan 0sin 3tan 3α==<,又cos 30,sin 30<>,所以α为第四象限角,所以23,Z 2k k παπ=+-∈,又因02απ≤≤,所以532πα=-.故选:C.例20.(2022·北京·二模)已知角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin 2α=()A .2425-B .725-C .725D .2425【答案】A 【解析】【分析】根据终边上的点确定角的正余弦值,再由二倍角正弦公式求sin 2α.【详解】由题设43sin ,cos 55αα==-,而4324sin 22sin cos 2()5525ααα==⨯⨯-=-.故选:A【方法技巧与总结】(1)任意角的正弦、余弦、正切的定义;题型五:象限符号与坐标轴角的三角函数值例21.(2022·全国·高三专题练习)如果cos 0θ<,且tan 0θ<,则sin cos cos θθθ-+的化简为_____.【答案】sin θ【解析】【分析】由cos 0θ<,且tan 0θ<,得到θ是第二象限角,由此能化简sin cos cos θθθ-+.解:∵cos 0θ<,且tan 0θ<,∴θ是第二象限角,∴sin cos cos sin cos cos sin θθθθθθθ-+=-+=.故答案为:sin θ.例22.(2022·河北·石家庄二中模拟预测)若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】根据sin cos 0αα⋅<可知α是第二或第四象限角;根据第二或第四象限角正余弦的符号可确定结果.【详解】sin cos 0αα⋅< ,α 是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<;当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意;综上所述:α是第二象限角.故选:B.例23.(2022·浙江·模拟预测)已知R θ∈,则“cos 0θ>”是“角θ为第一或第四象限角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要【答案】B 【解析】【分析】利用定义法进行判断.【详解】充分性:当cos 0θ>时,不妨取cos 1,0θθ==时轴线角不成立.故充分性不满足;必要性:角θ为第一或第四象限角,则cos 0θ>,显然成立.故选:B.例24.(2022·重庆·高三开学考试)若tan 0θ>,则下列三角函数值为正值的是()A .sin θB .cos θC .sin 2θD .cos 2θ【答案】C 【解析】【分析】结合诱导公式、二倍角公式判断出正确选项.【详解】sin tan 0sin cos 0sin 22sin cos 0cos θθθθθθθθ=>⇒⋅>⇒=>,所以C 选项正确.当5π4θ=时,5ππtan 0,sin 0,cos 0,cos 2coscos 022θθθθ><<===,所以ABD 选项错误.故选:C例25.(2022·全国·高三专题练习(理))我们知道,在直角坐标系中,角的终边在第几象限,这个角就是第几象限角.已知点()cos ,tan P αα在第三象限,则角α的终边在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】本题首先可以根据题意得出cos 0α<、tan 0α<,然后得出sin 0α>,即可得出结果.【详解】因为点()cos ,tan P αα在第三象限,所以cos 0α<,tan 0α<,则sin 0α>,角α的终边在第二象限,故选:B.例26.(2022·全国·高三专题练习(理))已知sin 0,cos 0αα><,则()A .sin 20α>B .cos20α<C .tan02α>D .sin2α<【答案】C 【解析】【分析】由条件得到角α所在的象限,从而得到2α所在的象限,这样就可以得到答案.【详解】由sin 0,cos 0αα><知,α为第二象限角,所以2α为第一或第三象限角,所以tan02α>.故选:C.例27.(2022·江西南昌·三模(文))若角α的终边不在坐标轴上,且sin 2cos 2αα+=,则tan α=()A .43B .34C .23D .32【答案】A 【解析】【分析】结合易知条件和同角三角函数的平方关系即可求出cos α,从而求出sin α,根据sin tan cos ααα=即可求得结果.【详解】22sin cos 13cos 5sin 2cos 2ααααα⎧+=⇒=⎨+=⎩或cos 1α=,∵α的终边不在坐标轴上,∴3cos 5α=,∴34sin 2255α=-⨯=,∴sin 4tan cos 3ααα==.故选:A .例28.(2022·全国·高三专题练习(理))若α是第二象限角,则下列不等式正确的是()A .()cos 0α->B .tan02α>C .sin 20α>D .()sin 0α->【答案】B 【解析】【分析】根据α是第二象限角,分别求出四个选项中角所在的象限,再判断三角函数的符号,即可求解.【详解】对于A :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()cos 0α-<,故选项A 不正确;对于B :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππππZ 422k k k α+<<+∈,当()2Z k n n =∈时,()ππ2π2πZ 422n n n α+<<+∈,此时2α是第一象限角,当()21Z k n n =+∈时,()5π3π2π2πZ 422n n n α+<<+∈,此时2α是第三象限角,所以2α是第一或第三象限角,所以tan02α>,故选项B 正确;对于C :因为()π2ππ2πZ 2k k k α+<<+∈,所以()π4π22π4πZ k k k α+<<+∈,所以2α是第三或第四象限角或终边落在y 轴非正半轴,所以sin 20α<,故选项C 不正确;对于D :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()sin 0α-<,故选项D 不正确;故选:B.【方法技巧与总结】正弦函数值在第一、二象限为正,第三、四象限为负;.余弦函数值在第一、四象限为正,第二、三象限为负;.正切函数值在第一、三象限为正,第二、四象限为负.题型六:同角求值—条件中出现的角和结论中出现的角是相同的例29.(2022·安徽·合肥市第八中学模拟预测(文))若tan 2θ=-,则2sin 2cos 1θθ+的值为___________.【答案】23-【解析】【分析】利用二倍角公式和同角三角函数平方关系可构造正余弦齐次式,分子分母同除2cos θ,代入tan θ即可得到结果.【详解】2222sin 22sin cos 2tan 42cos 12cos sin 2tan 243θθθθθθθθ===-=-++++.故答案为:23-.例30.(2022·河北·沧县中学模拟预测)已知tan 3α=,则22sin 22sin cos2cos -=-αααα___________.【答案】43【解析】【分析】根据二倍角公式,结合同角三角函数齐次式关系求解即可.【详解】解:22222222sin 22sin 2sin cos 2sin 2tan 2tan 23234cos2cos sin tan 33---⨯-⨯====----ααααααααααα.故答案为:43例31.(2022·广东惠州·一模)已知tan 2α=,32παπ<<,则cos sin αα-=()A B .C D .【答案】A 【解析】【分析】由sin tan 2cos ααα==及22sin cos 1αα+=解出sin α与cos α即可求解.【详解】因为sin tan 2cos ααα==,且22sin cos 1αα+=,32παπ<<,所以sin α=cos α=,所以cos sin αα⎛-== ⎝⎭.故选:A.例32.(2022·全国·模拟预测)已知0πA <<,1sin cos 5A A +=,则1sin 21cos 2AA-=+()A .132B .118C .4918D .4932【答案】C 【解析】【分析】结合同角的平方关系以及二倍角公式即可求出结果.【详解】由1sin cos 5A A +=及22sin cos 1A A +=,解得4sin 5A =,3cos 5A =-或4cos 5A =,3sin 5A =-.因为sin 0A >,所以4sin 5A =,3cos 5A =-,所以24sin 22sin cos 25A A A ==-,227cos 2cos sin 25A A A =-=-,所以2411sin 2492571cos 218125A A +-==+-,故选:C.例33.(2022·海南·模拟预测)已知角α为第二象限角,tan 3α=-,则cos α=()A.BC.D【答案】A 【解析】【分析】由角所在的象限及同角三角函数的平方关系、商数关系求cos α即可.【详解】因为α是第二象限角,所以sin 0α>,cos 0α<,由sin tan 3cos ααα==-,22sin cos 1αα+=,可得:cos α=故选:A.例34.(2022·全国·高三专题练习)已知(,22ππα∈-,且212sin 5cos 9αα-=,则cos 2=α()A .13B .79-C .34-D .18【答案】B 【解析】【分析】利用同角公式化正弦为余弦,求出cos α的值,再利用二倍角的余弦公式求解即得.【详解】依题意,原等式化为:212(1cos )5cos 9αα--=,整理得:(4cos 3)(3cos 1)0αα+-=,因(,)22ππα∈-,则cos 0α>,解得:1cos 3α=,所以2217cos 22cos 12139αα⎛⎫=-=⨯-=- ⎪⎝⎭.故选:B例35.(2022·全国·高三阶段练习(理))若sin cos 2sin cos θθθθ+=-,则sin (1sin 2)sin cos θθθθ+=+()A .65-B .25-C .65D .25【答案】C 【解析】【分析】由已知得sin 3cos θθ=,从而sin ,cos θθ同号,即sin cos 0>θθ,然后由平方关系求得22cos ,sin θθ,进而求得sin cos θθ,求值式应用二倍角公式和平方关系变形后可得结论.【详解】因为sin cos 2sin cos θθθθ+=-,所以sin 3cos θθ=,所以sin ,cos θθ同号,即sin cos 0>θθ,22222sin cos 9cos cos 10cos 1θθθθθ+=+==,21cos 10θ=,从而29sin 10θ=,229sin cos 100θθ=,所以3sin cos 10θθ=,22sin (1sin 2)sin (sin cos 2sin cos )sin (sin cos )sin cos sin cos θθθθθθθθθθθθθθ+++==+++2936sin sin cos 10105θθθ=+=+=.故选:C .例36.(2022·广东广州·三模)已知sin cos x x +=()0,πx ∈,则cos2x 的值为()A .12B C .12-D .【答案】D 【解析】【分析】将sin cos x x +=2sin x cos x =-12<0,结合sin cos x x +=求出x 的范围,再利用22cos 2sin 21x x +=求解即可.【详解】解:将sin cos x x +=2sin x cos x =-12<0,所以π(,π)2x ∈,又因为sin cos x x +=0,所以π3π(,24x ∈,2x 3π(π,)2∈,又因为sin2x =-12,所以cos2x 故选:D.例37.(2022·湖北武汉·模拟预测)已知1sin cos 5θθ+=-,(0,)θπ∈,则sin cos θθ-=()A .15B .15-C .75D .75-【答案】C 【解析】【分析】利用平方关系,结合同角三角函数关系式,即可求解.【详解】()21sin cos 12sin cos 25θθθθ+=+=,242sin cos 025θθ=-<,()0,θπ∈ ,,2πθπ⎛⎫∴∈ ⎪⎝⎭,sin cos θθ>,()249sin cos 12sin cos 25θθθθ-=-=,所以7sin cos 5θθ-=.故选:C例38.(2022·山西晋中·模拟预测(理))若tan 1θ=-,则()cos 1sin 2sin cos θθθθ--等于()A .12B .2C .1-D .13-【答案】C 【解析】【分析】化简原式为2tan 1tan 1θθ-+即得解.【详解】解:原式()222cos sin 2sin cos cos cos (sin cos )=sin cos sin cos θθθθθθθθθθθθ-⋅+-=--22cos (sin cos )sin cos θθθθθ-=+2tan 12=1tan 12θθ--==-+.故选:C例39.(2022·湖北·模拟预测)已知()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,则3sin sin sin 2ααπα-=⎛⎫+ ⎪⎝⎭()A .35B .35C .310D .310-【答案】D 【解析】【分析】根据题意求出tan α,再将原式化简为:32sin sin tan tan 1sin 2αααπαα-=+⎛⎫+ ⎪⎝⎭,求解即可.【详解】因为()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,所以sin 3cos 0αα--=,所以tan 3α=-()232sin 1sin sin sin tan 3sin cos cos tan 110sin 2αααααααπααα--====-+⎛⎫+ ⎪⎝⎭.故选:D.【方法技巧与总结】(1)若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2)若无象限条件,一般“弦化切”.题型七:诱导求值与变形例40.(2022·贵州·贵阳一中高三阶段练习(理))若π1sin 63α⎛⎫-= ⎪⎝⎭,则2πcos 23α⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】D 【解析】【分析】由三角函数的二倍角的余弦公式,结合诱导公式,即可求得答案.【详解】由题意得:2222πππππ27cos 22cos 12cos 12sin 113326699αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=---=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选:D .例41.(2022·贵州·贵阳一中模拟预测(文))若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】B 【解析】【分析】利用诱导公式计算可得;【详解】解:因为1sin 63a π⎛⎫+= ⎪⎝⎭,所以21cos cos sin 32663ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选:B.例42.(2022·青海·海东市教育研究室一模(理))()tan 165-︒=()A .2-B .2-+C .2D .2【答案】C 【解析】【分析】先利用诱导公式可得()tan 165tan15-︒=︒,在运用正切两角差公式()tan15tan 4530︒=︒-︒计算.【详解】()()()tan 165tan 18015tan15tan 4530-︒=-︒+︒=︒=︒-︒1tan 45tan 3021tan 45tan 30︒-︒===+︒︒故选:C .例43.(2022·安徽·合肥市第八中学模拟预测(文))已知2cos sin 022a ππα⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则()tan -=πα()A .2B .—2C .12D .12-【答案】C 【解析】【分析】根据诱导公式五、六可得2sin cos 0αα+=,由同角三角函数的关系可得1tan 2α=-,结合诱导公式二计算即可.【详解】由已知得2sin cos 0αα+=,12sin cos tan 2ααα∴=-∴=-,,∴1tan()tan 2παα-=-=.故选:C【方法技巧与总结】(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数.(2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化【过关测试】一、单选题1.(2022·宁夏·银川一中模拟预测(理))中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分)现有一个如图所示的曲池,1AA 垂直于底面,13AA =,底面扇环所对的圆心角为2π,弧AD 长度是弧BC 长度的3倍,2CD =,则该曲池的体积为()A .92πB .5πC .112πD .6π【答案】D 【解析】【分析】利用柱体体积公式求体积.【详解】不妨设弧AD 所在圆的半径为R ,弧BC 所在圆的半径为r ,由弧AD 长度为弧BC 长度的3倍可知3R r =,22CD R r r =-==,所以1r =,3R =.故该曲池的体积22()364V R r ππ=⨯-⨯=.故选:D.2.(2022·海南中学高三阶段练习)二十四节气是中华民族上古农耕文明的产物,是中国农历中表示李节变迁的24个特定节令.如图,每个节气对应地球在黄道上运动15︒所到达的一个位置.根据描述,从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为()A .π3-B .π2C .5π12D .π3【答案】B【解析】【分析】根据条件得到运行度数为6×15°,化为弧度即可得解.【详解】根据题意,立春是立冬后的第六个节气,故从立冬到立春相应于地球在黄道上逆时针运行了61590︒⨯=︒,所以从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为π2.故选:B3.(2022·河北·模拟预测)已知圆锥的母线长为2,其侧面展开图是圆心角等于23π的扇形,则该圆锥的体积为()A B .1627πC D .1681π【答案】C 【解析】【分析】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,从而可求出半径r ,再求出h ,进而可求出其体积【详解】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,解得23r =,所以h ===所以圆锥的体积为22112333V r h ππ⎛⎫==⨯=⎪⎝⎭故选:C4.(2022·福建省福州格致中学模拟预测)已知角θ的大小如图所示,则1sin 2cos 2θθ+=()A .5-B .5C .15-D .15【答案】A 【解析】【分析】由图中的信息可知tan 54πθ⎛⎫+=- ⎪⎝⎭,化简1sin 2cos 2θθ+即可.【详解】由图可知,tan 54πθ⎛⎫+=- ⎪⎝⎭,()()()22222cos sin 1sin 2sin cos 2sin cos cos sin cos 2cos sin cos sin cos sin cos sin θθθθθθθθθθθθθθθθθθ+++++===--+-tantan 1tan 4tan 51tan 41tan tan 4πθθπθπθθ++⎛⎫===+=- ⎪-⎝⎭-;故选:A.5.(2022·江西·临川一中模拟预测(文))tan195︒=()A.2-B.2-+C .2D .2【答案】C 【解析】【分析】利用诱导公式及两角差的正切公式计算可得;【详解】解:()()tan195tan 18015tan15tan 4530︒=︒+︒=︒=︒-︒tan 45tan 301tan 45tan 30︒-︒=+︒︒12==故选:C6.(2022·江苏·南京市天印高级中学模拟预测)若21sin2512sin αα+=-,则tan α=()A .23-B .32-C .23D .32【答案】C 【解析】【分析】通过“1”的替换,齐次化,然后得到关于tan α的方程,解方程即可【详解】22221sin 2(cos sin )cos sin 1tan 512sin cos sin cos sin 1tan αααααααααααα++++====----,解得2tan 3α=故选:C7.(2022·四川成都·模拟预测(文))已知向量(3cos 2,sin )a αα= ,(2,cos 5sin )b αα=+ ,π0,2α⎛⎫∈ ⎪⎝⎭,若a b ⊥ ,则tan α=()A .2B .-2C .3D .34【答案】C 【解析】【分析】由a b ⊥可得向量的数量积等于0,化简可得6cos 2sin (cos 5sin )0αααα++=,结合二倍角公式以及同角的三角函数关系式化为226tan tan n 10ta ααα-++=,可求得答案.【详解】由题意a b ⊥可得0a b ⋅= ,即6cos 2sin (cos 5sin )0αααα++=,即2226(cos sin )sin cos 5sin 0ααααα-++=,故22226cos sin sin c sin os 0cos αααααα-++=,即226tan tan n 10ta ααα-++=,由于π0,2α⎛⎫∈ ⎪⎝⎭,故tan 3,tan 2αα==-(舍去),故选:C8.(2022·黑龙江·哈九中模拟预测(文))数学家华罗庚倡导的“0.618优选法”在各领域都应用广泛,0.618就是黄金分割比m =2sin18︒).A .4B 1+C .2D 1【答案】A 【解析】【分析】根据2sin18m ︒=,结合三角函数的基本关系式,诱导公式和倍角公式,即可求解.【详解】根据题意,可得2sin182cos72m =︒=︒,4sin144cos54︒==︒()4sin 90544cos544cos54cos54︒+︒︒===︒︒.故选:A .二、多选题9.(2022·全国·高三专题练习)下列说法正确的有()A .经过30分钟,钟表的分针转过π弧度B .1801radπ︒=C .若sin 0θ>,cos 0θ<,则θ为第二象限角D .若θ为第二象限角,则2θ为第一或第三象限角【答案】CD 【解析】【分析】对于A ,利用正负角的定义判断;对于B ,利用角度与弧度的互化公式判断;对于C ,由sin 0θ>求出θ的范围,由cos 0θ<求出θ的范围,然后求交集即可;对于D ,由θ是第二象限角,可得222k k ππθππ+<<+,k Z ∈,然后求2θ的范围可得答案【详解】对于A ,经过30分钟,钟表的分针转过π-弧度,不是π弧度,所以A 错;对于B ,1︒化成弧度是rad 180π,所以B 错误;对于C ,由sin 0θ>,可得θ为第一、第二及y 轴正半轴上的角;由cos 0θ<,可得θ为第二、第三及x 轴负半轴上的角.取交集可得θ是第二象限角,故C 正确;对于D :若θ是第二象限角,所以222k k ππθππ+<<+,则()422k k k Z πθπππ+<<+∈,当2()k n n Z 时,则22()422n n n Z πθπππ+<<+∈,所以2θ为第一象限的角,当21()k n n Z =+∈时,5322()422n n n Z πθπππ+<<+∈,所以2θ为第三象限的角,综上,2θ为第一或第三象限角,故选项D 正确.故选:CD.10.(2022·全国·高三专题练习)中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形(如图)的面积为1S ,圆心角为1α,圆面中剩余部分的面积为2S ,圆心角为2α,当1S 与2S0.618≈(黄金分割比)时,折扇看上去较为美观,那么()A .1127.5α=︒B .1137.5α=︒C.21)απ=D.12αα=【答案】BCD 【解析】【分析】利用扇形的面积公式以及角度制与弧度制的互化即可求解.【详解】设扇形的半径为R,由211122221212R S S R αααα===,故D 正确;由122ααπ+=,。
三角函数的定义及应用教学教案(优秀4篇)
三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。
高中数学 第四章第37课时已知三角函数值求角(2)教师专用教案 新人教A版
第三十七教时 已知三角函数值求角(2)目的:理解反正切函数的有关概念,并能运用上述知识已知三角函数值求角。
过程:一、反正切函数R x k x x y ∈+≠=,2,tan ππ1︒在整个定义域上无反函数。
2︒在⎥⎦⎤⎢⎣⎡-2,2ππ上x y tan =记作()R x x y ∈=arctan (奇函数)。
二、例一、(P75例四)1、 已知⎪⎭⎫⎝⎛-∈=2,231tan ππx x 且,求x (精确到π1.0)。
解:在区间⎪⎭⎫⎝⎛-2,2ππ上x y tan =是增函数,符合条件的角是唯一的 ⎪⎭⎫⎝⎛π≈10'26180x 2、 已知31tan =x 且[]π2,0∈x ,求x 的取值集合。
解:1010,10tan 10tan ππππππ=+=∴=⎪⎭⎫ ⎝⎛+x x 或 ∴所求的x 的集合是⎭⎬⎫⎩⎨⎧1011,10ππ(即31arctan 31arctan +==πx x 和) 3、 已知R x x ∈=且31tan ,求x 的取值集合。
解:由上题可知:10ππ+=k x ,()z k k x ∈+=1011ππ 合并为()z k k x ∈+=10ππ三、处理《教学与测试》P127-128 61课 例二、已知23sin =α,根据所给范围求α: 1︒α为锐角 2︒α为某三角形内角 3︒α为第二象限角 4︒R ∈α 解:1︒由题设3πα=2︒设31πα=,或3232πππα=-= 3︒()z k k ∈+=322ππα 4︒由题设()()()z k k k k k∈-+=-+=3123arcsin 1πππα例三、求适合下列关系的x 的集合。
1︒()R x x ∈=2cos 2 2︒01tan 32=-x 3︒53sin -=x 解:1︒z k k k x x ∈±=±==,4222arccos 2,22cos πππ ∴所求集合为⎭⎬⎫⎩⎨⎧∈±=z k k x x ,42|ππ 2︒∴±=±=,6,33tan ππk x x 所求集合为⎭⎬⎫⎩⎨⎧∈±=z k k x x ,6|ππ 3︒()⎭⎬⎫⎩⎨⎧--=-=53arcsin 1,53sin kk x x π 例四、直角ABC ∆锐角A ,B 满足:A A A B∠+-=求,1sin tan 2cos22解:由已知:1sin tan cos 1+-=+A A BA A A ,tan sin 2=∴为锐角,0sin ≠∴A 3,20,21cos ππ=∠∴<<=∴A A A 四、小结、反正切函数五、作业:P76-77练习与习题4.11余下部分及《教学与测试》P128 61课练习。
高中数学 第1章 三角函数 1 周期现象 2 角的概念的推广(教师用书)教案 北师大版必修4-北师大
§1周期现象§2角的概念的推广学习目标核心素养1.了解现实生活中的周期现象.2.了解任意角的概念,理解象限角的概念.(重点)3.掌握终边相同角的含义及其表示.(难点) 4.会用集合表示象限角.(易错点)1.通过学习周期现象、任意角的概念,象限角的概念,培养数学抽象素养.2.通过终边相同的角的表示及象限角的表示,培养数学运算素养.1.周期现象(1)以相同间隔重复出现的现象叫作周期现象.(2)要判断一种现象是否为周期现象,关键是看每隔一段时间,这种现象是否会重复出现,假设出现,那么为周期现象;否那么,不是周期现象.思考1:“钟表上的时针每经过12小时运行一周,分针每经过1小时运行一周,秒针每经过1分钟运行一周.〞这样的现象,具有怎样的特征?[提示]周而复始,重复出现.2.角的概念(1)角的有关概念(2)角的概念的推广类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角一条射线从起始位置OA没有作任何旋转,终止位置OB与零角起始位置OA重合,我们称这样的角为零度角,又称零角思考2:如果一个角的始边与终边重合,那么这个角一定是零角吗?[提示]不一定,假设角的终边未作旋转,那么这个角是零角.假设角的终边作了旋转,那么这个角就不是零角.3.象限角的概念(1)前提条件①角的顶点与原点重合.②角的始边与x轴的非负半轴重合.(2)结论角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.(3)终边相同的角及其表示所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k×360°,k ∈Z}.如下图:注意以下几点:①k是整数,这个条件不能漏掉.②α是任意角.③k·360°与α之间用“+〞号连接,如k·360°-30°应看成k·360°+(-30°)(k∈Z).④终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.思考3:假设60°的终边是OB,那么-660°,420°的终边与60°的终边有什么关系,它们与60°分别相差多少?[提示]它们的终边相同.-660°=60°-2×360°,420°=60°+360°,故它们与60°分别相隔了2个周角的和及1个周角.1.以下变化是周期现象的是()A.地球自转引起的昼夜交替变化B.随机数表中数的排列C.某交通路口每小时通过的车辆数D.某同学每天打的时间A[由周期现象的概念知A为周期现象.]2.以下说法正确的选项是()A.三角形的内角一定是第一、二象限角B.钝角不一定是第二象限角C.相差180°整数倍的角为终边相同的角D.钟表的时针旋转而成的角是负角D[A错,如90°既不是第一象限角,也不是第二象限角;B错,钝角在90°到180°之间,是第二象限角;C错,终边相同的角之间相差360°的整数倍;D正确,钟表的时针是顺时针旋转,故是负角.]3.-378°是第________象限角.()A.一B.二C.三D.四D[-378°=-360°-18°,因为-18°是第四象限角,所以-378°是第四象限角.]4.把-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为________.144°+(-3)×360°[-936°=-3×360°+144°,故-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为144°+(-3)×360°.]周期现象的判断[例1](1)以下变化中不是周期现象的是()A.“春去春又回〞B.钟表的分针每小时转一圈C.天干地支表示年、月、日的时间顺序D.某交通路口每次绿灯通过的车辆数(2)水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升.(1)D[由周期现象的概念易知,某交通路口每次绿灯通过的车辆数不是周期现象.应选D.](2)解:因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升),所以水车1小时内最多盛水160×12=1 920(升).1.应用周期现象中“周而复始〞的规律性可以达到“化繁为简〞“化无限为有限〞的目的.2.只要确定好周期现象中重复出现的“基本单位〞,就可以把问题转化到一个周期内来解决.1.如下图是某人的心电图,根据这个心电图,请你判断其心脏跳动是否正常.[解]观察图像可知,此人的心电图是周期性变化的,因此心脏跳动正常.角的概念[例2]以下结论:①锐角都是第一象限角;②第二象限角是钝角;③小于180 °的角是钝角、直角或锐角.其中,正确结论的序号为______.①[①锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以①正确;②480°角是第二象限角,但它不是钝角,所以②不正确;③0°角小于180°,但它既不是钝角,也不是直角或锐角,所以③不正确.]判断角的概念问题的关键与技巧(1)关键:正确理解象限角与锐角,直角,钝角,平角,周角等概念.(2)技巧:判断命题为真需要证明,而判断命题为假只要举出反例即可.2.以下说法正确的选项是()A.终边相同的角一定相等B.钝角一定是第二象限角C.第一象限角一定不是负角D.小于90°的角都是锐角B[终边相同的角不一定相等,故A不正确;钝角一定是第二象限角,故B正确;因-330°是第一象限角,所以C不正确;-45°<90°,但它不是锐角,所以D不正确.]象限角的表示[探究问题]1.任意角都是象限角吗?为什么?[提示]不是.一些特殊角终边可能落在坐标轴上.如果角的终边在坐标轴上,这个角就不是象限角.2.象限角的表示.[例3]α为第二象限角,问2α,α2分别为第几象限的角?[思路探究]由角α为第二象限角,可以写出α的X 围:90°+k ·360°<α<180°+k ·360°(k ∈Z ),在此基础上可以判断2α,α2的X 围,进而可以判断出它们所在的象限.[解]∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°(k ∈Z ). ∴180°+2k ·360°<2α<360°+2k ·360°(k ∈Z ).∴2α是第三或第四象限角,以及终边落在y 轴的负半轴上的角. 同理,45°+k 2·360°<α2<90°+k 2·360°(k ∈Z ).①当k 为偶数时,令k =2n (n ∈Z ). 那么45°+n ·360°<α2<90°+n ·360°(k ∈Z ),此时α2为第一象限角;②当k 为奇数时,令k =2n +1(n ∈Z ). 那么225°+n ·360°<α2<270°+n ·360°(n ∈Z ).此时α2为第三象限角.综上可知,α2为第一或第三象限角.1.(变结论)在本例条件下,求角2α的终边的位置. [解]∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ). ∴k ·720°+180°<2α<k ·720°+360°(k ∈Z ).∴角2α的终边在第三或第四象限或在y 轴的非正半轴上. 2.(变条件)假设角α变为第三象限角,那么角α2是第几象限角?[解]如下图,先将各象限分成2等份,再从x 轴正半轴的上方起,按逆时针方向,依次将各区域标上一、二、三、四,那么标有“三〞的区域即为角α2的终边所在的区域,故角α2为第二或第四象限角.倍角、分角所在象限的判定思路(1)角α终边所在的象限,确定nα终边所在的象限,可依据角α的X 围求出nα的X 围,再直接转化为终边相同的角即可.注意不要漏掉nα的终边在坐标轴上的情况.(2)角α终边所在的象限,确定αn 终边所在的象限,分类讨论法要对k 的取值分以下几种情况进行讨论:k 被n 整除;k 被n 除余1;k 被n 除余2,…,k 被n 除余n -1.然后方可下结论.几何法依据数形结合思想,简单直观.终边相同的角[探究问题]3.在同一坐标系中作出390°,-330°,30°的角并观察这三个角终边之间的位置关系,角的大小关系.[提示]如下图,三个角终边相同,相差360°的整数倍.4.对于任意一个角α,与它终边相同的角的集合应如何表示?[提示]所有与角α终边相同的角连同α在内,可以构成一个集合,S={β|β=α+k·360°,k ∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角整数倍的和.[例4]α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.[思路探究]利用终边相同的角的关系α=β+k·360°,k∈Z.求解.[解](1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限的角.(2)令θ=250°+k·360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.3.(变条件)假设将例题改为如下图的图形,那么阴影部分(包括边界)表示的终边相同的角的集合如何表示?[解]在0°~360°X围内、阴影部分(包括边界)表示的X围是:150°≤α≤225°,那么满足条件的角α为{α|k·360°+150°≤α≤k·360°+225°,k∈Z}.4.(变条件)假设将例题改为如下图的图形,那么终边落在阴影部分(包括边界)的角的集合如何表示?[解]由题干图可知满足题意的角的集合为{β|k·360°+60°≤β≤k·360°+105°,k∈Z}∪{k·360°+240°≤β≤k·360°+285°,k∈Z}={β|2k·180°+60°≤β≤2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β≤(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β≤n·180°+105°,n∈Z}.即所求的集合为{β|n·180°+60°≤β≤n·180°+105°,n∈Z}.1.终边落在直线上的角的集合的步骤(1)写出在0°~360°X围内相应的角;(2)由终边相同的角的表示方法写出角的集合;(3)根据条件能合并一定合并,使结果简捷.2.终边相同角常用的三个结论(1)终边相同的角之间相差360°的整数倍.(2)终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.对角的理解,初中阶段是以“静止〞的眼光看,高中阶段应用“运动〞的观点下定义,理解这一概念时,要注意“旋转方向〞决定角的“正负〞,“旋转量〞决定角的“绝对值大小〞.3.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.1.判断(正确的打“√〞,错误的打“×〞)(1)某同学每天上学的时间是周期现象.()(2)第三象限角一定比钝角大.()(3)始边相同,终边不同的角一定不相等.()(4)始边相同,终边也相同的角一定相等.()[答案](1)×(2)×(3)√(4)×2.以下现象不是周期现象的是()A.钟摆摆心偏离铅垂线角度的变化B.游乐场中摩天轮的运行C.抛一枚骰子,向上的数字是奇数D.太阳的东升西落C[A,B,D所述都是周期现象,而C中“向上的数字是奇数〞不是周期现象.]3.下面各组角中,终边相同的是()A.390°,690°B.-330°,750°C.480°,-420°D.3 000°,-840°B[因为-330°=-360°+30°,750°=720°+30°,所以-330°与750°终边相同.]4.从13:00到14:00,时针转过的角度为________,分针转过的角度为________.-30°-360°[经过1小时,时针顺时针转过了30°,分针顺时针转过了360°.]word5.在0°~360°X围内,找出与以下各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°.[解](1)因为-150°=-360°+210°,所以在0°~360°X围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°X围内,与650°角终边相同的角是290°角,它是第四象限角.- 11 - / 11。
高考数学一轮复习 第3章 三角函数、解三角形 热点探究课2 三角函数与解三角形中的高考热点问题教师用
热点探究课(二) 三角函数与解三角形中的高考热点问题[命题解读] 从近五年全国卷高考试题来看,解答题第1题(全国卷T 17)交替考查三角函数、解三角形与数列,本专题的热点题型有:一是三角函数的图像与性质;二是解三角形;三是三角恒等变换与解三角形的综合问题,中档难度,在解题过程中应挖掘题目的隐含条件,注意公式的内在联系,灵活地正用、逆用、变形应用公式,并注重转化思想与数形结合思想的应用.热点1 三角函数的图像与性质(答题模板)要进行五点法作图、图像变换,研究三角函数的单调性、奇偶性、周期性、对称性,求三角函数的单调区间、最值等,都应先进行三角恒等变换,将其化为一个角的一种三角函数,求解这类问题,要灵活利用两角和(差)公式、倍角公式、辅助角公式以及同角关系进行三角恒等变换.(本小题满分12分)已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图像向右平移π6个单位长度,得到函数g (x )的图像,求函数g (x )在区间[0,π]上的最大值和最小值. 【导学号:66482187】[思路点拨] 1.先逆用倍角公式,再利用诱导公式、辅助角公式将f (x )化为正弦型函数,然后求其周期.2.先利用平移变换求出g (x )的解析式,再求其在给定区间上的最值.[规X 解答] (1)f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π)3分 =3cos x +sin x =2sin ⎝⎛⎭⎪⎫x +π3,5分 于是T =2π1=2π. 6分 (2)由已知得g (x )=f ⎝ ⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫x +π6. 8分 ∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-12,1,10分 ∴g (x )=2sin ⎝⎛⎭⎪⎫x +π6∈[-1,2]. 11分故函数g (x )在区间[0,π]上的最大值为2,最小值为-1. 12分[答题模板] 解决三角函数图像与性质的综合问题的一般步骤为:第一步(化简):将f (x )化为a sin x +b cos x 的形式.第二步(用辅助角公式):构造f (x )=a 2+b 2·⎝ ⎛⎭⎪⎫sin x ·a a 2+b 2+cos x ·b a 2+b 2. 第三步(求性质):利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质.第四步(反思):反思回顾,查看关键点、易错点和答题规X .[温馨提示] 1.在第(1)问的解法中,使用辅助角公式a sin α+b cos α=a 2+b 2 sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a ,在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.2.求g (x )的最值一定要重视定义域,可以结合三角函数图像进行求解.[对点训练1] (2016·某某模拟)已知函数f (x )=A sin ωx +B cos ωx (A ,B ,ω是常数,ω>0)的最小正周期为2,并且当x =13时,f (x )max =2. (1)求f (x )的解析式; (2)在闭区间⎣⎢⎡⎦⎥⎤214,234上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.[解] (1)因为f (x )=A 2+B 2sin(ωx +φ),由它的最小正周期为2,知2πω=2,ω=π. 2分又因为当x =13时,f (x )max =2,知13π+φ=2k π+π2(k ∈Z ),φ=2k π+π6(k ∈Z ),4分所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx +2k π+π6=2sin ⎝⎛⎭⎪⎫πx +π6(k ∈Z ). 故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫πx +π6. 5分 (2)当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ). 7分 由214≤k +13≤234,解得5912≤k ≤6512,9分 又k ∈Z ,知k =5,10分由此可知在闭区间⎣⎢⎡⎦⎥⎤214,234上存在f (x )的对称轴,其方程为x =163. 12分热点2 解三角形从近几年全国卷来看,高考命题强化了解三角形的考查力度,着重考查正弦定理、余弦定理的综合应用,求解的关键是实施边角互化,同时结合三角恒等变换进行化简与求值.(2015·全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C; (2)若AD =1,DC =22,求BD 和AC 的长. [解] (1)S △ABD =12AB ·AD sin ∠BAD , S △ADC =12AC ·AD sin ∠CAD . 2分因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理,得sin B sin C =AC AB =12. 5分 (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 7分在△ABD 和△ADC 中,由余弦定理,知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB ,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 9分故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6.由(1),知AB =2AC ,所以AC =1. 12分[规律方法] 解三角形问题要关注正弦定理、余弦定理、三角形内角和定理、三角形面积公式,要适时、适度进行“角化边”或“边化角”,要抓住能用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则两个定理都有可能用到.[对点训练2] (2016·某某高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin2B =3b sin A .(1)求B ;(2)若cos A =13,求sin C 的值. [解] (1)在△ABC 中,由a sin A =bsin B, 可得a sin B =b sin A .2分又由a sin2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B ,所以cos B =32,得B =π6. 5分 (2)由cos A =13,可得sin A =223,则 sin C =sin[π-(A +B )]=sin(A +B )=sin ⎝⎛⎭⎪⎫A +π6 =32sin A +12cos A =26+16. 12分 热点3 三角恒等变换与解三角形的综合问题以三角形为载体,三角恒等变换与解三角形交汇命题,是近几年高考试题的一大亮点,主要考查和、差、倍角公式以及正、余弦定理的综合应用,求解的关键是根据题目提供的信息,恰当地实施边角互化.(2017·东北三省四市一联)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos B -2cos A 2a -b =cos C c . (1)求ab 的值;(2)若角A 是钝角,且c =3,求b 的取值X 围.[解] (1)由题意及正弦定理得sin C cos B -2sin C cos A =2sin A cos C -sin B cos C ,2分 ∴sin C cos B +sin B cos C =2(sin C cos A +sin A cos C ).∴sin(B +C )=2sin(A +C ).∵A +B +C =π,∴sin A =2sin B ,∴ab=2. 5分 (2)由余弦定理得cos A =b 2+9-a 22b ·3=b 2+9-4b 26b =9-3b 26b<0, ∴b > 3. ①7分∵b +c >a ,即b +3>2b ,∴b <3, ②由①②得b 的X 围是(3,3). 12分[规律方法] 1.以三角形为载体,实质考查三角形中的边角转化,求解的关键是抓住边角间的关系,恰当选择正、余弦定理.2.解三角形常与三角变换交汇在一起(以解三角形的某一结论作为条件),此时应首先确定三角形的边角关系,然后灵活运用三角函数的和、差、倍角公式化简转化.[对点训练3] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝ ⎛⎭⎪⎫π4+A =2.(1)求sin 2Asin 2A +cos 2A 的值;(2)若B =π4,a =3,求△ABC 的面积.【导学号:66482188】 [解] (1)由tan ⎝ ⎛⎭⎪⎫π4+A =2,得tan A =13,所以sin 2A sin 2A +cos 2A =2tan A2tan A +1=25. 5分(2)由tan A =13,A ∈(0,π),得sin A =1010,cos A =31010. 7分由a =3,B =π4及正弦定理a sin A =bsin B ,得b =3 5. 9分 由sin C =sin(A +B )=sin ⎝ ⎛⎭⎪⎫A +π4,得sin C =255.设△ABC 的面积为S ,则S =12ab sin C =9. 12分。
高中数学_三角函数的概念教学设计学情分析教材分析课后反思
5.2.1三角函数的概念学校: 授课教师:班级: 姓名: 学习目标:1. 会利用单位圆上点的坐标定义三角函数,理解三角函数的定义,把握三角函数的本质。
2. 通过动笔求解、合作学习,体会数形结合、由特殊到一般的研究问题的思想方法.3. 经历三角函数定义的形成过程,能抽象出数学模型,发展数学抽象、直观想象等素养.学习重点:任意角的正弦、余弦、正切的定义学习难点:影响单位圆上点的坐标变化的因素分析,三角函数的定义方式的理解,三角函数内在联系性的认识.学习过程:一、设置情境,激发兴趣在单位圆⊙O 上一点P ,以A 为起点做逆时针方向旋转,能否建立一个数学模型, 刻画点P 的位置变化情况. 二、互助合作,形成概念探究一(请同学们动手操作→独立思考→互相讨论→共同交流→探究结论) 请同学们在练习本上作图,完成表格,并思考以下问题: 问题一:3226πππα=时P 的坐标分别是什么?是不是唯一确定的?问题二:任意给定一个角α,它的终边OP 与单位圆交点P 是否唯一确定?三角函数的定义:设α是一个任意角,R ∈α,它的终边OP 与单位圆相较于点P (x,y )正弦函数: 余弦函数: 正切函数:记为探究二、请同学们回忆一下初中锐角三角函数的定义并完成下列问题 问题一:求出346πππ的正弦、余弦、正切值问题二:请按照本节课学习的三角函数的定义求出问题一 你能得出怎样的结论呢?结论: 三、小试牛刀 例1 求35π的正弦、余弦和正切值 小结:变式训练一:完成下列表格四、学以致用例2如图,设α是一个任意角,它终边上任意一点P (不与原点O 重合)的坐标(x,y ),点探究三:请同学们讨论以下问题:问题一:正弦值是否随点P位置的改变而改变?问题二:余弦和正切值是否随点P位置的改变而改变?小结:变式训练二:已知角θ的终边过点P(-12,5),求角θ的三角函数值.五、课堂小结:六、当堂检测1.思考辨析(1)sin α表示sin与α的乘积.()(2)设角α终边上的点P(x,y),r=|OP|≠0,则sin α=yr,且y越大,sin α的值越大.()(3)终边相同的角的同一三角函数值相等.()(4)终边落在y轴上的角的正切函数值为0.()2.已知角α终边过点P(1,-1),则tan α的值为()A.1B.-1 C.22D.-22八、作业布置 必做题:1.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称,若sin α=15,则sin β=________.2.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos 25π3+tan ⎝⎛⎭⎫-15π4. 选做题:已知角α的终边上有一点P 的坐标是(3a,4a ),其中a ≠0,求αsin 、αcos 、αtan 的值.三角函数的概念的学情分析1. 学生的认知基础是函数的一般观念以及对幂函数、指数函数和对数函数的研究经验,另外还有圆的有关知识。
《三角函数的积化和差》 说课稿
《三角函数的积化和差》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是“三角函数的积化和差”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“三角函数的积化和差”是高中数学三角函数部分的重要内容,它是三角函数恒等变换的重要工具,对于解决三角函数的求值、化简、证明等问题具有重要的作用。
本节课是在学生已经学习了三角函数的基本关系式、诱导公式、两角和与差的正弦、余弦公式的基础上进行的,为后续学习三角函数的和差化积、解三角形等知识奠定了基础。
教材通过对两个三角函数乘积的形式进行变形,推导出积化和差公式,让学生体会从特殊到一般、从已知到未知的数学思维方法。
二、学情分析学生已经掌握了三角函数的基本概念和基本公式,具备了一定的推理能力和运算能力。
但是,对于三角函数的恒等变换,学生往往感到困难,容易出现公式记错、运用不熟练等问题。
因此,在教学过程中,要注重引导学生理解公式的推导过程,掌握公式的结构特点和记忆方法,通过适量的练习,提高学生运用公式的能力。
三、教学目标1、知识与技能目标(1)理解三角函数积化和差公式的推导过程。
(2)掌握三角函数积化和差公式,并能熟练运用公式进行求值、化简和证明。
2、过程与方法目标(1)通过公式的推导,培养学生的逻辑推理能力和数学思维能力。
(2)通过公式的应用,提高学生的运算能力和分析问题、解决问题的能力。
3、情感态度与价值观目标(1)让学生在探究中体验成功的喜悦,增强学习数学的信心。
(2)培养学生严谨的治学态度和勇于创新的精神。
四、教学重难点1、教学重点三角函数积化和差公式的推导和应用。
2、教学难点公式的推导过程和记忆方法,以及灵活运用公式解决问题。
五、教法与学法1、教法(1)启发式教学法:通过引导学生思考、探究,启发学生的思维,让学生自己推导公式。
(2)讲练结合法:在讲解公式的同时,通过适量的练习,让学生巩固所学知识,提高应用能力。
高中数学说课稿:《三角函数》5篇
高中数学说课稿:《三角函数》高中数学说课稿:《三角函数》精选5篇(一)尊敬的各位老师,大家好!我今天将为大家带来一堂关于高中数学的说课,主题是《三角函数》。
首先,我将介绍本节课的教学目标。
本节课的目标主要分为两个方面。
一方面,通过学习三角函数的定义和性质,学生能够掌握三角函数的概念,能够正确计算各种三角函数的值。
另一方面,通过解决实际问题,培养学生运用三角函数解决实际问题的能力。
接下来,我将介绍教学内容和教学方法。
本节课主要包括以下几个方面的内容:三角函数的定义,正弦、余弦、正切等三角函数的计算、特殊角的三角函数值、利用三角函数解决实际问题等。
在教学过程中,我将采用多种教学方法,如讲解、示例演示和练习等。
通过讲解,我将向学生详细解释三角函数的定义和性质,帮助学生理解概念。
通过示例演示,我将给学生展示一些具体的计算过程,帮助学生掌握计算方法。
通过练习,我将让学生运用所学知识解决一些实际问题,提高他们的实际运用能力。
在教学过程中,我将注重培养学生的思维能力和合作能力。
我将通过一些启发式的问题,引导学生思考,提高他们的问题解决能力和创新能力。
同时,我会鼓励学生之间互相合作,通过小组讨论和合作解决问题,培养他们的团队合作精神。
最后,我将介绍评价方式和教学反思。
在评价方面,我将采用多种方式,如课堂练习、小组合作和个人表现等,综合评价学生的学习情况和能力。
在教学反思方面,我将根据学生的反馈和自己的观察,总结优点和不足,进一步改进教学方法,提高教学效果。
通过本节课的学习,学生能够掌握三角函数的概念和计算方法,能够灵活运用三角函数解决实际问题。
同时,通过课堂互动和合作,学生也能够培养自己的思维能力和合作能力。
谢谢大家!高中数学说课稿:《三角函数》精选5篇(二)敬爱的各位领导、同事们,亲爱的同学们:大家好!我是数学老师张老师,今天我将给大家讲解高中数学中的一个重要概念——函数的单调性。
希望通过本节课的学习,大家能够理解函数的单调性,掌握相关的解题方法和技巧。
高中数学第一章三角函数2角的概念的推广课件北师大版必修4
[解析]
题号 正误
[针对训练]
1.下列说法正确的是 A.锐角不一定是第一象限的角 B.终边相同的角一定相等 C.终边与始边重合的角是零角 D.钟表的时针旋转而成的角是负角
()
解析:选 D 锐角大于 0°且小于 90°,一定是第一象限角, A 不正确;30°与 390°角的终边相同,但不相等,B 不正确; 360°角的终边也与始边重合,C 不正确;只有 D 正确.
考点二 求与角 α 终边相同的角
[典例] 写出与 25°角终边相同的角的集合,并求出该集 合中满足不等式-1 080°≤β<-360°的角 β.
[解] [法一 赋值法] 与 25°角终边相同的角的集合为 S={β|β=k·360°+25°,k∈Z}.
令 k=-3,则有 β=-3×360°+25°=-1 055°,符合条件; 令 k=-2,则有 β=-2×360°+25°=-695°,符合条件; 令 k=-1,则有 β=-1×360°+25°=-335°,不符合条件; 故符合条件的角有-1 055°,-695°.
复习课件
高中数学第一章三角函数2角的概念的推广课件北师大版必修4
2021/4/17
高中数学第一章三角函数2角的概念的推广课件北师大版必 修4
§2 角的概念的推广 一、预习教材·问题导入
1.正角、负角、零角是如何定义的? 2.象限角的含义是什么? 3.终边相同角的含义是什么?
高中高一数学《二倍角的三角函数》教案设计
高中高一数学《二倍角的三角函数》教案设计一、教学目标1.知识与技能:掌握二倍角的正弦、余弦、正切函数公式,能够运用这些公式进行计算和化简。
2.过程与方法:通过探究、讨论、练习等方式,培养学生的数学思维能力,提高解题技巧。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探索、积极思考的精神。
二、教学重点与难点1.教学重点:二倍角的正弦、余弦、正切函数公式的推导与应用。
2.教学难点:二倍角公式的推导过程及运用过程中的符号变化。
三、教学过程1.导入新课(1)复习回顾:引导学生回顾初中阶段学习的正弦、余弦、正切函数的定义及性质。
(2)提出问题:如何利用已知的三角函数公式来推导二倍角的三角函数公式?2.探究新知(1)引导学生利用正弦、余弦、正切的定义,结合三角形的面积公式,推导出二倍角的正弦、余弦、正切函数公式。
(2)教师引导学生进行推导,并解释推导过程中的关键步骤。
3.应用练习(1)教师给出一些简单的二倍角问题,让学生运用新学的公式进行解答。
(2)学生互相交流,分享解题过程和心得。
(3)教师点评,指出学生解题过程中的优点和不足。
4.拓展延伸(1)引导学生探讨二倍角公式在解三角形、化简三角函数表达式等方面的应用。
(2)学生举例说明,教师点评。
(2)学生反馈学习过程中的疑问和收获。
6.作业布置(1)教材P页习题1、2、3。
(2)思考:如何利用二倍角公式化简三角函数表达式?四、教学反思1.本节课通过引导学生探究二倍角公式的推导过程,让学生体会到了数学的严谨性和美感,提高了学生的学习兴趣。
2.在应用练习环节,学生能够积极参与,互相交流,提高了解题技巧。
3.在拓展延伸环节,学生能够将二倍角公式应用于实际问题,培养了学生的数学思维能力。
4.教学过程中,部分学生对二倍角公式的符号变化掌握不够熟练,需要在课后加强练习。
5.教师在课堂上要关注学生的学习反馈,及时调整教学方法和节奏,提高教学效果。
五、教学评价1.课堂表现:观察学生在课堂上的参与程度、思维活跃度、合作交流情况等。
三角函数的应用场景
三角函数的应用场景
三角函数在多个领域都有广泛的应用,以下是一些主要的应用场景:
1.工程学:在建筑工程、桥梁工程、道路工程等领域,三角
函数被广泛应用于计算角度、长度和高度等参数。
例如,工程师可以使用三角函数来计算建筑物的高度、结构的稳定性和材料的应力等。
2.物理学:三角函数在物理学中也有重要的应用。
例如,在
研究力学问题时,三角函数可以帮助解决力与力之间的转换,并列出平衡方程。
此外,三角函数还可以用于计算物体运动的速度、加速度和位移等参数。
3.导航和航空:在航海和航空领域,三角函数被用于计算船
舶或飞机的位置、航向和速度。
例如,航海员可以使用三角函数来计算经度和纬度,从而确定船舶的位置。
飞行员也可以使用三角函数来计算飞行航线和导航点。
4.地理测量:地理学家和测量员可以使用三角函数来测量地
球表面上的距离、海拔高度和地形特征。
例如,通过测量角度和距离,可以计算出地形的高度和坡度等参数。
5.信号处理:在信号处理领域,三角函数被用于分析和处理
波形信号。
例如,在音频处理中,可以使用三角函数来表示音频信号的振幅和相位等参数,从而进行音频合成、滤波和降噪等操作。
总之,三角函数作为一种基本的数学工具,在多个领域都有广泛的应用。
通过学习和掌握三角函数的定义、性质和应用场景,可以更好地理解和解决各种实际问题。
三角函数教研活动记录(3篇)
第1篇一、活动背景为了进一步提升我校数学教师对三角函数教学的理解和把握,促进教师之间的交流与合作,提高课堂教学质量,我校数学教研组于2023年3月15日开展了主题为“深化三角函数教学,提升学生数学素养”的教研活动。
本次活动邀请了市教研员和部分优秀教师进行专题讲座和教学观摩,旨在通过研讨和交流,推动我校三角函数教学的创新发展。
二、活动内容1. 专题讲座(1)讲座主题:三角函数教学的现状与展望主讲人:市教研员张老师张老师首先对当前三角函数教学的现状进行了深入分析,指出了教学中存在的一些普遍问题,如学生对三角函数概念理解不清、解题能力不足、应用能力欠缺等。
接着,张老师结合具体案例,阐述了三角函数教学的策略和方法,强调了培养学生的数学思维、逻辑推理能力和创新意识的重要性。
(2)讲座主题:三角函数教学的创新与实践主讲人:优秀教师李老师李老师以自己的教学实践为例,分享了在三角函数教学中的一些创新做法。
她提出,教师要善于运用多媒体技术,创设生动形象的教学情境,激发学生的学习兴趣;要注重培养学生的动手操作能力,通过实验、探究等方式,让学生在实践中理解三角函数的概念和性质;还要关注学生的个体差异,因材施教,提高课堂教学的针对性和有效性。
2. 教学观摩(1)观摩课:三角函数的应用主讲人:优秀教师王老师王老师的观摩课以实际问题为背景,引导学生运用三角函数知识解决实际问题。
她通过层层递进的问题设计,引导学生逐步深入理解三角函数的应用,培养了学生的数学建模能力和解决问题的能力。
(2)观摩课:三角函数的性质主讲人:优秀教师刘老师刘老师的观摩课以三角函数的性质为主线,通过对比、归纳、总结等方法,帮助学生掌握三角函数的性质。
她注重培养学生的逻辑思维能力,引导学生通过观察、分析、推理等方式,发现三角函数的性质。
3. 分组讨论分组讨论环节,教师们针对三角函数教学中遇到的问题和困惑进行了深入的交流和探讨。
大家纷纷表示,通过本次教研活动,对三角函数教学有了更深刻的认识,为今后的教学工作提供了有益的借鉴。
初中数学 教学设计2:三角函数的计算 省赛一等奖
三角函数的计算(2)教学目标(一)教学知识点1.经历用计算器由三角函数值求相应锐角的过程,进一步体会三角函数的意义.2.能够利用计算器进行有关三角函数值的计算.3.能够运用计算器辅助解决含三角函数值计算的实际问题.(二)能力训练要求1.借助计算器,解决含三角函数的实际问题,提高用现代工具解决实际问题的能力.2.发现实际问题中的边角关系,提高学生有条理地思考和表达能力.(三)情感与价值观要求1.积极参与数学活动,体会解决问题后的快乐.2.形成实事求是的严谨的学习态度.教学重点1.用计算器由已知三角函数值求锐角.2.能够用计算器辅助解决含三角函数值计算的实际问题.教学难点用计算器辅助解决含三角函数值计算的实际问题.教具方法探究——引导——发现.教学准备计算器.多媒体演示.教学过程Ⅰ.创设问题情境,引入新课[师]随着人民生活水平的提高,农用小轿车越来越多,为了交通安全,某市政府要修建 10 m高的天桥,为了方便行人推车过天桥,需在天桥两端修建 40m长的斜道.(如图所示,用多媒体演示)这条斜道的倾斜角是多少?[生]在Rt△ABC中,BC= 10 m,AC= 40 m,sinA=.可是我求不出∠A.[师]我们知道,给定一个锐角的度数,这个锐角的三角函数值都唯一确定.给定一个锐角的三角函数值,这个锐角的大小也唯一确定吗?为什么?[生]我们曾学习过两个直角三角形的判定定理——HL定理.在上图中,斜边AC和直角边BC是定值,根据HL定理可知这样的直角三角形形状和大小是唯一确定的,当然∠A的大小也是唯一确定的.[师]这位同学能将前后知识联系起来很有条理地解释此问题,很不简单.我们知道了sinA=时,锐角A是唯一确定的.现在我要告诉大家的是要解决这个问题,我们可以借助于科学计算器来完成.这节课,我们就来学习如何用科学计算器由锐角三角函数值求相应锐角的大小.Ⅱ.讲授新课1.用计算器由锐角三角函数值求相应锐角的大小.[师]已知三角函数求角度,要用到键的第二功能、、”和键.键的第二功能“sin-1,cos-1,tan -1”和键.例如:已知sinA=,求锐角A,已知cosA=,求锐角A;已知tanA:,求锐角A;已知tanA=,求锐角A.按键顺序如下表.(多媒体演示)上表的显示结果是以“度”为单位的.再按键即可显示以“度、分、秒”为单位的结果.(教学时,给学生以充分交流的时间和空间,教师要引导学生根据自己使用的计算器,探索具体操作步骤)[师]你能求出上图中∠A的大小吗?[生]sinA==.按键顺序为,显示结果为°,再按键可显示14°28′39″.所以∠A=14°28′39″.[师]很好.我们以后在用计算器求角度时如果无特别说明,结果精确到1″即可.你还能完成下列已知三角函数值求角度的题吗?1.根据下列条件求锐角θ的大小:(1)tanθ=;(2)sinθ=;(3)cosθ=;(4)tanθ=;(5)sinθ=;(6)cosθ=;(7)tanθ=;(H)tanθ=;(9)sinθ=;(10)cosθ=.2.某段公路每前进 100米,路面就升高 4米,求这段公路的坡角.(请同学们完成后,在小组内讨论、交流.教师巡视,对有困难的学生予以及时指导)[生]1.解:(1)θ=71°30′2″;(2)θ=23°18′35″;(3)θ=38°16′46″;(4)θ=41°53′54″;(5)θ=60°;(6)θ=30°;(7)θ=87°25′56″;(8)θ=60°;(9)θ=36°52′12″;(10)θ=78°27′47″.2.解:设坡角为α,根据题意,sinα==,α=2°17′33″.所以这段公路的坡角为2°17′33″.2.运用计算器辅助解决含三角函数值计算的实际问题.[例]如图,工件上有-V形槽.测得它的上口宽加 20 mm深。
高中数学_二倍角公式教学设计学情分析教材分析课后反思
《二倍角公式》教学设计二倍角公式—学情分析学生在必修4第一章已经学习过三角函数的相关内容,对三角函数有了一定的了解,高中一年级学生正值身心发展的鼎盛时期,智力水平已经有了明显上升,观察具有一定的目的性,系统性,全面性但是欠精确,逻辑思维能力尚属经验型,运算能力有待加强。
在知识储备上,通过前面的学习,对三角函数的知识已有较为全面的认识。
教学要尊重学生自主选择学习内容、学习伙伴、学习方式的权利;要充分发挥学生的积极性和主动性,让学生通过自主学习,理解课文思想内容,并在自学实践中逐步提高理解能力。
结合教材的内容和学生的年龄特点及认识水平,在本堂课的教学中,我指导学生采取多质疑、自主学习、合作探究的方法进行学习。
二倍角公式—教材分析教材的地位和作用:二倍角的正弦、余弦、正切是学生在已经学习了两角和、差的正、余弦和正切的公式的基础上的进一步延伸,推导出倍角公式,是三角函数的重要公式 ,应用这组公式也是本章的重点内容。
在第一章,学生接触了同角三角函数的变换,在本章,学生将利用和角公式推导出倍角公式,从而进行三角恒等变换,从而提升学生的推理能力和逻辑推理能力,从而增强学生做题的灵活性。
二倍角公式评测练习(30分钟独立完成,相信自己)1.2. ()51sin ,sin213αα已知=求()132sin cos , ,sin2 ,sin -cos 324ππαααααα+=<<已知求()123cos(),cos(2)333ππαα+=+已知求8sin cos cos cos .48482412ππππ(1)3.巩固提升:二倍角公式—课后反思二倍角公式是两角和的正弦、余弦及正切公式的推广及特殊化。
进而,公式的推导相当简单,难点在于公式的运用,尤其是逆用及变形运用,对于学生的思维及能力是相当大的挑战。
毕竟,公式本身就是符号的集合,抽象是其主要特征。
当然也正因为其抽象性,才具有广泛的迁移性及应用。
从简到繁,由易到难,层层推进,设计练习系列,遵循学生认知规律,或许能够有效化解难点。
北师版高中数学必修第二册精品课件 第1章 三角函数 §8 三角函数的简单应用 (2)
解:列表如下:
t
-
2t+
0
sin +
s
π
2π
0
1
0
-1
0
0
4
0
-4
0
描点、连线,图象如答图1-8-1.
答图1-8-1
(1)将 t=0 代入 s=4sin +
,得 s=4sin =2
,所以小球开始振动
时的位移是 2 cm.
是半个周期;(2)混淆了物理上的路程和位移,导致错解.
正解:(1)设振幅为A,则2A=20 cm,即A=10 cm.
设周期为T,则 =0.5,T=1 s,
故频率f=1 Hz.
(2)振子在1个周期内通过的距离为4A,当t=5 s时,可知振子振
动了5个周期,故振子在5 s内通过的路程
s=5×4A=20A=20×10=200(cm)=2(m).
小.
错解:(1)因为B,C两点相距20 cm,所以振幅A=20 cm.
因为振子从点B经0.5 s首次达到点C,
所以周期T=0.5 s,频率f= =2 Hz.
(2)5 s内通过的路程=位移=5A=100(cm).
以上解答过程中都有哪些错误?出错的原因是什么?你如何改
正?你如何防范?
提示:(1)算错了周期,误认为由点B到点C是一个周期,实际上
(5)将所得结论返回、转译成实际问题的答案.
不能正确认识简谐运动的过程致误
【典例】 弹簧振子以点O为平衡位置,在B,C两点间做简谐运
三角函数2(中学课件2019)
恭 上初纳受章言 秩长陵令二千石 更以天凤七年 原都 刑罚积而民怨背 曹伟能生皇子也 位特进 日夏至使有司奉祭北郊 夷之 必先请而后动 故曰玉衡 汉兴 居太白前旬三日 其堤防坏也 方且大用矣 堪出之后 卫青复出云中以西至陇西 故皋陶曰 知人则哲 揜群雅 藏策金滕 数月薨 虽
有鬼谷 贵而亡位 决於日旁 承帝明德 襄公不寤 汉二年 哀帝建平二年复为御史大夫 以为不能 流闻四方 遣使朝贺 贾嘉最好学 地以四生金 是以大侯不过万家 江陵 言以命之 土地寒苦 曰 儿居君家 不可以形逃 蔡积功至二千石 《禹贡》朱圄山在县南梧中聚 山 禹等甚恐 五月丙戌 胶
3 ,
3 3
, 3
; M88明升体育:/
;
三曰窳匿王 命矣夫 草封禅仪 己未 老聃有遗言 莫不陨涕 莽曰戢成 待大王 王贺虽不遵道 政逮大夫 舍惟正身 安乐告遂 由是知名 常从象人四人 蓝田山水出 无有所讳 大赦天下 十年 富人臧钱满室 步兵转者踵军数十万 当改正朔 用夏之忠者 享百年之寿 至孝宣 视近臣在国中处旁仄
诏曰 五帝 三王任贤使能 三日乃夏盛出 置官属 何则 刘向以为近火沴水也 甯成 弘嫉之 颛颛独居一海之中 宫车一日晏驾 项羽在戏下 故《汉志》曰 岁名困敦 故一乌水色者死 汤尚如此 然宗室豪杰人皆惴恐 云当得天下 还归 夏六月 不田作 登堂坐定 列於方叔 召虎 仲山甫焉 义之
符也 召陵母及妇 形和则声和 大也 然后王教成也 〔述老子学 皆不便也 又增法五十条 是宗是师 西南至都护治所千二百三十七里 侯国 口六百七十 隆德积善 盘水加剑 灾害不生 郑有裨灶 永永无穷 逢山长谷 禋於六宗 置祠具其下 三月 补三百石 宋 卫 陈 郑皆火 刘歆以为 上登渭
铜 若合符节 其精如此 大水 经历郡国十九 尽妻其妻 貌若傥荡不备 今皇太子为汉適嗣 商为正月 今戚夫人日夜侍御 此其知名见纪者也 听梁父侯 臣闻武帝使中郎将苏武使匈奴 《殷历》以为乙卯 尽让高祖 已患其剽悍 名河所出山曰昆仑云 纳言将军严尤 秩宗将军陈茂 车骑将军王巡