练习5[1].1_(1)
部编版四年级道德与法治上册第二单元一课一练及单元练习测试题(附答案)
部编版四年级道德与法治上册第二单元一课一练及单元练习测试题(附答案)部编版四年级道德与法治上册第二单元一课一练及单元练测试题第二单元《为父母分担》第4课少让父母为我操心一、填空题1.从早到晚,父母总是在忙碌,为_________努力,为_________奔波,为我们操心。
2.我们应该认识到:父母在家里、在工作中都是_________的。
3.在去父母工作单位时要仔细观察,但不要_________他们。
4.如果想到父母工作的地方了解父母,要事先了解有什么_________和要求,特别是要记住哪些是_________做的。
5.如果不能跟着父母去上班,也有办法了解父母工作的情况,比如可以采取_________的方法。
6.父母很辛苦,很多事情我们都帮不上忙,但我们起码能做到_________自己,少给父母添麻烦。
7.我们每个人都不想给父母添麻烦,只是有时候不能从_________的角度想问题,_________中给他们增添了麻烦。
8.我们不经意的一句话或一个_________,都有可能使父母陡增懊恼。
要为父母分忧解愁,就从学做一个_________的孩子开始吧。
2、判别题(正确的在题后括号内画√,错误的画×)1.不管是在家庭中还是糊口中,父母都是很辛苦的。
( )2.如果我们能管好自己,就会少给父母添麻烦。
( )3.了解父母的最好办法就是到父母工作的地方看一看。
( )4.如果我们不是故意的,就不会给父母添麻烦。
( )5.从现在起,我们应该学做一个懂事的孩子。
( )6.我们已经长大了,如果我们能做得更好,父母就可以少为我们操心。
( )三、选择题1.要想更周全地了解父母的辛苦,比力好的举措是( )A在家里仔细观察B到父母事情的中央看看C以上两种方法相联合2.如果父母事情的中央是外人禁入的,但我们想了解父母的事情。
以下做法正确的是( )A.让父母偷着领出来B不能去父母的事情单元C打消了解父母工作的想法3.如果我们在学校有类似漫画中的行为,就会( )A不打不了解B给父母添麻烦C不再是同学和朋友4.在糊口中我们这样一句不经意的话,可能给父母添麻烦( )A我最不愿写功课了B我最喜爱吃西瓜了C我最喜欢看动漫书了5.看到爸爸每世界班有品茗的气,会让爸爸高兴的做法是( )A为爸爸烧好一壶开水B提醒爸爸下班别忘记喝茶C建议爸爸改喝饮料四、XXX1.四年级学生XXX的妈妈是个医生,晚上上夜班遇到一个急诊病人,忙了一夜,第二天中午XXX回家吃午饭,发现妈妈还在睡觉,没给她做饭。
全国优秀教案评比(5[1].1从三个方向看)
从正面看到的平面图形是: 从正面看到的平面图形是:
从左面看到的平面图形是: 从左面看到的平面图形是: 平面图形是
从上面看到的平面图形是: 从上面看到的平面图形是: 教师总结:人们从不同的方向观察某个物体时, 教师总结:人们从不同的方向观察某个物体时,可以看到不 同的图形。从正面看到的图形,称为主视图;从左面看到的 同的图形。从正面看到的图形,称为主视图; 图形,称为左视图;从上面看到的图形,称为俯视图。 图形,称为左视图;从上面看到的图形,称为俯视图。
3、学生观察、思考 由此引入课题 、学生观察、 观察 飞机三幅图片分别 飞机三幅 图片分别 是从哪三个方向拍 是从哪 三学生进行观 察、分小组讨论 老师提问: 老师提问: 大家从上面 大家从上 面 , 左侧 面 、 正面观察到的 是什么平面图形? 是什么平面图形?
从三个方向看》 《 从三个方向看》
教案设计
一、教案背景 1,面向学生: □中学√ 2,学科:数学 ,面向学生: 中学√ ,学科: 2,课时:1 课时 ,课时: 3,学生课前准备: ,学生课前准备: 页的内容。 (1)预习教材 167~169 页的内容。 ) ~ 长方体、 (2)准备长方体、圆柱等实物模型。 )准备长方体 圆柱等实物模型。 从三个方向看》 (第 课时) 二、教学课题——《5.4 从三个方向看》 第 1 课时) 教学课题——《 —— ( 教养方面: 教养方面: 1、 了解三视图的有关概念。 、 了解三视图的有关概念。 2、能识别简单物体的三个视图,会画简单物体的三个视图。 、能识别简单物体的三个视图,会画简单物体的三个视图。 教育方面: 教育方面: 1、 培养学生通过观察、思考、讨论掌握知识的良好习惯,培养学生学习数学的积极性。 、 培养学生通过观察、思考、讨论掌握知识的良好习惯,培养学生学习数学的积极性。 2、发展学生的空间观念,进一步感知立体图形与平面图形的关系。 学生的空间观念, 、发展学生的空间观念 进一步感知立体图形与平面图形的关系。 3、学会与他人交流,能从多角度看待问题。 、学会与他人交流,能从多角度看待问题。 发展方面: 发展方面: 培养学生的观察能力和分析能力,培养学生动手操作能力。 培养学生的观察能力和分析能力,培养学生动手操作能力。 三、教材分析 教学内容: 教学内容: 1、苏科版 七年级上册 5.4 从三个方向看(第 1 课时) 从三个方向看( 课时) 、 , 2、在本节课中,学生主要了解三视图的有关概念,能识别简单物体的三视图,会画简单物体的三视图 、在本节课中,学生主要了解三视图的有关概念,能识别简单物体的三视图, 内容分析: 内容分析: 本节课使学生能够了解三视图的有关概念、 能够了解三视图的有关概念 识别简单物体的三视图, 识别简单物体的三视图, 并能够画出简单物体的三视图 的三视图。 本节课使学生能够了解三视图的有关概念、 并能够画出简单物体的三视图。 在小学四年级学生学过从三个方向看一些几何组合体, 本节课的教学内容是 学知识的延续, 在小学四年级学生学过从三个方向看一些几何组合体,而本节课的教学内容是小学知识的延续,但本节 课的教学内容比较抽象也难以理解的 学生在今后的社会生活实践中, 比较抽象也难以理解的, 课的教学内容比较抽象也难以理解的,学生在今后的社会生活实践中,又会经常接触到有关三视图的内 如何识别三视图,如何运用三视图来表达自己的设计构思, 容。如何识别三视图,如何运用三视图来表达自己的设计构思,要解决这样的问题就需要学生学会三视 图的有关知识,加深对三视图的了解,对今后参加社会生活有极其的意义。 图的有关知识,加深对三视图的了解,对今后参加社会生活有极其的意义。 学情分析: 学情分析: 教学目标: (一)教学目标: 认知目标: 步体会从不同方向观察同一物体可能看到不同的结果。 认知目标:①初 步体会从不同方向观察同一物体可能看到不同的结果。 了解三视图中的主视图、左视图、俯视图以及三视图概念。 ②了解三视图中的主视图、左视图、俯视图以及三视图概念。 能识别简单物体的三视图,会画简单物体三视图。 单物体三视图 ③能识别简单物体的三视图,会画简单物体三视图。 能力目标: 经历从不同方向观察物体的活动过程,发展空间观念,积累活动经验。 能力目标:①经历从不同方向观察物体的活动过程,发展空间观念,积累活动经验。 能在与他人交流的过程中,合理清晰地表达自己的思维过程。 ②能在与他人交流的过程中,合理清晰地表达自己的思维过程。 情感目标:有意识地培养学生学习数学的积极情感, 情感目标:有意识地培养学生学习数学的积极情感,激发对空间与图形学习的好奇 心。 初步形成与他人合作交流的意识。 初步形成与他人合作交流的意识。 (二)重点难点: 重点难点: 教学重点: 体会从不同方向观察同一物体可能看到不同的结果。 教学重点: 体会从不同方向观察同一物体可能看到不同的结果。 教学难点:能画简单立方体及其简单组合的三视图。 教学难点:能画简单立方体及其简单组合的三视图。 教学准备: 教学准备:
【三套卷】小学数学一年级下册第五单元经典练习卷(含解析)(1)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.的价钱大约是()A. 35元B. 3.50元C. 30分2.小丽买付了4张,找回的钱比5元少。
玩具车的价钱是()。
A. 68元B. 78元C. 88元3.1 元可换()。
A. 2 张5 角B. 3 张5 角C. 2张1 角4.5元钱可以正好买下面哪两种物品?A. ①和②B. ②和③C. ①和④5.买东西8元,付10元,找回()元。
A. 3B. 5C. 26.5元4角=()角。
A. 54B. 9C. 117.10分()1角A. 大于B. 等于C. 小于8.3.50元相当于()A. 3元B. 4元C. 3元5角9.2元和()角同样多。
A. 20B. 20010.买一个笔记本要4元7 角钱,下面()种付钱方法最简便。
A. 4张1元,7张1角B. 1张2元、2张1元、3张2角、1张1角C. 2张2元,1张5角、1张2角11.( )钱最多。
A. 4张2元B. 1张10元C. 3张5元12.明明买直尺用去8角钱,买铅笔用去5角钱,明明共用去()钱。
A. 13元B. 1元3角C. 3角二、填空题13.一张1元的人民币可以换________张1角的人民币;一张5角的人民币可以换________张2角和________张1角。
14.在横线上填上“>”“<”或“=”。
40+9________49 15-7________9 22+6________3063-4________43 6元________ 5元9角56-7________4815.商店购物。
买的物品应付的钱数________________付的钱数应找的钱数________________16.在横线上填上“>”、“<”或“=”。
23 ________32 47+4________50 89________90-19角9分________1元5角+6角________1元5元-4元________12角17.18.6元=________角 2元3角=________角90角=________元45角=________元________角19.在横线上填上>、<或=80________85-3 100________90+9 42+8________49 48+9________48-93+70________37 4角8分________50分 5角+6角________1元 2元________19角20.60角=________元 89分=________角________分1元-4角=________角 11元+10角=________元21.算一算一张能买________根;一张能买________本。
人教版一年级上册数学专项练习-计算题50道带答案(培优)
人教版一年级上册数学专项练习-计算题50道一.计算题(共50题, 共397分)1.我能列得对。
2.填一填。
3.看图列式计算。
1. 2.4.口算:2+3= 2-2= 4-2= 2+0= 4-3= 3+2= 2+2= 5-2= 0+3= 5-3= 2-0= 3-2= 5-1= 3+1= 2-1= 2+1= 5.我能列得好。
6.算一算。
10-4=1+2= 5-3= 0+8= 10-7=2+4= 6-5= 4+4= 5-1= 1+9=8-4= 6+0= 3-3= 1+5= 10-5=1+1= 8+1= 4-1= 9-3= 3+6=7.计算:8+7= 8-6= 6+10= 9+4= 7+5= 8+5= 2+8= 9+6= 7-3= 9+9= 4+8= 10+5= 10-6= 9-7= 5+8= 9-4= 11-10= 4+5=7-7= 6+9= 9+3= 14-4= 9+8= 2+8= 8.看图列式计算。
9.看谁算得又快又准。
10.看谁都算对.11.先说一说图意, 再列式计算。
□○□=□(条)12.列式计算。
(1)(2)13.看图列式。
(1)□+□=□(2)□+□=□14.算一算。
9-7= 5+4= 10-7= 5+3= 8-8= 1+9= 9-8= 1+0= 2+3= 10-8= 7+3= 1+4= 8-2= 9-9= 7-4= 8+1= 0+10= 10-9= 6+1= 10-10= 15.看图列式计算。
16.算一算。
17-7= 8+8= 5+5= 7+6= 12-10= 19-2= 4+7= 16-4= 3+8= 6+7=7+8= 10-5= 7-5= 14+3= 7+0=13-3= 15+4= 2+7= 2+12= 10+6= 17.看谁算得又对又快。
4+2=________ 3+2=________ 7+0=________ 8+0=________ 4+3=________ 3+3=________ 7+1=________ 8+1=________ 4+4=________ 3+4=________ 7+2=________ 8+2=________ 18.算一算。
《一元二次方程》专项练习和中考真题(含答案解析及点睛)
《一元二次方程》专项练习1.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-【答案】D【分析】根据一元二次方程的定义,再将0x =代入原式,即可得到答案.【解析】解:∵关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,∴210a -=,10a -≠,则a 的值为:1a =-.故选D .【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义. 2.用换元法解方程21x x ++21x x +=2时,若设21x x +=y ,则原方程可化为关于y 的方程是( ) A .y 2﹣2y +1=0B .y 2+2y +1=0C .y 2+y +2=0D .y 2+y ﹣2=0 【答案】A 【分析】方程的两个分式具备倒数关系,设21x x+=y ,则原方程化为y+1y =2,再转化为整式方程y 2-2y+1=0即可求解. 【解析】把21x x+=y 代入原方程得:y +1y =2,转化为整式方程为y 2﹣2y +1=0.故选:A . 【点睛】考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.3.如果关于x 的一元二次方程2310kx x -+=有两个实数根,那么k 的取值范围是( )A .94k …B .94k -…且0k ≠C .94k …且0k ≠D .94k -… 【答案】C【分析】根据关于x 的一元二次方程kx 2-3x+1=0有两个实数根,知△=(-3)2-4×k×1≥0且k≠0,解之可得.【解析】解:∵关于x 的一元二次方程kx 2-3x+1=0有两个实数根,∴△=(-3)2-4×k×1≥0且k≠0,解得k≤94且k≠0,故选:C . 【点睛】本题主要考查根的判别式与一元二次方程的定义,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如32()x x x x px q =⋅=-=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,且0x >,则4323x x x -+的值为( )A .1B .3C .1+D .3【答案】C【分析】先求得2=+1x x ,代入4323x x x -+即可得出答案.【解析】∵210x x --=,∴2=+1x x ,x == ∴4323x x x -+=()()21213x+-x x++x =2221223x +x+-x -x+x =231-x +x+=()131-x++x+=2x ,∵x =,且0x >,∴x =,∴原式=2,故选:C . 【点睛】本题考查了一元二次方程的解,解题的关键是会将四次先降为二次,再将二次降为一次.5.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( ) A .6B .7C .8D .9 【答案】D【分析】根据球赛问题模型列出方程即可求解.【解析】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x ﹣1)=36, 化简,得x 2﹣x ﹣72=0,解得x 1=9,x 2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题. 6.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( )A .()5000127500x +=B .()5000217500x ⨯+=C .()2500017500x +=D .()()2500050001500017500x x ++++=【答案】C【分析】设我国2017年至2019年快递业务收入的年平均增长率为x ,根据增长率的定义即可列出一元二次方程.【解析】设我国2017年至2019年快递业务收入的年平均增长率为x ,∵2017年至2019年我国快递业务收入由5000亿元增加到7500亿元即2019年我国快递业务收入为7500亿元,∴可列方程:()2 500017500x +=,故选C .【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系得到方程.7.如图是一张长12cm ,宽10cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积224cm 是的有盖的长方体铁盒.则剪去的正方形的边长为______cm .【答案】2【分析】根据题意设出未知数,列出三组等【解析】设底面长为a,宽为b,正方形边长为解得a =10-2x ,b =6-x ,代入ab =24中得:整理得:2x 2-11x +18=0.解得x =2或x 【点睛】本题考查一元二次方程的应用8.已知a ,b 是方程230x x +-=的两个A .2023B .2021 【答案】A【分析】根据题意可知b=3-b 2,a+b=-1解.【解析】a ,b 是方程230x x +-=的两∴222201932019a b a b -+=-++【点睛】本题考查一元二次方程的根与系数9.一个三角形的两边长分别为2和5,【答案】13【分析】先利用因式分解法解方程x 2-8周长可求.【解析】解:∵x 2-8x +12=0,∴()x -∵三角形的两边长分别为2和5,第三边长∴三角形的第三边长是6,∴该三角形的周【点睛】本题考查了解一元二次方程的因式10.若关于x 的一元二次方程22x x ﹣A .1m < B .1m £三组等式解出即可.边长为x,由题意得:2()1221024x b a x ab +=⎧⎪+=⎨⎪=⎩,(10-2x )(6-x )=24,=9(舍去).故答案为2.,关键在于不怕设多个未知数,利用代数表示列出方程的两个实数根,则22019a b -+的值是( )C .2020D .2019,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=的两个实数根,∴23b b =-,1a b +=-,ab9()2220161620162023a b ab =+-+=++=;与系数的关系;根据根与系数的关系将所求式子进行,第三边长是方程28120x x -+=的根,则该三角形x +12=0,然后根据三角形的三边关系得出第三边的()260x -=,∴x 1=2,x 2=6,三边长是方程x 2-8x +12=0的根,当x =2时,2+2<5形的周长为:2+5+6=13.故答案为:13.的因式分解法及三角形的三边关系,熟练掌握相关性0m +=有实数根,则实数m 的取值范围是( )C .1m >D .m 1≥出方程.019=(a+b )2-2ab+2016即可求-3b =, 3;故选A . 子进行化简代入是解题的关键.三角形的周长为_______. 三边的长,则该三角形的 ,不符合题意,相关性质及定理是解题的关键.【答案】B【分析】根据方程的系数结合根的判别式0≥V ,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.【解析】Q 关于x 的一元二次方程220x x m +﹣=有实数根,2240m ∴=≥-V (-),解得: 1m ≤.故选B . 【点睛】本题考查了根的判别式,牢记“当0≥V 时,方程有实数根”是解题的关键.11.已知关于x 的一元二次方程x 2+bx ﹣1=0,则下列关于该方程根的判断,正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .实数根的个数与实数b 的取值有关【答案】A【分析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.【解析】解:∵△=b 2﹣4×(﹣1)=b 2+4>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为( ) A .1-B .4-C .4-或1D .1-或4 【答案】A【分析】通过根与系数之间的关系得到22m αβ+=-+,2m m αβ=-,由()2222αβαβαβ+=+-可求出m 的值,通过方程有实数根可得到[]()222(1)40m m m --≥-,从而得到m 的取值范围,确定m 的值. 【解析】解:∵方程222(1)0x m x m m +-+-=有两个实数根α,β,∴()21221m m αβ-+=-=-+,221m m m m αβ-==-, ∵()2222αβαβαβ+=+-,2212αβ+=∴()()2222212m m m -+-=-, 整理得,2340m m --=,解得,11m =-,24m =,若使222(1)0x m x m m +-+-=有实数根,则[]()222(1)40m m m --≥-, 解得,1m £,所以1m =-,故选:A .【点睛】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键.13.关于x 的一元二次方程22(2)620k x x k k ++++-=有一个根是0,则k 的值是_______.【答案】1【分析】把方程的根代入原方程得到220k k +-=,解得k 的值,再根据一元二次方程成立满足的条件进行取舍即可.【解析】∵方程22(2)620k x x k k ++++-=是一元二次方程,∴k+2≠0,即k ≠-2;又0是该方程的一个根,∴220k k +-=,解得,11k =,22k =-,由于k ≠-2,所以,k=1.答案为:1.【点睛】本题考查了一元二次方程的解.解此类题时,要擅于观察已知的是哪些条件,从而有针对性的选择解题方法.同时要注意一元二次方程成立必须满足的条件,这是容易忽略的地方.14.已知1x ,2x 是一元二次方程240x x --=的两实根,则12(4)(4)x x ++的值是_____.【答案】16【分析】由根与系数的关系可得121x x =+, 124x x =-,然后把所求式子利用多项式乘法法则展开后代入进行计算即可.【解析】1x Q ,2x 是一元二次方程240x x --=的两实根,121x x ∴+=, 124x x =-,12(4)(4)x x ∴++12124416x x x x =+++12124()16x x x x =+++44116=-+⨯+4416=-++16=, 故答案为:16.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值,熟练掌握根与系数的关系是解题的关键. 15.设a 、b 是方程220190x x +-=的两个实数根,则()()11a b --的值为_____.【答案】-2017【分析】根据根与系数的关系可得出1a b +=-,2019ab =-,将其代入()()()111a b ab a b --=-++中即可得出结论.【解析】∵a 、b 是方程220190x x +-=的两个实数根,∴1a b +=-,2019ab =-,∴()()()111a b ab a b --=-++2019112017=-++=-.故答案为:-2017.【点睛】本题考查了根与系数的关系,牢记“两根之和等于b a -,两根之积等于c a”是解题的关键. 16.已知12,x x 是一元二次方程2470x x --=的两个实数根,则2211224x x x x ++的值是_________.【答案】2【分析】由已知结合根与系数的关系可得:12x x +=4,12x x ⋅= -7,2211224x x x x ++=()212122x x x x ++,代入可得答案.【解析】解:∵12,x x 是一元二次方程2470x x --=的两个实数根,∴12x x +=4,12x x ⋅= -7,∴2211224x x x x ++=()212122x x x x ++=()2427+⨯-=2,故答案为:2. 【点睛】本题考查的知识点是一元二次方程根与系数的关系,难度不大,属于基础题17.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是( )A.12x(x+1)=110 B.12x(x﹣1【答案】D【分析】设有x个队参赛,根据参加一次足【解析】解:设有x个队参赛,则x(x 【点睛】本题考查的是一元二次方程的应用18.阅读理解:对于x3﹣(n2+1)x+n这类x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2理解运用:如果x3﹣(n2+1)x+n=0,那么因此,方程x﹣n=0和x2+nx﹣1=0的所有解决问题:求方程x3﹣5x+2=0的解为___【答案】x=2或x=﹣或x=﹣1【分析】将原方程左边变形为x3﹣4x﹣于x的方程求解可得.【解析】解:∵x3﹣5x+2=0,∴x3﹣4x∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(∴x﹣2=0或x2+2x﹣1=0,解得x=2【点睛】此题主要考查一元二次方程的应用19.若菱形ABCD的一条对角线长为8,A.16 B.24【答案】B【分析】解方程得出x=4或x=6,分两种6时,6+6>8,即可得出菱形ABCD的周长【解析】解:如图所示:∵四边形ABCD∵x2﹣10x+24=0,因式分解得:(x﹣4分两种情况:①当AB=AD=4时,4+4②当AB=AD=6时,6+6>8,∴菱形ABC【点睛】本题考查菱形的性质、解一元二次键.)=110 C.x(x+1)=110 D.x(x﹣1)=一次足球联赛的每两队之间都进行两场场比赛,共要比﹣1)=110.故选:D.的应用,找准等量关系列一元二次方程是解题的关键这类特殊的代数式可以按下面的方法分解因式:﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或的所有解就是方程x3﹣(n2+1)x+n=0的解._____..x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣或x=﹣1,故答案为:x=2或x=﹣的应用,解题的关键是根据题意找到解方程的方法边CD的长是方程x2﹣10x+24=0的一个根,则该菱形C.16或24 D.48分两种情况:①当AB=AD=4时,4+4=8,不能构成的周长.BCD是菱形,∴AB=BC=CD=AD,)(x﹣6)=0,解得:x=4或x=6,+4=8,不能构成三角形;ABCD的周长=4AB=24.故选:B.元二次方程-因式分解法、三角形的三边关系,熟练掌110共要比赛110场,可列出方程.的关键.:)=(x﹣n)(x2+nx﹣1).x2+nx﹣1=0,1]=0,据此得到两个关1)=0,或x=﹣1.方法.该菱形ABCD的周长为( )能构成三角形;②当AB=AD=熟练掌握并灵活运用是解题的关21.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______. 【答案】2. 【分析】根据“关于x 的一元二次方程ax 2+2x+2﹣c =0有两个相等的实数根”,结合根的判别式公式,得到关于a 和c 的等式,整理后即可得到的答案.【解析】解:根据题意得:△=4﹣4a (2﹣c )=0,整理得:4ac ﹣8a =﹣4,4a (c ﹣2)=﹣4,∵方程ax 2+2x+2﹣c =0是一元二次方程,∴a≠0,等式两边同时除以4a 得:12c a -=-,则12c a+=,故答案为2. 【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.22.中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为____________.【答案】x(x+12)=864【分析】本题理清题意后,可利用矩形面积公式,根据假设未知数表示长与宽,按要求列方程即可.【解析】因为宽为x ,且宽比长少12,所以长为x+12,故根据矩形面积公式列方程:x(x+12)=864,故答案:x(x+12)=864.【点睛】本题考查一元二次方程的实际应用,此类型题目去除复杂题目背景后,按照常规公式,假设未知数,列方程求解即可.23. 1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b =( )A .2-B .3-C .4D .6-【答案】A【分析】先把x=1代入方程220x ax b ++=得a+2b=-1,然后利用整体代入的方法计算2a+4b 的值【解析】将x =1代入方程x 2+ax +2b =0,得a +2b =-1,2a +4b =2(a +2b )=2×(-1)=-2.故选A. 【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键24.已知1x ,2x 是方程2320x x --=的两根,则2212x x +的值为( )A .5B .10C .11D .13【答案】D 【分析】先利用完全平方公式,得到2212x x +21212)2x x x x =+-(,再利用一元二次方程根与系数关系:12b x x a+=-,12c x x a=即可求解.【解析】解:2212x x +()221212)232213x x x x =+-=-⨯-=(故选:D . 【点睛】此题主要考查完全平方公式的应用和一元二次方程根与系数关系,灵活运用完全平方公式和一元二次方程根与系数关系是解题关键.25.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于_____.【答案】2028【分析】根据一元二次方程的解的概念和根与系数的关系得出x 12-4x 1=2020,x 1+x 2=4,代入原式=x 12-4x 1+2x 1+2x 2=x 12-4x 1+2(x 1+x 2)计算可得.【解析】解:∵x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,∴x 1+x 2=4,x 12﹣4x 1﹣2020=0,即x 12﹣4x 1=2020,则原式=x 12﹣4x 1+2x 1+2x 2=x 12﹣4x 1+2(x 1+x 2)=2020+2×4=2020+8=2028,故答案为:2028.【点睛】本题主要考查根与系数的关系,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 26.解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【解析】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.27.已知1x ,2x 是一元二次方程2220x x k -++=的两个实数根.(1)求k 的取值范围;(2)是否存在实数k ,使得等式12112k x x +=-成立?如果存在,请求出k 的值,如果不存在,请说明理由.【答案】(1)1k ≤-;(2)k =【分析】(1)根据方程的系数结合 ≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围; (2)根据根与系数的关系可得出x 1+x 2=2,x 1x 2=k +2,结合12112k x x +=-,即可得出关于k 的方程,解之即可得出k 值,再结合(1)即可得出结论.【解析】解:(1)∵一元二次方程有两个实数根,∴2(2)4(2)0k ∆=--+…解得1k ≤-;(2)由一元二次方程根与系数关系,12122,2x x x x k +==+ ∵12112k x x +=-,∴1212222x x k x x k +==-+即(2)(2)2k k +-=,解得k =.又由(1)知:1k ≤-,∴k =【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合12112k x x +=-,找出关于k 的方程. 28.已知关于x 的一元二次方程26(41)0x x m -++=有实数根.(1)求m 的取值范围.(2)若该方程的两个实数根为1x 、2x ,且124x x -=,求m 的值.【答案】(1)2m ≤.(2)1m =.【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围;(2)由根与系数的关系可得出x 1+x 2=6,x 1x 2=4m+1,结合|x 1-x 2|=4可得出关于m 的一元一次方程,解之即可得出m 的值.【解析】(1)∵关于x 的一元二次方程x 2-6x+(4m+1)=0有实数根,∴△=(-6)2-4×1×(4m+1)≥0,解得:m≤2;(2)∵方程x 2-6x+(4m+1)=0的两个实数根为x 1、x 2,∴x 1+x 2=6,x 1x 2=4m+1,∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42,即32-16m=16,解得:m=1.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)利用根与系数的关系结合|x 1-x 2|=4,找出关于m 的一元一次方程.29.已知关于x 的一元二次方程22(21)30x m x m +-+-=有实数根.(1)求实数m 的取值范围;(2)当m=2时,方程的根为12,x x ,求代数式221122(2)(42)x x x x +++的值.【答案】(1)134m ≤;(2)1. 【分析】(1)根据△≥0,解不等式即可;(2)将m=2代入原方程可得:x 2+3x+1=0,计算两根和与两根积,化简所求式子,可得结论.【解析】(1)△=2222(21)41(3)441412413m m m m m m --⨯⨯-=-+-+=-+∵原方程有实根,∴△=4130m -+≥解得134m ≤ (2)当m=2时,方程为x 2+3x+1=0,∴x 1+x 2=-3,x 1x 2=1,∵方程的根为x 1,x 2,∴x 12+3x 1+1=0,x 22+3x 2+1=0,∴(x 12+2x 1)(x 22+4x 2+2)=(x 12+2x 1+x 1-x 1)(x 22+3x 2+x 2+2)=(-1-x 1)(-1+x 2+2)=(-1-x 1)(x 2+1)=-x 2-x 1x 2-1-x 1=-x 2-x 1-2=3-2=1.【点睛】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于b a -,两根之积等于c a”是解题的关键. 30. 2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x 元,每个月的销量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?【答案】(1)y =220﹣2x ;(2)当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元;(3)当x =75,即售价为75元时,月利润最大,且最大月利润为2450元.【分析】(1)根据月销量等于涨价前的月销量,减去涨价(x-60)与涨价1元每月少售出的件数2的乘积,化简可得;(2)月销售量乘以每件的利润等于利润2250,解方程即可;(3)根据题意列出二次函数解析式,由顶点式,可知何时取得最大值及最大值是多少.【解析】(1)由题意得,月销售量y =100﹣2(x ﹣60)=220﹣2x (60≤x ≤110,且x 为正整数)答:y 与x 之间的函数关系式为y =220﹣2x .(2)由题意得:(220﹣2x )(x ﹣40)=2250化简得:x 2﹣150x +5525=0解得x 1=65,x 2=85答:当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元.(3)设每个月获得利润w 元,由(2)知w =(220﹣2x )(x ﹣40)=﹣2x 2+300x ﹣8800∴w =﹣2(x ﹣75)2+2450 ∴当x =75,即售价为75元时,月利润最大,且最大月利润为2450元.【点睛】此题考查一元二次方程的应用,二次函数的应用,解题关键在于理解题意得到等量关系列出方程. 31.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x (元),日销量为y (件),日销售利润为w (元).(1)求y 与x 的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w (元)与销售单价x (元)的函数关系式,当x 为何值时,日销售利润最大,并求出最大利润.【答案】(1)10280y x =-+;(2)10元;(3)x 为12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意列方程,解方程即可得到结论;(3)根据题意得到()()()26128010171210w x x x =--+=--+,根据二次函数的性质即可得到结论.【解析】解:(1)根据题意得,()20010810280y x x =--=-+,故y 与x 的函数关系式为10280y x =-+;(2)根据题意得,()()610280720x x --+=,解得:110x =,224x =(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,()()()261028010171210w x x x =--+=--+, 100-<Q ,∴当17x <时,w 随x 的增大而增大,当12x =时,960w =最大,答:当x 为12时,日销售利润最大,最大利润960元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.32.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?【答案】销售单价为180元时,公司每天可获利32000元【分析】根据题意设降价后的销售单价为x 元,由题意得到1003005200[32000]x x -+-()()=,则可得到答案. 【解析】解:设降价后的销售单价为x 元,则降价后每天可售出3005200[]x +-()个, 依题意,得:1003005200[32000]x x -+-()()=, 整理,得:2360324000x x +﹣=,解得:12180x x ==.180200<,符合题意. 答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元. 【点睛】本题考查二次函数的实际应用,解题的关键是熟练掌握二次函数的实际应用.《一元二次方程》中考真题1.已知2是关于x 的一元二次方程240x x m -+=的一个实数根,则实数m 的值是( ) A .0 B .1C .−3D .−1【答案】B【分析】把x =2+代入方程就得到一个关于m 的方程,就可以求出m 的值.【解析】解:根据题意得2(24(20m -⨯++=,解得1m =;故选:B .【点睛】本题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.2.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .只有一个实数根 【答案】A【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案. 【解析】解:根据定义得:2110,x x x =--=☆1,1,1,a b c ==-=-Q ()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A【点睛】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键.3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( ) A .4 B .5 C .6 D .7【答案】C【分析】设这种植物每个支干长出x 个小分支,根据主干、支干和小分支的总数是43,即可得出关于x 的一元二次方程,解之取其正值即可得出结论【解析】设这种植物每个支干长出x 个小分支,依题意,得:2143x x ++=, 解得: 17x =-(舍去),26x =.故选C .【点睛】此题考查一元二次方程的应用,解题关键在于列出方程4.关于x 的一元二次方程2(3)10x k x k +-+-=根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【答案】A【分析】先计算判别式,再进行配方得到△=(k-1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【解析】△=(k-3)2-4(1-k)=k 2-6k+9-4+4k=k 2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A .【点睛】本题考查的是根的判别式,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.5.已知关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,则m 的取值范围是( ) A .m <2 B .m≤2 C .m <2且m≠1 D .m≤2且m≠1【答案】D【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【解析】解:因为关于x 的一元二次方程x 2-2x +m =0有实数根,所以b 2-4ac =22-4(m -1)×1≥0,解得m≤2.又因为(m -1)x 2+2x +1=0是一元二次方程,所以m -1≠0.综合知,m 的取值范围是m≤2且m≠1,因此本题选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,找出关于m 的一元一次不等式组是解题的关键.6.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .180(1﹣x )2=461B .180(1+x 【答案】B【分析】本题为增长率问题,一般用增长后的180万只,4月份的利润将达到461万只【解析】解:从2月份到4月份,该厂家口故选:B .【点睛】本题考查了一元二次方程的实际应7.关于x 的一元二次方程22x mx +A .2m =- B .3m = 【答案】A【分析】设1x ,2x 是2220x mx m ++再由()2221212122x x x x x x +=+-⋅代入即可【解析】设1x ,2x 是222x mx m ++∴40m ∆=-≥,∴0m ≤,∴1x +∴()2221212122x x x x x x +=+-⋅4=∴3m =或2m =-,∴2m =-,故选【点睛】本题考查一元二次方程根与系数的8.已知关于x 的一元二次方程x 2+5x ﹣A .﹣7 B .7【答案】A【分析】根据根与系数的关系即可求出答案【解析】解:设另一个根为x ,则x +2【点睛】此题主要考查一元二次方程根与系9.设1x ,2x 是方程2234x x +-=的两)2=461 C .368(1﹣x )2=442 D .368(1+x 增长后的量=增长前的量×(1+增长率),如果设这个增万只”,即可得出方程.厂家口罩产量的平均月增长率为x ,根据题意可得方实际应用,理解题意是解题关键.20m m ++=的两个实数根的平方和为12,则m 的值C .3m =或2m =- D .3m =-或m =m +=的两个实数根,由根与系数的关系得12x x +=入即可. 0m +=的两个实数根,22x m =-,212x x m m ⋅=+,222222212m m m m m --=-=,A .系数的关系;牢记韦达定理,灵活运用完全平方公式m =0的一个根是2,则另一个根是( ) C .3D .﹣3出答案.=﹣5,解得x =﹣7.故选:A .根与系数的关系,正确理解一元二次方程根与系数的0的两个实数根,则1211+x x 的值为______. )2=442 设这个增长率为x ,根据“2月份可得方程:180(1+x )2=461,的值为( ) 22m -,212x x m m ⋅=+,方公式是解题的关键. 系数的关系是解题关键.【答案】34【分析】由韦达定理可分别求出1x +【解析】解:由方程2234x x +-=12121231132·24x x x x x x -++===-.故答案为【点睛】本题考查一元二次方程根与系数的10.如图,在一块长15m 、宽10m 的矩形空面积为126m 2,则修建的路宽应为_____【答案】1【分析】把所修的两条道路分别平移到矩形式列方程求解即可.【解析】解:设道路的宽为x m ,根据题意解得:x 1=1,x 2=24(不合题意,舍去【点睛】此题主要考查了一元二次方程的应本题的关键.11.已知关于x 的一元二次方程2x 【答案】1【分析】利用因式分解法求出x 1,x 2,再根【解析】解22430(0)x mx m m -+=解得x 1=3m,x 2=m ,∴3m-m=2解得m=1【点睛】此题主要考查解一元二次方程,12.一元二次方程()()32x x --=的根【答案】123,2==x x【分析】利用因式分解法把方程化为x-【解析】解:30x -=或20x -=,所以2x 与12x x g 的值,再化简要求的式子,代入即可得解0可知1232x x +=-,124·22x x -==- 案为:34 系数的关系,利用韦达定理可简便运算.矩形空地上,修建两条同样宽的相互垂直的道路,___米. 到矩形的最上边和最左边,则剩下的草坪是一个长方据题意得:(10﹣x )(15﹣x )=126, ),则道路的宽应为1米;故答案为:1.程的应用,把中间修建的两条道路分别平移到矩形地2430(0)mx m m -+=>的一个根比另一个根大2,再根据根的关系即可求解.> (x-3m )(x-m )=0 ∴x-3m=0或x-m=0 =1故答案为:1. ,解题的关键是熟知因式分解法的运用. 0的根是_____. -3=0或x-2=0,然后解两个一次方程即可. 所以123,2==x x .故答案为123,2==x x .可得解. ,剩余分栽种花草,要使绿化个长方形,根据长方形的面积公矩形地面的最上边和最左边是做,则m 的值为_____.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.13.三角形的两边长分别为4和7,第三边的长是方程28120x x -+=的解,则这个三角形的周长是________. 【答案】17【分析】先利用因式分解法求解得出x 的值,再根据三角形三边之间的关系判断能否构成三角形,从而得出答案. 【解析】解:解方程28120x x -+=得x 1=2,x 2=6,当x=2时,2+4=6<7,不能构成三角形,舍去; 当x=6时,2+6>7,能构成三角形,此时三角形的周长为4+7+6=17.故答案为:17.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为_____. 【答案】x (x ﹣12)=864.【分析】由长和宽之间的关系可得出宽为(x-12)步,根据矩形的面积为864平方步,即可得出关于x 的一元二次方程,此题得解.【解析】解:∵长为x 步,宽比长少12步,∴宽为(x ﹣12)步.依题意,得:x (x ﹣12)=864.【点睛】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.15.用配方法求一元二次方程()()23616x x +-=的实数根.【答案】1x 2x . 【分析】首先把方程化为一般形式为2x 2-9x-34=0,然后变形为29x x 172﹣=,然后利用配方法解方程. 【解析】原方程化为一般形式为22x 9x 340﹣﹣=,29x x 172﹣=,298181x x 1721616-++,29353x 416-(=,9x 4-±=,所以12x ,. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.16.已知关于x 的一元二次方程24280x x k --+=有两个实数根12,x x . (1)求k 的取值范围;(2)若33121224x x x x +=,求k 的值.。
新 外研七下练习Module5 Unit1 基础知识点测试(有答案)
外研版七年级下册Module5 Unit1基础知识点测试一、单项选择1. I'm going to buy some flowers ________ my mother ________ Mother's Day.A. to;onB. to;inC. for;onD. for;in2. Let's open the windows to have some ________air here.A. cheapB. nervousC. carefulD. fresh3. How much ________ do you want?A. biscuitsB. sausagesC. lemonsD. chicken4. —What size do you need?—________.A. LittleB. BrownC. 100 yuanD. Large5. The shoes are very beautiful.May I ________?A. try it onB. try on itC. try them onD. try on them6. Would you like ________ to buy?A. something elseB. nothing elseC. else somethingD. else anything7. The price of the sweater is very________.I can't afford it.A. expensiveB. cheapC. highD. low8. The socks are cheap.I like them.I'll ________ them.A. giveB. bringC. likeD. take9. —The sweater is not the right ________ for me.—Well, shall I get you a bigger one or a smaller one?A. priceB. colorC. sizeD. material10. —________ is the dictionary?—It's $22.95.A. How oldB. How longC. How thickD. How much11. —The sweater is very nice.I'll take it.—But you'd better(最好)______first.I think it is a little large for you.A. pay for itB. put it onC. put it offD. try it on12. We can do some shopping in the________.A. factoryB. supermarketC. hospitalD. restaurant13. —Can I help you?—Yes, two ________, please.A. kilo of bananaB. kilos of bananaC. kilo bananasD. kilos of bananas14. —________?—Yes, I'd like to buy a sweater for my daughter.A. What can you doB. Can I help youC. Can you help meD. What do you want15. —________ do you like best? —I like red best.A. What sizeB. What colourC. How muchD. How old二、按要求完成下列句子。
一年级上册语文试题汉语拼音第3课(b+p+m+f)同步练习(含答案)部编版
拼音能力测试练习
题目1
爸爸(bà ba)骑着自行车(chē zi)带我去公园(gōng yuán)。
答案
bà ba - chē zi - gōng yuán
题目2
妈妈(mā ma)在厨房(chú fáng)里煮饭(zhǔ fàn) 。
拼音能力测试练习
答案
mā ma - chú fáng - zhǔ fàn
学生需仔细听老师或录音带的发音, 观察字母的形状和发音口型,比较四 个声母之间的差异,并尝试自己发音 练习。
声母对比
b-p
这两个声母的发音部位相同,但 发音方法不同。b是双唇音,而p 是唇齿音。
m-f
m是鼻音,发音时气流从鼻腔通 过;而f是唇齿音,气流从唇齿间 通过。
声母辨析练习
01
02
03
04
05
CATALOGUE
答案与解析
拼读与书写答案与解析
总结词:准确掌握
详细描述:本部分试题考察了学生对拼音拼读和书写的掌握情况。在拼读部分, 学生需要准确读出四个音节,分别是bā、pí、mǐ、fǔ。在书写部分,学生需要正 确写出四个音节的字母和声调符号,分别是bā、pí、mǐ、fǔ。
声母辨析答案与解析
一年级上册语文试题汉语 拼音第3课(b p m f)同步
练习(含答案)部编版
CATALOGUE
目 录
• 练习一:拼读与书写 • 练习二:声母辨析 • 练习三:韵母辨析 • 练习四:拼音能力测试 • 答案与解析
01
CATALOGUE
练习一:拼读与书写
题目要求
掌握汉语拼音的拼读 与书写规则。
了解拼音的基本概念 和拼写特点。
拼音能力测试答案与解析
一年级上数学同步测试1~5的加减法练习(含答案解析)人教新课标
一年级上数学同步测试1~5的加减法练习(含答案解析)人教新课标一、看谁算得又快又对2+3= 3+2= 5-3= 5-2=1+3= 3+1= 4-1= 4-3=考察目的:考察先生对1~5的加法和减法的计算正确率和速度,初步感知加、减法之间的关系。
答案:5 5 2 34 4 3 1解析:每一行的算式之间是相互关联的四道题,引导先生先观察标题特点和规律,再停止计算,浸透加、减法之间的关系,帮先生提高计算正确率和计算速度,为后续学习打好基础。
二、看图列式考察目的:考察先生了解题意的才干,和用加、减法处置效果的才干。
答案:3+1=4,5-4=1〔或5-1=4〕解析:引导先生先看图说题意,并提出效果,再列式计算处置效果,最后追问先生为什么用加〔或减〕法计算,在对比中强化加减法的意义,为前面学习更复杂的数量关系,处置更复杂的效果做好预备。
第二题要留意图意与算式的分歧性。
三、连一连考察目的:考察先生审题、处置效果的才干,以及计算1~5的加法和减法的计算才干。
答案:解析:让先生仔细审题,弄清标题的要求,再独立完成,培育先生仔细审题的习气。
四、在〔〕里填〝+〞或〝-〞2〔〕3=5 4〔〕1=3 5〔〕1=4 5〔〕2=33〔〕1=2 1〔〕2=3 4〔〕1=5 3〔〕2=5考察目的:培育先生片面的观察才干及对运算意义的了解,同时培育先生的数感、符号感。
答案:+---解析:要求先生用运算符号衔接3个数,这需求片面的观察后再停止选择,对一年级先生来说是一项应战。
可以让先生借助摆一摆、画一画等方式来完成标题,注重对运算意义的了解。
五、用自己的方式表示出下面算式的意思考察目的:培育先生正确了解标题要求的才干,考察先生对运算的了解,以及用数学言语进性表达的才干。
答案:略解析:让先生先说一说对这道题的了解,然后用自己的方式表示运算的含义,最后停止小组或全班交流,培育先生了解与表达、交流与倾听的才干。
一年级上语文同步练习2+i+u+ü+y+w基础练习a版(部编含答案)
04
例
人(rén)、火(huǒ)、水 (shuǐ)、云(yún)。
02
基础字词
i u ü y w的生字识记与组词
01
02
03
04
05
拼音i的生字有“i”,组 拼音u的生字有“u”,组 拼音ü的生字有“ü”,组 拼音y的生字有“y”,组 拼音w的生字有“w”,
词为“i四声”。
词为“u四声”。
词为“ü四声”。
总结词
通过字词填空练习,帮助一年级学生掌握常用汉字的书写和意思。
详细描述
本练习包括20个常用汉字的填空,每个汉字都配有拼音、部首、笔画和常见词语的示例。学生需要按 照示例,将正确的汉字填入相应的空格中。通过反复练习,学生可以逐渐掌握常用汉字的书写和意思 。
i u ü y w的短文阅读答案
总结词
通过短文阅读练习,帮助一年级学生提 高阅读理解能力。
w的发音
嘴唇拢圆,舌根抬起,抵住上颚,声音从鼻腔发出 。
i u ü y w的书写规则与示例
• 总结词:掌握i、u、ü、y、w五个单韵母的正确书写格式,了解拼音书写规则。
i u ü y w的书写规则与示例
详细描述 i的书写:先写竖,再写点,占中格和上格。
u的书写:先写竖右弯,再写竖,占中格和上格。
一年级上语文同步练习2 i u ü y w基础练习a版(部编含答案)
汇报人:文小库
目
CONTENCT
录
• 汉语拼音 • 基础字词 • 阅读理解 • 写作表达 • 答案与解析
01
汉语拼音
i u ü y w的发音与拼音练习
• 总结词:掌握i、u、ü、y、w五个单韵母的正确发音,熟悉拼音规则。
i u ü y w的发音与拼音练习
2022年五年级上册数学同步练习 5 1平行四边形的面积 西师大版(含答案) (1)
五年级上册数学一课一练平行四边形的面积一、单项选择题1.如下图,一个长方形框架拉成一个平行四边形,以下说法正确的选项是〔〕A. 周长不变,面积变大B. 周长不变,面积变小C. 周长不变,面积不变D. 周长变小,面积变小2.一个平行四边形的面积是平方厘米,高是2厘米,底是〔〕厘米。
3.以下图的面积是〔〕A. 8B. 9C. 12D. 104.图中的长方形和平行四边形的面积〔〕A. 相等B. 不相等C. 无法比拟D. 不一定相等二、判断题5.平行四边形的面积是梯形面积的两倍。
6.用同样长的铁丝围成的平行四边形的面积相等。
7.面积相等的两个平行四边形的形状一定一样。
8.等底等高平行四边形的面积是梯形面积的2倍。
9.知道一个平行四边形的底和高的长度就能求出它的面积三、填空题10.平行四边形的面积公式是________×________11.如图〔单位:厘米〕中平行四边形的面积是________平方厘米.12.一个平行四边形的两条邻边的长度分别是6厘米、8厘米,其中一条底上的高是7厘米,这个平行四边形的周长是________厘米,面积是________平方厘米.13.一个三角形的面积是2,和它等底等高的平行四边形的面积是________dm2.四、解答题14.一个平行四边形的苗圃,底长米,高是底的一半,种了1849棵苗,平均每棵苗占地多少?15.如下图,平行四边形的面积是28平方厘米,求阴影局部的面积〔单位:厘米〕。
五、应用题16.一块平行四边形的水稻田,底30米,高米,共产水稻1029千克,每平方米水稻的产量是多少千克参考答案一、单项选择题1.【答案】B【解析】【解答】如下图,,一个长方形框架拉成一个平行四边形,以下说法正确的选项是周长不变,面积变小。
故答案为:B。
【分析】把一个长方形的框架拉成一个平行四边形后,四条边的长度没变,那么四条边的长度和不变,即它的周长不变;平行四边形的高比长方形的宽小了,底没变,由长方形和平行四边形的面积公式可知,这个平行四边形的面积与原长方形面积相比就变小了,据此解答。
人教版高中数学A版必修1课后习题及答案(全)
高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉π是个无理数,不是有理数; (42R 2是实数; (59Z 93=是个整数; (6)25)N ∈ 2(5)5=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形. 等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},AB A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页) 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示. 3.解:4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页) 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得0)l d ===>,即(0)l d =>.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的 垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y AB x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x 31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-.练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rt s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x= (5) 100.3x = (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg 6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4. 8. (1)m n <; (2) m n <; (3) m n >; (4)m n >.9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数.2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4;(3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a .3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (abb a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1). 9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x 在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x .因为x 1,x 2∈(-∞,+∞),所以.012.01212>+>+x x 又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x 在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用 3.1函数与方程 练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.。
新人教版一年级数学上册《解决问题》专项练习题(含答案)
新人教版一年级数学上册《解决问题》专项练习题(含答案)1.看图写算式。
2.看图解决问题。
(1)一共有多少条毛巾?(2)中间一排比上面一排多几条毛巾?(3)下面一排比中间一排少几条毛巾?3.扫地的有( )人,植树的有( )人,一共有( )人。
算式:4.原来有多少盒牛奶?5.数一数,圈一圈。
(1)一共有()只。
(2)把左边4只圈起来。
从右边数,把第4只圈起来。
6.哪根绳子最长?哪根绳子最短?7.接着摆什么?圈出正确答案。
8.(1)一共有()只小动物。
(2)从左边数排第(),排第()。
(3)前面有()只小动物,后面有()只小动物。
(4)把右边的3只小动物圈起来。
9.先填空,再画出分针和时针。
6:00,分针指向( ),时针指向( )。
10.车上原来有6人,下车4人,又上车6人,现在车上有多少人?11.先用点子图表示,再用算式计算。
1+_____=_______(只)12.班级里原来有8名学生,又来了6名学生,班级里现在一共有多少名学生?□○□=□((名)13.算一算,填一填________+________=________________+________=________14.看图列式再解答。
○=(块)15.数一数,填一填.(1)上图中一共有()个立体图形.给图中的圆柱涂上你喜欢的颜色.(2)从左起,第_____个是球,第_____个和第_____个是正方体.(3)从右起,第()个是长方体,把从右边起的第3个图形圈起来.16.爱动脑筋的小猴子和快嘴的小喜鹊一起去拜访智慧老爷爷。
智慧老爷爷给它们出了一个问题:“1千克的棉花和1千克的铁块相比,哪个轻,哪个重?快嘴的小喜鹊马上说:“当然是棉花轻,铁块重了。
”小猴子却摇头说:“不对,不对。
”聪明的小朋友,你知道小猴子为什么说不对吗?到底哪个轻,哪个重呢?17.小明和妈妈一起来到小河边,小明看到河里有4只鸭子自由自在地游着。
不一会儿,4只鸭子全部游上了岸。
妈妈问:河里还剩几只鸭子?18.小猴子吃桃子。
第二单元5以内数加与减同步练习 北师大版(2024)数学一年级上册
第二单元5以内数加与减学校:___________姓名:___________班级:___________考号:___________一、选择题1.苹苹要做5朵,已经做了2朵,还要做()朵。
A.5B.4C.32.从1、2、4、5这四个数中选3个数写一道加法算式,正确的是()。
A.2+2=4B.1+4=5C.5-1=43.1+=4,=()。
A.5B.3C.44.把5包薯条全部分给大象和熊猫,一共有_______种不同的分法。
A.4B.5C.65.观察下图,还剩下多少块蛋糕?所列算式正确的是().A.5-2=3B.5-3=2C.2+3=56.2+2的计算结果是()。
A.3B.5C.47.2与3的和是()。
A.6B.5C.18.下面哪一个图不能用算式“4-4=0”来表示?()A.B.C.二、填空题9.算一算,分一分。
10.先画图形,再完成算式。
○( )1+( )=3▲▲▲( )3+( )=4△△( )2+( )=511.5去掉( ),还剩( )。
12.13.在括号里填上“>”“<”或“=”。
5-4( )24-2( )114.看图列式计算。
( )-4=( )15.括号里能填几?8>( )6>( )7<( )4=( )5-1>( )4-2>( )3-1<( )5-4=( )三、判断题16.被减数是3,减数是2,和是1。
( )17.。
( )18.猴妈妈摘了3个桃子,小猴子吃了两个,猴妈妈还剩1个桃子.( )19.3-2=1。
( )20.5+1=6 ( )四、计算题21.我会算。
2+0=2-1=4+1=3+0=3-2=1+4=0+5=0-0=5-3=4-2=5-5=4-4=1-0=2+1=3-0=五、解答题22.跳绳的人比踢毽子的人多多少人?23.□+□=□□+□=□24.看图填一填.25.26.妈妈吃了3个,爸爸吃了2个,妈妈和爸爸一共吃了几个(个)参考答案:1.C【分析】还要做的朵数=要做的朵数-已经做了的朵数,正确计算即可。
(完整版)解一元二次方程练习题[1][1]
一元二次方程练习题1. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.2. 解下列方程:(1)2(1)9x -=;(2)2(21)3x +=;(3)2(61)250x --=.(4)281(2)16x -=.3. 用直接开平方法解下列方程:(1)25(21)180y -=;(2)21(31)644x +=;(3)26(2)1x +=;(4)2()(00)ax c b b a -=≠,≥4. 填空(1)28x x ++( )=(x +)2. (2)223x x -+( )=(x -)2. (3)2by y a -+( )=(y -)2. 5. 用适当的数(式)填空:23x x -+(x =- 2); 2x px -+ =(x -2) 23223(x x x +-=+2)+. 6. 用配方法解下列方程 1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02x x ---+=7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 .8. 用配方法解方程.23610x x --= 22540x x --=9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .10. 关于x 的方程22220x ax b a +-+=的解为11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=.13. 已知关于x 的一元二次方程22(21)10m x m x +-+=有两个不相等的实数根,则m 的取值范围是 .一元二次方程阶段测试一、填空题(每小题5分,计35分)1、()()023112=++++-m x m x m ,当m=________时,方程为关于x 的一元一次方程;当m__________时,方程为关于x 的一元二次方程2、方程02=-x x 的一次项系数是___________,常数项是__________3、方程062=--x x 的解是_______________________________4、关于x 的方程0132=+-x x _____实数根.(注:填写“有”或“没有”)5、方程12=-px x 的根的判别式是______________________6、若2365422--++x x x 与的值互为相反数,则x=___________7、若一个三角形的三边长均满足方程0862=+-x x ,则此三角形的周长为_____________二、选择题(每小题5分,计25分)8、方程()()104222=-+-x x x 化为一般形式为( ) A 、01422=--x x B 、01422=++x x C 、01422=-+x x D 、01422=+-x x9、关于x 的方程0232=+-x ax 是一元二次方程,则( )A 、0>aB 、0≠aC 、1=aD 、0≥a10、用配方法解下列方程,其中应在左右两边同时加上4的是( )A 、522=-x xB 、5422=-x xC 、542=+x xD 、522=+x x11、方程()x x x =-1的根是( )A 、2=xB 、2-=xC 、0221=-=x x ,D 、0221==x x ,12、若()0223233-+=+-x x x x ,则x 的值为( )A 、1或2B 、2C 、1D 、3-三、解答题13、用适当的方法解下列方程(每小题7分,计28分)(1)0342=+-x x ; (2)()()2465-=-+x x ;(3)()()03232=-+-x x x (4)06262=--x x14、(12分)已知一元二次方程0132=-+-m x x .(1)若方程有两个不相等的实数根,求m 的取值范围.(2)若方程有两个相等的实数根,求此时方程的根一元二次方程综合测试(一)姓名:____________ 分数:___________一、填空题(每小题5分,计35分)1、()x x 6542=+-化成一般形式是___________________________________,其中一次项系数是___________2、()22________________3+=++x x x 3、若()()______________054==-+x x x ,则4、若代数式242-+x x 的值为3,则x 的值为_______________________________5、已知一元二次方程022=+-mx mx 有两个相等的实数根,则m 的值为____________________6、已知三角形的两边长分别为1和2,第三边的数值是方程03522=+-x x 的根,则这个三角形的周长为_______________________7、我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒60元调至52元,若设每次平均降价的百分率为x ,则由题意可列方程为_______________________________________二、选择题(每小题5分,计20分)8、下列方程是一元二次方程的是( )A 、0523=-x xB 、()06122=--xC 、022312=-+x xD 、02122=-+x x 9、方程0562=--x x 左边配成一个完全平方式后,所得方程为( )A 、()4162=-xB 、()432=-xC 、()1432=-xD 、()3662=-x 10、要使方程()()0132=+++-c x b x a 是关于x 的一元二次方程,则( ) A 、0≠a B 、3≠a C 、13-≠≠b a ,且 D 、013≠-≠≠c b a ,且,11、某种商品因换季准备打折出售,如果按原价的七五折出售,将赔25元,二按原价的九折出售,将赚20元,则这种商品的原价是( )A 、500元B 、400元C 、300元D 、200元三、解答题12、用适当的方法解下列方程(每小题6分,计24分)(1)()9322=-x ; (2)162=-x x ;(3)051632=++x x ; (4)()()2231623-=+x x13、(10分)无论m 为何值时,方程04222=---m mx x 总有两个不相等的实数根吗?给出答案并说明理由14、(11分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?一元二次方程综合测试(二)姓名:____________ 分数:___________一、填空题(每小题5分,计40分)1、已知方程2(m+1)x 2+4mx+3m -2=0是关于x 的一元二次方程,那么m 的取值范围是 。
统编版语文四年级上册第一单元提优达标卷(含答案)
统编版语文四年级上册第一单元提优达标卷(含答案)统编版语文四年级上册第一单元提优达标卷卷首语:大自然千奇百态,有令人叹为观止的风景名胜,有春夏秋冬的四季变化,有风雨雷电的自然天气,还有鬼斧神工的奇妙景观。
让我们一起走进大自然,让美好长存吧!积累与运用一、根据语境,看拼音写词语。
(4分)太阳出来了,被薄雾笼罩的pútɑo( )园zhújiàn( )显露出来。
几个táo qì( )的孩子在铺满éluǎn( )石的小路上玩耍,犹如一个个小精灵。
二、下面的词语,你能认识、梳理并运用吗?(5分)1.下列词语中加点字的注音不正确的一项是( )。
(1分)A.锣鼓喧天(nuó) B.震耳欲聋(lónɡ)C.响彻云霄(xiāo) D.悄无声息(qiǎo)2.请你根据提示给上面八个词语归类。
(填序号)(2分)(1)形容声音的词语:____;(2)形容样子的词语:__________。
3.词语连接生活,丰富想象力。
照样子,把由词语想象到的画面写下来。
(2分)词语⑧:运动场上,彩旗飘扬,热闹非凡,不时传来阵阵鼓声和呐喊声。
词语②:___ __________三、选择题。
(每小题2分,共10分)1.下列加点字注音完全正确的一项是( )。
A.屹立(yì) 霎时(sà)B.鸟巢(cáo) 谷穗(suì)C.横贯(ɡuàn) 芦苇(wěi)D.怀抱(huái) 睡眠(mié)2.下列词语中,“观"的意思与其他三项不同的是( )。
A.走马观花B.坐井观天C.袖手旁观D.天下奇观3.“双翅一翻,把斜阳掉在江上;头白的芦苇,也妆成一瞬的红颜了。
”这句话中所描述的画面里没有提到的景物是( )。
A.鸟儿B.天空C.斜阳D.芦苇4.对下列句子运用的修辞手法判断有误的一项是( )A.沟水汩汩,很满意地响着。
浙教版语文六年级上册教案第五单元练习5(1)
2练习51 指导并完成练习第1至第5题投影片小黑板录音机1.指导练习第1题。
(1)抽读每组上下两个词语,要求注意带点字的读音。
(2)请学生说说带点字音节中韵母的异同。
(3)反复读每组词,要求读准韵母、音节。
2.指导练习第2题。
(1)教师解释什么是格言,要求学生平时注意收集格言。
(2)请学生说说练习题中两句格言的意思,教师作适当的解释、点拨。
(3)完成作业本上第1题。
3.指导练习第3题。
(1)请学生说出表示“看”的同义词语,教师将其一一罗列出来。
(2)学生参照黑板上的词,尝试练习第3题。
(3)完成作业,交流反馈。
出示参考答案。
(瞻仰)遗容(看望)病人(眺望)远方(仰视)蓝天(注视)敌情(观赏)花木4.指导练习第4题。
(1)回忆分号的用法。
(2)请学生看要抄写的3个句子,想一想分句间是什么关系。
(教师提示:以前见到的分号常用在表示意思相近的分句之间,而这3个句子中“去”与“不去”,“雾来时”与“雾去时’,“表扬”与“批评”之间是相反的、相对的,也可用分号。
)(3)完成作业本上第4题,抄写这3个带分号的句子。
5.指导练习第5超。
(1)读题审题。
让学生比较例句中两个句子的异同。
(2)让学生读懂要求改写的原句的意思,并加上“没有……不”两个否定词进行改写。
.(3)交流反馈。
出示参考答案:①没有人不说蔺相如是个机智勇敢,顾全大局的英雄。
②没有人说蔺相如不是个机智勇敢,顾全大局的英雄。
并让学生读一读原句与改写句,比一比语气语意。
(4)延伸练习。
请学生将“到过杭州的人都说杭州是十美丽的城市”这句话改为双重否定句。
第5课《中音1练习》(1)
纠正方法
错误表现:弹奏时缺乏节奏 感,速度忽快忽慢,导致音
乐表现不流畅。
01
02
03
使用节拍器或鼓点等辅助工 具,帮助建立稳定的节奏感
。
通过分段练习和逐渐加速的 方式,提高弹奏的速度和稳
定性。
04
05Leabharlann 注重音乐的呼吸和乐句感, 使音乐表现更加自然流畅。
06 课后作业与自我评价
完成指定练习曲目
练习曲目
3
音色对比
合奏乐曲中的中音1可与其他声部形成音色对比 ,突出不同乐器的特色,增强乐曲的层次感。
伴奏中的中音1运用
背景铺垫
01
在伴奏中,中音1可作为背景铺垫,为旋律声部提供稳定的和声
支持,营造出丰富的音乐氛围。
副旋律呈现
02
伴奏中的中音1有时可呈现副旋律,与主旋律形成呼应和补充,
增强乐曲的表现力。
动态变化
教学目标与要求
掌握中音1的基本概念和特点,能够 准确识别中音1的音高和音色
了解中音1在乐曲中的应用和表现, 能够运用中音1进行简单的乐曲演奏
学会中音1的演奏方法和技巧,能够 熟练地演奏中音1
课程安排与时间
01
课程时长:45分钟
02
前10分钟:介绍中音1的基本概念和特点
03
中间20分钟:讲解和演示中音1的演奏方法 和技巧
吹奏中音1时,需要将嘴唇自然 闭合,舌头轻抵上齿龈,通过气 息的控制使嘴唇振动发出声音。
在演奏过程中,需要注意气息的 均匀和稳定,以及嘴唇的松紧程
度和振动的频率。
为了获得清晰的中音1音色,可 以适当地调整嘴唇的形状和气息
的力度。
中音1的音色特点
中音1的音色饱满、圆润,具有 一定的明亮度和穿透力。
2022年冀教版六年级英语上册Unit 1 Lesson 1同步习题(附答案)1
冀教版〔三年级起点〕小学英语六年级上册Unit 1 Lesson 1 At the Airport 同步练习一、在句子中选出含有所给单词画线局部读音的词。
ime ________He will arrive this afternoon.ome ________I go to school at 7:00.ase ________It is a cake.ease ________I don't like tea.lock ________The dog is under the chair.二、选出与众不同的单词。
1选出不同项〔〕A. CanadaB. BeijingC. China2.选出不同项〔〕A. didB. learnC. arrive3.选出不同项〔〕A. twenty-fiveB. firstC. second4.选出不同项〔〕A. theyB. himC. I5.选出不同项〔〕A. todayB. monthC. yesterday三、我会选。
he wants ________ a kite in the park.A. flyB. to flyC. flying2.Miss Li is ________ Chinese teacher.A. weB. IC. our3.Tony's train arrived ________ 6:00.A. inB. atC. to4.The boys ________ in China.A. livingB. livesC. live5.Today is October the ________.A. thirdB. threethC. three四、选词填空花落谁家?〔1〕I live ________ China.〔2〕He will go home ________ July 6.〔3〕Look ________ the clock. It's 4:00.〔4〕My sister is coming ________ England.〔5〕We are ________ the train station.五、补全对话从方框中选择适当的句子完成对话。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习5.1
第一课时
教学目的
语文与生活,通过“风”的综合训练,告诉学生生活中处处有语文,激发学生留心观察生活的兴趣,提高学生的综合学习能力。
教学重难点:
1. 语文与生活,认识自然现象——风,提高学生综合学习能力。
2. 诵读与欣赏,用诗人的眼睛去认识秋。
教学准备
视频展示台
教学过程
一、教学第一部分
1. 出示图片,你见过这样倾斜生长的树吗?
2. 自由读爸爸的话,认识这种树的名称——风成偏形树。
3. 讨论,这些树为什么都向一个方向偏?
(树木面迎盛行风向的一侧由于经常受较大风速吹袭,水分蒸发大大加速而使新生枝芽生长缓慢以至枯萎;而背风的一侧仍能继续生长,从而使树形成出现了不对称,在气候学上称之为“风成偏形树”。
)
二、教学第二部分
1. 风是不同的,它有各种名称(出示各种风的名称)
2. 读一读这些风的名称,想一想它们这间的区别。
(提示:朔(su)风,指北风)
3. (出示课文名子)在这些句子中,该填什么风呢?独立思考,并试着填一填。
4. 交流核对。
[(1)朔风(2)疾风(3)金风(4)狂风(5)凉风]
5. 齐读填好的句子。
三、教学第三部分
1. 天气预报里,常用风级来表示风速,读一读《风速歌》,了解现同风速的特点。
2. 正音:坍tan,指名朗读。
3. 出示不同图片,让学生判断是几级风。
(也可以结合当天天气情况让学生判断)
4. 指导朗读,根据风速的大小,读出语势。
四、作业
选用课时作业设计。