(完整word版)八年级数学上册轴对称知识点总结(好)
初二数学上册:轴对称知识框架+考点笔记整理
初二数学上册:轴对称知识框架+考点笔记整理一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点关于轴对称的点的坐标为.②点关于轴对称的点的坐标为.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。
八年级上册数学轴对称知识点总结
八年级上册数学轴对称知识点总结篇1:八年级上册数学轴对称知识点总结八年级上册数学轴对称知识点总结1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的.等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2养成良好的解题习惯要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
八年级轴对称知识点总结
八年级轴对称知识点总结在初中数学中,轴对称是一个十分重要的知识点,它不仅在数学中有很重要的应用,也在其他学科中有着广泛的应用。
在八年级阶段,轴对称的学习已经比较深入了,下面我们来总结一下八年级轴对称的知识点。
一、轴对称的定义轴对称是指图形中存在一条直线,使得图形关于这条直线对称。
我们把这条直线称为轴对称线。
轴对称图形可以分为两类:对称中心在轴对称线上的固定图形和对称中心不在轴对称线上的任意图形。
二、轴对称的性质轴对称有一些很特殊的性质:1.轴对称图形中,对于任意一点P,它的对称点P'在轴对称线上。
2.轴对称图形中,对于任意两点P、Q,它们的中点M在轴对称线上。
3.轴对称图形中,对于任意两线段AB、A'B',它们的交点M 在轴对称线上。
三、构造轴对称图形构造轴对称图形有以下几种方法:1.已知轴对称线和对称中心,先作出对称中心到轴对称线的垂线,然后将这条垂线翻折到轴对称线下方,就得到了对称图形。
2.已知轴对称线和对称中心,可以通过将每个点关于对称中心旋转180°后,再平移一定距离得到对称图形。
3.对于规则图形如正方形、正三角形等,可以通过旋转、平移等方式得到轴对称图形。
四、轴对称图形的性质应用轴对称图形的性质可以应用到很多场景中:1.在制作对称的艺术品、标志等方面,轴对称是常用的设计方法。
2.在建筑、船舶、汽车等领域,轴对称可以帮助工程师设计更加稳定、均衡的结构。
3.在生物学中,我们也可以看到很多轴对称的生物,例如海星、蟹、蝎子等。
以上就是八年级轴对称知识点的总结了。
但是轴对称的应用远不止于此,我们需要在实践中不断探索和应用它。
(完整版)八年级上十二章轴对称知识点总结(最全最新)
(完整版)⼋年级上⼗⼆章轴对称知识点总结(最全最新)轴对称知识点(⼀)轴对称和轴对称图形1、有⼀个图形沿着某⼀条直线折叠,如果它能够与另⼀个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何⼀对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何⼀对对应点所连线段的垂直平分线。
连接任意⼀对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应⾓相等。
5.画⼀图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(⼆)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形是⼀个具有特殊形状的图形,把⼀个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成⼀个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,?叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,?与⼀条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)⽤坐标表⽰轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);3、点(x,y)关于原点对称的点的坐标为(-x,-y)。
【八上数学】《轴对称》最全知识点汇总
5、垂直平分线(中垂线)定义垂直并且平分⼀条线段的直线,叫做这条线段的垂直平分线.书写格式:判定:∵AO=A′O,∠1=90°,∴l 是AA′的垂直平分线.性质:∵l是AA′的垂直平分线,∴AO=A′O,∠1=∠2=90° .6、轴对称性质成轴对称的两个图形全等,且(1)对应点的连线被对称轴垂直平分.(2)对应点的连线互相平⾏(或在同⼀条直线上).(3)对应线段相等,对应⾓相等.(4)对应线段所在直线的交点在对称轴上(或对应线段所在直线互相平⾏).如图:(1)AA′,BB′,CC′,DD′,被l垂直平分.(2)AA′∥BB′∥CC′,CC′、DD′在同⼀直线上.(3)AB=A′B′,BC=B′C′,CD=C′D′,AD=A′D′,∠BAD=∠B′A′D′,∠ABC=∠A′B′C′,∠BCD=∠B′C′D′,∠CDA=∠C′D′A′.(4)BA、B′A′,BC、B′C′,CD、C′D′的延长线交点在l上.DA、D′A′的延长线平⾏.7、对称轴的作法法1:作⼀条对应点的连线,并作其中垂线.法2:作两条对应点的连线,并分别作其中点,两点确定⼀条直线.法3:分别延长两对对应线段,确定两个交点,两点确定⼀条直线.8、给出⼀个图形及对称轴,作其对称图形的作法过原图形各点画对称轴的垂线,以各点到垂⾜的距离为半径,截取相等,将所作对应点分别相连.⼆、实战演练例1:请在下列三个2×2的⽅格中,各画出⼀个三⾓形,要求所画三⾓形与图中三⾓形成轴对称,且所画的三⾓形顶点与⽅格中的⼩正⽅形顶点重合,并将所画三⾓形涂上阴影.分析:我们应该利⽤轴对称图形的性质,先选择不同的直线当对称轴,再作对称图形.显然⼤⽅格作为正⽅形,有4条对称轴,⽽还有⼀条⽐较难想,对称轴可以经过斜边和直⾓边的中点.解答:例2:如图,桌⾯上有A、B两球,若要将B球射向桌⾯任意⼀边,使⼀次反弹后击中A球,则可以瞄准的点有哪些?分析:本题中,对于桌⾯反弹的问题,其实属于物理中的光路问题,⼊射⾓等于反射⾓,⽽将⼊射⾓作对称后,恰好与反射⾓是对顶⾓,光线在同⼀直线上,因此我们考虑作对称.解答:变式:如图是⼀个台球桌⾯的⽰意图,图中四个⾓上的阴影部分分别表⽰四个⼊球孔.若⼀个球按图中所⽰的⽅向被击出(球可以经过多次反弹),则该球最后落⼊的球袋是______袋.分析:本题与例2类似,但如果每次都作对称,未免太过⿇烦,我们不难发现⼊射线与桌边的夹⾓为45°,则反射后的夹⾓也为45°,问题得解.解答:例3:如图,已知∠AOB=60°,点P为∠AOB内⼀点,分别作点P关于OA,OB的对称点P1,P2,连接P1P2,交OA于点M,交OB于点M.(1)连接OP1,OP2,求∠P1OP2的度数.(2)若P1P2=8,求△PMN周长.分析:(1)要求∠P1OP2的度数,直接求显然很困难,我们不妨从对应线段考虑,则想到连接OP.(2)同样的,将组成三⾓形的三条线段中,能找到对应相等的线段找出,进⾏转化.解答:变式:如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A′′B′′C′′关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB′′与直线MN、EF所夹锐⾓α的数量关系.分析:(1)问不难,只需⽤3种⽅法中的任意⼀种即可.(2)问与例3类似,准确依据题意,画出图形后,根据对称性,连接对应线段就能有所突破.解答:(1)如图,连接B′B′′,C′C′′,各取中点,连接后,直线EF即为所求.(2)连接OB′,∵△ABC和△A′B′C′关于直线MN对称,∴∠BOM=∠B′OM,同理可得∠B′OE=∠B′′OE,∴∠BOB′′=∠BOB′+∠B′OB′′=2∠B′OM+2∠B′OE=2∠MOE=2α.。
八年级上册数学轴对称知识点总结
八年级上册数学轴对称知识点总结一、引言数学作为一门基础学科,其所包含的内容广泛而深刻。
在八年级上册中,轴对称作为其中的一个重要知识点,对学生来说具有一定的挑战性。
在本文中,我们将以八年级上册数学轴对称知识点为主题,进行全面的评估和总结,帮助学生更好地理解和掌握这一知识点。
二、基本概念1. 关于轴对称轴对称是指平面上存在一条直线,使得图形关于这条直线对称。
一个图形如果可以分成两部分,且其中一部分经过旋转、翻转或平移后可以和另一部分完全重合,那么这个图形就是关于这条直线对称的。
2. 轴对称的性质- 轴对称的图形关于对称轴是对称的。
- 轴对称的图形的对称中心在对称轴上。
- 轴对称的图形的每一点经过对称轴的对称变换后都能恰好在图形上。
三、基本题型在八年级上册数学中,关于轴对称的题型主要包括:1. 判断图形是否轴对称2. 找出图形的对称中心和对称轴3. 根据轴对称的性质,解决相关的计算题目四、实例分析以具体的实例来分析轴对称的知识点:题目:如图,判断图形是否关于虚线对称。
[图片]解析:根据图形可以看出,通过对折可以发现,图形A和图形B可以重合,因此该图形是关于虚线对称的。
又如,若已知一个三角形的对称轴为边AC,对称中心为边BC的中点O,求证△ABC是个等腰三角形。
解析:根据轴对称的性质,可以证明线段BO和OA相等,从而得到△ABC为等腰三角形。
五、拓展应用除了基本的题型和实例分析,八年级上册数学中的轴对称知识点还涉及到一些拓展应用,在真实生活中也是有一定的应用场景的。
在建筑设计中,轴对称的思想可以帮助设计师更好地进行建筑设计和规划,保证建筑物的整体美观和稳定性。
在工程制图和艺术设计中,轴对称也扮演着重要的角色。
六、总结与展望通过对八年级上册数学轴对称知识点的全面评估和总结,我们更深入地理解了轴对称的基本概念、基本题型和实例分析,以及在拓展应用中的意义。
在今后的学习中,我们应该更加注重轴对称知识点的理解和应用,结合实际情况进行综合训练,提高解决问题的能力和思维方式,为未来的学习和生活打下坚实的基础。
轴对称辅导讲义(Word完整版)
轴对称【知识框架】【知识点&例题】知识点一:线段垂直平分线线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. 如图,直线l经过线段AB的中点O,并且垂直于线段AB,则直线l就是线段AB的垂直平分线.性质:线段垂直平分线上的点与这条线段两个端点的距离相等. 如图,点P 是线段AB 垂直平分线上的点,则PA PB =.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.知识点二:坐标变换图形的平移(纵坐标“上加下减”;横坐标“左加右减”)(1)当图形上各点的横坐标不变,纵坐标加上|m|,图形将纵向平移m 个单位。
若m>0, 则向上平移,若m<0,则向下平移。
当图形上各点的纵坐标不变,横坐标加上m,图形将横向平移|m|个单位。
若m>0,则向左平移,若m<0, 则向右平移。
例1:A (-3,2)关于原点的对称点是B ,B 关于x 轴的对称点是C ,则点C 的坐标是( ).A .(3,2)B .(-3,2)C .(3,-2)D .(-2,3)【变式一】已知点M (2a-b,5+a),N(2b-1,-a+b). (1)若M 、N 关于x 轴对称,试求a 、b 的值 (2)若M 、N 关于y 轴对称,试求(b+2a)2015的值例2:如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线.实验与探究:①由图观察易知A ()2,0关于直线l 的对称点'A 的坐标为()0,2,请在图中分别标明()5,3B ,()2,5C -关于直线l 的对称点'B 、'C 的位置,并写出他们的坐标: 'B ,'C ;归纳与发现:②结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点(),P a b 关于第一、三象限的角平分线l 的对称点'P 的坐标为 (不必证明);③点(),A a b 在直线l 的下方,则a ,b 的大小关系为 ;若在直线l 的上方,则 .古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦.有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图,将军从A 出发到河边饮马,然后再到B 地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马”问题.下面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题.根据公理:连接两点的所有线中,线段最短.若A B 、在河流的异侧,直接连接AB ,AB 与l 的交点即为所求. 若A B 、在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解.海伦解决本问题时,是利用作对称点把折线问题转化成直线现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想构建“对称模型”实现转化PA PB BC +…常见模型:(1)PA PB +最小(2)①PA PB -最小②PA PB -最大CBBA同侧图1A'BlAB图2异侧图4同侧异侧图5AA图6异侧【变形】异侧时,也可以问:在直线l 上是否存在一点P 使的直线l 为APB 的角平分线(3)周长最短类型一 类型二 类型三(4)“过河”最短距离类型一 类型二(5)线段和最小(6)在直角坐标系里的运用Al同侧异侧lBA'A'lNMl 2l 2例3:如图,在公路a 的同旁有两个仓库A 、B ,现需要建一货物中转站,要求到A 、B 两仓库的距离和最短,这个中转站M 应建在公路旁的哪个位置比较合理?【变式一】如图,在等腰Rt ABC ∆中,3CA CB ==,E 的BC 上一点,满足2BE =,在斜边AB 上求作一点P 使得PC PE +长度之和最小。
轴对称知识点总结
轴对称知识点总结轴对称是初中数学中的重要概念,在几何图形的研究和实际生活中都有广泛的应用。
下面我们来详细总结一下轴对称的相关知识点。
一、轴对称的定义如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
例如,等腰三角形是轴对称图形,底边的高所在的直线就是它的对称轴;矩形是轴对称图形,对边中点的连线所在的直线是它的对称轴。
二、轴对称图形的性质1、对称轴是任何一对对应点所连线段的垂直平分线。
2、对应线段相等,对应角相等。
3、成轴对称的两个图形全等。
三、轴对称与轴对称图形的区别与联系1、区别轴对称是指两个图形沿着某条直线对折后能够完全重合,是两个图形的位置关系。
轴对称图形是指一个图形沿着某条直线对折后直线两旁的部分能够完全重合,是一个图形自身的特性。
2、联系都有对称轴。
如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;如果把轴对称图形沿对称轴分成两部分,那么这两部分关于这条对称轴成轴对称。
四、作轴对称图形1、作轴对称图形的对称轴如果一个图形是轴对称图形,那么连接一对对应点的线段的垂直平分线就是该图形的对称轴。
对于两个成轴对称的图形,对称轴是连接对称点的线段的垂直平分线。
2、作轴对称图形几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形。
五、用坐标表示轴对称1、点(x,y)关于 x 轴对称的点的坐标为(x,y)。
2、点(x,y)关于 y 轴对称的点的坐标为(x,y)。
例如,点(2,3)关于 x 轴对称的点的坐标为(2,-3);点(-1,4)关于 y 轴对称的点的坐标为(1,4)。
六、轴对称的实际应用轴对称在实际生活中有很多应用,比如:1、建筑设计中,许多建筑都采用了轴对称的设计,使得建筑更加美观、稳定。
2、飞机、汽车等交通工具的外形设计也常常运用轴对称,以减少空气阻力,提高性能。
八年级上轴对称知识点总结
八年级上轴对称知识点总结轴对称是初中数学中非常重要的一个概念,它不仅是基础知识,还是学好高中数学的必备逻辑推理方法。
在八年级上学期,轴对称这一概念得到了进一步的发展和应用。
本篇文章将对八年级上轴对称知识点进行一一总结。
一、轴对称的基本概念轴对称是平面中的一种特殊变换,通过将图形绕轴旋转180°,得到的图形称为轴对称图形。
在轴对称中,轴是图形的中心对称线,轴对称图形左右对称。
二、轴对称图形的特征1. 轴对称图形内部不受影响,仍旧相同。
2. 轴对称图形的任何两点关于轴对称图形中心对称。
3. 轴对称图形的任何一个点到轴线的距离与它的对称点到轴线的距离相等。
三、确定轴对称图形的轴1. 图形本身具有轴对称性,轴对称中心就是图形的中心。
2. 图形的边界线或部分边界线是轴对称的,则轴对称中心在轴线上。
四、在轴对称中绘制图形在轴对称中,我们不仅可以根据轴对称中心绘制图形,还可以通过一些图形构建方法绘制出轴对称图形。
例如,我们可以将图形分成左右两个部分,然后将左半部分绕中心点旋转180度,得到一个完整的轴对称图形。
五、判断轴对称图形的对称特征判断轴对称图形的对称特征,可以用以下方法:1. 判断图形中是否存在轴对称中心。
2. 将两个同名点之间的距离与轴的距离进行比较,判断其是否相等。
六、轴对称图形的性质1. 轴对称图形中,任何两个对称点的坐标相同。
2. 轴对称图形中,通过轴对称中心的直线被轴分成两段,且两段的长度相等。
3. 轴对称图形中,若点P关于直线L对称的对称点为P',则L 为点P与点P'中点的轴对称中心。
七、轴对称与坐标系我们可以将轴对称与坐标系结合起来,使用坐标系的有关知识推导出轴对称图形的方程和性质。
例如,我们可以通过坐标系求出一个平面图形的中心点,进而找到其轴对称中心。
我们还可以利用坐标系求出两个轴对称图形的交点和角度。
八、轴对称的应用轴对称不仅是数学理论中的一个基础概念,也是一种实用的工具。
八年级数学上册轴对称知识点总结
轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2,∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,∵CA=CB ,直线m ⊥AB 于C , 点P 是直线m 上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB ,直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。
6、等腰三角形:(1)定义。
有两条边相等的三角形,叫做等腰三角形。
相等的两条边叫做腰。
第三条边叫做底。
两腰的夹角叫做顶角。
腰与底的夹角叫做底角。
说明:顶角=180°- 2底角底角=顶角顶角21-902180︒=-︒ 可见,底角只能是锐角。
(2)性质。
等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。
等边对等角。
如图5,在△ABC 中 ∵AB=AC∴∠B=∠C 。
三线合一。
(3)判定。
有两条边相等的三角形是等腰三角形。
如图5,在△ABC 中, ∵AB=AC∴△ABC 是等腰三角形 。
八年级数学上册轴对称知识点总结
轴对称知识点总结(zǒngjié)1、轴对称图形(túxíng):一个图形沿一条直线对折,直线两旁(liǎngpáng)的部分能够完全重合。
这条直线(zhíxiàn)叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个(liǎnɡɡè)图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2,∵CA=CB,直线m⊥AB于C,∴直线m是线段AB的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,∵CA=CB,直线m⊥AB于C,点P是直线m上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB,直线m是线段AB的垂直平分线,∴点P在直线m上。
6、等腰三角形:图1 图2 图3(1)定义。
有两条边相等的三角形,叫做等腰三角形。
①相等的两条边叫做腰。
第三条边叫做底。
②两腰的夹角叫做顶角。
③腰与底的夹角叫做底角。
说明:顶角=180°- 2底角底角=可见,底角只能是锐角。
(2)性质。
①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。
②等边对等角。
如图5,在△ABC中∵AB=AC∴∠B=∠C 。
八年级数学上册轴对称知识点总结(好)
轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2,∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,∵CA=CB ,直线m ⊥AB 于C , 点P 是直线m 上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB ,直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。
6、等腰三角形:(1)定义。
有两条边相等的三角形,叫做等腰三角形。
①相等的两条边叫做腰。
第三条边叫做底。
②两腰的夹角叫做顶角。
③腰与底的夹角叫做底角。
说明:顶角=180°- 2底角底角=顶角顶角21-902180︒=-︒ 可见,底角只能是锐角。
(2)性质。
①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。
②等边对等角。
如图5,在△ABC 中 ∵AB=AC∴∠B=∠C 。
③三线合一。
(3)判定。
①有两条边相等的三角形是等腰三角形。
如图5,在△ABC 中, ∵AB=AC∴△ABC 是等腰三角形 。
初二数学上册第二章轴对称知识总结-初二数学上册轴对称
初二数学上册第二章轴对称知识总结|初二数学上册轴对称一、定义1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
我们也说这个图形关于这条直线[成轴]对称。
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。
这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。
3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
4、有两边相等的三角形叫做等腰三角形。
5、三条边都相等的三角形叫做等边三角形。
二、重点1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
3、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
4、垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5、做对称轴:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。
因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴。
同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴。
6、轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。
由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状,大小完全相等。
新图形上的每一点,都是原图形上的某一点关于直线的对称点。
连接任意一对对应点的线段被对称轴垂直平分。
7、等腰三角形的性质:等腰三角形的两个底角相等[等边对等角]等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合[三线合一][等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴。
(word版)八年级数学上册轴对称知识点总结(好),文档
轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的局部能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:1〕区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系〞;轴对称讨论的是“两个图形与一条直线的对称关系〞。
2〕联系。
把轴对称图形中“对称轴两旁的局部看作两个图形〞便是轴对称;把轴对称的“两A'HID D'J B 'K C'个图形看作一个整体〞便是轴对称图形。
4、轴对称的性质:1〕成轴对称的两个图形全等。
2〕对称轴与连结“对应点的线段〞垂直。
3〕对应点到对称轴的距离相等。
4〕对应点的连线互相平行。
5、线段的垂直平分线:〔1〕定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
m如图2,图1∵CA=CB,直线m⊥AB于C,∴直线m是线段AB的垂直平分线。
A B C图〔2〕性质。
线段垂直平分线上的点与线段两端点的距离相等。
m图3如图3,P A BCCA=CB,直线m⊥AB于C,点P是直线m上的点。
∴PA=PB。
〔3〕判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB,直线m是线段AB的垂直平分线,∴点P在直线m上。
6、等腰三角形:1〕定义。
有两条边相等的三角形,叫做等腰三角形。
相等的两条边叫做腰。
第三条边叫做底。
顶两腰的夹角叫做顶角。
腰角腰腰与底的夹角叫做底角。
说明:顶角=180°-2底角底角底角底角=180顶角1顶角底边90-图422可见,底角只能是锐角。
〔2〕性质。
等腰三角形是轴对称图形,其对称轴A是“底边的垂直平分线〞,只有一条。
等边对等角。
如图5,在△ABC中∵AB=AC∴∠B=∠C。
B C 三线合一。
D〔3〕判定。
图5有两条边相等的三角形是等腰三角形。
八年级数学上册轴对称知识点总结(好)
轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系: (1)~(2)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。
(3)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、~6、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2, ∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,—∵CA=CB ,直线m ⊥AB 于C ,点P 是直线m 上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB , ;直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。
6、等腰三角形:(1)定义。
有两条边相等的三角形,叫做等腰三角形。
相等的两条边叫做腰。
第三条边叫做底。
两腰的夹角叫做顶角。
腰与底的夹角叫做底角。
~说明:顶角=180°- 2底角底角=顶角顶角21-902180︒=-︒ 可见,底角只能是锐角。
(2)性质。
等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。
等边对等角。
^如图5,在△ABC 中 ∵AB=AC∴∠B=∠C 。
三线合一。
(3)判定。
有两条边相等的三角形是等腰三角形。
(完整word版)八年级数学轴对称知识点总结,推荐文档
【知识脉络】轴对称图形邮称轴对称•轴対称的性质 垂盲平分曜「作一个圉形美于某聚割的詰吋称畦质'关予铀对称 雋坐标表示轴时称关于.紬对称[关于原点对称库义等腫三甬盼性庚I 和定辱义等迪三角开麥性质利定【基础知识】I. 轴对称(1) 轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴 •轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线(2) 轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴 •成轴对称的两个图形的性质:① 关于某条直线对称的两个图形形状相同,大小相等,是全等形;② 如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③ 两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴 上.(3) 轴对称图形与轴对称的区别和联系 区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的 .轴对称作铀対称圄形联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等. 反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.n .作轴对称图形1. 作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2. 用坐标表示轴对称点(x,y )关于x轴对称的点的坐标为(x, —y);点(x,y )关于y轴对称的点的坐标为(一x,y ); 点(x,y )关于原点对称的点的坐标为(-x, -y).川.等腰三角形1. 等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一” ).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2. 等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60° .(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3. 直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. IV .最短路径。
八年级数学上册轴对称知识点总结
--轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2,∵CA=C B,直线m ⊥AB 于C,∴直线m 是线段AB 的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,∵C A=CB,直线m ⊥AB 于C , 点P 是直线m 上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA =P B,直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。
6、等腰三角形:(1)定义。
有两条边相等的三角形,叫做等腰三角形。
①相等的两条边叫做腰。
第三条边叫做底。
②两腰的夹角叫做顶角。
③腰与底的夹角叫做底角。
说明:顶角=180°- 2底角底角=顶角顶角21-902180︒=-︒ 可见,底角只能是锐角。
(2)性质。
①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。
②等边对等角。
如图5,在△ABC 中 ∵AB=AC∴∠B=∠C 。
③三线合一。
(3)判定。
①有两条边相等的三角形是等腰三角形。
初二上册数学轴对称知识点汇总
初二上册数学轴对称知识点汇总
1、轴对称图形:
一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:
两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:
(1)区别。
轴对称图形讨论的是一个图形与一条直线的对称关系 ;轴对称讨论的是两个图形与一条直线的对称关系。
(2)联系。
把轴对称图形中对称轴两旁的部分看作两个图形便是轴对称;把轴对称的两个图形看作一个整体便是轴对称图形。
由精品小编整理的初二上册数学轴对称知识点汇总就到这里了,希望同学们喜欢!。
初二数学上册第二章知识总结:轴对称
初二数学上册第二章知识总结:轴对称初二数学上册第二章知识总结:轴对称学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。
因此,精品编辑老师为大家整理了初二数学上册第二章知识总结,供大家参考。
一、定义1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
我们也说这个图形关于这条直线[成轴]对称。
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。
这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。
3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
4、有两边相等的三角形叫做等腰三角形。
5、三条边都相等的三角形叫做等边三角形。
二、重点1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
等腰三角形两底角平分线相等。
等腰三角形底边上高的点到两腰的距离之和等于底角到一腰的距离。
等腰三角形顶角平分线,底边上的高,底边上的中线到两腰的距离相等。
]8、等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等[等角对等边]。
[如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
]9、等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60。
10、等边三角形的判定:等边三角形的三个内角都相等,并且每一个角都等于60。
三个角都相等的三角形是等边三角形。
有一个角是60的等腰三角形是等边三角形。
11、直角三角形的性质之一:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。
12、在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
轴对称知识点总结
1、轴对称图形:
一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:
两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:
(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两
个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:
(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:
(1)定义。
经过线段的中点且与线段垂直的直
线,叫做线段的垂直平分线。
如图2,
∵CA=CB ,
直线m ⊥AB 于C ,
∴直线m 是线段AB 的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端
点的距离相等。
如图3,
∵CA=CB ,
直线m ⊥AB 于C , 点P 是直线m 上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB ,
直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。
6、等腰三角形:
(1)定义。
有两条边相等的三角形,叫做等腰三角形。
①相等的两条边叫做腰。
第三条边叫做底。
②两腰的夹角叫做顶角。
③腰与底的夹角叫做底角。
说明:顶角=180°- 2底角
底角=顶角顶角21
-902180︒=-︒ 可见,底角只能是锐角。
(2)性质。
①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。
②等边对等角。
如图5,在△ABC 中 ∵AB=AC
∴∠B=∠C 。
③三线合一。
(3)判定。
①有两条边相等的三角形是等腰三角形。
如图5,在△ABC 中, ∵AB=AC
∴△ABC 是等腰三角形 。
②有两个角相等的三角形是等腰三角形。
如图5,在△ABC 中 ∵∠B=∠C
∴△ABC 是等腰三角形 。
7、等边三角形:
(1)定义。
三条边都相等的三角形,叫做等边三角形。
说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。
(2)性质。
①等边三角形是轴对称图形,其对称轴是“三边的垂直平分线” ,有三条。
②三条边上的中线、高线及三个内角平分线都相交于一点。
m C A B
D'
D C'
B'
A'
K J I H 图1
图2 m C
A B
P 图3 底边
底角底角顶
角腰
腰D
C B A 图5 图4
2
③等边三角形的三个内角都等于60°。
如图6,在△ABC 中 ∵AB=AC=BC
∴∠A=∠B=∠C=60°。
(3)判定。
①三条边都相等的三角形是等边三角形。
如图6,在△ABC 中 ∵AB=AC=BC
∴△ABC 是等边三角形 。
②三个内角都相等的三角形是等边三角形。
如图6,在△ABC 中 ∵∠A=∠B=∠C
∴△ABC 是等边三角形 。
③有一个内角是60°的等腰三角形是等边三角形。
如图6,在△ABC 中
∵AB=AC (或AB=BC,AC=BC )
∠A=60°(∠B=60°,∠C=60°) ∴△ABC 是等边三角形 。
(4)重要结论。
在Rt △中,30°角所对直角边等于斜边的一半。
如图7,
∵在Rt △ABC 中, ∠C=90°,∠A=30°
∴BC=2
1
AB
或AB=2BC
8、平面直角坐标系中的轴对称: (1)),()
,(b a x b a -横不变,纵反向轴对称
关于
(2)),()
,(b a y b a -横反向,纵不变
轴对称
关于
说明:要作出一个图形关于坐标轴(或直线)成轴对称的图形,只需根据作出各顶点的对称点,再顺次连结各对称点。
对称点的作法见11(1)。
9、对称轴的画法:
在一个轴对称图形或成轴对称的两个图形中,连结其中一对对应点并作出所得线段的垂直平分线。
注意:①有的轴对称图形只有一条对称轴,有的不止一条,要画出所有的对称轴。
②成轴对称的两个图形只有一条对称轴。
10、常见的轴对称图形: (1)英文字母。
A B D E H I K M O T U V W X Y
(2)中文。
日,目,木,土,十,士,中,一,二,三,六,米,山,甲,由,田,天,又,只,支,圭,凹,凸,出,兰,合,全,仝,人,关,甘,等等。
(3)数字。
0 3 8 (4)图形。
说明:①圆有无数条对称轴。
②正n 边形有n 条对称轴。
11、掌握几个作图:
(1)作出点A 关于直线m 对称的点A / 。
作法:如图
①以点A 为圆心,适当的长为半径画圆弧。
使圆弧与直线MN 交于两点C 、D 。
②分别以点C,D 为圆心,大于CD 2
1
的长为半径画圆弧,设两条圆弧交于点E 。
③作射线AE ,设交直线mn 于点F 。
○
4在射线AE 上截取FA /=FA ,点A /即为所求。
(2)课本34页例题。
(3)课本37页9、10题。
(4)课本42页12.2-8 图2
图7 图
6 A B C。