选修2-1_椭圆、双曲线测试题

合集下载

(易错题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(含答案解析)(4)

(易错题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(含答案解析)(4)

一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.若圆锥曲线C :221x my +=的离心率为2,则m =( ) A .33-B .33C .13-D .133.已知椭圆22221(0)x y C a b a b+=>>:的右焦点为(c,0)F ,上顶点为(0,)A b ,直线2a x c=上存在一点P 满足FP AP FA AP ⋅=-⋅,则椭圆的离心率的取值范围为( )A .1[,1)2B .2[,1)2C .51[,1)2-D . 20,2⎛⎤ ⎥⎝⎦4.如图,已知1F 、2F 双曲线()222210,0x y a b a b-=>>的左、右焦点,A 、B 为双曲线上关于原点对称的两点,且满足11AF BF ⊥,112ABF π∠=,则双曲线的离心率为( )A 2B 3C 6D 4235.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为1的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的面积是π,若椭圆C 离心率的取值范围为[42,,则线段AB 的长度的取值范围是( ) A.B .[1 , 2]C .[4 8],D.6.已知O 为坐标原点设1F ,2F 分别是双曲线2219x y -=的左右焦点,P 为双曲线左支上的任意一点,过点1F 作12F PF ∠的角平分线的垂线,垂足为H ,则OH =( ) A .1B .2C .3D .47.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.探照灯、手电筒也是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为2y =,若入射光线FP 的斜率为43,则抛物线方程为 ( ) A .28y x =B .26y x =C .24y x =D .22y x =8.已知双曲线2222:1x y C a b-=(0a >,0b >)的左焦点为F ,右顶点为A ,过F 作C的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( ) A.B .2CD9.已知三角形ABC 的三个顶点都在椭圆:22143x y +=上,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为1k ,2k ,3k ,且1k ,2k ,3k 均不为0.O 为坐标原点,若直线OD ,OE ,OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .3-C .1813-D .32-10.设P 为椭圆22:1169x y C +=上的点,12,F F 分别是椭圆C 的左,右焦点,125PF PF ⋅=,则12PF F △的面积为( )A .3B .4C .5D .611.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( )A .77y x =±B .7y x =±C .55y x =±D .5y x =±12.双曲线2214x y -=的离心率为( )A .5B .3C .52D .32二、填空题13.直线l 过抛物线28y x =的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点到y 轴的距离是2,则AB =______.14.已知双曲线22143x y -=的左、右焦点分别为1F ,2F ,过1F 的直线与双曲线的左支交于A ,B 两点,若∠260AF B =︒,则2AF B 的内切圆半径为______.15.过椭圆2222:1x y C a b+=(0)a b >>的左焦点F 作斜率为12的直线l 与C 交于A ,B 两点,若||||OF OA =,则椭圆C 的离心率为________.16.如图,将桌面上装有液体的圆柱形杯子倾斜α角(母线与竖直方向所成角)后,液面呈椭圆形,当30α=︒时,该椭圆的离心率为____________.17.已知抛物线24x y =的焦点为F ,双曲线()2222:10,0x y C a b a b-=>>的右焦点为1F ,过点F 和1F 的直线l 与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线3y x =-垂直,当3a b +取最大值时,双曲线C 的方程为________.18.如图,已知椭圆C 的中心为原点O ,(25,0)F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的标准方程为__________.19.已知椭圆()222210x y a b a b +=>>的离心率为22,右焦点为()1,0F ,三角形ABC的三个顶点都在椭圆上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、F ,且三条边所在直线的斜率分别为()123123,,0k k k k k k ≠.若直线OD 、OE 、OF 的斜率之和为-1(O 为坐标原点),则123111k k k ++=______. 20.设点P 是抛物线24y x =上的一个动点,F 为抛物线的焦点,若点B 的坐标为()4,2,则PB PF +的最小值为________.三、解答题21.已知A ,B 分别为椭圆()222:11x C y a a +=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=.(1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.22.已知椭圆22221(0)x y a b a b+=>>经过点(0,离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0). (1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足||||AB CD =,求直线l 的方程. 23.已知直线1:1l y x =+与抛物线2:2(0)C y px p =>相切于点P . (1)求抛物线C 的方程及点P 的坐标; (2)设直线2l 过点11,22Q ⎛⎫--⎪⎝⎭,且与抛物线C 交于(异于点P)两个不同的点A 、B ,直线PA ,PB 的斜率分别为1k 、2k ,那么是否存在实数λ,使得12k k λ+=?若存在,求出λ的值;若不存在,请说明理由.24.已知抛物线26y x =焦点为F ,一条直线过焦点与抛物线相交于A ,B 两点,直线的倾斜角为60.(1)求线段AB 的长度.(2)过点()3,0Q 的直线l 与抛物线C 交于M ,N 两点,点P 为直线3x =-上的任意一点,设直线PM ,PQ ,PN 的斜率分别为1k ,2k ,3k ,且满足132k k k μ+=,μ能否为定值?若为定值,求出μ的值;若不为定值,请说明理由. 25.已知抛物线2:2(0)C y px p =>的准线方程为1x =-. (1)求抛物线C 的方程;(2)设点(1,2)P 关于原点O 的对称点为点Q ,过点Q 作不经过点O 的直线与C 交于两点A ,B ,直线PA ,PB 分别交x 轴于M ,N 两点,求MF NF ⋅的值.26.已知P 是椭圆22:18x C y +=上的动点.(1)若A 是C 上一点,且线段PA 的中点为11,2⎛⎫ ⎪⎝⎭,求直线PA 的斜率; (2)若Q 是圆221:(1)49D x y ++=上的动点,求PQ 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由c e a ==2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.C解析:C 【详解】因为圆锥曲线C :221x my +=的离心率为2, 所以,该曲线是双曲线,2222111y x my x m+=⇒-=-, 所以11()1213m m +-=⇒=-, 故选C.3.C解析:C 【分析】取AP 中点Q ,可转化()0FP FA AP +⋅=为20FQ AP ⋅=,即||||FA FP =,可求得||FA a =,2||a FP c c≥-,求解即得.【详解】取AP 中点Q ,由FP AP FA AP ⋅=-⋅得()0FP FA AP +⋅=, 故20FQ AP FQ AP ⋅=∴⊥,故三角形AFP 为等腰三角形,即||||FA FP =, 且22||FA b c a =+=,所以||FP a =,由于P 在直线2a x c =上,故2||a FP c c ≥-即2222110a a a a c e e c c c≥-∴≥-∴+-≥,解得:512e ≥或512e -≤,又01e << 511e -≤<, 故选:C 【点睛】本题考查了椭圆的几何性质,考查了学生综合分析、转化划归、数学运算的能力,属于中档题.4.A解析:A 【分析】连接22,AF BF ,得矩形12AF BF ,在直角12BF F △中用c 表示出1BF ,2BF ,然后由双曲线的定义列式后求得离心率e . 【详解】连接22,AF BF ,由11AF BF ⊥及双曲线的对称性知12AF BF 是矩形,由12AF BF =,1112BFO ABF π∠=∠=,122F F c =,则22sin12BF c π=,12cos12BF c π=,∴122cos2sin21212BF BF c c a ππ-=-=,∴离心率为111222cos sin 2cos 2cos sin 12123212212c e a πππππ=====⎛⎫-- ⎪⎝⎭, 故选:A .【点睛】本题考查求双曲线的离心率,列出关于,a b 关系式是䚟题关键.本题利用双曲线的对称性构造矩形12AF BF ,然后结合双曲线定义得出关系式,求得离心率.5.C解析:C 【分析】 由题可求得2121222ABF AF F BF F cSSS=+=,2222ABF EABEBF EAF S SSSa =++=,即可得出2aAB c=,再根据离心率范围即可求出. 【详解】设2ABF 的内切圆的圆心为E ,半径为r ,则2r ππ=,解得1r =,21212112121121211sin sin 22ABF AF F BF F SSSAF F F AF F BF F F BF F =+=⋅⋅⋅∠+⋅⋅⋅∠ 111122sin 452sin135222cAF c BF c AB =⋅⋅⋅+⋅⋅⋅=, 又22222111222ABF EAB EBF EAF S S S S AB r BF r AF r =++=⋅⋅+⋅⋅+⋅⋅()22114222AB BF AF a a =++=⨯=, 222c AB a∴=,22a AB c ∴=⋅, 2242c e a ⎡⎤=∈⎢⎥⎣⎦,,2,22a c ⎡⎤∴∈⎣⎦,则[]224,8ac⋅∈,即线段AB 的长度的取值范围是[]4,8. 故选:C.【点睛】本题考查根据离心率范围求弦长范围,解题的关键是通过两种不同方式求出2ABF 的面积,得出2aAB c=可求解. 6.C解析:C 【分析】根据中位线性质得到22111()22OH BF PF PF a ==-=得到答案. 【详解】如图所示:延长1F H 交2PF 于B12F PF ∠的平分线为PA ,1F B PA H ⊥⇒为1F B 中点,1PF BP =,在12F F B △中,O 是12F F 中点,H 为1F B 中点,⇒22111()322OH BF PF PF a ==-==故选:C 【点睛】关键点点睛:本题考查了双曲线的性质,利用中位线性质将212OH BF =是解题的关键. 7.D解析:D 【分析】由抛物线方程可得焦点坐标,设出P 点坐标,由性质求出P 点坐标,表示出FP 的斜率,解出p ,即可得抛物线方程. 【详解】,02p F ⎛⎫⎪⎝⎭,设()00,P x y 由题意有02y =将02y =代入()220y px p =>得02x p=2,2P p ⎛⎫∴ ⎪⎝⎭,又,02p F ⎛⎫⎪⎝⎭,且FP 的斜率为43,有204232p p -=-解得:1p =故抛物线方程为:22y x = 故选:D 【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.8.B解析:B 【分析】首先利用DF DA =,求点D 的坐标,再利用DF 与渐近线垂直,构造关于,a c 的齐次方程,求离心率. 【详解】由条件可知(),0F c -,(),0A a ,由对称性可设条件中的渐近线方程是by x a=,线段FA 的中垂线方程是2a c x -=,与渐近线方程by x a =联立方程,解得()2b a c y a-=,DF DA =,即(),22b a c a c D a -⎛⎫- ⎪⎝⎭,因为DF 与渐近线b y x a =垂直,则()()22b ac a a a c b c -=----,化简为2232222b c ab a a c b c ac a c -=+⇔=+, 即22b ac a =+,即2220c ac a --=,两边同时除以2a , 得220e e --=,解得:1e =-(舍)或2e =. 故选:B 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:c e a ===,3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.9.A解析:A 【分析】设()11,A x y ,()22,B x y ,()33,C x y ,()11,D s t ,()22,E s t ,()33,M s t ,利用A ,B 在椭圆上,代入椭圆方程,两式相减得:111413t k s =-,同理可得:222413t k s =-,333413t k s =-,再利用已知条件即可得出结果. 【详解】设()11,A x y ,()22,B x y ,()33,C x y ,()11,D s t ,()22,E s t ,()33,M s t , 因为A ,B 在椭圆上,所以2211143x y +=,2222143x y +=, 两式相减得:121211121213344y y x x sk x x y y t -+==-⨯=-⨯-+, 即111413t k s =-, 同理可得222413t k s =-,333413t k s =-, 所以31212312311143t t t k k k s s s ⎛⎫++=-++ ⎪⎝⎭因为直线OD 、OE 、OM 的斜率之和为1,所以12311144133k k k ++=-⨯=-, 故选:A. 【点睛】关键点睛:本题主要考查椭圆的简单性质的应用.利用平方差法转化求解斜率是解决本题的关键.10.D解析:D 【分析】先根据椭圆的方程求得c ,进而求得12F F ,设出12,PF m PF n ==,利用余弦定理可求得mn 的值,最后利用三角形面积公式求解. 【详解】由椭圆方程有4,3a b ==,则c .设12,PF m PF n ==,由椭圆的定义有:28m n a +==.设12F PF θ∠=, 由125PF PF ⋅=,得cos 5mn θ=,由余弦定理得: 222cos 28m n mn θ+-= 解得:513,cos 13mn θ==,12sin 13θ∴=. 所以12PF F △的面积为1112sin 1362213S mn θ==⨯⨯=.故选:D【点睛】本题考查椭圆的标准方程、椭圆的定义的应用,椭圆中求三角形的面积问题,是中档题.11.C解析:C【分析】求出椭圆焦点坐标,得双曲线的焦点坐标,再由焦点到渐近线的距离可求得,a b,得渐近线方程.【详解】由题意已知椭圆的焦点坐标为(,即为双曲线的焦点坐标,双曲线中c=渐近线方程为by xa=±,其中一条为0bx ay-=,1==,1b=,∴a=∴渐近线方程为y x=.故选:C.【点睛】关键点点睛:本题考查椭圆与双曲线的焦点坐标,考查双曲线的渐近线方程,关键是求出,a b.解题时要注意椭圆中222a b c=+,双曲线中222+=a b c.两者不能混淆.12.C解析:C【解析】双曲线2214xy-=中,222224,1,5,a b c a b e==∴=+=∴==本题选择C选项.二、填空题13.【分析】设再表达出的坐标再利用抛物线的弦长公式求解即可【详解】设则利用中点坐标公式知又点M到y轴的距离为2故即又故利用过抛物线焦点的弦长公式故答案为:8【点睛】方法点睛:本题主要考查了过抛物线焦点的解析:【分析】设()()1122,,,A x yB x y,再表达出M的坐标,再利用抛物线的弦长公式求解即可.【详解】设()()1122,,,A x yB x y,则利用中点坐标公式知1212,22x x y yM++⎛⎫⎪⎝⎭,又点M 到y 轴的距离为2,故1222x x +=,即124x x +=, 又28,4p p ==,故利用过抛物线焦点的弦长公式12448AB x x p =++=+=. 故答案为:8 【点睛】方法点睛:本题主要考查了过抛物线焦点的弦长公式,有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式,考查学生的运算能力与转化思想,属于一般题.14.【分析】设内切圆的圆心设三边与内切圆的切点连接切点与圆心的线段由内切圆的性质可得再由双曲线定义可知:可得重合再由可得内切圆的半径的值【详解】设内切圆的圆心为设圆与三角形的边分别切于如图所示连接由内切【分析】设内切圆的圆心M ,设2AF B 三边与内切圆的切点,连接切点与圆心M 的线段,由内切圆的性质可得22AF AQ BF BQ -=-,再由双曲线定义可知:21212AF AF BF BF a -=-=,可得Q ,1F 重合,再由260AF B ∠=︒可得内切圆的半径的值. 【详解】设内切圆的圆心为(),M x y ,设圆M 与三角形的边分别切于T ,Q ,S ,如图所示 连接MS ,MT ,MQ ,由内切圆的性质可得:22F T F S =,AT AQ =,BS BQ =,所以222AF AQ AF AT F T -=-=,222BF BQ BF BS F S -=-=, 所以22AF AQ BF BQ -=-,由双曲线的定义可知:21212AF AF BF BF a -=-=,所以可得Q ,1F 重合, 所以224TF a ==,所以圆的半径为22tan 2AF B r MT TF ∠===.【点睛】本题主要考查双曲线定义的应用,熟记双曲线的定义即可,属于常考题型.15.【分析】作出示意图记右焦点根据长度和位置关系计算出的长度再根据的形状列出对应的等式即可求解出离心率的值【详解】如图所示的中点为右焦点为连接所以因为所以所以又因为所以且所以又因为所以所以所以故答案为: 解析:53【分析】作出示意图,记右焦点2F ,根据长度和位置关系计算出2,AF AF 的长度,再根据2AFF 的形状列出对应的等式,即可求解出离心率e 的值. 【详解】如图所示,AF 的中点为M ,右焦点为2F ,连接2,MO AF ,所以2//MO AF , 因为OA OF=,所以OM AF ⊥,所以2AFAF ⊥,又因为12AF k =,所以212AF AF =且22AF AF a +=,所以242,33a aAF AF ==,又因为22222AF AF FF +=,所以222164499a a c +=,所以2259c a =,所以53e =. 故答案为:53.【点睛】本题考查椭圆离心率的求解,难度一般.(1)涉及到利用图形求解椭圆的离心率时,注意借助几何图形的性质完成求解;(2)已知,,a b c 任意两个量之间的倍数关系即可求解出椭圆的离心率.16.【分析】由图知椭圆的短轴长为圆柱的直径椭圆的长半轴与底面半径构成夹角为的直角三角形由此可求得椭圆离心率【详解】设圆柱形杯子的底面半径为画示意图如图所示:则是椭圆的长半轴长是椭圆的短半轴长则又则故答案 解析:12【分析】由图知椭圆的短轴长为圆柱的直径,椭圆的长半轴与底面半径构成夹角为30的直角三角形,由此可求得椭圆离心率. 【详解】设圆柱形杯子的底面半径为b ,画示意图如图所示:则OC 是椭圆的长半轴长,OB 是椭圆的短半轴长,则22BC a b c =-=,又30COB α∠==︒,则1sin 2c e a α===. 故答案为:12【点睛】本题考查了圆柱的截面为椭圆的问题,根据椭圆的性质求出椭圆的离心率,考查了学生的分析能力,空间想象能力,属于中档题.17.【分析】设点的坐标为则利用导数的几何意义结合已知条件求得点的坐标可求得直线的方程并求得点的坐标可得出利用三角换元思想求得的最大值及其对应的的值由此可求得双曲线的标准方程【详解】设点的坐标为则对于二次解析:2213944x y -= 【分析】设点M 的坐标为()00,x y ,则00x >,利用导数的几何意义结合已知条件求得点M 的坐标,可求得直线l 的方程,并求得点1F 的坐标,可得出223a b +=,利用三角换元思想求得3a b 的最大值及其对应的a 、b 的值,由此可求得双曲线的标准方程. 【详解】设点M 的坐标为()00,x y ,则00x >,对于二次函数24x y =,求导得2x y '=,由于抛物线24x y =在点M处的切线与直线y =垂直,则(012x ⨯=-,解得0x =,则200143x y ==,所以,点M的坐标为13⎫⎪⎪⎝⎭, 抛物线24x y =的焦点为()0,1F ,直线MF的斜率为11MFk -==所以,直线l的方程为1y x =+,该直线交x轴于点)1F ,223a b ∴+=,可设a θ=,b θ=,其中02θπ≤<,3sin 6a πθθθ⎛⎫=+=+ ⎪⎝⎭,02θπ≤<,13666πππθ∴≤+<, 当62ππθ+=时,即当3πθ=时,a取得最大值此时,32a π==,332b π==, 因此,双曲线的标准方程为2213944x y -=. 故答案为:2213944x y -=. 【点睛】本题考查双曲线方程的求解,同时也考查了利用导数求解二次函数的切线方程,以及利用三角换元思想求代数式的最值,考查计算能力,属于中等题.18.【分析】由已知可得而由可求出点的坐标再将点的坐标代入椭圆方程中再结合可求出的值【详解】解:由题意设椭圆的标准方程为因为为椭圆的左焦点所以因为所以设点的坐标为则解得则所以点的坐标为因为为椭圆上一点所以解析:2213616x y +=【分析】由已知可得c =||||OP OF ==,||4PF =,可求出点P 的坐标,再将点P 的坐标代入椭圆方程中,再结合222a b c =+,可求出22a b ,的值.【详解】解:由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,因为(F -为椭圆C的左焦点,所以c =, 因为||||OP OF =,所以||||OP OF ==, 设点P 的坐标为(,)P m n,则11422OF n ⋅=⨯解得n =m =, 所以点P的坐标为⎛ ⎝, 因为P 为椭圆C 上一点, 所以223664155a b += 因为22220a b c -==,所以解得2236,16a b ==,所以椭圆的标准方程为2213616x y +=,故答案为:2213616x y +=【点睛】此题考查的是椭圆的简单的几何性质,考查了运算能力,属于中档题.19.2【分析】求出椭圆的方程利用点差法求得直线的斜率同理即可求得【详解】由题意可得所以所以椭圆的标准方程为设由两式作差可得则而故即同理可得所以故答案为:2【点睛】本题考查三条直线的斜率的倒数和的求法考查解析:2 【分析】求出椭圆的方程,利用“点差法”求得直线AB 的斜率,同理即可求得123111k k k ++ 【详解】 由题意可得1c =,2c a =,所以a =1b =, 所以椭圆的标准方程为2212x y +=,设()11,A x y ,()22,B x y ,()33,C x y ,1212,22x x y y D ++⎛⎫⎪⎝⎭,由221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ , 两式作差可得()()()()212121212x x x x y y y y -+=--+,则()212121212y y x x y y x x -+=-+-, 而1212OD y y k x x +=+,故1122AB ODk k k =-=-,即112OD k k =-, 同理可得212OE k k =-,312OF k k =-, 所以()12311122OD OE OF k k k k k k ++=-++=. 故答案为:2 【点睛】本题考查三条直线的斜率的倒数和的求法,考查转化思想以及计算能力,属于中档题.20.【分析】设点在准线上的射影为则根据抛物线的定义可知进而把问题转化为求的最小值进而可推断出当三点共线时最小则答案可得【详解】设点在准线上的射影为则根据抛物线的定义可知所以要求取得最小值即求取得最小当三 解析:5【分析】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,进而把问题转化为求PB PD +的最小值,进而可推断出当D 、P 、B 三点共线时PB PD +最小,则答案可得. 【详解】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,所以,要求PB PF +取得最小值,即求PB PD +取得最小, 当D 、P 、B 三点共线时PB PD +最小为()415--=. 故答案为:5. 【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D 、P 、B 三点共线时PB PD +最小是解题的关键,考查数形结合思想的应用,属于中等题. 三、解答题21.(1)2219x y +=;(2)证明见解析,定点3,02⎛⎫ ⎪⎝⎭.【分析】(1)根据向量数量积坐标运算公式求解即可得结果;(2)设直线MN 方程并联立椭圆方程,结合韦达定理求得12,y y +12y y ,又因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,所以1212066y y x x +=--,通过计算化简即可求得定点. 【详解】解:(1)由题意得(),0A a -,(),0B a ,()0,1P ,则(),1AP a =,(),1PB a =-.由8AP PB ⋅=,得218a -=,即3a =所以椭圆C 的方程为2219x y +=(2)由题易知:直线MN 的斜率存在,且斜率不为零,设直线MN 方程为x my n =+,()0m ≠,联立22990x my nx y =+⎧⎨+-=⎩,得()2229290m y mny n +++-=,由0>得2290m n -+>,∴12229mn y y m -+=+,212299n y y m -=+,因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,∴1212066y y x x +=--,整理得()()1212260my y n y y +-+=, 即()()2222926099m n mn n m m ---=++,解得:32n =直线MN 方程为:32x my =+,所以直线MN 过定点3,02⎛⎫ ⎪⎝⎭. 【点睛】求定点问题常见的方法有两种:(1)从特殊入手,求出定点,再证明这个点与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定点.22.(1)22143x y +=;(2)12y x =-或12y x =-- 【分析】(1)根据题设条件列方程解得,a b 可得椭圆方程;(2)利用几何方法求出弦长||CD ,利用弦长公式求出弦长||AB,再根据||||AB CD =可求出m ,代入直线l :y =-12x +m ,可求得结果. 【详解】(1)由题设知22212b c a b a c ⎧=⎪⎪=⎨⎪=-⎪⎩,解得a =2,bc =1,∴椭圆的方程为22143x y +=.(2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l :220x y m +-=的距离d =,由d <1,得||m <||CD ∴===设A (x 1,y 1),B (x 2,y 2),由221,21,43y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 并整理得x 2-mx +m 2-3=0, 由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3.||AB =∴==由||||AB CD =1,解得m =,满足(*). ∴直线l的方程为12y x =-+或12y x =-. 【点睛】关键点点睛:掌握几何方法求弦长和弦长公式求弦长是解题关键.23.(1)24y x =,(1,2);(2)83. 【分析】(1)将直线1l 的方程与抛物线C 的方程联立消去y ,根据直线与抛物线相切,由0∆=即可求出p 及点P 的坐标;(2)根据题意可设直线2l 的方程为11()22x m y =+-,11(,)A x y ,22(,)B x y ,将直线2l 与抛物线方程联立消去x ,由根与系数的关系求出12y y +和12y y ,求直线PA ,PB 的斜率,可求出斜率之和为定值,即存在实数λ使得斜率之和为定值.【详解】(1)由212y x y px=+⎧⎨=⎩,得2(22)10x p x +-+=, 因为直线1l 与抛物线C 相切,所以2(22)40p ∆=--=,解得2p =,故抛物线C 的方程为24y x =.将2p =代入2(22)10x p x +-+=,得2210x x -+=,解得1x =,所以2y =, 所以P 的坐标为(1,2).(2)由题意可设直线2l 的方程为11()22x m y =+-,11(,)A x y ,22(,)B x y ,由211()224x m y y x ⎧=+-⎪⎨⎪=⎩,得24220y my m --+=,22164(22)16880m m m m ∆=--+=+->,解得1m <-或12m >, 所以124y y m +=,1222y y m =-+, 又1111111222(2)11123()122y y y k x my m m y ---===-+-+--,同理可得2222(2)23y k my m -=+-, 所以[]12121222121212243(1)()4(3)2(2)2(2)232342(3)()(3)my y m y y m y y my m my m m y y m m y y m -++----=+=+-+-+-++-λ =[]222224(22)3(1)44(3)8(523)84(22)2(3)4(3)3(523)3m m m m m m m m m m m m m m m --+----+==-+-+---+, 故存在实数83λ=满足条件. 【点睛】思路点睛:直线与抛物线交点问题的解题思路:(1)求交点问题,通常解直线方程与抛物线方程组成的方程组;(2)与交点相关的问题通常借助根与系数的关系解决.24.(1)8;(2)是,定值为2.【分析】(1)联立直线与抛物线得出韦达定理,即可求出弦长;(2)设出直线方程,联立直线与抛物线方程,利用韦达定理表示出13k k +,即可得出定值.【详解】(1)可得3,02F ⎛⎫ ⎪⎝⎭,直线的倾斜角为60则直线方程为32y x ⎫=-⎪⎭, 设()()1122,,,A x y B x y ,联立直线与抛物线2326y x y x ⎧⎫=-⎪⎪⎭⎨⎪=⎩可得242090x x -+=, 则121295,4x x x x +==, 123538AB x x =++=+=;(2)可知直线l 的斜率不为0,则设直线l 的方程为3x my =+,m R ∈,设()3,P t -,()11,M x y ,()22,N x y ,把3x my =+代入26y x =得26180y my --=∴126y y m +=,1218y y =-, ∴12121312123366y t y t y t y t k k x x my my ----+=+=+++++ ()()()()()()1221126666y t my y t my my my -++-+=++ ()()()1212212122612636my y tm y y t m y y m y y +-+-=+++ ()()()221866121866363m tm m t t m m m ⨯-+-⋅-==-⨯-+⋅+,26t k =-,132k k k μ+=, 36t t μ⎛⎫∴-=⨯- ⎪⎝⎭,P 为3x =-上的任意一点,t ∴不恒为0, 2μ∴=,即μ为定值2.【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y ,,()22B x y ,;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式;(5)代入韦达定理求解.25.(1)24y x =;(2)2.【分析】(1)根据抛物线的准线求出p ,即可得出抛物线方程;(2)设点()11,A x y ,()22,B x y ,由已知得()1,2Q --,由题意直线AB 斜率存在且不为0,设直线AB 的方程为()()120y k x k =+-≠,与抛物线联立可得24480ky y k -+-=,利用韦达定理以及弦长公式,转化求解MF NF ⋅的值.【详解】(1)因为抛物线2:2(0)C y px p =>的准线方程为1x =-,所以12p =,则2p =, 因此抛物线C 的方程为24y x =;(2)设点()11,A x y ,()22,B x y ,由已知得()1,2Q --,由题意直线AB 斜率存在且不为0,设直线AB 的方程为()()120y k x k =+-≠,由()2412y x y k x ⎧=⎪⎨=+-⎪⎩得24480ky y k -+-=, 则124y y k+=,1284y y k =-. 因为点A ,B 在抛物线C 上,所以2114y x =,2224y x =, 则1121112241214PA y y k y x y --===-+-,2222412PB y k x y -==-+. 因为PF x ⊥轴, 所以()()122244PA PB PA PB y y PFPF MF NF k k k k ++⋅=⋅==⋅ ()1212884424244y y y y k k -+++++===, 所以MF NF ⋅的值为2.【点睛】思路点睛:求解抛物线中的定值问题时,一般需要联立直线与抛物线方程,结合题中条件,以及韦达定理来求解;求解时,一般用韦达定理设而不求来处理. 26.(1)14-;(2)17. 【分析】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,代入椭圆方程,利用点差法即可求得直线PA 的斜率;(2)设(,)(P x y x -≤≤,圆心(1,0)D -,可得PD 的表达式,利用二次函数性质,即可求得PD 的最小值,进而可得答案.【详解】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y , 因为A ,P 两点都在C 上,所以221122221818x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得()()()()2121212180x x x x y y y y -++-+=,因为21122x x +=⨯=,211212y y +=⨯=, 所以212114PA y y k x x -==--. (2)设(,)(P x y x -≤≤,则2218x y +=,圆心(1,0)D -, 则222222786||(1)(1)18877x PD x y x x ⎛⎫=++=++-=++ ⎪⎝⎭, 当87x 时,PD7=. 因为圆D17=. 所以PD的最小值为11777-=. 【点睛】 解题的关键是熟练掌握点差法的步骤,点差法常见的结论有,设以00(,)P x y 为中点的弦所在斜率为k ,则(1)椭圆22221x y a b +=中,2020y b k x a ⋅=-;(2)双曲线22221x y a b -=中,2020y b k x a⋅=;(3)抛物线22y px =中0p k y =,熟记结论可简化计算,提高正确率,属中档题.。

上海东门中学高中数学选修2-1第三章《圆锥曲线与方程》检测(含答案解析)

上海东门中学高中数学选修2-1第三章《圆锥曲线与方程》检测(含答案解析)

一、选择题1.已知离心率为3的椭圆()2211x y m m +=>的左、右顶点分别为A ,B ,点P 为该椭圆上一点,且P 在第一象限,直线AP 与直线4x =交于点C ,直线BP 与直线4x =交于点D ,若83CD =,则直线AP 的斜率为( ) A .16或120 B .121C .16或121D .13或1202.已知椭圆22221(0)x y C a b a b+=>>:的右焦点为(c,0)F ,上顶点为(0,)A b ,直线2a x c=上存在一点P 满足FP AP FA AP ⋅=-⋅,则椭圆的离心率的取值范围为( )A .1[,1)2B .[,1)2C .1[,1)2D . 0,2⎛ ⎝⎦3.(),0F c 是椭圆22221x y a b+=(0a b >>)的右焦点,过原点作一条倾斜角为60︒的直线交椭圆于P 、Q 两点,若2PQ c =,则椭圆的离心率为( )A .12B 1C .2D .34.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .25 5.已知椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,M 为E 上一点.若126MF F π∠=,21212F F F M F F +=,则E 的离心率为( )A .12 B .12C 1D 16.已知双曲线2221(0)x y a a -=>与椭圆22183x y +=有相同的焦点,则a =( )A B .C .2D .47.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()1,0F c -,()2,0F c ,P是双曲线C 右支上一点,且212PF F F =.若直线1PF与圆222x y a +=相切,则双曲线的离心率为( ) A .43B .53C .2D .38.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点H ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,如图所示,则①以线段AB 为直径的圆与准线l 相切; ②以11A B 为直径的圆经过焦点F ;③A ,O ,1B (其中点O 为坐标原点)三点共线;④若已知点A 的横坐标为0x ,且已知点()0,0T x -,则直线TA 与该抛物线相切; 则以上说法中正确的个数为( ) A .1B .2C .3D .49.已知双曲线C :()222210,0x y a b a b-=>>的左右焦点分别为1F 、2F ,过原点的直线与双曲线C 交于A ,B 两点,若260AF B ∠=︒,2ABF 23a ,则双曲线的渐近线方程为( ) A .12y x =±B .2y x =±C .33y x =±D .3y x =±10.12,F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ︒∠=,则12F PF △的面积是( )A .2B .4C .8D .1611.已知1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,抛物线28y x=的焦点与双曲线的一个焦点重合,点P 是两曲线的一个交点,12PF PF ⊥且121PF F S =△,则双曲线的离心率为( )A B .3C D .212.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(0λ>,1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :221x y +=和点1,02A ⎛⎫- ⎪⎝⎭,点()4,2B ,M 为圆O 上的动点,则2MA MB +的最小值为( )A .B .C D 二、填空题13.设12,F F 为双曲线22212x y a -=的两个焦点,已知点P 在此双曲线上,且123F PF π∠=P 到y 轴的距离等于__________. 14.已知双曲线2222:1(0,0)x y C a b a b-=>>)的左,右焦点分别是1F ,2F ,直线:(l y k x =过点2F ,且与双曲线C 在第一象限交于点P .若(22()0OP OF PF +⋅=(O 为坐标原点),且()121PF a PF +=,则双曲线C 的离心率为__________.15.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 且斜率为ab的直线l 与双曲线的右支交于点P ,与其中一条渐近线交于点M ,且有13PM MF =,则双曲线的渐近线方程为________.16.在平面直角坐标系中,已知椭圆22:12+=x E y ,直线10x y +-=与椭圆E 交于A ,B 两点,则△AOB 的外接圆圆心的坐标为______.17.已知椭圆22221(0)x y a b c a b+=>>>的左、右焦点分别为1F ,2F ,若以2F 为圆心,b c -为半径作圆2F ,过椭圆上一点P 作此圆的切线,切点为T ,且PT 的最小值不小于()2a c -,则椭圆的离心率e 的取值范围是________.18.曲线C 是平面内与两个定点()11,0F -和()21,0F 的距离的积等于常数()21aa >的点的轨.给出下列四个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则122PF PF a +<;④若点P 在曲线C 上,则12FPF △的面积212S a ≤.其中,所有正确的序号是______. 19.如图,已知椭圆C 的中心为原点O ,(25,0)F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的标准方程为__________.20.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,P 为双曲线C 上一点,Q 为双曲线C 渐近线上一点,P ,Q 均位于第一象限,且22QP PF =,120QF QF ⋅=,则双曲线C 的离心率为________. 三、解答题21.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,且椭圆C 经过点21,2M ⎛⎫ ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.22.已知长轴长为222222:1(0)x y C a b a b +=>>过点21,2P ⎛⎫ ⎪ ⎪⎝⎭,点F 是椭圆C 的右焦点.(1)求椭圆C 的方程;(2)是否存在x 轴上的定点D ,使得过点D 的直线l 交椭圆C 于,A B 两点,设E 为点B 关于x 轴的对称点,且,,A F E 三点共线?若存在,求D 点坐标;若不存在,说明理由. 23.已知圆1C 的方程为()()2220213x y -+-=,椭圆2C 的方程为()222210x y a b a b +=>>,2C 的离心率为22,如果1C 与2C 相交于A 、B 两点,且线段AB 恰为圆1C 的直径,求直线AB 的方程和椭圆2C 的方程.24.双曲线C :2213y x -=,过点()2,1P ,作一直线交双曲线于A 、B 两点,若P 为AB的中点.(1)求直线AB 的方程;(2)求弦AB 的长25.已知抛物线26y x =焦点为F ,一条直线过焦点与抛物线相交于A ,B 两点,直线的倾斜角为60.(1)求线段AB 的长度.(2)过点()3,0Q 的直线l 与抛物线C 交于M ,N 两点,点P 为直线3x =-上的任意一点,设直线PM ,PQ ,PN 的斜率分别为1k ,2k ,3k ,且满足132k k k μ+=,μ能否为定值?若为定值,求出μ的值;若不为定值,请说明理由.26.如图,已知椭圆22:143x y Γ+=,斜率为k 的直线l 与椭圆Γ交于,A B 两点,过线段AB 的中点M 作AB 的垂线交y 轴于点C .(1)设直线,OA OB 的斜率分别为12,k k ,若1k =,直线l 经过椭圆Γ的左焦点,求1211k k +的值; (2)若23AB =23,14k ⎡⎤∈⎢⎥⎣⎦,求OMC 面积的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由离心率求出9m =,设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---,设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k ,直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭,从而可表示出CD ,然后列方程可求出k 的值 【详解】由3e ==,得9m =. 设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---. 设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k .直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭.所以18793CD k k =+=,解得13k =(舍去)或121.故选:B. 【点睛】此题考查直线与椭圆的位置关系,考查直线方程的求法,考查计算能力,属于中档题2.C解析:C 【分析】取AP 中点Q ,可转化()0FP FA AP +⋅=为20FQ AP ⋅=,即||||FA FP =,可求得||FA a =,2||a FP c c≥-,求解即得. 【详解】取AP 中点Q ,由FP AP FA AP ⋅=-⋅得()0FP FA AP +⋅=, 故20FQ AP FQ AP ⋅=∴⊥,故三角形AFP 为等腰三角形,即||||FA FP =, 且22||FA b c a =+=,所以||FP a =,由于P 在直线2a x c =上,故2||a FP c c ≥-即2222110a a a a c e e c c c≥-∴≥-∴+-≥,解得:51e -≥51e --≤01e << 故5112e ≤<, 故选:C 【点睛】本题考查了椭圆的几何性质,考查了学生综合分析、转化划归、数学运算的能力,属于中档题.3.B解析:B 【分析】设椭圆的左焦点为1F ,连接1,PF PF ,由题 可得1PF PF ⊥且POF 是等边三角形,表示出1,PF PF ,利用勾股定理建立关系即可求出. 【详解】如图所示,设椭圆的左焦点为1F ,连接1,PFPF , 2PQ c =,则PO c =,则1PF PF ⊥,又60POF ∠=,则POF 是等边三角形,即PF c =,12PF PF a +=,12PF a c ∴=-,又22211PF PFF F +=,即()()22222a c c c -+=,整理可得22220c ac a +-=,即2220e e +-=,解得31e =-. 故选:B.【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,7a c =设(),P x y , 则()()22222127·771616k PF PF x y x y x ==-+-+-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.5.B解析:B 【分析】先取线段1F M 中点P ,连接2PF ,得到2c P F =,结合正弦定理证明12F PF ∠是直角,求出12,F M MF ,再根据定义122FM MF a +=得到,a c 之间关系,即求得离心率. 【详解】如图椭圆中,取线段1F M 中点P ,连接2PF ,则21222F F F M F P+=,因为21212F F F M F F +=,所以21222F F F P c ==,则2c P F =,12F F P 中,1212122sin sin F F M P F F F P F F =∠∠,即122sin sin6c P F F c π=∠,解得12in 1s P F F =∠,又()120,F PF π∠∈,12F PF ∠=2π,故13F P c =,2PF 是线段1F M 的中垂线,故121223,2FM c MF F F c ===,结合椭圆定义122FM MF a +=, 故2322c c a +=,即)31c a =,故离心率3131c e a -===+ 故选:B. 【点睛】求椭圆离心率(或取值范围)的常见方法: (1)直接法:由a ,c 直接计算离心率ce a=; (2)构建齐次式:利用已知条件和椭圆的几何关系构建关于a ,b ,c 的方程和不等式,利用222b a c =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.6.C解析:C 【分析】先求出椭圆焦点坐(椭圆的半焦距),再由双曲线中的关系计算出a . 【详解】椭圆22183x y +=的半焦距为835c -∴双曲线中215a +=,∴2a =(∵0a >).故选:C . 【点睛】晚错点睛:椭圆与双曲线中都是参数,,a b c ,但它们的关系不相同:椭圆中222a b c =+,双曲线中222+=a b c ,不能混淆.这也是易错的地方.7.B解析:B 【分析】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,根据三角形中位线性质可求得2AF ;结合双曲线定义可求得1AF ,在12Rt AF F △中利用勾股定理可构造关于,a c 的齐次方程,进而得到关于离心率的方程,解方程求得结果. 【详解】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,连接2,OB AF ,212PF FF =,A 为1PF中点,21AF PF ∴⊥, 圆222x y a +=与1PF 相切于点B ,1OB PF ∴⊥且OB a =,2//OB AF ∴,又O 为12F F 中点,222AF OB a ∴==;由双曲线定义知:122PF PF a -=,即112122PFF F PF c a -=-=, 1112AF PF a c ∴==+,又122F F c =,21AF PF ⊥, 2222112AF AF F F ∴+=,即()22244a a c c ++=,整理可得:223250c ac a --=,即23250e e --=,解得:53e =或1e =-(舍去), ∴双曲线的离心率为53.故选:B. 【点睛】关键点点睛:本题考查双曲线离心率的求解问题,解题关键是能够在直角三角形中,利用勾股定理构造出关于,a c 的齐次方程,进而配凑出关于离心率的方程.8.D解析:D 【分析】由抛物线的性质可判断①;连接11,A F B F ,结合抛物线的性质可得1190A FB ∠=,即可判断②;设直线:2pAB x my =+,与抛物线方程联立,结合韦达定理、向量共线可判断③;求出直线TA 的方程,联立方程组即可判断④. 【详解】对于①,设,AF a BF b ==,则11,AA a BB b ,所以线段AB 的中点到准线的距离为22ABa b, 所以以线段AB 为直径的圆与准线l 相切,故①正确; 对于②,连接11,A F B F ,如图,因为11,AA AF BB BF ==,11180BAA ABB ,所以11180********AFA BFB ,所以()112180AFA BFB ∠+∠=,所以1190AFA BFB 即1190A FB ∠=,所以以11A B 为直径的圆经过焦点F ,故②正确; 对于③,设直线:2pAB x my =+,()()1122,,,A x y B x y , 将直线方程代入抛物线方程化简得2220y pmy p --=,0∆>,则212y y p =-, 又2111112,,,,22y pOAx y y OB y p , 因为2211222y y p pp ,221112121222y y y y y y p y p p p ,所以2112y OAOB p,所以A ,O ,1B 三点共线,故③正确; 对于④,不妨设(0A x ,则0AT k =,则直线0:AT x x=-,代入抛物线方程化简得02220px y +=-, 则02028px ⎛∆=- -=⎝,所以直线TA 与该抛物线相切,故④正确.故选:D. 【点睛】关键点点睛:①将点在圆上转化为垂直关系,将直线与圆相切转化为圆心到直线的距离,将点共线转化为向量共线;②设直线方程,联立方程组解决直线与抛物线交点的问题.9. D解析:D 【分析】结合双曲线的定义、2ABF 的面积、余弦定理列方程,化简求得ba,进而求得双曲线的渐近线方程. 【详解】连接11,AF BF ,根据双曲线的对称性可知四边形12AF BF 是平行四边形, 由于260AF B ∠=︒,所以12120F AF ∠=︒,212ABF AF F SS=,12AF BF =,设12,AF n AF m ==,结合双曲线的定义有2m n a -=,所以()2222222cos1201sin1202m n a c m n mn mn ⎧-=⎪⎪=+-︒⎨⎪⎪︒=⎩,即2222244m n a c m n mn mn a -=⎧⎪=++⎨⎪=⎩,由()22m n a -=得22222224,12m n mn a m n a +-=+=, 所以22416,2c a c a ==,而222c ab =+,所以2224,ba ab a=+= 所以双曲线的渐近线方程为y =.【点睛】本小题主要考查双曲线的渐近线方程的求法,属于中档题.10.B解析:B 【分析】先求出双曲线的a,b,c ,再利用12Rt PF F 中三边关系求出128PF PF =,再由直角三角形面积公式即得结果. 【详解】由2214x y -=-得标准方程为2214x y -=得221,4a b ==,2145c ∴=+=5c ∴= 故12Rt PF F 中,()222212121212121222=225F F PF PF PF PFPF PF PF PF F F c ⎧==+⎪⎪=⎨+-=-⎪⎪⎩128PF PF ∴=所以12118422S PF PF =⋅=⨯=. 故选:B. 【点睛】本题考查了双曲线的定义和几何性质,考查了直角三角形的边长关系和面积公式,属于中档题.11.B解析:B求出双曲线的半焦距,结合三角形的面积以及勾股定理,通过双曲线的定义求出a ,然后求解双曲线的离心率即可 【详解】由双曲线与抛物线有共同的焦点知2c =,因为12PF PF ⊥,且121PF F S =△,则122PF PF ⋅=,222212124PF PF F F c +==,点P 在双曲线上,则122PF PF a -=,故222121224PF PF PF PF a +-⋅=, 则22444c a -=,所以a =故选:B. 【点睛】本题考查双曲线以及抛物线的简单性质的应用,双曲线的定义的应用,考查计算能力,属于中档题..12.B解析:B 【分析】令2MA MC =,则12MA MC=,所以12MAMC==,整理22222421333m n m n x y x y ++-+++=,得2m =-,0n =,点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小可得答案.【详解】设(),M x y ,令2MA MC =,则12MA MC=, 由题知圆221x y +=是关于点A 、C 的阿波罗尼斯圆,且12λ=, 设点(),C m n,则12MAMC==,整理得:22222421333m n m n x y x y ++-+++=, 比较两方程可得:2403m +=,203n =,22113m n +-=, 即2m =-,0n =,点()2,0C -,当点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小,最小为210.故选:B.【点睛】本题主要考查直线和圆的位置关系,圆上动点问题,考查两点间线段最短.二、填空题13.【解析】依题意由解得根据双曲线焦点三角形面积公式有解得代入双曲线方程解得 解析:22【解析】依题意,由22226{b c a c a b ===+,解得2,6a c =,根据双曲线焦点三角形面积公式有212F F 21b cot26π22tan6P S y∠===⋅,解得2y =,代入双曲线方程解得22x =14.【分析】取的中点则根据得则设根据结合双曲线的定义得到然后在中利用勾股定理求解即可【详解】如图取的中点则因为所以即因为是的中位线所以由题意可得设则由双曲线的定义可知则即故在中由勾股定理得即整理得解得故 解析:102【分析】取2PF 的中点H ,则22OP OF OH +=,根据22()0OP OF PF +⋅=,得2OH PF ⊥,则12PF PF ⊥,设2PF m =,根据()121PF a PF +=结合双曲线的定义得到2||2PF =,122PF a =+,然后在12Rt PF F 中,利用勾股定理求解即可.【详解】如图,取2PF 的中点H ,则22OP OF OH +=, 因为22()0OP OF PF +⋅=,所以20OH PF ⋅=,即2OH PF ⊥.因为OH 是12PF F △的中位线,所以12PF PF ⊥.由题意可得10c =,设2PF m =,则()11PF a m =+, 由双曲线的定义可知12||2PF PF a -=,则2am a =,即2m =, 故2||2PF =,122PF a =+.在12Rt PF F 中,由勾股定理得2221122||||PF PF F F +=, 即()242240a ++=,整理得2280a a +-=, 解得2a =.故双曲线C 的离心率为10c a =. 10【点睛】本题主要考查双曲线的几何性质和定义的应用以及平面几何的知识,平面向量垂直问题,还考查了数形结合的思想和运算求解的能力,属于中档题.15.【分析】根据题意求出点M 的坐标再根据求出点P 的坐标将点P 的坐标代入双曲线方程即可求出进而求出双曲线的渐近线方程【详解】设双曲线的左焦点为所以直线l 的方程为:由直线l 与其中一条渐近线交于点M 且有可知解解析:43y x =± 【分析】根据题意求出点M 的坐标,再根据13PM MF =求出点P 的坐标,将点P 的坐标代入双曲线方程即可求出ba,进而求出双曲线的渐近线方程. 【详解】设双曲线的左焦点为(),0c -,所以直线l 的方程为:()ay x c b=+, 由直线l 与其中一条渐近线交于点M ,且有1PM=3MF ,可知()a y x c b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩,解方程可得2a x c ab y c ⎧=-⎪⎪⎨⎪=⎪⎩,即2,a ab M c c ⎛⎫-⎪⎝⎭, 过点M 、P 分别作x 轴垂线,垂足为A 、B 因为13PM MF =,所以1114AF BF =,14AM BP =, 不妨设04,ab P x c ⎛⎫ ⎪⎝⎭,则204c x a c c +-=,解得2043a x c c=-, 所以2443,a ab P c c c ⎛⎫- ⎪⎝⎭,将点2443,a ab P c c c ⎛⎫- ⎪⎝⎭代入()222210,0x y a b a b -=>>, 即()2222244310,0a ab c c c a b a b⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=>>, 整理可得22925c a =,即()222925a b a +=,解得22169b a =,43b a ∴=,所以双曲线的渐近线方程为43y x =±.故答案为:43y x =± 【点睛】本题考查了双曲线的简单几何性质,此题要求有较高的计算能力,属于中档题.16.【分析】首先联立方程求得设圆心坐标利用其到△三个顶点的距离相等列出等量关系式求得结果【详解】联立方程可得:设圆心坐标则得:故答案为:【点睛】该题考查的是有关圆的问题涉及到的知识点有求直线与椭圆的交点解析:51,62⎛⎫⎪⎝⎭【分析】首先联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩,求得()0,1A ,41,33B ⎛⎫- ⎪⎝⎭,设圆心坐标(),x y ,利用其到△AOB 三个顶点的距离相等,列出等量关系式,求得结果.【详解】联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩可得:()0,1A ,41,33B ⎛⎫- ⎪⎝⎭, 设圆心坐标(),x y ,则()22222241133x y x y x y ⎛⎫-++=+=+- ⎛⎫ ⎪⎝⎭⎪⎝⎭,得:56x =,12y =, 故答案为:51,62⎛⎫ ⎪⎝⎭. 【点睛】该题考查的是有关圆的问题,涉及到的知识点有求直线与椭圆的交点,三角形外接圆的圆心的求法,属于简单题目.17.【分析】利用切线的性质和勾股定理可得利用椭圆的性质可得的最小值为由题意可得最小值为即可得出离心率满足的不等式再利用得联立两个不等式即可解出的取值范围【详解】因为所以当且仅当取得最小值时取得最小值而的解析:3,52⎡⎢⎣⎭【分析】利用切线的性质和勾股定理可得||)PT b c =>,利用椭圆的性质可得2PF 的最小值为a c -,由题意可得PT)a c -,即可得出离心率e 满足的不等式,再利用b c >,得222a c c ->,联立两个不等式即可解出e 的取值范围.【详解】因为||)PT b c =>,所以当且仅当2PF 取得最小值时,PT 取得最小值.而2PF 的最小值为a c -, 所以PT23()2a c -, 所以22()4()a cbc --,所以2()a c b c --,所以2a c b +, 所以()222()4a c a c +-,所以225302c ac a +-≥,所以25230e e +-.①又b c >,所以22b c >,所以222a c c ->,所以221e <.② 联立①②,得3252e <.故答案为:3,52⎡⎢⎣⎭【点睛】本题主要考查了椭圆的性质,离心率的计算公式,圆的切线的性质,勾股定理,一元二次不等式的解法,属于基础题18.②④【分析】由题意曲线是平面内与两个定点和的距离的积等于常数利用直接法设动点坐标为及可得到动点的轨迹方程然后由方程特点即可加以判断【详解】解:对于①由题意设动点坐标为则利用题意及两点间的距离公式的得解析:②④ 【分析】由题意曲线C 是平面内与两个定点1(1,0)F -和2(1,0)F 的距离的积等于常数2(1)a a >,利用直接法,设动点坐标为(,)x y ,及可得到动点的轨迹方程,然后由方程特点即可加以判断. 【详解】解:对于①,由题意设动点坐标为(,)x y ,则利用题意及两点间的距离公式的得:22224[(1)][(1)]x y x y a ++-+=,将原点代入验证,此方程不过原点,所以①错;对于②,把方程中的x 被x -代换,y 被y - 代换,方程不变,故此曲线关于原点对称,故②正确;对于③,221y x =--,224211y x a ∴+=--,P ∴到原点的距离不,当P 在y 轴时取等号,此时12PF PF a ==,122PF PF a +=故③错误;对于④,由题意知点P 在曲线C 上,则△12F PF 的面积12122F PF Sy y =⨯⨯=,由①知221y x =--或221y x =--t ,则2424t a x -=,24442211(2)4444t a a a y t t -∴=--+=--+,1222212F PF S y a ∴=,故④正确.故答案为:②④.【点睛】本题考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性及利用解析式选择换元法求出值域.19.【分析】由已知可得而由可求出点的坐标再将点的坐标代入椭圆方程中再结合可求出的值【详解】解:由题意设椭圆的标准方程为因为为椭圆的左焦点所以因为所以设点的坐标为则解得则所以点的坐标为因为为椭圆上一点所以解析:2213616x y +=【分析】由已知可得 c =||||OP OF ==,||4PF =,可求出点P 的坐标,再将点P 的坐标代入椭圆方程中,再结合222a b c =+,可求出22a b ,的值.【详解】解:由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,因为(F -为椭圆C 的左焦点,所以c =,因为||||OP OF =,所以||||OP OF ==,设点P 的坐标为(,)P m n ,则11422OF n ⋅=⨯解得n =m =, 所以点P 的坐标为⎛ ⎝, 因为P 为椭圆C 上一点, 所以223664155a b += 因为22220a b c -==,所以解得2236,16a b ==,所以椭圆的标准方程为2213616x y +=,故答案为:2213616x y +=【点睛】此题考查的是椭圆的简单的几何性质,考查了运算能力,属于中档题.20.【分析】由双曲线的方程的左右焦点分别为为双曲线上的一点为双曲线的渐近线上的一点且都位于第一象限且可知为的三等分点设将坐标用表示并代入双曲线方程即可得到离心率的值【详解】由双曲线的方程的左右焦点分别为2由双曲线的方程22221x y a b-=的左右焦点分别为1F ,2F ,P 为双曲线C 上的一点,Q 为双曲线C 的渐近线上的一点,且P ,Q 都位于第一象限,且22QP PF =,120QF QF ⋅=, 可知P 为2QF 的三等分点,设()11,P x y ,将坐标用,,a b c 表示,并代入双曲线方程,即可得到离心率的值. 【详解】由双曲线的方程22221x y a b-=的左右焦点分别为1F ,2F ,P 为双曲线C 上的一点,Q 为双曲线C 的渐近线上的一点,且P ,Q 都位于第一象限,且22QP PF =,120QF QF ⋅=, 可知P 为2QF 的三等分点,且12QF QF ⊥, 点Q 在直线0bx ay -=上,并且OQ c =,则(),Q a b ,()2,0F c , 设()11,P x y ,则()()11112,,x a y b c x y --=--, 解得123a c x +=,123b y =,即22,33a c b P +⎛⎫⎪⎝⎭,代入双曲线的方程可得()2224199a c a +-=,解得2c e a ==,2. 【点睛】本题考查双曲线的几何性质,离心率的求法,考查转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,转化为a ,c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).三、解答题21.(1)2212x y +=(2)一定经过定点,定点为(0,3).【分析】(1)根据离心率求出2212b a =,代入M ⎛ ⎝⎭可得22a =,从而可得椭圆方程; (2)设直线AB 的斜率为k ,则直线AC 的斜率为14k,联立直线与椭圆方程求出B 、C 的坐标,求出直线BC 的方程,令0x =,得3y =,由此可得答案.(1)设椭圆C 的方程为22221(0)x y a b a b+=>>,由c e a ==得c =,所以2222221122b a c a a a =-=-=, 所以222221x y a a +=,因为椭圆C经过点M ⎛ ⎝⎭, 所以2212121aa⨯+=,得22a =, 所以椭圆C 的方程为2212x y +=.(2)由椭圆的方程得(0,1)A ,设直线AB 的斜率为k ,则直线AC 的斜率为14k, 所以直线AB 、AC 的方程分别为:1y kx =+,114y x k=+, 联立22112y kx x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得22(12)40k x kx ++=, 解得0x =或2412k x k =-+,所以2412Bk x k =-+,221212B k y k -=+, 所以222412(,)1212k k B k k --++,同理可得222881(,)1881k k C k k --++,所以22222281128112841812BCk k k k k k k k k ---++==-+++2412k k +, 所以直线BC 的方程为:222212414()12212k k ky x k k k -+-=+++,令0x =,得3y =,所以直线BC 一定经过一定点(0,3). 【点睛】关键点点睛:求出直线BC 的斜率和方程是解题关键.22.(1)2212x y +=;(2)存在,(2,0)D .【分析】(1)题意说明a =P 的坐标代入22x +22y b =1,可得b ,即得椭圆方程;(2)设存在定点D 满足条件.设(,0)D t ,直线l 方程为x my t =+,11(,)A x y ,22(,)B x y ,则22(,)E x y -,将直线l 代入椭圆方程得y 的二次方程,判别式大于0,应用韦达定理得1212,y y y y +,A ,F ,E 三点共线即,FE FA 共线,由向量共线得一等式,代入1212,y y y y +可求得t . 【详解】解(1)因为2a =,所以a =(1,2P 代入22221x y a b +=,得1b =,所以椭圆C 的方程为2212x y +=.(2) 存在点(2,0)D 满足条件.设(,0)D t ,直线l 方程为x my t =+,11(,)A x y ,22(,)B x y ,则22(,)E x y -联立2212x my t x y =+⎧⎪⎨+=⎪⎩,消去x ,得222(2)220m y mty t +++-= 12222mt y y m ∴+=-+,212222t y y m -=+且0∆>,由,,A F E 三点共线,得2112(1)(1)0x y x y -+-=,所以12122(1)()0my y t y y +-+=,所以222222(1)()022t mtm t m m -⋅+-⋅-=++解得2t =.所以存在定点(2,0)D 满足条件.【点睛】方法点晴:解法中体现了“设而不求”的思想,即设交点A (x 1,y 1),B (x 2,y 2),设直线l 的方程为x =my +t ,代入椭圆方程得y 的二次方程(判别式大于0), 应用韦达定理得1212,y y y y +,代入题中另外的条件求解.23.直线AB 的方程为3y x =-+,椭圆2C 的方程为221168x y+=.【分析】利用点差法求出直线AB 的斜率,再将直线AB 的方程与圆的方程联立,求出交点A 、B的坐标,再将交点A 坐标代入椭圆2C 的方程,可求得c 的值,进而可得出椭圆2C 的方程. 【详解】因为椭圆2C的离心率为c e a ==a =,b c ∴==, 所以,椭圆2C 的方程为222212x y c c+=,即22222y c x +=.设点()11,A x y 、()22,B x y ,由于AB 为圆1C 的直径,则AB 的中点为()12,1C . 若直线AB 的斜率不存在,则AB 的中点在x 轴上,不合乎题意.由已知可得12122212x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,可得121242x x y y +=⎧⎨+=⎩. 由于A 、B 两点都在椭圆2C 上,则22211222222222x y c x y c⎧+=⎨+=⎩, 两式作差得()()2222121220x x y y -+-=,可得2212221212y y x x -=--, 所以,11212121212121122AB OC y y y y y y k k x x x x x x -+-=⋅=⋅=--+-,1AB k ∴=-, 所以,直线AB 的方程为()12y x -=--,即3y x =-+,联立()()22320213y x x y =-+⎧⎪⎨-+-=⎪⎩,解得1121x y ⎧=⎪⎪⎨⎪=-⎪⎩或2221x y ⎧=-⎪⎪⎨⎪=+⎪⎩,即点2A ⎛- ⎝⎭、2B ⎛+ ⎝⎭,将点A 的坐标代入椭圆2C的方程可得22222211633c ⎛⎫⎛=++-= ⎪ ⎪ ⎝⎭⎝⎭,则28c =. 因此,椭圆2C 的方程为221168x y +=.【点睛】方法点睛:解决中点弦的问题的两种方法:(1)韦达定理法:联立直线与曲线的方程,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;(2)点差法:设出交点坐标,利用交点在曲线上,坐标满足方程,将交点坐标代入曲线方程,然后作差,构造出中点坐标和斜率关系求解. 24.(1)611y x =-;(2. 【分析】(1)利用点差法求出直线斜率,检验直线与双曲线位置关系,得到直线的方程; (2)联立直线与双曲线方程,结合韦达定理利用弦长公式即可得解. 【详解】(1)设()(),,,A m n B a b ,P 为AB 的中点4,2a m b n +=+=2213b a -=,2213n m -=,两式相减得:222203b a n m --=-,()()()()03b n b n a m a m +-+--=,所以()()2403b n a m ---= 所以直线AB 的斜率6b nk a m-==-, 直线AB 的方程()162y x -=-即611y x =-,将611y x =-代入双曲线2213yx -=,21321240,1321324331241333280x x -+=∆=⨯-⨯⨯=⨯>满足题意所以直线AB 的方程611y x =-;(2)由(1)将611y x =-代入双曲线2213yx -=,21241321240,4,3333x m a m x a -+=+==,33AB m =-==【点睛】此题考查利用点差法解决中点弦问题,求解直线方程,需要注意检验直线与双曲线的交点情况,根据韦达定理求解弦长. 25.(1)8;(2)是,定值为2. 【分析】(1)联立直线与抛物线得出韦达定理,即可求出弦长;(2)设出直线方程,联立直线与抛物线方程,利用韦达定理表示出13k k +,即可得出定值. 【详解】(1)可得3,02F ⎛⎫⎪⎝⎭,直线的倾斜角为60则直线方程为32y x ⎫=-⎪⎭,设()()1122,,,A x y B x y ,联立直线与抛物线2326y x y x ⎧⎫=-⎪⎪⎭⎨⎪=⎩可得242090x x -+=, 则121295,4x x x x +==, 123538AB x x =++=+=;(2)可知直线l 的斜率不为0,则设直线l 的方程为3x my =+,m R ∈, 设()3,P t -,()11,M x y ,()22,N x y , 把3x my =+代入26y x =得26180y my --= ∴126y y m +=,1218y y =-, ∴12121312123366y t y t y t y tk k x x my my ----+=+=+++++ ()()()()()()1221126666y t my y t my my my -++-+=++()()()1212212122612636my y tm y y t m y y m y y +-+-=+++()()()221866121866363m tm m t t m m m ⨯-+-⋅-==-⨯-+⋅+,26tk =-,132k k k μ+=,36t t μ⎛⎫∴-=⨯- ⎪⎝⎭,P 为3x =-上的任意一点,t ∴不恒为0,2μ∴=,即μ为定值2.【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解. 26.(1)83;(2)128OMCS ⎡∈⎢⎣⎦. 【分析】(1)联立方程组,由韦达定理及斜率公式运算即可得解;(2)设直线l 的方程,联立方程组结合韦达定理得2443M km x k =-+,2343Mmy k =+,进而可得243C m y k =-+,由弦长公式可得()222224314341k m k k +=+-⋅+,表示出OMC S 后,由对勾函数的性质即可得解. 【详解】(1)椭圆22:143x y Γ+=的左焦点为()1,0-,则直线l 的方程为:1y x =+,设()()1122,,,A x y B x y ,由221143y x x y =+⎧⎪⎨+=⎪⎩化简得27880x x +-=,则121288,77x x x x +=-=-,所以12121212121212121221181113x x x x x x x x k k y y x x x x x x +++=+=+==+++++; (2)设直线l 的方程为:y kx m =+,()()1122,,,A x y B x y ,由22143y kx m x y =+⎧⎪⎨+=⎪⎩得:()2224384120k x kmx m +++-=,由韦达定理可知21212228412,4343km m x x x x k k -+=-=++, 所以2443M km x k =-+,2343M Mm y kx m k =+=+, 线段AB 的中垂线方程为221434343km my x k k k ⎛⎫=-++ ⎪++⎝⎭, 整理得2143m y x k m =--+,所以243C my k =-+,又AB ==整理可得:243k =+,即()222224314341km k k +=+-⋅+①,所以()22222411222434343OMDM m km k S OC x m k k k =⋅=⋅⋅=⋅+++△, 将①代入整理可得2211112231432124OMC kk S k k k k k k=⋅-⋅=⋅-⋅++++△,因为23,14k ⎡⎤∈⎢⎥⎣⎦,所以k ⎤∈⎥⎣⎦, 而1112,3124y y k k k k=⋅=-⋅++都是关于k在2⎤⎥⎣⎦上的单调递减函数, 所以当1k =时,OMC S有最小值128,当k =时,OMC S,所以1,2842OMC S ⎡∈⎢⎣⎦△.【点睛】关键点点睛:解决本题的关键是由韦达定理及弦长公式转化出OMCS 关于斜率k 的表达式,再结合对勾函数的性质即可得解.。

高二数学选修2-1综合测试题(带答案)

高二数学选修2-1综合测试题(带答案)

高二数学选修2-1测试题(120分钟150分)班级姓名成绩一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题“如果-1≤a≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为 ”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A.0个B.1个C.2个D.4个【变式训练】命题“若C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这4个命题中,真命题的个数是( )A.0B.1C.2D.32.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥l2C.m ∥β且n ∥βD.m∥β且n∥l2【变式训练】有下述说法:①a>b>0是a2>b2的充要条件;②a>b>0是<的充要条件;③a>b>0是a3>b3的充要条件.其中正确的说法有( )A.0个B.1个C.2个D.3个3. “1<m<3”是“方程+=1表示椭圆”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知抛物线y2=2px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为( )A. B.+1 C.+1 D.【变式训练】若双曲线C:x 2-=1(b>0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A.2B.C.3D.5.已知命题p:∀x∈R,x ≥2,那么下列结论正确的是( )A.命题p:∀x∈R,x≤2B.命题p:∃x0∈R,x0<2C.命题p:∀x∈R,x≤-2D.命题p:∃x0∈R,x0<-26.已知矩形ABCD中,AB=1,BC=,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则B与D之间的距离为( )A.1B.C.D.7.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若=10,则AB的中点到y轴的距离等于( )A.1B.2C.3D.48.在四边形ABCD中,“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( )A.60°B.90°C.45°D.以上都不正确10.设F1,F2是双曲线x2-4y2=4a(a>0)的两个焦点,点P在双曲线上,且满足:·=0,||·||=2,则a的值为( )A.2B.C.1D.11.点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则·的取值范围是( )A. B.C.[-1,0]D.12.已知正六边形ABCDEF的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是( )A. B. C. D.2二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.抛物线焦点在y轴上,且被y=x+1截得的弦长为5,则抛物线的标准方程为.14.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,M是AB上一点,则PM的最小值为.15.在四棱锥P-ABCD中,ABCD为平行四边形,AC与BD交于O,G为BD上一点,BG=2GD,=a,=b,=c,试用基底{a,b,c}表示向量= .16.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2的点的轨迹.给出下列四个结论:①曲线C过点(-1,1);②曲线C关于点(-1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则+不小于2k.④设P0为曲线C上任意一点,则点P0关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1,P2,P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)设p:关于x的不等式a x>1(a>0且a ≠1)的解集为{x|x<0},q:函数y=l g(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围. 18.(12分)如图,正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1.(2)用向量法证明MN⊥平面A1BD.19.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求直线l的方程;若不存在,说明理由.20.(12分)设F1,F2为椭圆+=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.(1)求|PF1|的长度.(2)求的值. 21.(12分)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成角的正弦值.(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.(12分)如图,四棱柱ABCD -A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE.(2)求二面角B1-CE-C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.高二数学选修2-1测试题答案一、选择题1、【解析】选C.当-1≤a≤1时,Δ=(a+2)2+4(a2-4)=5--12≤5--12<0,所以原命题为真,逆否命题亦为真.反之,如a=-2时,所给不等式的解集即为空集,但a∉[-1,1],所以逆命题为假,故否命题亦为假.【变式训练】【解析】选C.原命题是真命题.其逆命题为“若△ABC是直角三角形,则C=90°”,这是一个假命题,因为当△ABC为直角三角形时,也可能A或B为直角.这样,否命题是假命题,逆否命题是真命题.因此真命题的个数是2.2.【解析】选B.对于选项A,α,β也可能相交,此时,l1,m都平行于交线,是必要不充分条件;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选项B符合题意;对于选项C,由于m,n不一定相交,故是必要不充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,【变式训练】【解析】选 A.a>b>0⇒a2>b2,a2>b2⇒|a|>|b|⇒a>b>0,故①错.a>b>0⇒<,但<⇒a>b>0,故②错.a>b>0⇒a3>b3,但a3>b 3⇒a>b>0故③错故选A.3. 【解析】选 B.当方程+=1表示椭圆时,必有所以1<m<3;但当1<m<3时,该方程不一定表示椭圆,如当m=2时,方程变为x 2+y2=1,它表示一个圆.4【解析】选B.如图,由双曲线-=1,且AF⊥x轴得-=1得|y|=,由抛物线y2=2px的定义得AF=p,即=2c.得b2=2ac,所以=,e2-1=2e,所以e=+1.【拓展延伸】求离心率的方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=.已知其中的任意两个参数,可以求其他的参数.这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率.这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.【变式训练】【解析】选B.由双曲线方程知a=1,所以c=,所以一条渐近线的方程为y=bx,即bx-y=0.所以=,解得b=1,所以c=,所以e==.5.【解析】选B.全称命题的否定是特称命题,所以命题p:∃x0∈R,x0<2.6. 【解析】选B.过B,D分别向AC作垂线,垂足分别为M,N.则可求得AM=,BM=,CN=,DN=,MN=1.由于=++,所以||2=(++)2=||2+||2+||2+ 2(·+ ·+·)=+12++2(0+0+0)=,所以||=.7.【解析】选D.抛物线y2=4x的焦点(1,0),准线为l:x=-1,设AB的中点为E,过A,E,B分别作准线的垂线,垂足分别为C,F,D,EF交纵轴于点H,如图所示,则由EF为直角梯形的中位线知,|EF|===5,所以EH=EF-1=5-1=4,即AB的中点到y 轴的距离等于4.8. 【解析】选C.若=λ,=λ,则∥,∥,即AB∥DC,AD∥BC,所以四边形ABCD为平行四边形.反之,若四边形ABCD为平行四边形,则有AB∥DC,AD∥BC且AB=DC,AD=BC ,即=,=,此时λ=1,所以∃λ∈R ,使得=λ,=λ成立.所以“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的充分必要条件.9. 【解析】选B.以点D为原点,直线DA,DC,DD 1分别为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z).则⇒令z=1,得y=1,x=0.所以n=(0,1,1),cos<n ,>===-1.所以<n ,>=180°.所以直线AE与平面A1ED1所成的角的大小为90°.10. 【解析】选C.双曲线方程化为-=1(a>0),因为·=0,所以PF1⊥PF2.所以||2+||2=4c2=20a. ①由双曲线定义||-||=±4,②又已知||·||=2,③由①②③得20a-2×2=16a,所以a=1.11. 【解析】选D.如图所示建立空间直角坐标系,则A(1,0,1),C1(0,1,0).设P(x,y,0)其中0≤x≤1,0≤y≤1.则=(1-x,-y,1) =(-x,1-y,0)所以·=(1-x,-y,1)·(-x,1-y,0)=+-,因为+的几何意义是平面区域到点的距离的平方,所以当x=y=时,+有最小值0,当x=y=0或x=y=1或x=1,y=0或x=0,y=1时,+有最大值,所以-≤+-≤0,即·的取值范围是.12. 【解析】选B.设抛物线方程为y2=2px(p>0),根据对称性可知,正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px上,设A(x1,1),F(x2,2),则即x2=4x1,又AF==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,即p===.二、填空题13.【解析】设抛物线方程为x2=my,联立抛物线方程与直线方程y=x+1并消元,得:2x2-mx-2m=0,所以x1+x2=,x1x2=-m,所以5=,把x1+x2=,x1x2=-m代入解得m=4或m=-20.所以抛物线的标准方程为x2=4y或x2=-20y. 答案:x2=4y或x2=-20y 14.【解析】由条件知PC,AC,BC 两两垂直,设=a ,=b ,=c,则a·b=b·c=c·a=0,因为∠BAC=60°,AB=8,所以|a |=||=8cos60°=4,|b |=||=8sin60°=4,|c |=||=4.设=x=x(b -a),其中x∈[0,1],则=++=-c+a+x(b-a)=(1-x)a+x b-c,||2=(1-x)2|a|2+x2|b|2+|c|2+2(1-x)x a·b-2x b·c-2(1-x)a·c=16(1-x) 2+48x2+16=32(2x2-x+1)=64+28,所以当x=时,||2取最小值28,所以||min =2. 答案:215. 【解析】因为BG=2GD ,所以=.又=+=-+-=a+c-2b,所以=+=b +(a+c-2b)=a -b +c.答案:a -b +c16.【解析】设动点为(x,y),则由条件可知·=k2,①,将(-1,1)代入得0=k2,因为k>0,所以不成立,故方程不过点(-1,1),①错误.②,把方程中的x用-2-x代换,y用2-y代换,方程不变,故此曲线关于点(-1,1)对称,②正确.③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则≥,≥,所以+≥2=2k,故③正确.④,由题意知点P0在曲线C上,根据对称性,则四边形P0P1P2P3的面积为2·2=4·=4k2,所以④正确.综上所述,正确结论的序号是②③④.答案:②③④三、解答题17.【解析】当p真时,0<a<1,当q 真时,即a>,所以p假时,a>1,q假时,a ≤.又p和q有且仅有一个正确,当p真q假时,0<a ≤;当p假q真时,a>1. 综上a 的取值范围为∪(1,+∞). 18.【证明】(1)在正方体ABCD-A1B1C1D1中,=-,=-,又因为=,=,所以=,所以BD∥B1D1.又B1D1⊂平面B1CD1,BD⊄平面B1CD1,所以BD∥平面B1CD1,同理可证A1B∥平面B1CD1.又BD∩A1B=B,所以平面A1BD∥平面B1CD1.(2)=++=++(+)=++(-+)=++.设=a ,=b ,=c,则=(a+b+c).又=-=b-a,所以·=(a+b+c)·(b-a)=(b2-a2+c·b-c·a).又因为⊥,⊥,所以c·b=0,c·a=0.又|b|=|a|,所以b2=a2.所以b2-a2=0.所以·=0.所以MN⊥BD.同理可证,MN⊥A1B.又A1B∩BD=B,所以MN⊥平面A1BD.19.【解析】(1)将A(1,-2)代入y2=2px,得(-2)2=2p·1,所以p=2.故所求抛物线C的方程为y2=4x,其准线方程为x=-1.(2)假设存在符合题意的直线l,其方程为y=-2x+t.由得y2+2y-2t=0.因为直线l与抛物线C有公共点,所以Δ=4+8t≥0,解得t≥-.由直线OA与l的距离d=,可得=,解得t=±1.因为-1∉,1∈,所以符合题意的直线l存在,其方程为2x+y-1=0.20.【解析】(1)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8.(2)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,|PF2|=,所以=.若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8,|PF2|=4,所以=2,综上,=2或.21.【解析】设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系Axyz.(1)依题意,得B(1,0,0),E,A(0,0,0),D(0,1,0),所以=,=(0,1,0).在正方体ABCD-A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE和平面ABB1A1所成的角为θ,则sinθ===.故直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=.设n=(x,y,z)是平面A1BE的一个法向量,则由n ·=0,n ·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).因为F是棱C1D1上的点,则F(t,1,1)(0≤t≤1). 又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE ⇒·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.22.【解题指南】方法一:(1)建立空间直角坐标系,写出,的坐标,利用数量积证明.(2)求出平面B1CE与平面CEC1的法向量,由法向量的夹角余弦值求二面角的正弦值.(3)用直线AM的方向向量与平面ADD1A1的法向量表示直线AM与平面ADD1A1所成角的正弦,确定向量的坐标,由向量的模求线段AM的长.方法二:(1)要证明线线垂直,先证明线面垂直,关键是找出与线B1C1垂直的平面CC1E,然后进行证明.(2)要求二面角B1-CE-C1的正弦值,关键是构造出二面角B1-CE-C1的平面角,然后在三角形中求解.(3)首先构造三角形,设AM=x,在直角三角形AHM,C1D1E中用x表示出AH,EH的长度,最后在三角形AEH中利用余弦定理求解.【解析】如图,以点A为坐标原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)易得=(1,0,-1),=(-1,1,-1),于是·=0,所以B1C1⊥CE.(2)=(1,-2,-1),设平面B1CE的法向量m=(x,y,z),则即消去x,得y+2z=0,不妨设z=1,可得一个法向量为m=(-3,-2,1).由(1)知B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.于是cos<m ,>===-,从而sin<m ,>=.所以二面角B1-CE-C1的正弦值为.(3)=(0,1,0),=(1,1,1),设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sinθ====.于是=,解得λ=,所以AM=.【一题多解】(1)因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1,经计算可得B1E=,B1C1=,EC1=,从而B1E2=B 1+E,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连接C1G,由(1)知,B1C1⊥CE,B1C1,B1G⊂平面B1C1G,B1C1∩B1G=B1,故CE⊥平面B1C1G,又C1G⊂平面B1C1G ,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=x,AH=x,在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=x,在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos135°,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.。

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案本试题满分150分,用时100分钟)一、选择题:1.命题“若a>b,则a-8>b-8”的逆否命题是()A.若a<b,则a-8<b-8B.若a-8≤b-8,则a≤bC.若a≤b,则a-8≤b-8D.若a-8b2.如果方程x^2+ky^2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0.+∞)B.(0.2)C.(0.1)D.(1.+∞)3.已知x-3x+2≥0,2x-2≥1,则“非P”是“非Q”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4.双曲线16/(x^2)-9/(y^2)=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是()A、24B、25C、26D、285.若焦点在轴上的椭圆x^2/3+y^2/2=1的离心率为e,则m=A.3B.38/2C.23/2D.33/26.在同一坐标系中,方程x^2/2+y^2/2=1与ax+by^2=(a>b>)的曲线大致是()ab7.椭圆25x^2+16y^2=400的面积为()A.9B.12C.10D.88.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则E到平面ABC1D1的距离是()A.√2/2B.√6/2C.√3/2D.√29.若向量a与b的夹角为60°,b=4,(a+2b)(a-3b)=-72,则a=A.2B.4C.6D.1210.方程x^2/k-y^2/k=1表示双曲线,则k的取值范围是()A.-1<k<1B.k>0XXX≥1D.k>1或k<-111.方程x^2/a^2+y^2/b^2=1(a>b>0,k>且k≠1),与方程y^2/a^2+x^2/b^2=1的图形是()两个坐标轴上的椭圆12.若x^2+y^2+z^2=1,则x^2y^2+y^2z^2+z^2x^2的最大值为()1/3二、填空题:13.当k>1时,曲线x^2/k-y^2/k=1是()。

高中新课标数学选修(2-1)椭圆练习题

高中新课标数学选修(2-1)椭圆练习题

椭圆及其标准方程基础卷1.椭圆2211625x y +=的焦点坐标为(A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0)2.在方程22110064x y +=中,下列a , b , c 全部正确的一项是 (A )a =100, b =64, c =36 (B )a =10, b =6, c =8 (C )a =10, b =8, c =6 (D )a =100, c =64, b =36 3.已知a =4, b =1,焦点在x 轴上的椭圆方程是(A )2214x y += (B )2214y x += (C )22116x y += (D )22116y x += 4.已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是(A )2213620x y += (B )2212036x y += (C )2213616x y += (D )2211636x y += 5.若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是 (A )4 (B )194 (C )94 (D )146.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 7.若y 2-lga ·x 2=31-a 表示焦点在x 轴上的椭圆,则a 的取值范围是 . 8.当a +b =10, c =25时的椭圆的标准方程是 .9.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ’,则线段PP ’的中点M 的轨迹方程为 .10.经过点M (3, -2), N (-23, 1)的椭圆的标准方程是 .11.椭圆的两焦点为F 1(-4, 0), F 2(4, 0),点P 在椭圆上,已知△PF 1F 2的面积的最大值为12,求此椭圆的方程。

2017选修2-1《双曲线》练习题经典(含答案)

2017选修2-1《双曲线》练习题经典(含答案)

《双曲线》练习题一、选择题:1.已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是()A.17B.15C.174 D.1542.中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为()A.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2=D.x2﹣y2=3.在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2x﹣y=0,则双曲线C的标准方程为()A.B.C.或D.4.1(a>b>0)1有相同的焦点,则椭圆的离心率为()A B C D5.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为()A.2 B.C.D.7.的圆相切,则双曲线的离心率为()A B C D 8.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为( ) A.3 B.62 C.63D.339.已知双曲线221(0,0)x y m n m n-=>>的一个焦点到一条渐近线的距离是2,一个顶点,则m 等于( ) A .9 B .4 C .2 D .,310.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,MF MF MF MF ==则该双曲线的方程是( ) A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1D.x 27-y 23=1 11.ABC ∆是等腰三角形,B ∠=︒120,则以B A ,为焦点且过点C 的双曲线的离心率为 ( D )12.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .4 2B .83C .24D .4813.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( ) A .28B .14-82C .14+8 2D .8 214.双曲线122=-y x 的一弦中点为(2,1),则此弦所在的直线方程为 ( ) A. 12-=x y B. 22-=x y C. 32-=x y D. 32+=x y15.已知双曲线﹣=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A .﹣=1B .﹣=1 C .﹣=1 D .﹣=116.设双曲线﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心,|F 1F 2|为半径的圆与双曲线在第一、二象限内依次交于A ,B 两点,若3|F 1B |=|F 2A |,则该双曲线的离心率是( )A .B .C .D .217.半径不等的两定圆O 1、O 2无公共点(O 1、O 2是两个不同的点),动圆O 与圆O 1、O 2都内切,则圆心O 轨迹是( )A .双曲线的一支B .椭圆或圆C .双曲线的一支或椭圆或圆D .双曲线一支或椭圆18. 过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有( )条。

2018-2019学年人教A数学选修2-1第五单元单元检测卷:双曲线B卷

2018-2019学年人教A数学选修2-1第五单元单元检测卷:双曲线B卷

试卷第 8 页,总 17 页
B 【考点】
双曲线的特性 【解析】 此题暂无解析
回答下列问题: (1)求过点(2,−2)且与双曲线x22−y2 = 1有公共渐近线的双曲线的方程;
(2)求双曲线x42−y52 = 1的焦点到其渐近线的距离.
已知双曲线C:x42−y2 = 1,P为双曲线C上任意一点. (1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)若点A(3, 0),求|PA|的最小值.
直线l有( A.4条
) B.3条
C.2条
D.1条
6. 将双曲线ax22−by22 = 1(a > 0,b > 0)的右焦点、右顶点、虚轴的一个端点所组成的三角形叫
做双曲线的“黄金三角形”,则双曲线C:x2−y2 = 16的“黄金三角形”的面积是( )
A.4 2−4
B.8 2−8
C.4
D.8
试卷第 1 页,总 17 页
2. 下列双曲线不是以2x ± 3y = 0为渐近线的是( ) A.x92−y42 = 1 B.y42−x92 = 1 C.x42−y92 = 1 D.1y22−2x72 = 1
3. 若双曲线ax22−by22 = 1(a > 0, b > 0)的一条渐近线经过点(3,−4),则该双曲线的离心率为
()
3.
{ { b

a= 3 ab = 4
,得 3
a=2 b=2
3,
所以双曲线C的标准方程为x42−1y22 = 1.
故选A. 10. 【答案】 A 【考点】 双曲线的特性 【解析】 此题暂无解析 【解答】
解:由M→F1


MF2
=
0可得MF1

高中数学选修2-1综合试卷

高中数学选修2-1综合试卷

高中数学选修2-1综合试卷数学选修2-1一、选择题1.椭圆的焦点坐标为(XXX.)。

2.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于(B)。

3.在正方体中,异面直线与所成角的大小为(45°),则顶点A的轨迹方程是(x+y+z=0)。

4.已知中,点O为正方体的中心,异面直线所成角为60°,则顶点A的轨迹方程是(x+y+z=0)。

5.已知在抛物线上,且P到焦点的距离为10,则焦点到准线的距离为(8)。

6.命题“的否定是()。

7.给出如下四个命题:1.若“p且q”为假命题,则p、q均为假命题;2.命题“若,则”的否命题为“若,则”;3.“,”的否定是“,”;4.在中,“”是“”的充要条件。

其中正确的命题的个数是(B)。

8.椭圆中,以点为中点的弦所在直线斜率为(0)。

9.若A点坐标为(-3,0),是椭圆的最大值为(4),的左焦点,点P是该椭圆上的动点,则(AP+PF=6)。

10.若点O和点F分别为椭圆的最大值为3的中心和左焦点,点P为椭圆上的任意一点,则(OP²=OF²+FP²)。

11.直线l:过双曲线的一个焦点且与其一条渐近线平行,则该双曲线的方程为(y=±(x²/2))。

12.四棱锥中,底面ABCD为直角梯形,且∠BAC=∠BCD=45°,平面ABCD且平面PCD所成角的正弦值为(1/3),则PB与平面的法向量为(-2,1,2)。

二、填空题13.抛物线的准线方程为(y=p)。

14.若方程的曲线是椭圆,则k的取值范围是(0<k<1)。

15.“”是“直线和直线平行”的充要条件。

16.给出下列命题:直线l的方向向量为(1,2,3),直线l的方向向量1,2,3,直线m的方向向量2,1,1,平面的法向量1,2,-1,则向量1,2,-1与平面垂直;平面经过三点(1,0,0),(0,1,0),(0,0,1),u=2,3,-1是平面的法向量,则真命题的是(命题1和命题3)。

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案

(选修2-1)模块测试试题命题人:铁一中 周粉粉(本试题满分150分,用时100分钟)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若a b >,则88a b ->-”的逆否命题是 ( )A.若a b <,则88a b -<-B.若88a b ->-,则a b >C.若a ≤b ,则88a b -≤-D.若88a b -≤-,则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0, +∞)B .(0, 2)C .(0, 1)D . (1, +∞)3.P:12≥-x ,Q:0232≥+-x x ,则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则∆PF 1F 2的面积为( )A.9B.12C.10D.8 8.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线,则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0,k >0且k ≠1),与方程12222=+by a x (a >b >0)表示的椭圆( ) (A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题,每小题6分,共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的 (①.充分而不必要条件,②.必要而不充分条件 ,③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .16.抛物线的的方程为22x y =,则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。

(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测(有答案解析)(4)

(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测(有答案解析)(4)

一、选择题1.已知离心率为3的椭圆()2211x y m m +=>的左、右顶点分别为A ,B ,点P 为该椭圆上一点,且P 在第一象限,直线AP 与直线4x =交于点C ,直线BP 与直线4x =交于点D ,若83CD =,则直线AP 的斜率为( ) A .16或120 B .121C .16或121D .13或1202.设F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,过坐标原点的直线依次与双曲线C 的左.右支交于点P Q 、,若2,60PQ QF PQF =∠=︒,则该双曲线的离心率为( )A .1BC .2D .4+3.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .234.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆内,则双曲线离心率的取值范围是( )A .(B .(1,1C .)+∞D .()1++∞5.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .256.设1F 、2F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,若双曲线的右支上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||3||PF PF =,则双曲线C 的离心率为( ).ABC .31+D .62+7.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( ) A .910+B .926+C .712612+ D .832612+ 8.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .9169.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .610.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C .(625)π-D .54π 11.设P 是椭圆221259x y +=上一点,M 、N 分别是两圆:()2241x y ++=和()2241x y -+=上的点,则PM PN +的最小值和最大值分别为( )A .9,12B .8,11C .8,12D .10,1212.已知1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,抛物线28y x=的焦点与双曲线的一个焦点重合,点P 是两曲线的一个交点,12PF PF ⊥且121PF F S =△,则双曲线的离心率为( )A .3B .23C .433D .2二、填空题13.已知双曲线()222210,0x y a b a b-=>>与圆222x y b +=在第二、四象限分别相交于两点A 、C ,点F 是该双曲线的右焦点,且2AF CF =,则该双曲线的离心率为______. 14.已知抛物线2:4E x y =,过点(2,1)P -作E 的两条切线,切点分别为,A B ,则AB =________.15.已知椭圆22221(0)x y a b a b+=>>与直线11:2l y x =,21:2l y x =-,过椭圆上一点P作12,l l 的平行线,分别交12,l l 于,M N 两点,若||MN 为定值,则ab=__________. 16.点(,)P x y 是曲线22:143x y C +=上一个动点,则23x y +的取值范围为______.17.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.18.数学中有许多寓意美好的曲线,曲线22322:()4C x y x y +=被称为“四叶玫瑰线”(如图所示).给出下列三个结论:①曲线C 关于直线y x =对称;②曲线C 上任意一点到原点的距离都不超过1;③2C 在此正方形区域内(含边界).其中,正确结论的序号是________.19.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:x0 4 26则2C 的虚轴长为______.20.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,第一象限的点P 在渐近线上,满足12F PF 2π∠=,直线1PF 交双曲线左支于点Q ,若点Q 是线段1PF 的中点,则该双曲线的离心率为_____.三、解答题21.点M 是椭圆223:11616x y C +=上一点,点A 是椭圆C 的左顶点,MO 的延长线交椭圆C于点B ,AMB 是以M 为直角顶点的三角形.若存在不同于点A ,B 的点C ,D ,使得0MC MD OA MC MD ⎛⎫⎪⋅+= ⎪⎝⎭,试探究直线AB 与CD 的位置关系,并说明理由. 22.在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的长轴长为准线的距离为8.(1)求椭圆的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 于不同于N 的A ,B 两点,直线NA,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.23.已知椭圆()2222:10x y M a b a b +=>>的一个顶点坐标为()2,0-线y x m =-+交椭圆于不同的两点A 、B . (1)求椭圆M 的方程;(2)设点()2,2C -,是否存在实数m ,使得ABC 的面积为1?若存在,求出实数m 的值;若不存在,说明理由.24.点A 是抛物线21:2(0)C y px p =>与双曲线2222:1(0)y C xb b-=>的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p . (1)求双曲线2C 的方程;(2)若直线:1l y kx =-与双曲线的右支交于两点,求k 的取值范围. 25.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,其中一个顶点是抛物线2x =-的焦点. (1)求椭圆C 的标准方程;(2)若过点(2,1)P 的直线l 与椭圆C 在第一象限相切于点M ,求直线l 的方程和点M 的坐标.26.已知P 是椭圆22:18x C y +=上的动点.(1)若A 是C 上一点,且线段PA 的中点为11,2⎛⎫ ⎪⎝⎭,求直线PA 的斜率; (2)若Q 是圆221:(1)49D x y ++=上的动点,求PQ 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由离心率求出9m =,设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---,设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k ,直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭,从而可表示出CD ,然后列方程可求出k 的值 【详解】由3e ==,得9m =. 设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---. 设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k .直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭.所以18793CD k k =+=,解得13k =(舍去)或121.故选:B. 【点睛】此题考查直线与椭圆的位置关系,考查直线方程的求法,考查计算能力,属于中档题2.A解析:A 【解析】∵|PQ |=2|QF |,∠PQF =60°,∴∠PFQ =90°, 设双曲线的左焦点为F 1,连接F 1P ,F 1Q ,由对称性可知,F 1PFQ 为矩形,且|F 1F |=2|QF|,1QF =, 不妨设()1220F F m m =>,则1,QF QF m ==,故121212F F c e a QF QF ====-. 本题选择A 选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则4MF ==,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.4.D解析:D 【分析】由题将x c =代入双曲线,可求出圆半径,再根据题意可得22bc a<,即可由此求出离心率.【详解】由题可得AB x ⊥轴,将x c =代入双曲线可得2by a=±,∴以AB 为直径的圆的半径为2b AF a=,双曲线的左焦点在以AB 为直径的圆内,22b c a∴<,即22b ac >,即222c a ac ->,两边除以2a 可得2210e e -->,解得1e <1e >故双曲线离心率的取值范围是()1+∞. 故选:D. 【点睛】本题考查双曲线离心率的取值范围的求解,解题的关键是求出圆半径,根据题意得出22b c a <.5.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y , 则2127·1616k PF PF x ==-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.6.C解析:C 【分析】由数量积为0推导出2OP OF =,在12Rt PF F 中求得1230PF F ∠=,由双曲线定义把2PF 用a 表示,在12Rt PF F 用正弦的定义可得离心率.【详解】 ∵22()0OP OF F P +⋅=,∴22()()0OP OF OP OF +⋅-=,即2220OP OF -=,21OP OF c OF ===,∴12PF PF ⊥,在12Rt PF F 中12||3||PF PF =,∴1230PF F ∠=, 又212PF PF a -=,∴2PF =2121sin 302PF F F ====∴21)a c =,1==ce a, 故选:C . 【点睛】关键点点睛:本题考查求双曲线的离心率,关键是找到关于,,a b c 的齐次式,本题中利用向量的数量积得出12PF PF ⊥,然后由两直角边比值求得一个锐角,利用双曲线的定义用a 表示出直角边,然后用直角三角形中三角函数的定义或勾股定理可得,a c 的齐次式,从而求得离心率.7.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A M y y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭,又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M AAM x x =-=-=,BM ==所以ABM 的周长为:2511944AB AM BM ++=++=+ 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 8.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.9.A解析:A 【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标. 【详解】由抛物线方程可知(1,0)F ,假设,A B 横坐标分别为12,x x ,由抛物线的准线的性质可知1212||264AB x x x x =++=⇒+=,AB 中点的横坐标为121()22x x +=.故选;A 【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为1125225O l d -=⨯=,圆C 面积的最小值为225455ππ⎛⎫= ⎪ ⎪⎝⎭.故本题的正确选项为A. 考点:抛物线定义. 11.C解析:C 【分析】先依题意判断椭圆焦点与圆心重合,再利用椭圆定义以及圆的性质得到最大值和最小值即可. 【详解】如图,由椭圆及圆的方程可知两圆圆心分别为()()4,0,4,0A B -,恰好是椭圆的两个焦点,由椭圆定义知210PA PB a +==,连接PA ,PB 分别与圆相交于M ,N 两点,此时PM PN +最小,最小值为28PA PB R +-=;连接PA ,PB 并延长,分别与圆相交于M ,N 两点,此时PM PN +最大,最大值为212PA PB R ++=.故选:C . 【点睛】本题考查了椭圆的定义,考查了圆外的点到圆上的点的距离最值问题,属于中档题.12.B解析:B 【分析】求出双曲线的半焦距,结合三角形的面积以及勾股定理,通过双曲线的定义求出a ,然后求解双曲线的离心率即可 【详解】由双曲线与抛物线有共同的焦点知2c =,因为12PF PF ⊥,且121PF F S =△,则122PF PF ⋅=,222212124PF PF F F c +==,点P 在双曲线上,则122PF PF a -=,故222121224PF PF PF PF a +-⋅=, 则22444c a -=,所以3a =23故选:B. 【点睛】本题考查双曲线以及抛物线的简单性质的应用,双曲线的定义的应用,考查计算能力,属于中档题..二、填空题13.【分析】画出图形结合双曲线的性质判断四边形的形状结合双曲线的定义求出三角形的边长通过勾股定理转化求解双曲线的离心率即可【详解】解:双曲线的右焦点为左焦点为根据对称性可知是平行四边形所以又点在双曲线上 解析:22 【分析】画出图形,结合双曲线的性质判断四边形的形状,结合双曲线的定义求出三角形的边长,通过勾股定理转化求解双曲线的离心率即可. 【详解】解:双曲线的右焦点为F ,左焦点为E ,根据对称性可知AFCE 是平行四边形,所以 ||2||2||AF CF AE ==,又点A 在双曲线上,所以||||2AF AE a -=,因为||2||AF CF =,所以||||2||||2AF AE CF CF a -=-=,所以||2CF a =,在三角形OFC 中,||2FC a =,||OC b =,||OF c =,||4AF a =, 可得222162cos a b c bc AOF =+-∠, 22242cos a b c bc COF =+-∠,可得22222202242a b c c a =+=-, 即:22112a c =,所以双曲线的离心率为:22e =. 故答案为:222.【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,属于中档题.14.8【分析】设切线方程为即代入利用判别式为0求出两条切线的斜率进一步求出两个切点坐标利用两点间的距离公式可求得结果【详解】切线的斜率显然存在设切线方程为即联立消去得所以即则或设切线的斜率分别为则将代入解析:8 【分析】设切线方程为1(2)y k x +=-,即21y kx k =--,代入24x y =,利用判别式为0,求出两条切线的斜率,进一步求出两个切点坐标,利用两点间的距离公式可求得结果. 【详解】切线的斜率显然存在,设切线方程为1(2)y k x +=-,即21y kx k =--,联立2214y kx k x y=--⎧⎨=⎩消去y 得24840x kx k -++=,所以2(4)4(84)0k k ∆=--+=,即2210--=k k,则1k =1k = 设切线,PA PB 的斜率分别为12,k k ,1122(,),(,)A x y B x y ,则11k =21k =,将11k =24840x kx k -++=得24(18(140x x -++=,即2(20x -+=,得2x =-12x =-2211(244x y -===3-(2A --,同理可得(2B ++,所以||AB =8=.故答案为:8. 【点睛】本题考查了直线与抛物线相切的位置关系,考查了运算求解能力,属于中档题.15.4【解析】当点时过椭圆上点作的平行线分别为联立可得同理可得所以当点时过椭圆上点作的平行线分别为联立可得同理可得所以所以为定值则所以点睛:本题考查了直线与椭圆的位置关系此类问题的解答中主要特例法的应用解析:4 【解析】当点(0,)P b 时,过椭圆上点P 作12,l l 的平行线分别为11,22y x b y x b =+=-+, 联立1212y x b y x⎧=-+⎪⎪⎨⎪=⎪⎩,可得(,)2b M b ,同理可得(,)2b N b -,所以2MN b =,当点(,0)P a 时,过椭圆上点P 作12,l l 的平行线分别为11,2222a a y x y x =-=-+, 联立12212a y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,可得(,)24a a M ,同理可得(,)24a a N -,所以2a MN =,所以MN 为定值,则22ab =,所以4a b=. 点睛:本题考查了直线与椭圆的位置关系,此类问题的解答中主要特例法的应用,是解答选择题的一种方法,本题的解答中取点P 分别为长轴和短轴的端点,联立方程组,求得MN ,得出,a b 的关系式是解答关键,平时应注意特殊值等方法在选择题解答中的应用. 16.【分析】可设则其中可得的取值范围【详解】由点是曲线上一个动点可设则其中又则故答案为:【点睛】本题考查了椭圆参数方程的应用辅助角公式三角函数的值域属于中档题 解析:[5,5]-【分析】可设2cos ,x y θθ==,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=,可得2x 的取值范围. 【详解】由点(,)P x y 是曲线22:143x yC +=上一个动点,可设2cos ,x y θθ==,[0,2)θπ∈,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=, 又5sin()θα+[5,5]∈-,则2x [5,5]∈-. 故答案为:[5,5]-. 【点睛】本题考查了椭圆参数方程的应用,辅助角公式,三角函数的值域,属于中档题.17.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-, 所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=, 故答案为:2212516x y += 【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.18.①②【分析】将代入也成立得①正确;利用不等式可得故②正确;联立得四个交点满足条件的最小正方形是以为中点边长为2的正方形故③不正确【详解】对于①将代入得成立故曲线关于直线对称故①正确;对于②因为所以所解析:①② 【分析】将(,)y x 代入22322:()4C x y x y +=也成立得①1≤,故②正确;联立22322()4y xx y x y=±⎧⎨+=⎩得四个交点,满足条件的最小正方形是以,,,A B C D 为中点,边长为2的正方形,故③不正确. 【详解】对于①,将(,)y x 代入22322:()4C x y x y +=得22322()4y x y x +=成立,故曲线C 关于直线y x =对称,故①正确;对于②,因为22322222()()44x y x y x y ++=≤,所以221x y +≤1≤, 所以曲线C 上任意一点到原点的距离都不超过1,故②正确;对于③,联立22322()4y x x y x y=±⎧⎨+=⎩得2212x y ==,从而可得四个交点A ,(B ,(C ,D ,依题意满足条件的最小正方形是各边以,,,A B C D 为中点,边长为2的正方形,故不存在C 在此正方形区域内(含边界),故③不正确. 故答案为:①② 【点睛】本题考查了由曲线方程研究曲线的对称性,考查了不等式知识,考查了求曲线交点坐标,属于中档题.19.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b -=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上, 则点()4,2-和点(-在双曲线上,设双曲线为22221x y a b-=,则222216412481a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =, 故答案为:4 【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.20.【分析】由题意结合渐近线的性质可得则把点坐标代入双曲线方程可得化简即可得解【详解】点在第一象限且在双曲线渐近线上又直线的斜率为又点是线段的中点又在双曲线上化简得因为故解得故答案为:【点睛】本题考查了1【分析】由题意结合渐近线的性质可得(,)P a b ,则,22a c b Q -⎛⎫⎪⎝⎭,把Q 点坐标代入双曲线方程可得222222()44a cb b a a b -⋅-⋅=,化简即可得解. 【详解】12F PF 2π∠=,点P 在第一象限且在双曲线渐近线上,∴121||2OP F F c ==, 又直线OP 的斜率为ba,∴(,)P a b , 又 1(,0)F c -,点Q 是线段1PF 的中点,∴,22a c b Q -⎛⎫⎪⎝⎭, 又 ,22a c b Q -⎛⎫⎪⎝⎭在双曲线22221(0,0)x y a b a b -=>>上, ∴222222()44a cb b a a b -⋅-⋅=,化简得222222()5420b ac a b a ac c ⋅-=⇒--+=, ∴2240e e --=,因为1e >,故解得1e =1. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了计算能力,属于中档题.三、解答题21.//AB CD ,理由见解析. 【分析】利用AM MO ⊥得M 是以OA 为直径的圆与椭圆的交点,解方程组求得M 点坐标.可求得AB k ,由数量积为0得CMD ∠的角平分线垂直于OA ,从而0MC MD k k +=,设直线:CD y kx m =+,()11,C x y ,()22,D x y ,直线方程代入椭圆方程后应用韦达定理得1212,x x x x +,代入0MC MD k k +=可求得参数关系以13k =-或22m k =+(过点M ,舍),由此可得两直线的位置关系. 【详解】解:由题意(4,0)A -,因为AMB 是以M 为直角顶点的三角形,所以以AO 为直径的圆()2224x y ++=与椭圆223:11616x y C +=交于点M ,联立2222(2)4311616x y x y ⎧++=⎪⎨+=⎪⎩,解得:22x y =-⎧⎨=⎩或22x y =-⎧⎨=-⎩或40x y =-⎧⎨=⎩(舍),不妨设()2,2M -,则(2,2)B -,2012(4)3AB k --==---.由0MC MD OA MC MD ⎛⎫⎪⋅+= ⎪⎝⎭可得:CMD ∠的角平分线垂直于OA , 所以0MC MD k k +=,易知直线CD 斜率存在, 设直线:CD y kx m =+,()11,C x y ,()22,D x y ,联立22311616y kx m x y =+⎧⎪⎨+=⎪⎩,得:()2221363160k x kmx m +++-=,即122613km x x k -+=+,212231613m x x k-=+, 所以121222022MC MD y y k k x x --+=+=++, 即()12122(22)480kx x k m x x m ++-++-=, 代入韦达定理可得:()()()4318311k m k k +=++, 所以13k =-或22m k =+(过点M ,舍) 因为13AB k =-,所以//AB CD . 【点睛】关键点点睛:本题考查直线与椭圆相交问题,解题方法是“设而不求”的思想方法,即设交点坐标为1122(,),(,)x y x y ,设直线方程,代入椭圆方程后应用韦达定理得1212,x x x x +(需要根据方便性,可能得1212,y y y y +),由题意中条件得出0MC MD k k +=,代入1212,x x x x +后可求得参数关系或参数值.从而判断出结论.22.(1)22184x y +=;(2)证明见解析.【分析】(1)根据长轴长、两准线的距离以及222a b c =+可得到椭圆的方程;(2)首先要对直线进行分类讨论,当斜率存在时,将直线与椭圆联立,设出,A B 两点的坐标,12k k +用12,x x 表示,再结合韦达定理就能得到证明. 【详解】(1)设椭圆的半焦距为c .因为椭圆的长轴长为8,所以2228a a c==,所以2a c ==,2b .所以椭圆的方程为22184x y +=.(2)证明①当直线l 的斜率不存在时,可得A 1,2⎛- ⎝⎭,B 1,2⎛-- ⎝⎭, 得k 1+k 2=4.②当直线l 的斜率存在时,设斜率为k ,显然k ≠0,则其方程为y +2=k (x +1),由221,842(1),x y y k x ⎧+=⎪⎨⎪+=+⎩得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0. ∆=56k 2+32k >0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-24(2)12k k k -+,x 1x 2=222812k kk -+. 从而k 1+k 2=112y x -+222y x -=1212122(4)()kx x k x x x x +-+=2k -(k -4)·24(2)28k k k k--=4.综上,k 1+k 2为定值. 【点睛】方法点睛:求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.23.(1)2214x y +=;(2)存在,且=m 【分析】(1)由已知条件求出a 的值,结合离心率可求得c 的值,再由a 、b 、c 的关系可求得b的值,由此可求得椭圆M 的方程;(2)设点()11,A x y 、()22,B x y ,将直线AB 的方程与椭圆M 的方程联立,列出韦达定理,利用弦长公式求出AB ,求出点C 到直线AB 的距离d ,利用三角形的面积公式可得出关于实数m 的等式,解出m 的值,并验证是否满足0∆>,由此可得出结论. 【详解】(1)由于椭圆()2222:10x y M a b a b+=>>的一个顶点坐标为()2,0-,则2a =,又因为该椭圆的离心率为c a =c =1b ∴=, 因此,椭圆M 的方程为2214x y +=;(2)设点()11,A x y 、()22,B x y ,联立2214y x m x y =-+⎧⎪⎨+=⎪⎩,消去y 并整理得2258440x mx m -+-=, ()()2226445441650m m m ∆=-⨯⨯-=->,解得m << 由韦达定理可得1285m x x +=,212445m x x -=, 由弦长公式可得12AB x x =-===, 点C 到直线AB的距离为d =, 所以,ABC的面积为11122ABC S AB d =⋅===△,整理可得42420250m m -+=,即()22250m -=,可得252m =,满足0∆>. 因此,存在2=±m ,使得ABC 的面积为1. 【点睛】 方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.24.(1)2214y x -=;(2)( 【分析】(1)取双曲线的一条渐近线:y bx =,与抛物线方程联立即可得到交点A 的坐标,再利用点A 到抛物线的准线的距离为p ,即可得到p ,b 满足的关系式,进而可得答案. (2)根据直线:1l y kx =-与双曲线的右支交于两点,利用韦达定理、判别式列不等式组求解即可.【详解】(1)取双曲线的一条渐近线y bx =,联立22y px y bx ⎧=⎨=⎩解得222p x b py b ⎧=⎪⎪⎨⎪=⎪⎩,故222(,)p p A b b . 点A 到抛物线的准线的距离为p , ∴222p p p b+=,可得24b = 双曲线222:14y C x -=; (2)联立22114y kx y x =-⎧⎪⎨-=⎪⎩可得()224250k x kx -+-= 因为直线:1l y kx =-与双曲线的右支交于两点, 所以()22222045{0442040k kk k k ->-->-∆=+->,解得2k <<所以,k的取值范围(.【点睛】求双曲线标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出双曲线的标准方程.解决直线与双曲线的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程或不等式,解决相关问题.25.(1)22143x y +=;(2)122y x =-+,3(1,)2M . 【分析】(1)由抛物线2x =-的焦点为(0,得b =12c a =,从而可求出a ,得椭圆方程;(2)分类讨论,斜率不存在的直线及斜率存在的切线,斜率存在的切线用0∆=可求解.【详解】(1)由抛物线2x =-的焦点为(0,,它是椭圆的一个顶点,则b = 又12c e a ==,所以22214a b a -=,解得2a =.∴椭圆方程为22143x y +=; (2)过(2,1)P 斜率不存在的直线为2x =,是椭圆的切线,此时切点为(2,0)M .此时不满足M 在第一象限.过(2,1)P 斜率存在的切线方程设为1(2)y k x -=-,由221431(2)x y y k x ⎧+=⎪⎨⎪-=-⎩得222(34)8(12)161680k x k k k k ++-+--=,∴222264(12)4(34)(16168)96(21)0k k k k k k ∆=--+--=-+=,12k =-, 此时121x x ==,1232y y ==,即3(1,)2M . 直线方程为11(2)2y x -=--,即122y x =-+. 切线方程为122y x =-+,切点3(1,)2M . 【点睛】关键点睛:本题考查求椭圆的切线,解答本题的关键是分切线的斜率存在和不存在进行讨论,过(2,1)P 斜率存在的切线方程设为1(2)y k x -=-,由方程联立,其0∆=求解,属于中档题.26.(1)14-;(2)17. 【分析】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,代入椭圆方程,利用点差法即可求得直线PA 的斜率;(2)设(,)(P x y x -≤≤,圆心(1,0)D -,可得PD 的表达式,利用二次函数性质,即可求得PD 的最小值,进而可得答案.【详解】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y , 因为A ,P 两点都在C 上,所以221122221818x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得()()()()2121212180x x x x y y y y -++-+=,因为21122x x +=⨯=,211212y y +=⨯=,所以212114PA y y k x x -==--. (2)设(,)(P x y x -≤≤,则2218x y +=,圆心(1,0)D -, 则222222786||(1)(1)18877x PD x y x x ⎛⎫=++=++-=++ ⎪⎝⎭, 当87x 时,PD7=. 因为圆D17=. 所以PD的最小值为11777-=. 【点睛】 解题的关键是熟练掌握点差法的步骤,点差法常见的结论有,设以00(,)P x y 为中点的弦所在斜率为k ,则(1)椭圆22221x y a b +=中,2020y b k x a ⋅=-;(2)双曲线22221x y a b -=中,2020y b k x a⋅=;(3)抛物线22y px =中0p k y =,熟记结论可简化计算,提高正确率,属中档题.。

椭圆与双曲线综合练习题

椭圆与双曲线综合练习题

椭圆与双曲线综合练习题
本文档旨在提供一些椭圆与双曲线的综合练题,帮助读者更好地理解和应用相关知识。

题目一
已知椭圆的长轴长度为 6 厘米,短轴长度为 4 厘米,求该椭圆的离心率和焦点坐标。

题目二
一个双曲线的中心位于坐标原点,焦点到原点的距离为 5,焦点所在直线的斜率为 2。

求该双曲线的方程。

题目三
一艘船沿着从双曲线的一个分支切线开始并在另一个分支切线结束的路径上航行。

已知该双曲线的焦点坐标分别为 (-3, 0) 和 (3,
0),离心率为 2。

如果船沿着该路径行进的距离为 10 单位,求船的
行驶时间。

题目四
已知双曲线的焦点坐标分别为 (-2, 0) 和 (2, 0),离心率为 3/2。

求该双曲线的方程并计算其近点到两焦点连线的距离。

题目五
已知椭圆的焦点在 y 轴上,且离心率为 1/3。

如果椭圆经过点(2, 1),求该椭圆的方程。

以上是一些椭圆与双曲线的综合练题,您可以根据相关知识来
计算答案。

希望这些练能够帮助您更好地掌握椭圆与双曲线的应用。

数学选修2-1椭圆练习题及详细答案(含准线练习题)

数学选修2-1椭圆练习题及详细答案(含准线练习题)

数学选修2-1椭圆练习题及详细答案(含准线练习题)1.若椭圆my 12m 3x 22-+=1的准线平行于y 轴,则m 的取值范围是 。

答案:-3<m <02.椭圆的长半轴是短半轴的3倍,过左焦点倾斜角为30°的弦长为2则此椭圆的标准方程是 。

答案:9x 2+y 2=13. 椭圆的中心在原点,焦点在x 轴上,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线2x -y -4=0被此椭圆所截得的弦长为354,求此椭圆的方程。

答案:4x 2+5y 2=24提示:∵椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距, ∴4c 2=(a +c )(a -c ),解得a 2=5c 2, ∴b 2=4c 2, 将4 x 2+5y 2=m 与2x -y -4=0联立,代入消去y 得24x 2-80x +80-m =0, 由弦长公式l =2k 1+|x 1-x 2|得354=5×1840m 3-,解得m =24,∴椭圆的方程是4x 2+5y 2=24 4.证明:椭圆上任意一点到中心的距离的平方与到两焦点距离的乘积之和为一定值。

|PF1|²=(x - c)² + y²=[a²(x - c)² + a²y²]/a²=[a²x² - 2a²cx + a²c² + a²y²]/a² /***--根据b²x² + a²y² = a²b² ***/=[a²x² - 2a²cx + a²c² + a²b² - b²x²]/a²=[(a²-b²)x² - 2a²cx + a²(b² + c²)]/a²=[c²x² -2a²cx + a^4]/a²=(a² - cx)²/a²∴PF1 = (a² - cx)/a = a - (c/a)x = a - ex同理可证:PF2 = a + ex5. 已知椭圆的对称轴是坐标轴,离心率e =32,长轴长为6,那么椭圆的方程是( )。

高中数学选修2-1全册综合测试题含答案

高中数学选修2-1全册综合测试题含答案

选修2-1综合测试一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知p :2x -3<1,q :x 2-3x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.抛物线y =14x 2的焦点坐标为( ) A .(116,0) B .(-116,0) C .(0,1) D .(0,-1)3.已知命题p :3是奇数,q :3不是质数.由它们构成的“p ∨q ”“p ∧q ”“非p ”形式的命题中真命题有( )A .0个B .1个C .2个D .3个4.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-∞,0) B .(-3,0) C .(-12,0) D .(-60,-12)5.下列结论正确的个数是( )①命题“所有的四边形都是平行四边形”是特称命题;②命题“∀x ∈R ,x 2+1>0”是全称命题;③若p :∃x ∈R ,x 2+2x +1≤0,则非p :∀x ∈R ,x 2+2x +1≤0.A .0B .1C .2D .36.设α,β,γ是互不重合的平面,m ,n 是互不重合的直线,给出下列命题:①若m ⊥α,m ⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥α,n ⊥α,则m ⊥n .其中真命题的个数是( )A .1B .2C .3D .47.已知a =(m +1,0,2m ),b =(6,2n -1,2),若a ∥b ,则m 与n 的值分别为( ) A.15,12 B .5,2 C .-15,-12D .-5,-2 8.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( ) A .2 B .3 C .4 D .4 29.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,点P 在双曲线上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.32C.53D .210.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点EF 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°11.给出下列曲线,其中与直线y =-2x -3有交点的所有曲线是( )①4x +2y -1=0;②x 2+y 2=3;③x 22+y 2=1;④x 22-y 2=1. A .①③ B .②④ C .①②③ D .②③④12.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,设线段P 1P 2的中点为P .若直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1·k 2等于( )A .-12 B.12C .-2D .2 二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.命题“存在一个三角形没有外接圆”的否定是________.14.已知命题p :1≤x ≤2,q :a ≤x ≤a +2,且綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.15.已知直线l 1的一个方向向量为(-7,4,3),直线l 2的一个方向向量为(x ,y,6),且l 1∥l 2,则x =________,y =________.16.如图在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面ABCD 所成角的余弦值为________.三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.18.(12分)求证:a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.(12分)抛物线y =-x 22与过点M (0,-1)的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线l 的方程.20.(12分)已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.21.(12分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上,且DE ⊥AE .(1)证明:平面ADE⊥平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值.22.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1BD;(2)求二面角A1—BD—C1的余弦值.1.解析 p :x <2,q :0<x <3.∴pD ⇒/q ,qD ⇒/p .∴p 是q 的既不充分也不必要条件.答案 D2.解析 由y =14x 2,得x 2=4y ,∴焦点坐标为(0,1).答案 C2.解析 命题p 为真,q 为假,∴“p ∨q ”为真,“p ∧q ”、“綈p ”为假,故应选B.答案 B4.解析 由x 24+y 2k =1表示双曲线知,k <0,且a 2=4,b 2=-k ,∴e 2=c 2a 2=4-k 4,∵1<e <2,∴1<4-k 4<4.∴4<4-k <16,∴-12<k <0.答案 C5.解析 ①是全称命题,②是全称命题,③綈p :∀x ∈R ,x 2+2x +1>0.∴①不正确,②正确,③不正确.答案 B6.解析 ①正确,②不正确,③正确,④正确.答案 C7.解析 ∵a ∥b ,∴a =λb ,∴⎩⎪⎨⎪⎧ m +1=6λ,0=λ(2n -1),2m =2λ,解得⎩⎪⎨⎪⎧ m =15,n =12,λ=15.∴m =15,n =12.答案 A 8.解析 设双曲线的焦距为2c ,由双曲线方程知c 2=3+p 216,则其左焦点为(-3+p 216,0).由抛物线方程y 2=2px 知其准线方程为x =-p 2,由双曲线的左焦点在抛物线的准线上知,3+p 216=p 24,且p >0,解得p =4.答案 C9.解析 由双曲线的定义知,|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,∴|PF 1|=8a 3,|PF 2|=2a 3.又|PF 2|≥c -a ,即2a 3≥c -a .∴c a ≤53.即e ≤53.答案 C10.解析 建立空间直角坐标如图所示.设AB =2,则EF →=(0,-1,1).BC 1→=(2,0,2),∴cos 〈EF →·BC 1→〉=EF →·BC 1→|EF →||BC 1→|=28·2=12, 故EF 与BC 1所成的角为60°.答案 B11.解析 直线y =-2x -3与4x +2y -1=0平行,所以与①不相交.②中圆心(0,0)到直线2x +y +3=0的距离d =35< 3.所以与②相交.把y =-2x -3代入x 22+y 2=1,得x 22+4x 2+12x +9=1,即9x 2+24x +16=0,Δ=242-4×9×16=0,所以与③有交点.观察选项知,应选D.答案 D12.解析 设直线l 的方程为y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=-8k 211+2k 21, 而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21. ∴k 2=y 1+y 22x 1+x 22=-12k 1,∴k 1·k 2=-12. 答案 A13.解析 命题“存在一个三角形没有外接圆”是特称命题,它的否定是全称命题“任意一个三角形都有外接圆.”答案 任意一个三角形都有外接圆14.解析 “p 是q 的必要不充分条件”的逆否命题是“q 是p 的必要不充分条件”.∴{x |1≤x ≤2}{x |a ≤x ≤a +2},∴0≤a ≤1. 答案 0≤a ≤115.答案 -14 816.解析 由题意知,AC 1=22+22+1=3,AC =22+22=22,在Rt △AC 1C 中,cos ∠C 1AC =AC AC 1=223.答案 22317.解 由|x -1|>m -1的解集为R ,知m -1<0,∴m <1.即p :m <1.又f (x )=-(5-2m )x 是减函数,∴5-2m >1,即m <2,即q :m <2.若p 真q 假,则⎩⎨⎧ m <1,m ≥2,m 不存在. 若p 假q 真,则⎩⎨⎧ m ≥1,m <2,∴1≤m <2.综上知,实数m 的取值范围是[1,2).18.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a 2,直线x+by +2=0的斜率k 2=-1b ,如果a +2b =0,那么k 1k 2=(-a 2)×(-1b )=-1.故两直线互相垂直.必要性:如果两条直线互相垂直且斜率都存在,那么k 1k 2=(-a 2)×(-1b )=-1,所以a +2b =0,若两条直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0,所以a +2b =0.综上可知,a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.解 显然直线l 垂直于x 轴不合题意,故设所求的直线方程为y =kx -1,代入抛物线方程化简,得x 2+2kx -2=0.由根的判别式Δ=4k 2+8=4(k 2+2)>0,于是有k ∈R .设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),则y 1x 1+y 2x 2=1.① 因为y 1=kx 1-1,y 2=kx 2-1,代入① ,得2k -(1x 1+1x 2)=1.② 又因为x 1+x 2=-2k ,x 1x 2=-2,代入②得k =1.所以直线l 的方程为y =x -1.20.解 (1)设椭圆长半轴长及半焦距分别为a ,c 由已知得⎩⎨⎧ a -c =1,a +c =7,解得⎩⎨⎧ a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y 2=e 2.而e =34,故16(x 2+y 21)=9(x 2+y 2).① 由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4),它是两条平行于x轴的线段.21.解 (1)证明:由正三棱柱ABC -A 1B 1C 1的性质知AA 1⊥平面A 1B 1C 1.又DE ⊂平面A 1B 1C 1,所以DE ⊥AA 1.而DE ⊥AE ,AA 1∩AE =A ,所以DE ⊥平面ACC 1A 1.又DE ⊂平面ADE ,故平面ADE ⊥平面ACC 1A 1.(2)如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D (32,-12,2).易知AB →=(3,1,0),AC 1→=(0,2,2),AD →=(32,12,2).设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·AB →=3x +y =0,n ·AC 1→=2y +2z =0.解得x =-33y ,z =-2y .故可取n =(1,-3,6).所以cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2310×3=105.由此可知,直线AD和平面ABC1所成角的正弦值为10 5.22.解(1)证明:在图中连接B,E,则四边形DABE为正方形,∴BE=AD=A1D1,且BE∥AD∥A1D1.∴四边形A1D1EB为平行四边形.∴D 1E ∥A 1B .又D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD ,∴D 1E ∥平面A 1BD .(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设DA =1,则D (0,0,0),A (1,0,0),B (1,1,0),C 1(0,2,2),A 1(1,0,2).∴DA 1→=(1,0,2),DB →=(1,1,0).设n =(x ,y ,z )为平面A 1BD 的一个法向量,由n ⊥DA 1→,n ⊥DB →,得⎩⎨⎧x +2z =0,x +y =0,取z =1,则n =(-2,2,1).又DC 1=(0,2,2),DB →=(1,1,0),设m =(x 1,y 1,z 1)为平面C 1BD 的一个法向量,由m ⊥DC 1→,m ⊥DB →, 得⎩⎨⎧ 2y 1+2z 1=0,x 1+y 1=0,取z 1=1,则m =(1,-1,1).设m 与n 的夹角为α,二面角A 1-BD -C 1为θ,显然θ为锐角,∴cos α=m ·n |m ||n |=-39×3=-33.∴cosθ=3 3,即所求二面角A1-BD-C1的余弦值为3 3.。

高二数学选修2-1测试题

高二数学选修2-1测试题

高二数学选修2-1测试题1.“x1”是“x23x2”的(必要不充分条件)。

2.若p q是假命题,则(p是真命题,q是假命题)。

3.F1,F2是距离为6的两定点,动点M满足∣MF1∣+∣MF2∣=6,则M点的轨迹是(椭圆)。

4.双曲线x2y21=0的渐近线方程为(y=±x/√3)。

5.中心在原点的双曲线,一个焦点为F(0,3),一个焦点到最近顶点的距离是31,则双曲线的方程是(y2/4-x2/3=1)。

6.已知正方形ABCD的顶点A,B为椭圆的焦点,顶点C,D 在椭圆上,则此椭圆的离心率为(2-√2)。

7.椭圆4a2x2+a2y2=4a2与双曲线x2/a2-y2/b2=1有相同的焦点,则a的值为(2)。

8.与双曲线y2/9-x2/16=1有共同的渐近线,且过点(2,2)的双曲线标准方程为(9y2-16x2=144)。

9.已知A(-1,-2,6),B(1,2,-6)O为坐标原点,则向量OA,与OB的夹角是(cosθ=0)。

10.与向量a(1,3,2)平行的一个向量的坐标是(2,-6,4)。

11.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(x+1)²+(y-1)²=2)。

12.若直线x+y=m与圆x²+y²=m²相切,则m的值为(1)。

解析】解题分析:设圆心为O,则由题意可知O在直线y=x上,又因为圆心到直线x+y=2的距离为2,所以O到直线y=x的距离为2.由于直线y=x与直线x+y=2的距离为$\frac{\sqrt{2}}{2}$,所以O到直线y=x的距离也为$\frac{\sqrt{2}}{2}$。

因此,O的坐标为$(\frac{3}{2},\frac{3}{2})$,半径为$\sqrt{2}$,圆的方程为$(x-\frac{3}{2})^2+(y-\frac{3}{2})^2=2$。

故选C。

高中数学选修2-1综合测试试卷

高中数学选修2-1综合测试试卷

高中数学选修2-1综合测试试卷时限:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0 B .存在x 0∈R ,x 30-x 20+1≤0 C .存在x 0∈R ,x 30-x 20+1>0D .对任意的x ∈R ,x 3-x 2+1>0 3.下列命题中是假命题的是( ) A .∀x ∈⎝ ⎛⎭⎪⎫0,π2,x >sin xB .∃x 0∈R ,sin x 0+cos x 0=2C .∀x ∈R,3x >0D .∃x 0∈R ,lg x 0=04.与双曲线y 25-x 2=1共焦点,且过点(1,2)的椭圆的标准方程为( ) A.x 28+y 22=1 B.x 210+y 24=1 C.y 28+x 22=1D.y 210+x 24=15.给出下列三个命题:①“全等三角形的面积相等”的否命题;②“若lg x 2=0,则x =-1”的逆命题;③“若x ≠y 或x ≠-y ,则|x |≠|y |”的逆否命题.其中真命题的个数是( ) A .0 B .1 C .2 D .36.如图,在正方体ABCD -A ′B ′C ′D ′中,M 是AB 的中点,则sin 〈DB ′→,CM →〉的值为( )A.12 B.21015C.23 D.11157.已知向量a=(-1,1,0),b=(1,0,2),且k a+b与a-2b互相垂直,则k=()A.-114 B.15C.35 D.1148.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.23 B.33C.23 D.639.已知双曲线x2a2-y2b2=1(a>0,b>0),两渐近线的夹角为60°,则双曲线的离心率为()A.233 B. 3C.2 D.233或210.已知椭圆x2a2+y2b2=1(a>b>0),双曲线x2a2-y2b2=1和抛物线y2=2px(p>0)的离心率分别为e1,e2,e3,则()A.e1e2>e3B.e1e2=e3C.e1e2<e3D.e1e2≥e3.11.长方体ABCD-A1B1C1D1中,AB=2,AD=AA1=1,则二面角C1-AB-C的大小为( )A.π3B.2π3C.3π4D.π412.若点P 为共焦点的椭圆C 1和双曲线C 2的一个交点,F 1,F 2分别是它们的左、右焦点,设椭圆的离心率为e 1,双曲线的离心率为e 2,若PF 1→·PF 2→=0,则1e 21+1e 22=( ) A .1 B .2 C .3 D .4二、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上)13.若命题p :“∃x ∈R ,x 2+(a -1)x +1≤0”为假命题,则实数a 的取值范围是14.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是.15.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为16.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点P 到点Q (0,2)的距离的最大值为3,则椭圆C 的方程为三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知集合A={x|x2-3x+2≤0},集合B={y|y=x2-2x+a},集合C={x|x2-ax-4≤0},命题p:A∩B=∅,命题q:A⊆C.(1)若命题p为假命题,求实数a的取值范围;(2)若命题p∧q为假命题,求实数a的取值范围.18.(12分)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.求直线AB与平面EFGH夹角θ的正弦值.19.(12分)设数列{a n}的各项都不为零,求证:对任意n∈N*且n≥2,都有1a1a2+1a2a3+…+1a n-1a n=n-1a1a n成立的充要条件是{a n}为等差数列.20.(12分)在平面直角坐标系xOy中,已知抛物线C:y2=4x,F为其焦点,点E的坐标为(2,0),设M为抛物线C上异于顶点的动点,直线MF交抛物线C 于另一点N,连接ME,NE并延长分别交抛物线C于点P,Q.(1)当MN⊥x轴时,求直线PQ与x轴交点的坐标;(2)当直线MN,PQ的斜率存在且分别记为k1,k2时,求证:k1=2k2.21.(12分)如图①所示,已知在长方形ABCD中,AB=2AD=22,M为DC的中点,将△ADM沿AM折起,使得AD⊥BM,得如图②所示的几何体.(1)求证:平面ADM⊥平面ABCM;(2)是否存在满足BE →=tBD →(0<t <1)的点E ,使得二面角E -AM -D 的大小为π4?若存在,求出相应的实数t ;若不存在,请说明理由.22.(12分)已知抛物线C 1:y 2=4x 和C 2:x 2=2py (p >0)的焦点分别为F 1,F 2,C 1,C 2交于O ,A 两点(O 为坐标原点),且F 1F 2⊥OA .(1)求抛物线C 2的方程;(2)过点O 的直线交C 1的下半部分于点M ,交C 2的左半部分于点N ,点P 的坐标为(-1,-1),求△PMN 面积的最小值.参考答案一、1.B解析:由(2x-1)x=0可得x=12或x=0.因为“x=12或x=0”是“x=0”的必要不充分条件,所以“(2x-1)x=0”是“x=0”的必要不充分条件.2.C解析:先变换量词,再否定结论,即“∃x0∈R,x30-x20+1>0”.3.B解析:本题主要考查全称命题、特称命题以及命题真假的判断,因为sin x0+cos x0=2sin⎝⎛⎭⎪⎫x0+π4≤2,所以B错误,故选B.4.C解析:本题主要考查双曲线、椭圆的标准方程.由题知,焦点在y 轴上,排除A,B,将(1,2)代入C,D可得C正确,故选C.5.B解析:本题考查四种命题的关系及真假判断.对于①,否命题是“不全等的三角形的面积不相等”,它是假命题;对于②,逆命题是“若x=-1,则lg x2=0”,它是真命题;对于③,逆否命题是“若|x|=|y|,则x=y且x=-y”,它是假命题,故选B.6.B解析:建立如图所示的空间直角坐标系,设正方体的棱长为1,则D(0,0,0),B′(1,1,1),C(0,1,0),M⎝⎛⎭⎪⎫1,12,0,所以DB′→=(1,1,1),CM→=⎝⎛⎭⎪⎫1,-12,0,cos〈DB′→,CM→〉=DB′→·CM→|DB′→||CM→|=123×52=1515.所以sin〈DB′→,CM→〉=21015.7.D解析:k a+b=(-k+1,k,2),a-2b=(-3,1,-4),由(k a+b)·(a -2b)=3(k-1)+k-8=0,解得k=114.8.D解析:设正方体棱长为1.建立空间直角坐标系如图.易知平面ACD1的一个法向量为n=(1,1,1),BB1→=(0,0,1),∴cos〈n,BB1→〉=13=33.∴BB 1与平面ACD 1所成角的余弦值为63.9. D 解析:本题考查双曲线的简单几何性质的应用.根据题意,由于双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两渐近线的夹角为60°,则可知b a =3或b a =33,那么可知双曲线的离心率为e =1+⎝ ⎛⎭⎪⎫b a 2=2或233,故选D. 10. C 解析:依题意可知,e 1=a 2-b 2a ,e 2=a 2+b 2a ,e 3=1,∴e 1e 2=a 2-b 2a ·a 2+b 2a =1-b 4a 4<1.∴e 1e 2<e 3.11. D 解析:本题考查空间建系能力及二面角.以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4.又二面角C 1-AB -C 为锐角,故其大小为π-34π=π4,故选D.12. B 解析:设椭圆的方程为x 2a 21+y 2b 21=1(a 1>b 1>0),双曲线的方程为x 2a 22-y 2b 22=1(a 2>0,b 2>0),它们的半焦距为c ,不妨设P 为它们在第一象限的交点,因为PF 1→·PF 2→=0,故|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2 ①.由椭圆和双曲线的定义知,⎩⎨⎧|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,解得|PF 1|=a 1+a 2,|PF 2|=a 1-a 2,代入①式,得(a 1+a 2)2+(a 1-a 2)2=4c 2,即a 21+a 22=2c 2,所以1e 21+1e 22=a 21c 2+a 22c 2=a 21+a 22c 2=2. 13. (-1,3).解析:本题主要考查特称命题的真假及参数取值范围的求解.由题意得綈p ∶∀x ∈R ,x 2+(a -1)x +1>0,即关于x 的一元二次不等式x 2+(a -1)x +1>0的解集为R ,由于命题p 是假命题,所以綈p 是真命题,所以Δ=(a -1)2-4<0,解得-1<a <3,所以实数a 的取值范围是(-1,3).14.解析:如图,以D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设正方体的棱长为2,则D (0,0,0),N (0,2,1),M (0,1,0),A 1(2,0,2),所以DN →=(0,2,1),MA 1→=(2,-1,2),所以cos 〈DN →,MA 1→〉=DN →·MA 1→|DN →||MA 1→|=0,所以DN ⊥A 1M ,故异面直线A 1M 与DN 所成的角的大小为90°. 15.解析:由已知得ba =2,所以b =2a .在y =2x +10中令y =0得x =-5,故c =5,从而a 2+b 2=5a 2=c 2=25,所以a 2=5,b 2=20,所以双曲线的方程为x 25-y 220=1.16.解析:由e =ca =23,得c 2=23a 2,所以b 2=a 2-c 2=13a 2.设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b 2=1,所以x 2=a 2⎝ ⎛⎭⎪⎫1-y 2b 2=a 2-3y 2.|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2=-2(y +1)2+a 2+6,当y =-1时,|PQ |有最大值a 2+6.由a 2+6=3,可得a 2=3,所以b 2=1,故椭圆C 的方程为x 23+y 2=1.17. 解:∵y =x 2-2x +a =(x -1)2+a -1≥a -1,∴B ={y |y ≥a -1},A ={x |x 2-3x +2≤0}={x |1≤x ≤2},C ={x |x 2-ax -4≤0}.(1)由命题p 是假命题,可得A ∩B ≠∅,即得a -1≤2,∴a ≤3.(2)∵“p ∧q 为假命题”,则其反面为“p ∧q 为真命题”,∴p ,q 都为真命题,即A ∩B =∅且A ⊆C ,∴有⎩⎨⎧a -1>2,1-a -4≤0,4-2a -4≤0,解得a >3.∴实数a 的取值范围为a ≤3.18.解:由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1.方法1:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),DA →=(0,0,1),BC →=(-2,2,0),BA →=(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ),∵EF ∥AD ,FG ∥BC ,∴n ·DA →=0,n ·BC →=0,得⎩⎨⎧z =0,-2x +2y =0,取n =(1,1,0),∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 方法2:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别为BD ,DC 的中点,得E ⎝ ⎛⎭⎪⎫1,0,12,F (1,0,0),G (0,1,0).∴FE →=⎝ ⎛⎭⎪⎫0,0,12,FG →=(-1,1,0),BA →=(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ),则n ·FE →=0,n ·FG →=0,得⎩⎪⎨⎪⎧12z =0,-x +y =0,取n =(1,1,0),∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 19. 证明:(充分性)若{a n }为等差数列,设其公差为d ,则1a 1a 2+1a 2a 3+…+1a n -1a n =1d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1-1a n =1d ⎝ ⎛⎭⎪⎫1a 1-1a n =a n -a 1da 1a n =n -1a 1a n. (必要性)若1a 1a 2+1a 2a 3+…+1a n -1a n =n -1a 1a n ,则1a 1a 2+1a 2a 3+…+1a n -1a n +1a n a n +1=na 1a n +1, 两式相减得1a n a n +1=na 1a n +1-n -1a 1a n, 即a 1=na n -(n -1)a n +1 ①.于是有a 1=(n +1)a n +1-na n +2 ②,由①②得na n -2na n +1+na n +2=0,所以a n +1-a n =a n +2-a n +1(n ≥2). 又1a 1a 2+1a 2a 3=2a 1a 3,所以a 3-a 2=a 2-a 1,所以对任意n ∈N *,2a n +1=a n +2+a n ,故{a n }为等差数列.20.解:(1)抛物线C :y 2=4x 的焦点为F (1,0).当MN ⊥x 轴时,直线MN 的方程为x =1.将x =1代入抛物线方程y 2=4x ,得y =±2.不妨设M (1,2),N (1,-2),则直线ME 的方程为y =-2x +4,由⎩⎨⎧y =-2x +4,y 2=4x ,解得x =1或x =4,于是得P (4,-4). 同理得Q (4,4),所以直线PQ 的方程为x =4. 故直线PQ 与x 轴的交点坐标为(4,0).(2)证明:设直线MN 的方程为x =my +1,并设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),由⎩⎨⎧x =my +1,y 2=4x ,得y 2-4my -4=0, 于是y 1y 2=-4 ①,从而x 1x 2=y 214·y 224=1 ②.设直线MP 的方程为x =ty +2,由⎩⎨⎧x =ty +2,y 2=4x ,得y 2-4ty -8=0.所以y 1y 3=-8 ③,x 1x 3=4 ④. 同理y 2y 4=-8 ⑤,x 2x 4=4 ⑥.由①②③④⑤⑥,得y 3=2y 2,x 3=4x 2,y 4=2y 1,x 4=4x 1. 从而k 2=y 4-y 3x 4-x 3=2y 1-2y 24x 1-4x 2=12·y 1-y 2x 1-x 2=12k 1,即k 1=2k 2. 21. 解:(1)证明:∵长方形ABCD 中,AB =2AD =22,M 为DC 的中点, ∴AM =BM =2,AM 2+BM 2=AB 2,∴BM ⊥AM . ∵AD ⊥BM ,AD ∩AM =A ,∴BM ⊥平面ADM . 又BM ⊂平面ABCM ,∴平面ADM ⊥平面ABCM .(2)设存在满足题意的点M ,使得二面角E -AM -D 的大小为π4.以M 为原点,MA 所在直线为x 轴,MB 所在直线为y 轴,过M 作平面ABCM 的垂线为z 轴,建立空间直角坐标系,如图,则A (2,0,0),B (0,2,0),D (1,0,1),M (0,0,0),MB →=(0,2,0),BD →=(1,-2,1),ME →=MB →+BE →=(t,2-2t ,t ).设平面AME 的法向量为m =(x ,y ,z ),则⎩⎨⎧MA →·m =0,ME →·m =0,即⎩⎨⎧2x =0,tx +(2-2t )y +tz =0, 取y =t ,得m =(0,t,2t -2).易知平面AMD 的一个法向量为n =(0,1,0), 又二面角E -AM -D 的大小为π4,∴cos π4=|m ·n ||m |·|n |=t t 2+4(t -1)2=22,解得t =23或t =2(舍),∴存在满足BE →=tBD →(0<t <1)的点E ,使得二面角E -AM -D 的大小为π4,相应的实数t 的值为23.22. 解:(1)设A (x 1,y 1)(x 1>0,y 1>0),有⎩⎨⎧y 21=4x 1,x 21=2py 1①.由题意知,F 1(1,0),F 2⎝ ⎛⎭⎪⎫0,p 2,∴F 1F 2→=⎝ ⎛⎭⎪⎫-1,p 2.∵F 1F 2⊥OA ,∴F 1F 2→·OA →=0,即-x 1+p 2y 1=0,即py 1=2x 1,将其代入①式得x 1=4,y 1=4,p =2,故抛物线C 2的方程为x 2=4y . (2)设直线MN 的方程为y =kx (k <0).联立⎩⎨⎧y =kx ,y 2=4x ,得M ⎝ ⎛⎭⎪⎫4k 2,4k ;联立⎩⎨⎧y =kx ,x 2=4y ,得N (4k,4k 2).从而|MN |=1+k 2⎪⎪⎪⎪⎪⎪4k 2-4k =1+k 2⎝ ⎛⎭⎪⎫4k 2-4k .又点P (-1,-1)到直线MN 的距离d =|k -1|1+k2, ∴S △PMN =12·|k -1|1+k 2·1+k 2⎝ ⎛⎭⎪⎫4k 2-4k =2(1-k )(1-k 3)k 2=2(1-k )2(1+k +k 2)k 2=2⎝ ⎛⎭⎪⎫k +1k -2⎝ ⎛⎭⎪⎫k +1k +1,令t =k +1k (t ≤-2),∴S △PMN =2(t -2)(t +1), 易知当t =-2,即k =-1,即当过原点的直线方程为y =-x 时,△PMN 的面积取得最小值8.。

双曲线及其标准方程 题组训练-2021-2022学年高二上学期数学人教A版选修2-1第二章

双曲线及其标准方程   题组训练-2021-2022学年高二上学期数学人教A版选修2-1第二章

2.3 双曲线2.3.1 双曲线及其标准方程基础过关练题组一 双曲线的定义及应用1.已知M(-2,0),N(2,0),||PM|-|PN||=3,则动点P 的轨迹是( ) A.圆 B.椭圆 C.射线 D.双曲线2.已知双曲线的方程为x 2a 2-y 2b2=1(a>0,b>0),点A,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB|=m,F 1为双曲线的左焦点,则△ABF 1的周长为( )A.2a+2mB.4a+2mC.a+mD.2a+4m3.已知定点A(1,4),F 是双曲线x 24-y 212=1的左焦点,P 是双曲线右支上的动点,则|PF|+|PA|的最小值为( ) A.6 B.8 C.9 D.12 4.设F 1,F 2是双曲线x2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于 .题组二 双曲线的标准方程5.若方程x 2k+3+y 2k+2=1,k∈R表示焦点在x 轴上的双曲线,则k 的取值范围是( )A.-3<k<-2B.k<-3C.k<-3或k>-2D.k>-26.若ax 2+by 2=b(ab<0),则这个曲线是( ) A.双曲线,焦点在x 轴上 B.双曲线,焦点在y 轴上 C.椭圆,焦点在x 轴上 D.椭圆,焦点在y 轴上7.已知双曲线的中心在坐标原点,两个焦点F 1,F 2的坐标分别为(√5,0)和(-√5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的标准方程为( )A.x 22-y 23=1B.x 23-y 22=1 C.x 24-y 2=1 D.x 2-y24=1 8.已知双曲线的中心在坐标原点,且一个焦点为F 1(-√5,0),点P 位于该双曲线上,线段PF 1中点的坐标为(0,2),则该双曲线的标准方程是( )A.x 24-y 2=1 B.x2-y 24=1 C.x 22-y 23=1 D.x 23-y 22=19.以椭圆x 28+y 25=1长轴的两端点为焦点,且经过点(3,√10)的双曲线的标准方程为 .10.如图所示,已知双曲线以长方形ABCD 的顶点A,B 为左、右焦点,且双曲线过C,D 两顶点.若AB=4,BC=3,则此双曲线的标准方程为 .11.已知焦点在x 轴上的双曲线过点P(4√2,-3),且点Q(0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.题组三 与双曲线有关的轨迹问题12.已知平面内两定点A(-5,0),B(5,0),动点M 满足|MA|-|MB|=6,则点M 的轨迹方程是( )A.x 216-y 29=1B.x 216-y 29=1(x≥4)C.x 29-y 216=1D.x 29-y 216=1(x≥3) 13.已知定圆F 1:x 2+y 2+10x+24=0,定圆F 2:x 2+y 2-10x+9=0,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.能力提升练一、选择题1.(河北石家庄二中高二月考,★★☆)已知双曲线x 2a -3+y 22-a=1的焦点在x 轴上,若焦距为4,则a=( ) A.212B.7C.92D.122.(广西梧州高二期末,★★★)已知F 1,F 2为双曲线C:x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=( ) A.2 B.4 C.6 D.83.(2018四川绵阳培城模拟,★★★)如图,F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点,过F 1(-√7,0)的直线l 与双曲线的左、右两支分别交于点A,B.若△ABF 2为等边三角形,则双曲线的方程为( )A.5x 27-5y 228=1 B.x 26-y 2=1 C.x2-y 26=1 D.5x 228-5y 27=1 4.(2018四川成都诊断,★★★)已知点P 在曲线C 1:x 216-y 29=1上,点Q在曲线C 2:(x+5)2+y 2=1上,点R 在曲线C 3:(x-5)2+y 2=1上,则|PQ|-|PR|的最大值是( ) A.6 B.8 C.10 D.12二、填空题5.(安徽阜阳三中高二月考,★★☆)已知点F 1,F 2分别是双曲线x 2a 2-y 29=1(a>0)的左、右焦点,P 是该双曲线上的一点,且|PF 1|=2|PF 2|=16,则△PF 1F 2的周长是 .6.(★★★)已知方程x 24-t +y 2t -1=1表示的曲线为C.给出以下四个结论:①当1<t<4时,曲线C为椭圆;②当t>4或t<1时,曲线C为双曲线;③若曲线C为焦点在x轴上的椭圆,则1<t<52;④若曲线C为焦点在y轴上的双曲线,则t>4. 其中正确的是(只填正确结论的序号).三、解答题7.(★★★)已知双曲线x 24-y29=1,F1,F2是其两个焦点,点M在双曲线上.(1)若∠F1MF2=90°,求△F1MF2的面积;(2)若∠F1MF2=120°,△F1MF2的面积是多少?若∠F1MF2=60°,△F1MF2的面积又是多少?(3)观察以上计算结果,你能看出随∠F1MF2的变化,△F1MF2的面积将怎样变化吗?试证明你的结论.8.(天津一中高二期末,★★★)已知点M(-2,0),N(2,0)是平面上的两点,动点P满足|PM|+|PN|=6.(1)求点P的轨迹方程;(2)若(1-cos∠MPN)|PM|·|PN|=2,求点P的坐标.9.(★★★)A,B,C是我方三个炮兵阵地,A在B正东6 km处,C在B北偏西30°方向,与B相距4 km,P为敌炮兵阵地,某时刻A处发现敌炮兵阵地发出的某种信号,由于B,C两地比A距P地远,因此4 s后,B,C 才同时发现这一信号,已知此信号的传播速度为1 km/s,A若炮击P地,求炮击的方向角.答案全解全析 基础过关练1.D 因为||PM|-|PN||=3<|MN|=4,所以由双曲线的定义可知,点P 的轨迹是双曲线.2.B 由题意知{|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a ,即{|AF 1|=2a +|AF 2|,|BF 1|=2a +|BF 2|,又|AF 2|+|BF 2|=|AB|=m,所以△ABF 1的周长为|AF 1|+|BF 1|+|AB|=4a+2m.3.C 由双曲线的方程可知a=2,设其右焦点为F 1,则F 1(4,0).|PF|-|PF 1|=2a=4,即|PF|=|PF 1|+4,所以|PF|+|PA|=|PF 1|+|PA|+4≥|AF 1|+4,当且仅当A,P,F 1三点共线时取等号,此时|AF 1|=√(4-1)2+42=√25=5,所以|PF|+|PA|≥|AF 1|+4=9,即|PF|+|PA|的最小值为9.4.答案 24解析 由题意得a=1,2a=2,焦距|F 1F 2|=2×√1+24=10.∵3|PF 1|=4|PF 2|,∴|PF 1|=43|PF 2|,∴|P F 1|-|PF 2|=43|PF 2|-|PF 2|=13|PF 2|=2,∴|PF 2|=6,|PF 1|=8,∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12|PF 1|·|PF 2|=12×6×8=24.5.A 由题意知{k +3>0,k +2<0,解得-3<k<-2.6.B 原方程可化为x 2b a+y 2=1,因为ab<0,所以ba <0,所以方程表示的曲线是双曲线,且焦点在y 轴上. 7.C 由题意得,{|PF 1|·|PF 2|=2,|PF 1|2+|PF 2|2=(2√5)2,∴(|PF 1|-|PF 2|)2=16,即(2a)2=16,则2a=4,解得a=2,又c=√5,∴b=1,∴双曲线的标准方程为x 24-y 2=1.故选C.8.B 由双曲线的一个焦点为F 1(-√5,0)知c=√5,因为线段PF 1中点的坐标为(0,2),所以P(√5,4),设双曲线的右焦点为F 2,则有PF 2⊥x 轴,且PF 2=4,又点P 在双曲线右支上,所以PF 1=√(2√5)2+42=√36=6,所以PF 1-PF 2=6-4=2=2a,所以a=1,b 2=c 2-a 2=4,所以双曲线的标准方程为x 2-y 24=1. 9.答案x 23-y 25=1解析 由题意得,双曲线的焦点在x 轴上,且半焦距为2√2. 设双曲线的标准方程为x 2a 2-y 2b 2=1(a>0,b>0), 则有{a 2+b 2=c 2=8,9a 2-10b 2=1,解得a 2=3,b 2=5.故所求双曲线的标准方程为x 23-y 25=1.10.答案 x 2-y 23=1解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a>0,b>0).由题意得B(2,0),C(2,3), ∴{a 2+b 2=4,4a 2-9b 2=1,解得{a 2=1,b 2=3,∴双曲线的标准方程为x 2-y 23=1.11.解析 因为双曲线的焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b 2=1(a>0,b>0),焦点F 1(-c,0),F 2(c,0).因为双曲线过点P(4√2,-3),所以32a2-9b 2=1.①因为点Q(0,5)与两焦点的连线互相垂直,所以QF 1⃗⃗⃗⃗⃗⃗⃗ ·QF 2⃗⃗⃗⃗⃗⃗⃗ =0, 即-c 2+25=0,解得c 2=25.② 又c 2=a 2+b 2,③所以由①②③解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求双曲线的标准方程是x 216-y 29=1.12.D 由题意知,点M 的轨迹是以A(-5,0),B(5,0)为焦点的双曲线的右支.易得c=5,a=3,∴b 2=16,∴点M 的轨迹方程为x 29-y 216=1(x≥3). 13.解析 由题意得,圆F 1:(x+5)2+y 2=1,圆心F 1(-5,0),半径r 1=1.圆F 2:(x-5)2+y 2=42,圆心F 2(5,0),半径r 2=4. ∴|F 1F 2|=10.设动圆M 的半径为R,则|MF 1|=R+1,|MF 2|=R+4,∴|MF 2|-|MF 1|=3<|F 1F 2|. ∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支,且a=32,c=5,∴b 2=c 2-a 2=914.∴动圆圆心M 的轨迹方程为4x 29-4y 291=1(x ≤-32).能力提升练一、选择题1.C ∵双曲线x 2a -3+y 22-a =1的焦点在x 轴上,焦距为4, ∴{2-a <0,a -3>0,√a -3-2+a =2,解得a=92. 2.B 由双曲线方程得a=1,b=1,c=√2, ∴|F 1F 2|=2√2, 在△F 1PF 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos∠F 1PF 2, 即8=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|, 即8=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 又||PF 1|-|PF 2||=2a=2, ∴8=22+|PF 1|·|PF 2|, ∴|PF 1|·|PF 2|=4.3.C 根据双曲线的定义,有|AF 2|-|AF 1|=2a①,|BF 1|-|BF 2|=2a②,由于△ABF 2为等边三角形,则|AF 2|=|AB|=|BF 2|,①+②,得|BF 1|-|AF 1|=4a, 则|AB|=|AF 2|=|BF 2|=4a,|BF 1|=6a,又∠F 1BF 2=60°,所以(2c)2=(6a)2+(4a)2-2×6a×4a×12,即7a 2=c 2=7,解得a 2=1,则b 2=c 2-a 2=6, 所以双曲线的方程为x 2-y 26=1.4.C 不妨设C 1:x 216-y 29=1的两个焦点分别是F 1(-5,0)与F 2(5,0),且|PF 1|-|PF 2|=8,而这两点正好是两圆(x+5)2+y 2=1和(x-5)2+y 2=1的圆心,两圆(x+5)2+y 2=1和(x-5)2+y 2=1的半径分别是r 2=1,r 3=1,所以|PQ|max =|PF 1|+1,|PR|min =|PF 2|-1,所以|PQ|-|PR|的最大值为(|PF 1|+1)-(|PF 2|-1)=|PF 1|-|PF 2|+2=8+2=10. 故选C.二、填空题5.答案 34解析 ∵|PF 1|=2|PF 2|=16,∴|PF 2|=8,|PF 1|-|PF 2|=16-8=8=2a,∴a=4.又b 2=9,∴c 2=25,∴2c=10.∴△PF 1F 2的周长为|PF 1|+|PF 2|+|F 1F 2|=16+8+10=34.6.答案 ②③④解析 ①错误,当t=52时,曲线C 为圆;②正确,若曲线C 为双曲线,则(4-t)(t-1)<0,∴t<1或t>4;③正确,若曲线C 为焦点在x 轴上的椭圆,则4-t>t-1>0,∴1<t<52;④正确,若曲线C 为焦点在y 轴上的双曲线,则{4-t <0,t -1>0,∴t>4.三、解答题7.解析 设|MF 1|=r 1,|MF 2|=r 2(不妨设r 1>r 2),θ=∠F 1MF 2,因为S △F 1MF 2=12r 1r 2sin θ, θ已知,所以只要求r 1r 2即可,因此考虑到用双曲线的定义及余弦定理的知识,求出r 1r 2.(1)当θ=90°时,S △F 1MF 2=12r 1r 2sin θ=12r 1r 2.由双曲线方程知a=2,b=3,c=√13, 由双曲线的定义,得|r 1-r 2|=2a=4,两边平方,得r 12+r 22-2r 1r 2=16,又r 12+r 22=|F 1F 2|2, 所以|F 1F 2|2-4S △F 1MF 2=16,即52-16=4S △F 1MF 2,解得S △F 1MF 2=9.(2)若∠F 1MF 2=120°,在△MF 1F 2中,|F 1F 2|2=r 12+r 22-2r 1r 2cos 120°=(r 1-r 2)2+3r 1r 2=52,所以r 1r 2=12, 所以S △F 1MF 2=12r 1r 2sin 120°=3√3. 同理,若∠F 1MF 2=60°,则S △F 1MF 2=9√3.(3)由以上结果可见,随着∠F 1MF 2的增大,△F 1MF 2的面积将减小.证明如下:由双曲线的定义及余弦定理,得{(r 1-r 2)2=4a 2,①r 12+r 22-2r 1r 2cosθ=4c 2.②②-①,得r 1r 2=4c 2-4a 22(1-cosθ), 所以S △F 1MF 2=12r 1r 2sin θ=(c 2-a 2)sinθ1-cosθ =b 2cot θ2. 因为0<θ<π,所以0<θ2<π2, 在(0,π2)内,y=cot θ2是减函数. 因此当θ增大时,S △F 1MF 2=b 2cot θ2减小.8.解析 (1)设动点P 的坐标为(x,y).∵点M(-2,0),N(2,0)是平面上的两点,动点P 满足|PM|+|PN|=6>|MN|,∴点P 的轨迹是以M,N 为焦点的椭圆,设其方程为x 2a 2+y 2b 2=1(a>b>0),且a=3,c=2,∴b 2=9-4=5. ∴点P 的轨迹方程为x 29+y 25=1. (2)在△MPN 中,cos∠MPN=|PM |2+|PN |2-162|PM |·|PN | =(|PM |+|PN |)2-2|PM |·|PN |-162|PM |·|PN | =10-|PM |·|PN ||PM |·|PN |.∵(1-cos∠MPN)|PM|·|PN|=2,∴(1-10-|PM |·|PN ||PM |·|PN |)·|PM|·|PN|=2,解得|PM|·|PN|=6,由{|PM |·|PN |=6,|PM |+|PN |=6,得||PM|-|PN||=2√3<6,∴点P 在以M(-2,0),N(2,0)为焦点的双曲线x 23-y 2=1上, 联立{x 29+y 25=1,x 23-y 2=1,解得点P 的坐标为(3√32,√52),或(3√32,-√52)或(-3√32,√52)或(-3√32,-√52). 9.解析 如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴,以1 km 为一个单位长度,建立平面直角坐标系,则B(-3,0),A(3,0),C(-5,2√3).因为|PB|=|PC|,所以点P在线段BC的垂直平分线上.设敌炮兵阵地的坐标为(x,y),BC的中点为D,易求得k BC=-√3,D(-4,√3),所以直线PD:y-√3=√3(x+4).①又|PB|-|PA|=4<|AB|,故P在以A,B为焦点的双曲线的右支上,且其方程为x 24-y25=1(x≥2).②联立①②,得x=8,y=5√3,所以P的坐标为(8,5√3).因此k PA=5√38-3=√3.故A若炮击P地,则炮击的方向角为北偏东30°.。

选修2-1第一章椭圆的定义及方程课时作业

选修2-1第一章椭圆的定义及方程课时作业

选修2-1第一章椭圆的定义及方程课时作业work Information Technology Company.2020YEAR课时作业9 椭圆及其标准方程时间:45分钟 满分:100分一、选择题(每小题5分,共30分)1.椭圆2x 2+3y 2=12的两焦点之间的距离是( ) A .210 B.10 C. 2 D .2 2【答案】 D【解析】 将椭圆方程化为标准方程为x 26+y 24=1,则a 2=6,b 2=4,c 2=2,∴两焦点间距离为2 2.故选D.2.(2013·全国卷大纲文)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A 、B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 【答案】 C【解析】 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则a 2=b 2+1,当x =1时,y =±b 2a ,∴|AB |=2b 2a =3,∴a 2=32a +1,即2a 2-3a -2=0.∴a =-12(舍去)或a =2,∴b 2=3,∴方程为x 24+y 23=1.3.椭圆的两个焦点坐标分别为F 1(-8,0),F 2(8,0),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为( )A.x 236+y 2100=1 B.x 2400+y 2336=1 C.x 2100+y 236=1 D.x 220+y 212=1【答案】 C【解析】 由题意知椭圆的焦点在x 轴上,所以可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由题意知2a =20,所以a =10,又c =8,所以b 2=a 2-c 2=36.4.若△ABC 的两个顶点坐标为A (-4,0),B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1 B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 【答案】 D【解析】 因为|AB |=8,所以|CA |+|CB |=18-8=10>8,所以点C 在以A 、B 为焦点的椭圆上,但由于A 、B 、C 三点不共线,所以点C 的纵坐标y ≠0,所以顶点C 的轨迹方程为x 225+y 29=1(y ≠0).5.两个焦点的坐标分别为(-2,0),(2,0),并且经过P ⎝ ⎛⎭⎪⎫52,-32的椭圆的标准方程是( )A.x 210+y 26=1B.y 210+x 26=1C.x 294+y 2254=1 D.y 294+x 2254=1 【答案】 A【解析】 设F 1(-2,0),F 2(2,0),设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由题意得, |PF 1|+|PF 2|=⎝ ⎛⎭⎪⎫52+22+94+⎝ ⎛⎭⎪⎫52-22+94=210=2a , ∴a =10,又c =2,∴b 2=6,椭圆的方程为x 210+y26=1.6.AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的右焦点,则△AFB 的面积最大值是( )A .b 2B .bcC .abD .ac【答案】 B【解析】 ∵S △ABF =S △AOF +S △BOF =12|OF |·|y A -y B |, 当A 、B 为短轴两个端点时,|y A -y B |最大,最大值为2b . ∴△ABF 面积的最大值为bc . 二、填空题(每小题10分,共30分)7.若点P 在椭圆x 22+y 2=1上,F 1,F 2分别是椭圆的两个焦点,且∠F 1PF 2=90°,则△F 1PF 2的面积是________.【答案】 1【解析】 由题意得|PF 1|+|PF 2|=22,|PF 1|2+|PF 2|2=(2c )2=4,所以|PF 1|·|PF 2|=2,所以S △F 1PF 2=12|PF 1|·|PF 2|=1.8.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是________.【答案】 ±34【解析】 设F 1(-3,0),P (x ,y ),M (0,y 0),则得-3+x2=0,∴x =3,将x =3代入x 212+y 23=1,得y =±32,∴y 0=y +02=±34.9.椭圆x 225+y 29=1上的一点M 到左焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于________.【答案】 4【解析】 设椭圆的右焦点为F 2,则由|MF 1|+|MF 2|=10,知MF 2=10-2=8.又因为点O 为F 1F 2的中点,点N 为MF 1的中点,所以|ON |=12|MF 2|=4.三、解答题(本题共3小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤)10.(13分)设0≤α≤2π,若方程x 2sin α-y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是多少?【解析】 ∵x 2sin α-y 2cos α=1, ∴x 21sin α+y 2-1cos α=1. ∵焦点在y 轴上,∴a 2=-1cos α,b 2=1sin α,∴⎩⎪⎨⎪⎧1sin α>0,-1cos α>1sin α,即⎩⎪⎨⎪⎧sin α>0,-1cos α>1sin α,∴-tan α>1,∴tan α<-1, 又α∈(0,π),∴α∈(π2,3π4).11.(13分)△ABC 的三边a >b >c 成等差数列,A 、C 两点的坐标分别是(-1,0),(1,0),求顶点B 的轨迹方程.【分析】 由题意2b =a +c ,即|BC |+|BA |=2|AC |=4,结合椭圆的定义求解.【解析】 设点B 的坐标为(x ,y ), ∵a ,b ,c 成等差数列,∴a +c =2b ,即|BC |+|AB |=2|AC |,∴|BC |+|BA |=4.根据椭圆的定义知,点B 的轨迹方程为x 24+y 23=1. 又∵a >b >c ,∴a >c ,即|BC |>|AB |, ∴(x -1)2+y 2>(x +1)2+y 2,∴x <0, ∴点B 的轨迹是椭圆的一半,方程为x 24+y 23=1(x <0).又当x =-2时,点B 、A 、C 在同一直线上,不能构成△ABC ,∴x ≠-2.∴顶点B 的轨迹方程为x 24+y 23=1(-2<x <0).【总结】 本题很容易忽视条件a >c ,因此漏掉范围x <0,特别是不能构成△ABC 的情况应给予考虑,从而排除不能构成△ABC 的点B (-2,0).12.(14分)已知P 是椭圆x 24+y 2=1上的一点,F 1,F 2是椭圆上的两个焦点.(1)当∠F 1PF 2=60°时,求△F 1PF 2的面积;(2)当∠F 1PF 2为钝角时,求点P 横坐标的取值范围.【解析】 (1)由椭圆的定义,点P 的轨迹是以F 1,F 2为焦点,长轴长2a =4的椭圆,且b =1,c =3,所以|PF 1|+|PF 2|=4.①在△F 1PF 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°.② 由①②得|PF 1|·|PF 2|=43.所以S △PF 1F 2=33.(2)设点P (x ,y ),由已知∠F 1PF 2为钝角,得PF 1→·PF 2→<0, 即(x +3,y )·(x -3,y )<0,所以-263<x <263.。

高中数学选修2-1同步练习题库:双曲线(填空题:较难)

高中数学选修2-1同步练习题库:双曲线(填空题:较难)

双曲线(填空题:较难)1、已知双曲线的左、右焦点分别为,是圆与位于轴上方的两个交点,且,则双曲线的离心率为______________.2、已知是双曲线的左、右焦点,点在双曲线的右支上,是坐标原点,是以为顶点的等腰三角形,其面积是,则双曲线的离心率是______________.3、椭圆与双曲线有相同的焦点,,椭圆的一个短轴端点为,直线与双曲线的一条渐近线平行,若椭圆于双曲线的离心率分别为,,则的最小值为__________.4、已知A、B为双曲线E的左右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为_______.5、已知椭圆:,双曲线:,以的短轴为一条最长对角线的正六边形与轴正半轴交于点,为椭圆右焦点,为椭圆右顶点,为直线与轴的交点,且满足是与的等差中项,现将坐标平面沿轴折起,当所成二面角为时,点在另一半平面内的射影恰为的左顶点与左焦点,则的离心率为__________.6、已知等腰梯形ABCD中AB//CD,AB=2CD=4,∠BAD=600,双曲线以A,B为焦点,且经过C、D两点,则该双曲线的离心率为_________.7、点是焦点为的双曲线上的动点,若点满足,则点的横坐标为____________8、点在曲线上,点在曲线上,线段的中点为,是坐标原点,则线段长的最小值是__________.9、已知双曲线的方程为,其左、右焦点分别是,已知点坐标,双曲线上点满足,则__________.10、设、分别为椭圆与双曲线的公共焦点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的取值范围为__________.11、双曲线的左右两焦点分别是,若点在双曲线上,且为锐角,则点的横坐标的取值范围是________.12、已知双曲线的右焦点为,点在双曲线的左支上,若直线与圆相切于点且,则双曲线的离心率值为__________.13、已知双曲线:(,)和圆:.过双曲线上一点引圆的两条切线,切点分别为,.若可为正三角形,则双曲线离心率的取值范围是__________.14、过双曲线的右焦点且垂于轴的直线与双曲线交于,两点,与双曲线的渐近线交于,两点,若,则双曲线离心率的取值范围为__________.15、过双曲线(,)的左焦点向圆作一条切线,若该切线与双曲线的两条渐进线分别相交于第一、二象限,且被双曲线的两条渐进线截得的线段长为,则该双曲线的离心率为__________.16、已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,在抛物线上且满足,当取最大值时,点恰好在以为焦点的双曲线上,则该双曲线的离心率为__________.17、给出如下命题:①已知随机变量,若,则②若动点到两定点的距离之和为,则动点的轨迹为线段;③设,则“”是“”的必要不充分条件;④若实数成等比数列,则圆锥曲线的离心率为;其中所有正确命题的序号是_________.18、设为双曲线右支上的任意一点,为坐标原点,过点作双曲线两渐近线的平行线,分别与两渐近线交于,两点,则平行四边形的面积为__________.19、已知双曲线的离心率为,点是其左右焦点,点与点是双曲线上关于坐标原点对称的两点,则四边形的面积为__________.20、设分别为双曲线的左右焦点,为双曲线右支上任一点,当的最小值为时,则该双曲线的离心率的取值范围是__________.21、在平面直角坐标系中,的顶点分别是离心率为的圆锥曲线的焦点,顶点在该曲线上.一同学已正确地推得:当时,有.类似地,当时,有(________).22、如果曲线与曲线恰好有两个不同的公共点,则实数的取值范围是__________.23、已知双曲线的右顶点为,为坐标原点,以为圆心的圆与双曲线的某渐近线交于两点,.若,且,则双曲线的离心率为____.24、平面直角坐标系xoy中,抛物线的焦点为F,设M是抛物线上的动点,则的最大值是25、把离心率的双曲线称为黄金双曲线.给出以下几个说法:①双曲线是黄金双曲线;②若双曲线上一点到两条渐近线的距离积等于,则该双曲线是黄金双曲线;③若为左右焦点,为左右顶点,且,则该双曲线是黄金双曲线;④.若直线经过右焦点交双曲线于两点,且,,则该双曲线是黄金双曲线;其中正确命题的序号为 .26、已知双曲线的右焦点到其渐进线的距离为,则此双曲线的离心率为_________.27、已知抛物线的焦点恰好是双曲线的右顶点,且该双曲线的渐近线方程为,则双曲线的方程为_________.28、过抛物线的焦点作直线,交抛物线于两点,交其准线于点,若,则直线的斜率为___________.29、圆的切线过双曲线的左焦点,其中为切点,为切线与双曲线右支的交点,为的中点,则___________.30、已知动点与双曲线的两个焦点的距离之和为定值,且的最小值为,则动点的轨迹方程为______________.31、、是双曲线的两个焦点,点是双曲线上一点,且,则△的面积为 .32、如图,已知双曲线的右顶点为,为坐标原点,以为圆心的圆与双曲线的某渐近线交于两点,若,且,则双曲线的离心率为____________.33、已知双曲线的右焦点为,过点且平行于双曲线的一条渐近线的直线与双曲线交于点,在直线上,且满足,则.34、如图,在中,,、边上的高分别为BD、AE,则以、为焦点,且过、的椭圆与双曲线的离心率分别为e1,e2,则的值为 .35、过双曲线(,)的右焦点作渐进线的垂线,设垂足为(为第一象限的点),延长交抛物线()于点,其中该双曲线与抛物线有一个共同的焦点,若,则双曲线的离心率的平方为.36、已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值是____.37、已知双曲线的左右焦点分别为,为双曲线右支上一点,点的坐标为,则的最小值为__________.38、已知,,动点满足,若双曲线的渐近线与动点的轨迹没有公共点,则双曲线离心率的取值范围是 .39、在平面直角坐标系xOy中,双曲线C:(a>0)的一条渐近线与直线y=2x+1平行,则实数a的值是.40、过双曲线的左焦点,作倾斜角为的直线交该双曲线右支于点,若且,则双曲线的离心率为_____________.41、过双曲线的右焦点作与轴垂直的直线,直线与双曲线交于两点,与双曲线的渐近线交于两点.若,则双曲线的离心率为_______.42、已知双曲线上一点,过双曲线中心的直线交双曲线于两点.设直线的斜率分别为,当最小时,双曲线的离心率为________________.43、已知点为双曲线右支上的一点,点分别为双曲线的左、右焦点,双曲线的一条渐近线的斜率为,若为的内心,且,则的值为.44、在平面直角坐标系中, 若双曲线的一条准线恰好与抛物线的准线重合,则双曲线的渐近线方程为.45、双曲线的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为.46、已知双曲线的一条渐近线平行于直线l:y=2x+10,且它的一个焦点在直线l上,则双曲线C的方程为.47、若圆与双曲线C:的渐近线相切, 双曲线C的渐近线方程是48、已知抛物线与双曲线有相同的焦点,是两曲线的一个交点,且轴,则双曲线的离心率是 .49、已知双曲线的右焦点, 在双曲线的左支上,,当的周长最小值时,该三角形的面积为50、已知双曲线和椭圆有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________51、设双曲线的一个焦点为,虚轴的一个端点为,线段与双曲线的一条渐近线交于点,若,则双曲线的离心率为_____.52、平面直角坐标系中,双曲线的渐近线与抛物线交于点.若的垂心为的焦点,则的渐近线方程为________.53、过点的直线与双曲线的一条斜率为正值的渐近线平行,若双曲线的右支上到直线对的距离恒大于,则双曲线的离心率的最大值是_____.54、设F1,F2为双曲线的左右焦点,P为双曲线右支上任一点,当最小值为8a时,该双曲线离心率e的取值范围是.55、如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是.56、已知命题:在平面直角坐标系xOy中,椭圆,△ABC的顶点B在椭圆上,顶点A,C分别为椭圆的左、右焦点,椭圆的离心率为e,则,现将该命题类比到双曲线中,△ABC的顶点B在双曲线上,顶点A、C分别为双曲线的左、右焦点,设双曲线的方程为.双曲线的离心率为e,则有________.57、在平面直角坐标系中,已知的顶点和,顶点在双曲线上,则为___________.58、已知点P为双曲线右支上一点,,分别为双曲线的左右焦点,且,G为三角形的内心,若成立,则的值为()B.C.D.A.59、设P是双曲线上一点,M,N分别是两圆:和上的点,则的最大值为____________.60、如图,是椭圆与双曲线的公共焦点,分别是在第二,第四象限的公共点,若四边形为矩形,则的离心率是.61、已知双曲线的焦点分别为,.则双曲线的离心率为()A.B.C.D.62、中心在原点、焦点在轴上的椭圆与双曲线有公共焦点,左右焦点分别为、,且它们在第一象限的交点为,是以为底边的等腰三角形.若,双曲线离心率的取值范围为,则椭圆离心率的取值范围是.63、中心在原点、焦点在轴上的椭圆与双曲线有公共焦点,左右焦点分别为、,且它们在第一象限的交点为,是以为底边的等腰三角形.若,双曲线离心率的取值范围为,则椭圆离心率的取值范围是.64、已知,是椭圆和双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率,则.65、已知点是双曲线E:上的一点,M、N分别是双曲线的左右顶点,直线PM、PN的斜率之积为,则该双曲线的渐近线方程为___________________.66、在平面直角坐标系中,为双曲线右支上的一个动点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学周周清( 五) 2012.12.22
姓名 班级
一、 选择题(每小题只有一个正确答案,每题6分共36分)
1.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( ) A .
2
2
1412
x
y
-
= B.
2
2
112
4
x
y
-
= C.
2
2
110
6
x
y
-
= D
2
2
16
10
x
y
-
=
2.椭圆
2
2
14
3
x
y
+
=上一点P 到左焦点的距离为3,则P 到y 轴的距离为
( )
A . 1 B. 2 C. 3 D 4 3、方程6)5()5(2222=++-+-y x y x 化简得: A .
116
9
2
2
=-
y
x
B. 19
16
2
2
=+
-
y
x
C.
11692
2
=+
y
x
D.
19
16
2
2
=-
y
x
4.直线1y kx =+与焦点在x 轴上的椭圆2
2
19
x
y
m
+
=总有公共点,则实数m 的取
值范围是 ( )
(A )
2
1≤m<9 (B )9<m<10 (C )1≤m<9 (D )1<m<9
5.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的


为。

( ) A .
2
2
14
9
y
x
-
= B.
2
2
19
4
x
y
-
= C.
2
2
13131100
225
y
x
-
= D
2
2
13131225
100
y
x
-
=
6.设12,F F 是双曲线
222
2
1x y a
b
-
=的左、右焦点,若双曲线上存在点A ,使
1290
F A F ︒
∠=且
12
3AF AF =,则
双曲线的离心率为
( )
A .
2
B.
2
C.
2
D
7、设双曲线
19
16
2
2
=-
y
x
上的点P 到一焦点)0,5(的距离为15,则P 点到另一焦点
)0,5(-的距离是( )
A )7
B )23
C )5或23
D )7或23
8、双曲线
2
2
13x
y
m
m
-
=+的一个焦点为(2,0)
,则m=( )
A )12
B )1或3
C )
12+ D )12
9、若方程1
41
32
2
++
-k y
k x
=1表示双曲线,则k 的取值范围是( )
(A)(3
1-,
4
1) (B)(4
1-,
3
1) (C)(
3
1,4
1-
) (D)(-∞,4
1-
)∪
(
3
1,+∞)
10、方程
m
y
x
++
16m
-252
2
=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( )
(A)-16<m <25 (B)-16<m <2
9
(C)
2
9<m <25 (D)m >
2
9
11、已知椭圆
x
y
m
2
2
5
1+
=的离心率e =
105
,则m 的值为 ( )
(A)3 (B)3或
253
(C)15 (D)1512.已知椭圆1
2
2
2=+y
a
x
(a >1)的两个焦点为F 1,F 2,P 为椭圆上一点,且∠
F 1PF 2=60o ,则|PF 1|·|PF 2|的值为
A.1
B.31
C.34
D.32
二.填空题。

(每小题6分,共24分)
13、已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交
CQ 于M ,则点M 的轨迹方程为 。

14.已知
16
52
2
=++
-t y
t
x
表示焦点在y 轴的双曲线的标准方程,t 的取值范围是
___________.
15.P 是椭圆16272
2
y
x
+
=1上的点,则点P 到直线4x +3y -25=0的距离最小值
为 .
16.过点)1,3(-M 且被点M 平分的双曲线14
2
2
=-y
x
的弦所在直线方程为
三.解答题(共40分) 17.已知双曲线C :19
16
2
2
=+
-
y
x
,写出双曲线的实轴顶点坐标,虚轴顶点坐标,
焦点坐标,准线方程,渐近线方程。

18.双曲线
14
2
2
=-y x
的两个焦点为F 1、F 2,点P 在双曲线上,△F 1PF 2的面积为3求
12PF PF ⋅
的值。

19.已知椭圆的两个焦点分别为12(0,(0,F F -,离心率3
e =。

(15分)
(1)求椭圆的方程。

(2)一条不与坐标轴平行的直线l 与椭圆交于不同的两点,M N ,且线段MN 的中点的横坐标为12
-,求直线l 的斜率的取值范围。

20.设直线:l y x b =+与椭圆C :
11
2
2
2
2=-+
a y
a
x
(1)a >相交于A ,B 两点,且l 过
椭圆C 的右焦点,若以AB 为直径的圆经过椭圆的左焦点,求该椭圆C 的方程。

11.(1)设椭圆方程为
222
2
1x y a
b
+
=
,由已知3
c c a
==
,3,1a b ∴==,∴椭圆方
程为
2
2
19
y
x +=。

(2)设l 方程为(0)y kx b k =+≠,联立22
19
y kx b y x =+⎧⎪
⎨+=⎪⎩得222(9)290.........(1)k x kbx b +++-=
2222222
90,44(9)(9)4(9)0......(2)k k b k b k b +>∆=-+-=-+> 122
2 1........(3)9
kb x x k -+=
=-+
由(3)的2
9(0)2k b k k
+=≠代入(2)的422
62703k k k +->⇒>
k ∴>
或k <。

相关文档
最新文档