《推荐》高中数学同步导学(2017新课标)(统计与概率)专题五几何概型Word版含解析

合集下载

高中数学 第五章 统计与概率 5.1.2 数据的数字特征学案 新人教B版必修第二册-新人教B版高一第

高中数学 第五章 统计与概率 5.1.2 数据的数字特征学案 新人教B版必修第二册-新人教B版高一第

5.1.2 数据的数字特征考点 学习目标核心素养基本数字特征 理解数据的基本数字特征:最值、平均数、中位数、百分位数、众数、极差、方差与标准差等 数据分析数字特征的应用会用数字特征解决相关问题数学运算问题导学预习教材P61-P67的内容,思考以下问题: 1.数据的数字特征主要有哪些? 2.实际问题是如何用数字特征刻画的? 3.方差与标准差有什么关系?1.最值一组数据的最值指的是其中的最大值与最小值,最值反应的是这组数最极端的情况.一般地,最大值用max 表示,最小值用min 表示.2.平均数(1) x -=1n(x 1+x 2+x 3+…+x n )=1n ∑i =1nx i =nt ;其中符号“∑”表示求和,读作“西格玛”. (2)求和符号的性质:①∑i =1n(x i +y i ) =∑i =1nx i +∑i =1ny i ;②∑i =1n ( kx i ) =k ∑i =1nx i ;③∑i =1nt =nt ;④1n ∑i =1n(ax i +b )=a x -+b . 3.中位数、百分位数(1)如果一组数有奇数个数,且按照从小到大排列后为x 1,x 2,…,x 2n +1,则称x n +1为这组数的中位数;如果一组数有偶数个数,且按照从小到大排列后为x 1,x 2,…,x 2n ,则称x n +x n +12为这组数的中位数.(2)设一组数按照从小到大排列后为x 1,x 2,x 3,…,x n ,计算i =np %的值,如果i 不是整数,设i 0为大于i 的最小整数,取xi 0为p %分位数;如果i 是整数,取x i +x i +12为p %分位数.特别地,规定:0分位数是x 1(即最小值),100%分位数是x n (即最大值). 4.众数一组数据中,某个数据出现的次数称为这个数据的频数,出现次数最多的数据称为这组数据的众数.5.极差、方差与标准差(1)极差:一组数的极差指的是这组数的最大值减去最小值所得的差. (2)方差:s 2=1n ∑i =1n (x i -x -)2.(3)如果a ,b 为常数,则ax 1+b ,ax 2+b ,…,ax n +b 的方差为a 2s 2; (4)方差的算术平方根为标准差.标准差描述了数据相对于平均数的离散程度.判断正误(正确的打“√”,错误的打“×”) (1)中位数是一组数据中间的数.( ) (2)众数是一组数据中出现次数最多的数.( )(3)一组数据的标准差越小,数据越稳定,且稳定在平均数附近.( ) 答案:(1)× (2)√ (3)√奥运会体操比赛的计分规则为:当评委亮分后,其成绩先去掉一个最高分,去掉一个最低分,再计算剩下分数的平均值,这是因为( )A .减少计算量B .避免故障C .剔除异常值D .活跃赛场气氛解析:选C.因为在体操比赛的评分中使用的是平均分,记分过程中采用“去掉一个最高分,去掉一个最低分”的方法,就是为了防止个别裁判的人为因素给出过高或过低的分数对选手的得分造成较大的影响,从而降低误差,尽量公平.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________,25%分位数为________.答案:6 5样本中共有5个个体,其值分别为a ,0,1,2,3,若该样本的平均值为1,则样本方差为________.解析:由题意知15(a +0+1+2+3)=1,解得a =-1.所以样本方差为s 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.答案:2利用概念求平均数、中位数、众数某电冰箱专卖店出售容积为182 L 、185 L 、228 L 、268 L 四种型号的同一品牌的冰箱,每出售一台,售货员就做一个记录,月底得到一组由15个268,66个228,18个185和11个182组成的数据.(1)这组数据的平均数有实际意义吗? (2)这组数据的中位数、众数分别是多少? (3)专卖店总经理关心的是中位数还是众数?【解】 (1)这组数据的平均数没有实际意义,对专卖店经营没有任何参考价值. (2)这组数据共有110个,中位数为228,众数为228.(3)专卖店总经理最关心的是众数,众数是228,说明容积为228 L 型号的冰箱销售量最大,它能为专卖店带来较多的利润,所以这种型号的冰箱要多进些.一组数据中出现次数最多的数据是众数,它是我们关心的一种集中趋势,通常选择众数进行决策.若数据3.2,3.4,3.2,x ,3.9,3.7的中位数是3.5,则其众数是________,平均数是________.解析:由题意x +3.42=3.5,x =3.6,所以众数是3.2,平均数是16(3.2+3.4+3.2+3.6+3.9+3.7)=3.5.答案:3.2 3.5利用三数——平均数、众数、中位数解决问题某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:测试项目测试成绩甲乙 丙 教学能力 85 73 73 科研能力 70 71 65 组织能力647284(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.【解】 (1)甲的平均成绩为:(85+70+64)÷3=73, 乙的平均成绩为:(73+71+72)÷3=72, 丙的平均成绩为:(73+65+84)÷3=74, 所以候选人丙将被录用.(2)甲的测试成绩为:(85×5+70×3+64×2)÷(5+3+2)=76.3, 乙的测试成绩为:(73×5+71×3+72×2)÷(5+3+2)=72.2, 丙的测试成绩为:(73×5+65×3+84×2)÷(5+3+2)=72.8, 所以候选人甲将被录用.5、3、2即各个数据的“权”,反映了各个数据在这组数据中的重要程度,按加权平均数来录用.小王数学成绩分别为:测验一得89分,测验二得78分,测验三得85分,期中考试得90分,期末考试得87分,如果按照平时、期中、期末的10%、30%、60%量分,那么小王该学期的总评成绩应该为多少?解:小王平时测试的平均成绩x -=89+78+853=84(分).所以84×10%+90×30%+87×60%10%+30%+60%=87.6(分).所以小王该学期的总评成绩应该为87.6分.极差、方差与标准差某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).小宇的作业:解:x -甲=15(9+4+7+4+6)=6,s 2甲=15[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=15(9+4+1+4+0) =3.6.甲、乙两人射箭成绩统计表第1次 第2次 第3次 第4次 第5次 甲成绩 9 4 7 46 乙成绩757a7(1)a =________;x 乙=________; (2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.【解】 (1)由题意得:甲的总成绩是:9+4+7+4+6=30, 则a =30-7-7-5-7=4,x -乙=30÷5=6, 故答案为:4,6; (2)如图所示:(3)①观察图,可看出乙的成绩比较稳定, 故答案为:乙;s 2乙=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6,由于s 2乙<s 2甲,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.此题主要考查了方差的定义以及折线图和平均数的意义,根据已知得出a 的值进而利用方差的意义比较稳定性即可.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分): 甲 95 82 88 81 93 79 84 78 乙8375808090859295(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.解:(1) x -甲=18(95+82+88+81+93+79+84+78)=85(分),x -乙=18(83+75+80+80+90+85+92+95)=85(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知x -甲=x -乙=85分,所以s 2甲=18[(95-85)2+(82-85)2+…+(78-85)2]=35.5,s 2乙=18[(83-85)2+(75-85)2+…+(95-85)2]=41.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x -甲=x -乙,s 2甲<s 2乙,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得好成绩.1.已知一组数据2,1,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( ) A .2 B .2.5 C .3D .5解析:选B.由众数的意义可知x =2,然后按照从小到大的顺序排列这组数据,则中位数应为2+32=2.5.2.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别为( )A .2,13B .2,1C .4,23D .4,3答案:D3.样本101,98,102,100,99的标准差为( ) A. 2 B .0 C .1D .2解析:选A.样本平均数x -=100,方差为s 2=2, 所以标准差s =2,故选A.4. ∑i =15(2i -1)= .解析:∑i =15(2i -1)=1+3+5+7+9=25.答案:255.甲、乙两人比赛射飞镖,两人所得的平均环数相同,其中甲所得环数的方差为13,乙所得环数如下:2,5,6,9,8,则成绩比较稳定的是________.解析:由题意知x -乙=6,s 2乙=6<s 2甲,则乙的成绩比较稳定. 答案:乙[A 基础达标]1.已知一组数据3,a ,4,5的众数为4,则这组数据的平均数为( ) A .3 B .4 C .5D .6解析:选B.由数据3,a ,4,5的众数为4,可得a 为4,再求这组数据3,4,4,5的平均数为4.2.小华所在的年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,则下列说法错误的是( )A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米解析:选B.本题考查了一组数据中中位数、平均数、众数的概念及三者的取法,由平均数所反映的意义知A 选项正确,由中位数与平均数的关系确定C 选项正确,由众数与平均数的关系确定D 选项正确,由于平均数受一组数据中的极大、小值的影响,故B 选项错误.3.某排球队12名队员的年龄如下表所示:A .19岁,19岁B .19岁 ,20岁C .20岁 ,20岁D .20岁 ,22岁解析:选B.由众数的定义可知,数据19出现的次数最多达4次,12个数据中,由小到大排列后第6个与第7个位置上的数都是20,这两个数的平均数也是20.所以该队队员年龄的众数与中位数分别是19岁,20岁.4.已知一组数据:12,5,9,5,14,则下列说法不正确的是( ) A .平均数是9 B .中位数是9 C .众数是5D .极差是5解析:选D.数据描述类的题目,主要考查了平均数、中位数、众数、极差的计算,题目数据比较简单,先从简单的众数入手,C 是正确的,其次从小到大排列5,5,9,12,14,B 是正确的,再算平均数,所以A 也正确,故选择D.5.现有10个数,其平均数为3,且这10个数的平方和是100,那么这组数据的标准差是( )A .1B .2C .3D .4解析:选A.由s 2=1n (x 21+x 22+…+x 2n )-x -2,得s 2=110×100-32=1,即标准差s =1.6.某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛的得分,要判断他是否获奖,只需知道这11名学生决赛得分的( )A .中位数B .平均数C .众数D .方差解析:选A.由中位数的概念,即最中间一个或两个数据的平均数;可知11人成绩的中位数是第6名的得分.根据题意可得:参赛选手要想知道自己是否能进入前6名,只需要了解自己的得分以及全部得分的中位数,比较即可.7.某高校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班有50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是________分.解析:由题意得,该校数学建模兴趣班的平均成绩是40×90+50×8190=85(分).答案:858.某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区6月份(30天)的总用水量约是________吨.解析:(30+34+…+31)÷6=32,所以估计该小区6月份(30天)的总用水量约是32×30=960(吨). 答案:9609.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):(1)求这5(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量. 解:(1)因为(9×3+10×1+11×1)÷5=9.6, 所以这个班级5天用电量的平均数为9.6度. (2)众数是9度,中位数是9度. (3)因为9.6×36×22=7603.2,所以估计该校该月的总用电量为7603.2度.10.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环).如果甲、乙两人只有1解:甲的平均数为: x -甲=15(10+8+9+9+9)=9.乙的平均数为: x -乙=15(10+10+7+9+9)=9.甲的方差为s 2甲=15[(10-9)2+(8-9)2]=25.乙的方差为s 2乙=15[(10-9)2+(10-9)2+(7-9)2]=65.甲、乙两人平均数相同,但s 2甲<s 2乙,说明乙的波动性大,故应让甲入选.[B 能力提升]11.(2019·湖南省张家界市期末联考)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9,(x ,y ∈N ),已知这组数据的平均数为10,方差为2,则|x -y |的值为( )A .4B .3C .2D .1解析:选A.由这组数据的平均数为10,方差为2可得x +y =20,(x -10)2+(y -10)2=8,因为不要直接求出x 、y ,只要求出|x -y |,设x =10+t ,y =10-t ,由(x -10)2+(y -10)2=8得t 2=4;所以|x -y |=2|t |=4.故选A.12.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 ( )A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为3解析:选D.根据信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,选项A 中,中位数为4,可能存在大于7的数;同理,在选项C 中也有可能;选项B 中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;选项D 中,根据方差公式,如果有大于7的数存在,那么方差不会为3,故选D.13.一个样本数据按从小到大的顺序排列为:13,14,19,x ,23,27,28,31,中位数为22,则x =________.解析:由题意知x +232=22,则x =21.答案:2114.对划艇运动员甲、乙两人在相同的条件下进行了6次测试,测得他们最大速度(m/s)的数据如下:甲:27,38,30,37,35,31;乙:33,29,38,34,28,36. 根据以上数据,试判断他们谁更优秀.解:x -甲=16(27+38+30+37+35+31)=1986=33,s 2甲=16[(27-33)2+(38-33)2+…+(31-33)2]=16×94≈15.7; x -乙=16(33+29+38+34+28+36)=1986=33, s 2乙=16[(33-33)2+(29-33)2+…+(36-33)2]=16×76≈12.7. 所以x -甲=x -乙,s 2甲>s 2乙.说明甲、乙二人的最大速度的平均值相同,但乙比甲更稳定,故乙比甲更优秀.[C 拓展探究]15.一次数学知识竞赛中,两组学生成绩如下表:这次竞赛中成绩谁优谁次,并说明理由.解:(1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)s 2甲=12+5+10+13+14+6×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=150×(2×900+5×400+10×100+13×0+14×100+6×400)=172.s 2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256. 因为s 2甲<s 2乙,所以甲组成绩较乙组成绩稳定.(3)甲、乙两组成绩的中位数、平均数都是80分,其中甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,从这一角度看,甲组成绩总体较好.(4)从成绩统计表看,甲组成绩大于或等于90分的人数为20人,乙组成绩大于或等于90分的人数为24人,所以乙组成绩在高分阶段的人数多,同时,乙组得满分的比甲组得满分的多6人,从这一角度看,乙组成绩较好.。

高考数学 考点一遍过 专题52 几何概型 理-人教版高三全册数学试题

高考数学 考点一遍过 专题52 几何概型 理-人教版高三全册数学试题

专题52 几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.一、几何概型1.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件发生的可能性相等.3.几何概型的概率计算公式() P AA构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).4.必记结论(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;(3)与体积有关的几何概型.二、随机模拟用计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法.这个方法的基本步骤是:(1)用计算器或计算机产生某个X围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.注意,用随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能不同,而所求事件的概率是一个确定的数值.考向一与长度有关的几何概型求解与长度有关的几何概型的问题的关键是将所有基本事件及事件A包含的基本事件转化为相应长度,进而求解.此处的“长度”可以是线段的长短,也可以是时间的长短等.注意:在寻找事件A发生对应的区域时,确定边界点是问题的关键,但边界点能否取到不会影响事件A的概率.典例1某学校星期一至星期五每天上午都安排五节课,每节课的时间为40分钟.第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间到达教室,则他听第二节课的时间不少于10分钟的概率是A.12B.13C.23D.35【答案】A故所求概率为201402=,选A . 典例2 在区间[]0,2上随机抽取一个数x ,则事件“1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭”发生的概率为 A .34B .23 C .13D .14【答案】A【解析】区间[]0,2的长度为2, 由1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭可得302x ≤≤, 所以所求事件的概率为P =33224-=.1.公共汽车在7:00到7:20内随机到达某站,李老师从家里赶往学校上班,7:15到达该站,则她能等到公共汽车的概率为A .13B .23 C .14D .342.在长度为10的线段AB 上任取一点C (不同于A ,B ),则以AC ,BC 为半径的圆的面积之和小于58π的概率为A .B .C .D .考向二 与面积有关的几何概型求解与面积有关的几何概型的问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式,从而求得随机事件的概率. 必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.“面积比”是求几何概型的一种重要的方法.典例3 在如图所示的扇形AOB中,∠AOB=,半圆C切AO于点D,与圆弧AB切于点B,若随机向扇形AOB内投一点,则该点落在半圆C外的概率为A.B.C.D.【答案】A则所求概率P=1-SS=1-,故选A.典例4 如图,已知A(a,0)(a>0),B是函数f(x)=2x2图象上的一点,C(0,2),若在矩形OABC内任取一点P,则点P落在阴影部分的概率为________.【答案】3.圆O 内有一内接正三角形,向圆O 内随机投一点,则该点落在正三角形内的概率为 A 33B .3C .33.34.已知1Ω是集合()22{,|1}x y x y +≤所表示的区域,2Ω是集合(){,|1}x y x y +≤所表示的区域,向区域1Ω内随机地投一个点,则该点落在区域2Ω内的概率为________.考向三 与体积有关的几何概型的求法用体积计算概率时,要注意所求概率与所求事件构成的区域的体积的关系,准确计算出所求事件构成的区域的体积,确定出基本事件构成的区域的体积,求体积比即可.一般当所给随机事件是用三个连续变量进行描述或当概率问题涉及体积时,可以考虑用此方法求解.典例5一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器六个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全,即始终保持与正方体玻璃容器六个表面的距离均大于10,飞行才是安全的.假设蜜蜂在正方体玻璃容器内飞行到任意位置的可能性相等,那么蜜蜂飞行安全的概率是A.512B.23C.127D.425【答案】C5.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食落在圆锥外面”的概率是A.π14B.π12C.π4D.π112-考向四随机模拟的应用利用随机模拟试验可以近似计算不规则图形A的面积,解题的依据是根据随机模拟估计概率()AP A=随机取的点落在中的随机取点频数的总次数,然后根据()随机取点构的成事全部件的区结果构成的区域面积域面积AP A=列等式求解.典例6 《周髀算经》中给出了勾股定理的绝妙证明,如图是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积分别称朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷3000颗图钉,则落在黄色图形内的图钉数约为(3≈1.732)A.134 B.268C.402 D.536【答案】C6.如图,在一不规则区域内,有一边长为1 m 的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为 375,以此试验数据为依据可以估计出该不规则图形的面积为A .83 m 2 B .2 m 2C .38m 2 D .3 m 21.在[]0,π内任取一个实数x ,则1sin 2x ≤的概率为 A .2 3B .1 2C .13D .1 42.若任取[]0,1、x y ∈,则点(),P x y 满足y x >的概率为A .23B .13 C .12D .343.在区间[]0,4上随机地选择一个数,p 则方程2380x px p -+-=有两个正根的概率为A .13B .23 C .12D .144.在直角坐标系中,任取n 个满足x 2+y 2≤1的点(x ,y ),其中满足|x|+|y|≤1的点有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4m n B .4nmC .2m n D .2nm5.某校航模小组在一个棱长为6米的正方体房间内试飞一种新型模型飞机,为保证模型飞机安全,模型飞机在飞行过程中要始终保持与天花板、地面和四周墙壁的距离均大于1米,则模型飞机“安全飞行”的概率为 A .127B .116C .38D .8276.如图,在矩形ABCD 中,AB =3,BC =1,以A 为圆心、1为半径作圆弧DE ,点E 在线段AB 上,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是A .1 4B .13C .25D .357.已知函数()2,01(e 1,1e x x f x x x⎧≤<⎪=⎨≤≤⎪⎩为自然对数的底数)的图象与直线e 、x x =轴围成的区域为E ,直线e 1、x y ==与x 轴、y 轴围成的区域为F ,在区域F 内任取一点,则该点落在区域E 内的概率为A .43e B .23e C .23D .2e8.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .3π 10B .3π 20C .3π110-D .3π120- 9.有一根长为1米的细绳,将细绳随机剪断,则两截的长度都大于18米的概率为__________. 10.一个正方体的外接球的表面积为48π,从这个正方体内任取一点,则该点取自正方体的内切球内的概率为__________.11.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一天内随机到达,若两船同时到达则有一艘必须等待,试求这两艘轮船中有一艘在停靠泊位时必须等待的概率.12.某班早晨7:30开始上早读课,该班学生小陈和小李在早上7:10至7:30之间到班,且两人在此时间段的任何时刻到班是等可能的.(1)在平面直角坐标系中画出两人到班的所有可能结果表示的区域; (2)求小陈比小李至少晚5分钟到班的概率.13.已知函数()22(,f x ax bx a a b =-+∈R ).(1)若a 从集合{}0,1,2,3中任取一个元素,b 从集合{}0,1,2,3中任取一个元素,求方程()0f x =有实根的概率;(2)若b 从区间[]0,2中任取一个数,a 从区间[]0,3中任取一个数,求方程()0f x =没有实根的概率.1.(2017新课标全国Ⅰ理科)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π42.(2016新课标全国Ⅰ理科)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .343.(2017某某)记函数2()6f x x x =+-的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ .4.(2016某某理科)在[1,1]上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9xy 相交”发生的概率为 .1.【答案】 C2.【答案】C【解析】设AC =x ,则BC =10-x ,0<x <10,由题意πx 2+π(10-x )2<58π,得x 2-10x +21<0,得3<x <7, 故所求的概率为.3.【答案】C4.【答案】2π【解析】易知1Ω的面积1πS =,2 Ω的面积22S =, 根据几何概型可得所求事件的概率为P=2.π5.【答案】D【解析】由题意可知,正方体的体积V =8,圆锥的体积V 1=212ππ1233⨯⨯⨯=,所以“鱼食落在圆锥外面”的概率是P=1π112V V V -=-. 6.【答案】A变式拓展【解析】由几何概型的概率计算公式及题意可近似得到正方形不规则图形S S =3751000,所以该不规则图形的面积大约为1000375=83(m 2).1.【答案】C【解析】若1sin 2x ≤,则在[]0,π内π5π0π66或x x ≤≤≤≤, 所以所求概率为π216π03P ⨯==-.选C .2.【答案】C【解析】根据几何概型的概率计算公式可知P =11112112⨯⨯=⨯.故选C .3.【答案】A【解析】因为方程2380x px p -+-=有两个正根,所以()243800,380p p p p ∆⎧=--≥⎪>⎨⎪->⎩所以8p ≥或 84,3p <≤ 又因为[]0,4,p ∈所以所求概率为841343P -==. 4.【答案】D5.【答案】D【解析】依题意得,模型飞机“安全飞行”的概率为(626-)3=827,故选D.6.【答案】B【解析】连接AC,交圆弧DE于点M.在Rt△ABC中,AB3BC=1,所以tan∠BAC=3BCAB=即∠BAC=π6.要使直线AP与线段BC有公共点,则点P必须在圆弧EM上,于是所求概率为P=π16π32=.故选B.7.【答案】A【解析】由题意,区域F的面积为e;区域E的面积S=1e2011d dx x xx+⎰⎰=31e0114|ln|33x x+=,所以在区域F内任取一点,则该点落在区域E内的概率为43e.8.【答案】D【解析】由题意,直角三角形内切圆的半径r=8151732+-=,所以现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率P =18159π3π211208152⨯⨯-=-⨯⨯. 9.【答案】3410.【答案】【解析】因为一个正方体的外接球的表面积为48π,所以这个正方体的棱长为4,而棱长为4的正方体的体积为43,该正方体的内切球的半径为2,体积为×23,所以所求概率P =.11.【解析】设甲船到达的时间为x ,乙船到达的时间为y ,则0≤x <24,0≤y <24.若有一艘在停靠泊位时必须等待,则|y-x|<6,如图中阴影部分所示,所以所求概率为1-=1-=.12.【解析】(1)用,x y 分别表示小陈、小李到班的时间,则][10,3010,30,x y ⎡⎤∈∈⎣⎦,所有可能结果对应坐标平面内一个正方形区域ABCD ,如图所示.(2)小陈比小李至少晚到5分钟,即5x y -≥,对应区域为△BEF ,则所求概率为1151592202032△BEF ABCDS P S ⨯⨯===⨯.“b a ≥或0a =”.于是此时,a b 的取值情况为()()()()()()()()()()0,0,0,1,0,2,0,3,1,2,1,3,2,3,1,1,2,2,3,3,即A 包含的基本事件数为10.故 “方程()0f x =有实根”的概率为()105168P A ==. (2)从区间[]0,2中任取一个数,b 从区间[]0,3中任取一个数,a 则试验的全部结果构成区域(){,|03,02}a b a b ≤≤≤≤, 这是一个长方形区域,其面积为236⨯=,设“方程()0f x =没有实根”为事件B ,则事件B 所构成的区域为(){,|03,02,}a b a b a b ≤≤≤≤>,其面积为162242-⨯⨯=.由几何概型的概率计算公式可得“方程()0f x =没有实根”的概率为()4263P B ==.1.【答案】B秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B . 【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 2.【答案】B【解析】由题意,这是一个几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B . 【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等. 3.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.直通高考4.【答案】34【解析】直线y =kx 与圆22(5)9x y相交,需要满足圆心到直线的距离小于半径,即3d =<,解得3344k -<<,而[1,1]k ,所以所求概率P =33224=.。

(完整版)高中数学概率统计知识点总结

(完整版)高中数学概率统计知识点总结

高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。

化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。

因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。

普通高中数学课程标准(2017年版)概率与统计 几何与代数内容的比较

普通高中数学课程标准(2017年版)概率与统计 几何与代数内容的比较

概率与统计内容的比较一、概率与统计内容体系编排比较我们可以从纵向和横向两个角度对《修订》与《大纲》中"概率与统计"内容结构的设置做个比较:纵向比较:①《修订》必修课程中"概率与统计"相关内容主要有统计(数据与基本概念、抽样、统计图表、用样本估计总体)、概率(随机事件与概率、随机事件的独立性)組成。

选修课程由限定选修课程和任意选修课程组成。

其中限定选修课程有计数原理、概率(随机事件的条件概率、离散型随机变量及其分布列、正态分布)、统计(成对数据间的相关性、一元线性回归模型)。

其中任意选修课程由A课程统计与概率(连续型隨机变量及其分布、二维随机变量及其联合分布、参数估计、假设检验、二元线性回归模型)、B课程应用统计(连续型随机变量及其分布、二维随机变量及其联合分布、参数估计、假设检验、聚类分析、正交设计)、C课程社会调查与数据分析(社会调查概论、社会调查方案设计、抽样设计、社会调查数据分析、社会调查数据报告、社会调査案例选讲)组成。

②《实验》必修课程中概率与统计相关内容主要由必修课程组成和选修课程组成。

其中必修课程有数学3统计(随机抽样、用样本估计总体、变量的相关性)、概率(随机事件与概率、古典概型及概率计算公式、几何概型)。

选修课程由限定选修课程和任意选修课程组成。

其中限定选修课程有选修1-2统计案例(14课时)和选修2-3计数原理(基本计数原理、排列与姐合、二项式证明)、概率(离散型随机变量、二项分布、直方图)、统计案例组成。

任意选修课程主要有风险与决策、优选法与试验设计初步组成。

经过比较可知,《实验》与《修订》在"概率与统计"必修课程内容中均含有统计和概率相关内容,而选修课程中概率内容只有《修订》和《实验》理科选修课程中才有。

此次《修订》取消文理分科后,文理科在必修课程和选修课程均要学习概率等相关内容,说明概率内容得到了进一步的重视。

同时,《修订》在任意选修课程新増加了统计与概率的相关选修课程。

人教版高中数学必修三 第三章 概率 “几何概型”教学设计与反思

人教版高中数学必修三  第三章 概率 “几何概型”教学设计与反思

《几何概型》教学设计突出内涵揭示关注知识建构——“几何概型”教学设计与反思摘要:几何概型是继“古典概型”之后的又一类等可能概率模型,是等可能事件的概念从有限向无限的延伸.本节课学生通过对丰富而具体的实例的观察、分析、抽象、概括,亲历几何概型的概念建构过程, 并在运用中进一步理解概念,培养学生的思维能力,提高学生的建模能力.关键词:几何概型;基本事件;等可能概率模型2012年11月,笔者有幸参加了中国教育学会中学数学教学专业委员会组织的第六届全国高中青年数学教师优秀课观摩与评比活动,进行了课题为“几何概型”的教学展示,获一等奖并被评为最优秀展示老师.赛后,笔者对这节课进行了回顾与反思,认为要上好一节数学概念课,前提是教师要在理解数学、理解学生、理解教学的基础上进行教学设计,围绕数学概念的核心展开教学.一、教学内容解析《几何概型》是苏教版高中数学必修3第三章3.3节(第1课时)的内容,是在学生学习了概率的统计定义和等可能定义之后学习的. 它是在古典概型基础上的进一步发展,是继“古典概型”之后的第二类等可能概率模型,是等可能事件的概念从有限向无限的延伸. 本节内容作为“一个未来公民的必备知识”,充分体现了新课程以人为本的理念.学好几何概型,对学生全面系统地掌握概率知识及辩证思想的进一步形成具有重要作用.几何概型的关键是寻找合理的几何模型,通过建立无限个等可能基本事件与几何模型中特定区域的对应关系,用几何区域的测度刻画无限个等可能基本事件,达到求解相关概率问题的目的,体现了抽象概括建立模型的思想方法和数形结合的思想方法,是概率问题与几何问题的一种完美结合.基于以上分析,本节课的教学重点确定为:几何概型概念的建构和建立合理的几何模型进行简单的几何概率计算.二、教学目标设置结合《普通高中数学课程标准(实验)》对几何概型的教学要求:“初步体会几何概型的意义,会进行简单的几何概率计算”,立足学生的思维水平和认知特点,本节课的具体教学目标确定为以下三点:1.通过对具体实例的观察和分析,了解几何概型的两个基本特点,并会判断实际问题中的概率模型是否为几何概型.2.经历几何概型的概念建构过程, 感受数学的拓广过程,体会从感性到理性的思维过程,提高数学归纳能力和数学抽象能力.3.会通过建立合理的几何模型进行简单的几何概型概率计算, 注重建模过程,体会数形结合思想.说明:一节数学课的教学目标,应当是以学生为主体,以具体的数学知识、技能为载体,在教学过程中开展数学思想、方法的教学,渗透情感、态度和价值观的教育.教师要摒弃对“高、大、全”的“三维目标”的简单罗列,要结合具体的教学内容及其特点设置恰当的课堂教学目标,才能实现有效教学,否则课堂将不堪重负.三、学生学情分析初中教材中已涉及到个别简单的几何概型问题,学生凭借直觉与生活经验能把问题的结果计算出来,但缺少从数学的内部对问题本质的理解.本节课的教学目的也正是在学生已有认知的基础上对概念的完善与系统化.在本章中,学生已经学习了概率的统计定义和古典概型,掌握了两种计算随机事件发生概率的方法:一是用频率估计概率;二是用古典概型的公式来计算概率.在《古典概型》一节中学生已经会把事件分解成等可能基本事件,知道它的两个特点是等可能性和有限性,并经历了从基本事件的角度建构了古典概型的定义和概率计算公式.类比古典概型,通过分析基本事件,学生容易知道几何概型中基本事件的特点是等可能性与无限性.但学生对无限个等可能基本事件的量化具有困难,需要教师引导.在运用公式解决实际问题时,选择合适的模型,将实际问题转化几何概型问题对学生来说比较困难.笔者所在学校为农村普通高中,招收的学生大部分基础薄弱,自主学习能力较弱.进入高一,虽然能领悟一些基本的数学思想与方法,但还没有形成完整、严谨的数学思维习惯,对问题的探究能力也有待培养.基于以上分析,本节课的教学难点确定为:几何概型概念的建构及解决实际问题时如何从背景中确定特定几何区域及其测度.四、教学策略分析本节课结合启发式教学原则,采用学生探究与教师讲授相结合的教学方法,结合多媒体辅助教学.前苏联数学家斯托利亚说过:“积极地教学应是数学活动(思维活动)的教学,而不是数学活动的结束——数学知识的教学.”因此,教学中通过让学生对丰富而具体的实例的观察、分析、归纳、抽象,亲历几何概型的概念建构过程,使学生经历对事物从特殊到一般,从具体到抽象,从感性到理性的认知过程,逐步养成透过事物的表象把握本质的思维方法,培养学生的理性思维能力、抽象概括能力和数学建模能力.为突破难点,在概念建构过程中结合分析内容形成框图,利用框图直观地表示无限个等可能基本事件与几何模型中特定区域的对应关系,有助于学生理解概念,并为在实际应用中合理建模打下基础.五、教学过程1.情境导入,激活思维情境1取一个边长为2a的正方形及其内切圆,随机地向正方形内投一粒米,假设米粒能落在正方形内任意一点且米粒的面积不计,求米粒落入圆内的概率.(人教版九年级数学上册P147试验与探究)问题1:请解答并说明解答依据.教学预设:学生用内切圆与正方形面积之比表示所求概率,但无法说出这样计算的理论依据.【设计意图】“米粒问题”是教材上的例1,但初中教材选学部分就已经出现过这个问题,本着紧密联系学生的生活实际,从学生的生活经验和已有知识出发的教学原则,笔者创造性地使用教材,将这个问题作为了导入情境.事实上,学生凭借直觉与生活经验能够用内切圆与正方形面积之比表示所求概率,但却缺少从数学的内部对问题的理解.以此作为导入情境,有助于激发学生的探求欲望,促使学生对问题由感性认识转向理性思考.问题2:这样计算究竟是否合理呢?我们不妨先来回顾一下已有哪些求随机事件概率的方法?教学预设:通过问题让学生回顾已有的两种计算随机事件概率的方法:随机事件概率的统计定义和古典概型概率计算公式.教师追问两种概率计算方法的注意点,强化古典概型计算公式的使用条件,即古典概型中基本事件满足等可能性和有限性两个特点.【设计意图】必要的复习铺垫能有效地帮助学生回忆学习新知所需要的相关旧知.在学生无法回答情境1的解答依据时,通过引导他们回顾已有求随机事件概率的方法去寻找理论支撑.虽然已有的两种方法不能解释答案的合理性,但为接下来从数学内部研究情境1提供了“先行组织者”,学生可以类比古典概型的研究思路对此进行探究.2.合作探究,启迪思维问题3:你准备从什么角度对情境1展开分析?教学预设:通过教师追问,引起学生思考.生:我们也从基本事件角度对情境1展开分析.师:具体分析哪些问题?生:①试验中每一个基本事件是什么?②每个基本事件是否等可能?③所有基本事件共有多少个?④指定事件中有多少个基本事件?师: 请大家就以上4个小问题对情境1展开分析.(教师等待,学生思考)生:试验中的一个基本事件应该是米落在正方形内的一个点,每一个基本事件的发生都是等可能的,这样的基本事件共有无限个,指定事件含有的基本事件也是无限个.师:是古典概型吗?生:不是,古典概型中所有的基本事件只有有限个,而这里是无限个.师:那我们就无法用数值来表示基本事件的个数m 和n 了.那它与古典概型有相同之处吗? 生:有,每一个基本事件的发生都是等可能的.【设计意图】引导学生从已有知识经验出发,类比熟知的古典概型问题,从基本事件的角度出发对问题1进行分析.通过分析发现此问题仍是一个等可能模型,不同于古典概型的是基本事件的个数由有限个变成无限个,无法用数值刻画,从而形成认知冲突.问题4:如何刻画不易计数的无限个等可能基本事件?教学预设:教师引导学生分析,每个基本事件与正方形内一个点对应,所有基本事件与正方形内所有的点对应即与正方形对应,指定事件与内切圆对应,从而用内切圆与正方形的面积之比合理地替代了基本事件的个数之比,解决了无限性无法计算的问题.教师强调之所以能这样对应,是因为每个基本事件都是等可能的,也即每个基本事件所对应的点在正方形内是均匀分布的.结合分析过程,教师在黑板上板书上述对应关系:A 事件包含的基本事件数内切圆的面积基本事件的总数正方形的面积【设计意图】这个问题对学生来说具有难度,这时需教师及时作出引导.教师通过引导学生分析得到基本事件与点对应,所求事件与几何图形对应,从而用几何图形的面积之比合理地替代了基本事件的个数之比,说明计算方法的合理性,让学生初步感知到以形代数、数形结合的思想方法,同时为后面形成几何概型形式化的定义做铺垫.问题5:你有办法验证结果的正确性吗?教学预设:学生提出验证的试验方案与试验注意点,教师多媒体演示投米粒试验,师生合作验证计算结果的正确性.【设计意图】尽管问题4的处理过程说明了用面积比表示概率是合乎情理的,但初次接触几何概型的学生对此还是缺乏一定的认同感的.这时利用学生已经掌握的另一种求解随机事件概率的方法,即通过多媒体演示投米粒实验,用频率估计概率,来进一步验证了计算结果的正确性,使学生体会到推理成功的喜悦,使数学的严密性得到保证.问题6:请同学们观察试验,当投到正方形内的点数足够多时,你有什么发现?教学预设:通过观察,学生发现这些点几乎把整个正方形填满了,进一步体悟到所有的基本事件与正方形相对应的合理性,并再次感知数形结合思想.教师追问:将情境1中的红色区域改变形状、移动位置,概率发生变化了吗?改变红色区域的大小呢?由此你能发现什么?【设计意图】通过对试验的观察以及情境中几何图形的变化,引发学生对几何概型本质特征的思考,帮助学生理解“事件A发生的概率只与红色区域的面积成正比,而与其位置、形状无关”.在整个对情境1的分析过程中,教师始终以“问题串”为载体,引领学生经历猜想,推理到验证的研究过程.问题7:请参照情境1的研究思路对情境2和情境3进行分析.情境2取一根长度为3m的绳子,将绳子拉直后, 在绳子上随机选择一点, 在该点处剪断.那么剪得两段的长都不小于1m的概率有多大?情境2 情境3情境3一个棱长为20cm盛满水的正方体水池中有一个病毒, 病毒可能出现在水池中的任意一个位置, 它距离水池底不超过5cm的概率是多少?教学预设:学生自由选择情境,类比情境1展开分析,给出解答并说明理由,学生相互予以点评.教师结合学生分析进行板书.【设计意图】情境2、情境3分别是以长度之比、体积之比表示概率的,采用不同的度量量之比,目的是给予学生更丰富的体验.在这两个情境的探究过程中,始终将对“基本事件”的分析作为解决概率问题的着眼点,进一步从等可能性、无限性两方面来区别古典概型与几何概型,深化学生对几何概型基本特征的体会.3. 抽象概括,建构概念从教育心理学的观点出发,概念教学的核心就是“概括”.因此,在突破概念建构这个难点时,笔者采取的第一个策略就是让学生在已有分析的基础上进行概括.第二个策略是结合学生概括内容进一步完善框图,利用框图直观的表示无限个等可能基本事件与几何模型中特定区域的对应关系,有助于学生理解概念,并为在实际应用中合理建模打下基础.问题8:请结合前面的分析,总结三个试验具有的共同特点.教学预设:先以活动小组为单位进行组内交流,然后小组代表总结发言.教师结合学生的分析,引入测度的概念,并完善框图,将无限个等可能基本事件与几何模型中区域的对应关系直观体现:至此,几何概型的特点、几何概型的概念和概率计算公式都经由学生的观察、分析、归纳、抽象,自然形成.(1)几何概型中基本事件的特点:每个基本事件的发生都是等可能的;所有的基本事件有无限个.(2)几何概型的定义:对于一个随机试验:每个基本事件可以视为从某个特定的几何区域D 内随机地取一点,且区域D 内的每一点被取到的机会都一样;而一个随机事件的发生可以视为恰好取到区域D 内的某个指定区域d 中的点.用这种方法处理随机试验,称为几何概型.(3)几何概型的概率计算公式:()d P A D =的测度的测度. 结合对三个情境的分析,指出: ①D 的测度不能为0;② “测度”的意义依D 确定;③ 事件发生的概率与d 的形状和位置无关.【设计意图】通过让学生对丰富而具体的实例的观察、分析、归纳、抽象,亲历几何概型的概念建构过程,使学生经历对事物从特殊到一般,从具体到抽象,从感性到理性的认知过程,逐步养成透过事物的表象把握本质的思维方法,培养学生的理性思维能力、抽象概括能力.几何概型的定义是一种描述性定义,涉及的文字较多,新名词较多.教学过程中通过以活动小组为单位进行组内交流,并辅以框图,可以使学生在熟悉概念定义的每一个“构建”基础上自然生成定义. 只要学生理解了、抓住了概念的本质就可以了,不要死记硬背定义,不必字字合于教材.4. 数学应用,升华概念数学概念学习理论已揭示:概念只有在运用中才能得到真正的理解.因此,概念运用的价值不仅仅为了巩固概念,最为重要的是为了理解概念.笔者根据教材和学生的实际,适当改造和增补例题与练习,讲练结合,注重引导学生对解题思路和方法的总结,逐步提高思维的层次,深化学生对概念和公式的理解,培养学生的思维能力,提高学生的建模能力.例1 射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色、黑色、蓝色、红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm.运动员在70m 外射箭.假设射箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?教学预设:学生分析试验中的基本事件及其特点,判断该问题为几何概型,确定D ,d 区域及测度.教师板书示范解题过程,并引导学生归纳解题步骤:记→判→算→答.【设计意图】例1是对所学概念和公式的一个简单应用.其形式与情境1类似,但学生对问题的认识已由感性上升至理性,开始尝试着运用所学理论从数学内部对问题展开分析和解答. 解题步骤的归纳让学生体会规范的书写是思维过程的完美再现.练习 在1L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10mL ,其中含有麦锈病种子的概率是多少?教学预设:学生独立完成,教师点评.学生总结解决几何概型问题的分析思路:分析基本事件,根据基本事件的特点确定概型,如果是几何概型,再确定区域D 和d ,最后确定他们的测度.【设计意图】练习题中的背景没有例1直观,需要学生理性分析,抽象出基本事件对应的几何区域,有助于学生养成透过事物的表象把握本质的思维方法.例2 在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.例2图 变式图教学预设:学生判断出点M 落在斜边AB 上的每一点都是一个基本事件,由于在斜边AB 上任取一点M ,所以基本事件具有等可能性和无限个的特点,这是一个几何概型.线段AB 是区域D ,在线段AB 上存在一个特殊的点C ',使得A C '=AC ,线段A C '就是区域d .教师提问:如何确定点C '?学生AB. A B M C判断:以A 为圆心,AC 为半径作弧,与AB 的交点就是C '.问题9:请同学们比较例1和例2 ,哪个问题简单点?为什么?【设计意图】例2中的区域d 需要学生确定,这是建模的一个难点.这里通过对两个例题的比较,提炼出“确定区域找临界”这一方法,从而突破了这个难点.变式探究 在等腰直角三角形ABC 中,过直角顶点C 在∠ABC 内部任取一条射线CM ,与线段AB 交于点M ,求AM 小于AC 的概率.教学预设:学生可能出现两种不同的解法.解法一:同例2,因为在∠ACB 内部每作一条射线CM ,都会与斜边AB 产生一个交点,射线CM 与斜边AB 的每一个交点就是一个基本事件,都是等可能的……所以区域D 是线段AB ,区域d 是线段AC ',他们的测度是长度,概率P(E)= AC AB '解法二:每一个基本事件就是在∠ACB 内部任作一条射线CM ,他们都是等可能的.所以区域D 是,当这条射线作在ACC '∠内时,事件发生了,区域 d 是ACC '∠.他们的测度应该是角度,概率P(E)=ACC ACB '∠∠ =34. 引导学生通过合作交流的方式来发现问题,使学生在讨论中互相纠错,进而得出正确解法.教师适时辅以多媒体演示,说明在∠ACB 内等可能的取射线不能等价于在斜边AB 上等可能的取点.强调解决具体问题时不仅要关注试验中的每一个基本事件是什么,更主要的要看每一个基本事件的发生是否等可能的.【设计意图】变式设置的目的让学生在理解概念及其反应的数学思想和方法的基础上,对细节问题、变化的问题进行深入思考,加强学生对几何概型本质的进一步认识,形成严谨的数学思维习惯.而通过对这两个背景相似而基本事件不同的问题的对比研究,可以引导学生发现当等可能的角度不同时,测度不同,其概率值也会发生改变,从而突破确定测度这一难点.5.回顾小结,理清脉络问题10:通过本节课的学习,你掌握了哪些知识?学会了哪些方法?经历了怎样的研究过程?获得了什么体会?你还有什么疑问?教学预设:学生思考,回答,教师适当点拨,补充.【设计意图】通过问题串引领学生进行回顾总结,归纳本课内容,提炼思想方法,总结学习经验,并将所学知识纳入已有知识体系,使学生在头脑中形成关于本课内容的一个清晰的知识结构.6.分层作业,延伸思维(略)六、设计反思本节课在展示时受到较高的评价,与课前的精心设计是密不可分的.本节课的设计主要体现了如下的特点:1.体现了过程性----数学教学的本质数学思维研究中主要问题是问题解决,而问题解决的核心又是对概念的深刻理解.这就要求学生不仅仅学习概念的知识---形式化的结论内容,而且必须学习概念的产生过程与运用过程.在本节课的教学设计中,教师通过提供丰富而具体的情景,让学生主动地进行观察、猜想、推理、验证、概括与交流,亲历了几何概型概念的形成与发展过程,促进了学生对概念本质的理解.2.体现了问题性----课堂教学的关键著名教育家陶行知先生说:“发明千千万,起点是一问.”这里提出了课堂教学的问题性.在本节课的教学设计中,教师通过对教材的二次开发,设计出恰时恰点,能触及学生的“最近发展区”,使学生“跳一跳就能摘到桃子”的问题.教学中以“问题串”为载体,以问题引领教学,以问题驱动学生主动参与知识建构、合作探究,实现了课堂教学的有效性.3.体现了主体性----实现目标的保障传统的教学侧重于教师“教”的设计,不利于学生思维的发展.数学学习的本质是学生的再创造,学生才是课堂的主体.本节课中,教师充分关注了学生已有的知识背景、生活经验以及思维特点,并以此为教学起点进行教学设计.教学过程中,教师为学生搭建了有层次的学习平台,无论是探究分析、建构概念还是数学应用,都能做到放手让学生自主活动,为学生思维能力的发展提供了保障.当然,课堂是开放的,在以学生为主体、以问题为载体、追求过程性的数学课堂上,生成是必然的.但预设是生成的基础,没有高质量的预设,就不可能有精彩的生成.只有在“精心预设”的前提下,才能追求课堂教学的“动态生成”,才能切实搞好“思维的教学”.参考文献:[1]章建跃.理解数学理解学生理解教学[J].中国数学教育(高中版),2010(12):3-7.[2]徐新民.数学课堂教学的核心:过程性、问题性、主体性[J].基础教育参考,2011(11):33-37.[3]李善良.现代认知观下的数学概念学习与教学[M].南京:江苏教育出版社,2005.。

人教版高中数学必修三 第三章 概率 《几何概型》教案

人教版高中数学必修三  第三章 概率 《几何概型》教案

《几何概型》教案教材分析:几何概型是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.几何概型的基本特点是:在每次随机试验中,不同的试验结果有无限多个,即基本事件有无限个;在这个随机试验中,每个试验结果出现的可能性相等,即基本事件是等可能的.几何概型与古典概型的区别在于,几何概型是无限个等可能事件的情况,而古典概型中的等可能事件只有有限个.教材从两者的比较入手,通过分析简单的几何概型的例子入手引出几何概型的计算方法。

本节安排的例题和习题分别从一维的长度,二维的面积,三维的体积作为测度进行分析的.教学目标:知识与技能:1.学生初步掌握并运用几何概型解决有关概率问题;2、能够正确区分几何概型与古典概型;3、提高学生判断与选择几何概型的概率公式的能力;过程与方法:通过实例把几何概型与古典概型进行比较分析发掘几何概型的特点以及几何概型的概率计算方法;情感态度价值观:学生体会数学来源于实践,并且培养学生发现问题、分析问题进而解决问题的良好习惯.教学重点与难点:重点:几何概型的特点及其几何概型的概率公式的判断与选择;难点:几何概型的概率公式的判断与选择.教学方法:探究性学习,体现以“教师为主导,学生为主体”教学过程:一、知识回顾1.古典概型的特点2.概率公式:二、探索研究【对比研究】(骰子游戏):甲乙两人掷骰子,掷一次,规定谁掷出6点朝上则谁胜,请问甲、乙谁获胜的概率大?学生分析:掷骰子的结果是有限个,且掷得每个结果都是等可能性的,符合古典概型的特点,因而可以利用古典概型计算;学生求解:1;6p=甲16p=乙。

(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?①②师生共同分析:1、指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而不是古典概型;2、利用B区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;学生求解:法一(利用B区域所占的弧长):1(1)();2B p B ==所在扇形区域的弧长整个圆的弧长3(2)().5B p B ==所在扇形区域的弧长整个圆的弧长法二(利用B 区域所占的圆心角):1801(1)();3602B p B ︒︒===所在圆心角的大小圆周角336035(2)();3605B p B ︒︒⨯===所在圆心角的大小圆周角 法三(利用B 区域所占的面积):1(1)();2B p B ==所在扇形的面积整个圆的面积3(2)().5B p B ==所在扇形的面积整个圆的面积【提出问题】⑴两个问题中,求概率的方法一样吗?若不一样,请问是什么原因? ⑵你是如何解决这些问题的?学生对比分析:⑴ 骰子游戏中色子的六个面上的数字是有限个的,且每次投掷都是等可能性的,因而是古典概型;转盘游戏中指针指向的每个方向都是等可能性的,但指针所指的方向却是无限个的,因而不是古典概型.⑵借助几何图形的长度、面积等计算概率;【问题探究】分析下列三个问题的概率,从中你能得出哪些求概率的结论?问题 1(绳子问题):某人在家门前相距6米的两棵树间系一条绳子,并在绳子上挂一个衣架,求衣架钩与两树的距离都大于2米的概率.学生分析:衣架钩与两树的距离都大于2米, 所以衣架钩应在图中B 、C 之间的任何一点都可以,结果有无数多种,而且等可能,所以不是古典概型;学生求解:记“衣架钩与两树的距离都大于2米”为事件A , 所以30P()0.650A == 学生归纳:1、该概率的特点不符合古典概型,不能利用古典概型;2、A P()A =构成事件的区域长度试验的全部结果构成的区域长度 问题2(撒豆子问题):如图,假设你在每个图形上随机撒一粒黄豆,计算它落到阴影部分的概率.学生分析:豆子撒在图形的每个位置的机会是等可能的,但豆子的位置却是无限多个的,因而不能利用古典概型。

(完整word版)2017版高中数学课程标准

(完整word版)2017版高中数学课程标准

《高中数学课程标准(2017版)》河北孟村回民中学张万山 59号普通⾼中数学课程标准 2017年版在实验版的基础上作了修订,总体是继承,删减了⾼些内容,调整了内容的顺序,注重了数学知识内部的逻辑性,使得整体内容更趋合理.⾼、课程结构⾼中数学课程分为必修课程、选择性必修课程和选修课程。

⾼中数学课程内容突出函数、⾼何与代数、概率与统计、数学建模活动与教学探究活动四条主线,它们贯穿必修、选择性必修和选修课程,数学⾼化融⾼课程内容。

1、必修课程为学⾼发展提供共同基础,是⾼中毕业的数学学业⾼平考试的内容要求,也是⾼考的要求。

如果学⾼以⾼中毕业为⾼标,可以只学习必修课程,参加⾼中毕业的数学学业⾼平考试。

2、选择性必修课程是供学⾼选择的课程,也是⾼考的内容要求。

如果学⾼计划通过参加⾼考进⾼⾼等学校学习,必须学习必修课程和选择性必修课程,参加数学⾼考。

3、选修课程为学⾼确定发展⾼向提供引导,为学⾼展示数学才能提供平台,为学⾼发展数学兴趣提供选择,为⾼学⾼主招⾼提供参考。

如果学⾼在上述选择的基础上,还希望多学习⾼些数学课程,可以在选择性必修课程或选修课程中,根据⾼身未来发展的需求进⾼选择。

⾼、课程内容(⾼)必修和选修内容的调整常⾼逻辑⾼语、复数由原来的选修内容调整为现在的必修内容;数列、变量的相关性、直线线与⾼程、圆与⾼程由原来的必修内容调整为现在的必选修内容;(⾼)内容的删减与增加删去了必修三算法初步、选修2-2 推理与证明以及框图(⾼科)这三章内容,删去了简单的线性规划问题、三视图;“解三⻆形”由原来单独的⾼章内容合并到“平⾼向量”这⾼章⾼了.必修和必选修均增加了数学建模与数学探究活动。

(三)具体各章节内容的细微变化1、必修课程主题⾼预备知识预备知识包括了四个单元的内容:集合,常⾼逻辑⾼语,相等关系与不等关系,从函数的观点看⾼元⾼次⾼程和⾼元⾼次不等式。

这四单元内容常⾼逻辑⾼语与相等关系和不等关系有变化外,其他内容与实验版课标内容基本⾼样。

高中数学新课概率与统计教案

高中数学新课概率与统计教案

高中数学新课概率与统计教案一、教学目标1. 理解概率与统计的基本概念,掌握一些基本的概率计算方法。

2. 能够运用概率与统计的方法解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力,提高学生对数学学科的兴趣。

二、教学内容1. 概率的定义与计算2. 统计的基本概念和方法3. 概率与统计在实际问题中的应用三、教学重点与难点1. 重点:概率的基本性质,统计的基本概念和方法。

2. 难点:概率计算公式的运用,以及如何运用概率与统计解决实际问题。

四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究,发现规律。

2. 利用案例分析,让学生了解概率与统计在实际生活中的应用。

3. 注重培养学生的动手操作能力,让学生在实践中掌握知识。

五、教学过程1. 导入:通过一些生活中的实例,引入概率与统计的概念。

2. 讲解:讲解概率与统计的基本概念,让学生了解其含义和作用。

3. 实践:让学生动手操作,进行一些概率计算和统计分析。

4. 应用:让学生运用所学的概率与统计知识解决实际问题。

6. 作业布置:布置一些有关概率与统计的练习题,巩固所学知识。

六、教学评价1. 评价内容:学生对概率与统计基本概念的理解,基本方法的掌握,以及解决实际问题的能力。

2. 评价方式:课堂表现、作业完成情况、课后练习成果、小组讨论参与度。

3. 评价标准:能准确理解并运用概率与统计知识,解决问题,逻辑清晰,表达准确。

七、教学拓展1. 概率与统计在现代社会的重要性,如彩票、调查问卷、数据分析等领域。

2. 引导学生关注生活中的概率与统计现象,提高学生对数学的兴趣和认识。

八、教学资源1. 教材:《高中数学新课程标准实验教科书》2. 辅助材料:PPT课件、案例分析资料、练习题库。

3. 技术支持:多媒体教学设备、网络资源。

九、教学进度安排1. 课时:本节课计划2课时,共计45分钟。

十、课后反思1. 反思内容:教学方法的运用是否得当,学生掌握情况,教学目标的实现程度。

2017版高考数学一轮复习 第十章 统计、概率 第5讲 几何概型课件 理

2017版高考数学一轮复习 第十章 统计、概率 第5讲 几何概型课件 理

所求概率为
5
2 =3.
(2)当 AM=AC 时,△ACM 为以 A 为顶点的等腰三角形, 180°-45° ∠ACM= =67.5°.当∠ACM<67.5°时,AM<AC, 2 ∠ACM的度数 67.5° 3 所以 AM 小于 AC 的概率 P= = =4. ∠ACB的度数 90°
2 3 答案 (1)3 (2)4
内随机取一点,则此点取自阴影部分的概率等于
.
解析
由图形知 C(1,2),D(-2,2),
3 2 1 1 3 ∴S 四边形 ABCD=6,S 阴= ×3×1= .∴P= = . 2 2 6 4 1 答案 4 规律方法 与面积有关的平面图形的几何概型,
解题的关键是对所求的事件A构成的平面区域形 状的判断及面积的计算,基本方法是数形结合.
考点二 与体积有关的几何概型
【例 2】 如图,在长方体 ABCD-A1B1C1D1 中,有 一动点在此长方体内随机运动,则此动点在三 棱锥 A-A1BD 内的概率为________.
解析 1 1 V V 因为 A A1BD =3AA1×S△ABD=6×S A 1 ABD
矩形
ABCDAA1
考点三 与面积有关的几何概型 [微题型1] 与三角形、矩形、圆等平面图形面积有关的问题
【例 3-1 】 (2015· 福建卷改编) 如图,矩形 ABCD 中,点 A 在 x 轴上,点 B 的坐标为 (1 , 0) ,且点 C 与点 D 在函数 f(x) = x+1,x≥0, 1 的图象上.若在矩形 ABCD - x+1,x<0 2
如图,不妨在过等边三角形 BCD的顶点B的直径BE
上任取一点F作垂直于直径的弦,当弦为CD时,就 是等边三角形的边长 ( 此时 F为OE中点) ,弦长大于 CD 的充要条件是圆心 O 到弦的距离小于 OF ,由几 何概型公式得:

《统计与概率》初步认识及教学建议

《统计与概率》初步认识及教学建议

《统计与概率》初步认识及教学建议[内容提要] 20世纪以来,由于社会生产和科学技术的飞速发展,概率与统计的应用日益广泛,已渗透到社会生活的方方面面.现在概率统计已成为最重要和最活跃的数学学科之一,它既有严密的数学基础,又与其它学科紧密联系,因此,在高中数学课程中,加强了概率统计的份量.本文就《标准》必修3中“统计与概率”部分内容的特点,增加统计与概率的内容对高中数学教育改革的意义,总体目标,如何处理统计与概率的内容,怎样发挥统计与概率在提高学生数学素养方面的功能等几个方面的问题,谈几点看法.关键词内容特点教育价值改革意义总体目标教学建议提高能力随着信息技术的发展,数字化时代的到来,人们常常需要收集大量的数据,根据所获得的数据提取有价值的信息,做出合理的决策.统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础.因此,统计观念和随机思想将成为现代社会一种普遍适用并且强有力的思维方式,具有统计与概率的基本知识已成为每个现代公民必备的基本素质.由于概率统计的应用性强,有利于培养学生的应用意识和动手能力,在数学课程中,加强概率统计的份量成为必然.《普通高中数学课程标准(实验)》(以下简称《标准》)设置了“统计与概率”的内容,目的就在于发展学生应用数学意识,使其体会数学在实际中的应用价值,同时更全面地培养学生分析问题、解决问题的能力.比较国外及国内近几年教材中的统计与概率内容,基本包括收集数据的方法,抽样调查,用样本数据估计总体的情况,利用象形图、条形图、折线图、直方图等描述数据,利用平均数、方差、标准差等分析数据,频数与频率,(累计)频数分布与(累计)频率分布,正态分布,数学期望,概率的意义,计算等可能事件发生的概率,通过大量实验利用频率估计概率等内容.对于这些内容,各种教材在处理方式上不尽相同,各有特色.《标准》必修3中“统计与概率”部分内容有什么特点?增加统计与概率的内容对高中数学教育改革的意义是什么?总体目标是什么?如何处理统计与概率的内容?怎样发挥统计与概率在提高学生数学素养方面的功能?下面就这些问题,谈几点粗浅的看法.一、本部分内容编写特点1.联系案例介绍概率的实际应用概率起源于现实生活,应用于现实生活,教科书无论在背景材料、例题和阅读与思考栏目的选材上都注意联系实际.在介绍概率意义的部分,讨论了对彩票中奖率的理解,体育比赛的罚球中不中问题,天气预报中降水概率的理解;古典概型部分的例题,讨论了游戏问题,抽样检测产品是否合格的问题,解释了遗传机理的统计规律;随机模拟部分的例题,包括模拟掷硬币掷得正面概率的例题;在概率的应用部分,介绍了概率在键盘设计中的应用及在破译密码与反破译密码中的应用.2.重视统计图与统计表的应用教科书中充分利用统计图与统计表直观清晰的特点,展示实验结果.如在给出概率的统计定义之前,为使学生发现频率的稳定性,不仅仅让学生动手做掷硬币的实验,而且通过历史上一些掷硬币实验结果的统计表、掷硬币出现正面的频率随着实验次数的增加图表等多种手段,使学生更直观地感到频率稳定在一个常数附近.在介绍种子发芽率尔的实验与发现时给出了实验结果的统计表,通过表格可以清晰看到种子的发芽率都接近0.9,由此可见其中具有规律性.在随机模拟部分,使用统计表和统计图能更好地展示实验结果.3.注重统计思想和计算结果的解释学习概率统计的知识,不是为了学会做几道题,重点是掌握它的思想方法和用它解决实际生活中的问题.教科书中突出统计思想的解释,如在概率的意义部分,利用概率解释“中奖率为1/1000的彩票,买1000张一定中奖”的错误认识.统计实验中随机模拟方法的原理就是用样本估计总体的思想.在古典概型部分,解答完例题后,一般给出相应结果的解释或提出思考问题让学生做进一步的探究.4.注重现代信息技术手段的应用现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等方面产生深刻的影响,信息技术工具的使用能为学生的数学学习和发展提供丰富多彩的教育环境和有力的学习工具,重视现代信息技术的使用是本套教科书的特点之一.由于概率统计本身的特点,统计需要分析和处理大量的数据,概率中随机模拟方法需要产生大量的模拟实验结果,并需要分析和综合实验结果,所以现代信息技术的使用就显得更为必要了.二、教育价值统计与概率将成为义务教育阶段唯一培养学生以随机的观点来理解世界的教学内容,使学生具有一些基本的统计与概率的观念、知识和方法,在面对不确定情境或大量数据时,能做出合理的决策,具有重要的教育价值.通过统计与概率的学习,将有助于学生1.熟悉统计与概率的基本思想方法,逐步形成统计观念,形成尊重事实,用数据说话的态度;2.培养以随机的观点来理解世界,形成提出问题、解决问题的能力及正确的世界观与方法论;3.培养对数学积极的情感体验,终身学习数学的愿望与能力;4.在面对大量数据和不确定情境时,制定出较为合理的决策,形成用数学的意识.三、统计与概率改革的意义统计与概率内容的改革,对促进高中数学教学内容的现代化、结构的合理化,推动教育技术手段的现代化,改进教师的教学方式和学生的学习方式等都有积极的作用.1.使高中数学内容的结构更加合理完整合理的内容结构是产生多种能力必不可少的条件,现行的高中数学内容主要包括代数、几何,代数、几何属于“确定性”数学,学习时主要依赖逻辑思维和演绎的方法,它们在培养学生的计算能力、逻辑思维能力和空间想象能力方面发挥着重要作用.而统计与概率属于“不确定性”数学,需寻找随机性中的规律性,学习时主要依靠辨证思维和归纳的方法,它在培养学生的实践能力和合作精神等方面更直接、更有效.统计概率与现实生活联系密切,学生可以通过实践活动来学习数据处理的方法,在活动过程中,学生可以更容易地建立数学与现实生活的联系,体验到数学在解决实际问题中的威力,这对调动学生学习数学的兴趣,培养学生调查研究的习惯,实事求是的态度,合作交流以及综合实践能力都有很大的作用.因此,在高中阶段增加统计与概率的内容,能够使高中数学的内容结构在培养学生的能力方面更加合理.2.有利于促进信息技术和数学课堂整合的发展信息技术和课堂整合(Integrating Information Technology into Curriculum),是指在学科教学过程中把信息技术、信息资源和课程有机结合,建构有效的教学方式,促进教学的最优化.新课标实验教科书的编写贯彻了“必要性”、“平衡性”、“广泛性”、“实效性”等实用信息技术的原则,在适当的教学内容中,实现信息技术与数学课程内容的有机整合,使学生更好地理解数学本质,主动地探索和研究数学.统计与概率内容中涉及大量复杂数据的计算问题,使用计算器处理这些问题,能使学生感受到使用计算器的必要性.目前部分新型的科学计算器还设有统计功能,而使用计算器进行统计运算更能体现计算器的快捷和方便.因此,统计与概率还能推动计算器的普及与发展.计算机能够提供大量的信息,可以通过计算机网络收集数据,利用计算机软件绘制统计图表及进行模拟实验等,这些都为丰富统计与概率提供了大量资源,同时也使得计算机的作用更加突出,有利于促进计算机的使用.3.能有效地改变教师的教学方式和学生的学习方式丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念.学生的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式.由于统计与概率中存在着大量的活动,学生需要通过亲自参与活动来学习统计与概率的内容,掌握数据处理的方法.这些活动能有效地促使教师与学生地位的根本改变,促进教师教学方法的改进和学生学习方式的改变.传统的传授式教学已不能满足教学的需要,学生的学习方式由被动接受变为主动探究.教师由知识的传授者成为活动的组织者、引导者、合作者,学生由被动接受知识的容器转变为活动学习的设计者、主持者、参与者.4.能有效地培养学生合情推理的意识与能力《新课标》在数学思考目标中提出了让学生“经历观察、实验、猜想、证明等数学活动过程,发展合情推理和初步的演绎推理能力,能有条理、清晰地阐述自己的观点.”“合情推理”首次进入了国家的纲领性文件,这标志着我国数学教育观念的一次转变,标志着合情推理得到了应有的重视.《数学课程标准解读》中认为,合情推理主要包括归纳推理、类比推理、统计推理.也包括一些一般的方法如:特殊化与一般化、观察、实验、猜想、联想、直觉等形式.合情推理的实质就是“发现”,也就是发现新的关系、新的规律和新的方法等.在数学学习活动中,合情推理除了具有发现命题的重要作用外,还是探索解题思路,概括、揭示新的数学事实和规律,扩展认识领域,促进知识的掌握和迁移,启迪思维和发展数学能力的重要方法和手段.在学习概率统计内容时,通过实验及对案例的观察、分析与研究,能够有效培养学生合情推理的意识与能力.四、总体目标在本模块中,将在义务教育阶段学习统计与概率的基础上,通过实际问题情境,使学生:1.经历数据统计的全过程(提出问题、确定样本、收集数据、整理和描述数据、分析数据、作出决策和预测),体会统计思维与确定性思维的差异;2.掌握有关统计与概率的基础知识和基本方法;3.感受客观世界的不确定性,初步形成对事件发生概率的认识;4.运用统计与概率的知识与方法进行推理,做出合理的决策,并进行交流;5.加深对随机现象的理解,能用随机的观念认识并解释现实世界;6.能通过实验、计算器(机)模拟估计简单随机事件发生的概率.五、教学建议1.突出统计与概率的现实意义,强调其对制定决策的重要作用统计与概率内容的设置,除了让学生学习一些最基本的统计分析的方法,而更重要的是要让学生体会统计的作用和基本思想.本学段的学生对现实社会环境中的问题具有越来越强烈的兴趣,这种兴趣是学习这部分内容的一种极好的动力,教学时,应着重于对现实问题的探索,引导学生通过对各种案例的分析,使学生认识到统计与概率的广泛应用以及对制定决策的重要作用.教师应当根据学生的自身特点提供丰富的、反映统计与概率思想方法的探索素材,引导他们把对统计与概率的探索从日常生活发展到现实社会和科学技术中感兴趣的领域.如在统计的教学中可以引入以下的例子:根据往年本地统一阶段时间的气温记录,预测下一年本地这段时间的气温情况;根据对公共汽车不同时间客流量的统计,合理地安排发车等等.2.强调对抽样与样本的理解以前,人们对某个问题的调查一般是普查,但这种调查方法的局限性很大,出于对费用和时间的考虑,人们逐步认识到需要进行抽查.抽查与普查相比有如下优点:可行性:抽样调查可大大地节省人力、物力、财力和时间;及时性:抽样调查收集资料的时间短,能及时地进行反馈,并作出科学、合理的决策;准确性:一方面统计方案的设定是有统计学作为依据的,统计的过程是按照预先设计的方案来进行的;另一方面,由于人少,便于进行调查前的培训工作,提高调查的质量;科学性:抽样调查是以概率统计为理论基础,通过计算机实现各种数理统计方法的分析,可充分利用资料中的信息,做出比较深刻且较全面的结论.统计是为了从数据中提取信息,在生活与科技中的应用越来越广,教学时应引导学生根据实际问题的需求选择不同的方法合理地选取样本,并从样本数据中提取需要的数字特征.不应把统计处理成数字运算和画图表.对统计中的概念应结合具体问题进行描述性说明,不应追求严格的形式化定义.3.注重让学生经历统计的全过程、体会其基本思想统计是为了从数据中提取信息,其特征之一是通过部分数据来推测全体数据的性质.教学中教师须通过案例来进行,引导学生根据实际问题的需求合理地选择不同的方法选取样本,并从样本中提取需要的数字特征,使学生经历较为系统的数据处理全过程,并在此过程中学习一些数据处理的方法,并运用所学知识、方法去解决实际问题,体会统计思维与确定性思维的差别,注意到统计思想与演绎推理的思想之间的互补作用,使学生认识到统计与概率和具有确定性的数学一样,是科学的方法,能够有效的解决现实世界中的众多问题.4.强调对随机现象与概率意义的理解概率是研究随机现象的,即从随机现象中研究其规律.它为应用数学解决实际问题提供了新的思想和方法.因此,概率教学的核心问题是让学生了解随机现象与概率的意义.教学中,教师应借助日常生活中具体的、可操作的大量实例,鼓励学生动手实验、自主探究,正确理解随机事件发生的不确定性及其频率的稳定性,逐步体会概率的意义及频率与概率的区别;还可以利用计算器或计算机进行模拟实验,从直观上认识频率的稳定性.尝试澄清日常生活遇到的一些错误认识(如“中奖率为1/1000的彩票,买1000张一定中奖”“若干个人抓阄,先抓和后抓,抓中的可能性不一样”等等.).古典概型的教学重点是让学生通过实例理解其特征:实验结果的有限性和每一个实验结果出现的等可能性,并让学生初步学会把一些实际问题转化为古典概型.教学时不要把重点放在“如何计数”上,计数本身只是方法与策略问题,在具体模型中有很多特殊的计数方法.5.注意与初中概率统计的衔接这部分知识与初中内容联系密切,一些内容在初中都接触过,在初中,介绍了随机事件的概念,要求会运用列举法计算简单随机事件的概率,通过实验,获得随机事件发生的频率,知道大量重复实验时频率可作为随机事件发生概率的估计值.高中与初中内容相同的,在教学中可用回忆复习等方式先进行回顾,在此基础上要有更深层次的理解.比如,在频率与概率部分,不但知道频率可以作为概率的近似值,而且要知道频率与概率的区别:频率是随机的,每次实验得到的频率可能是不同的,但随机事件的概率是一个常数,是随机事件发生可能性大小的度量,它不随每次实验的结果而改变.在初中要求会运用列举法计算简单随机事件的概率,而高中提高到理解古典概型的特征,并能运用概率公式计算随机事件的概率.随机事件的关系与运算、概率的性质、几何概型、随机模拟方法等均是高中新增内容.6.鼓励学生自主探索与合作交流《课标》认为:“有效的数学学习过程不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式.数学学习过程应当是充满着观察、实验、模拟、推断等探索性与挑战性活动.”因此,在数学课堂中,教师应引导学生主动地从事观察、实验、猜测、验证、推理与交流活动,从而使学生形成自己对数学知识的理解和有效的学习策略.在教学概率与统计知识时,更应该鼓励学生动手操作和主动参与,让他们在实验、观察、交流等活动中体会和理解随机事件发生的不确定性及其频率的稳定性等相关内容,通过学生动手操作、主动参与、统计实验,不但能激发学生学习概率统计的兴趣,而且学生在反复的统计实验中可以更好地体会和理解统计思想.如在教学概率的统计定义时,可以让学生动手做两个实验,连续掷两个硬币的实验与边框中有放回的摸球实验,通过观察与分析、交流等方式,帮助学生对随机事件发生的不确定性及其频率的稳定性有更深入的理解.还能正确理解概率的意义,澄清日常生活中遇到的一些错误认识,学会用科学的方法去观察世界和认识世界.在古典概型例5的教学中,让学生动手做掷两个骰子的实验,通过对实验结果的统计,感受出现两个1点与一个1点、一个2点的概率是不同的.7.恰当运用现代信息技术,提高教学质量现代信息技术的广泛应用对数学课程内容、数学教学、数学学习等方面产生深刻的影响.同样,现代信息技术对概率统计的发展也起到了决定性的作用.概率与统计是研究随机现象统计规律性的一门学科,而要想获得随机现象的统计规律性,就必须进行大量重复实验,这在有限的课堂时间内是难以实现的.随机模拟实验需要产生大量的随机数,同时又要统计实验的结果,如果离开计算机的帮助,需要花费大量的时间,统计实验结果的困难是可想而知的.为此,在概率统计的教学中,应鼓励学生尽可能使用科学型计算器、计算机及软件、互联网,以及各种数学教育技术平台.通过计算机图形显示、动画模拟、数值计算及文字说明等,形成一个全新的图文并茂、声像结合、数形结合的生动直观的教学环境,大大增加教学信息量,提高学习效率,有效地刺激学生的形象思维.使学生有时间与精力来探究事物的统计规律性,对实验结果的随机性和规律性有更深刻的认识,更好地体会统计思想和概率的意义.如:进行“统计图表”教学时,教师可以先搜集一些与学生生活关系紧密的事物,学校概况、各班学生数、学校集体荣誉、学生参加各种竞赛获奖情况等的资料(文字、数据、图片等),做成超文本文件,放在服务器中,让学生通过浏览这些资料,从中找出自己的研究主题,利用其中的数据制成图表,并作出简单分析.本部分内容对学生的最低要求是会用计算器产生随机数进行简单的模拟实验,并统计实验结果.有条件的学校可以让学生学会用一种统计软件,例如Excel软件,多次重复模拟实验,并统计模拟的结果,画出频率折线图等统计图.8.适时组织学生进行研究性学习华罗庚有句名言:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学”,华老说得很好,在我们周围,数学无处不在.统计概率与实际生活联系密切,在教学本部分内容时,可选择适合学生研究的实际问题作为研究性课题来开展,以提高学生的自主学习能力、创造性思维能力和实践能力.如研究性课题:本地一年中的气温变化规律我们每天都可以在报上(或收音机)看(听)到城市的天气预报,要求学生每天做记录,利用课余时间或是专门时间,走访气象部门,以了解一些气温方面知识及相关数据的统计方法等;走访农民获农业部门,以了解一些诸如气候与农作物播种之间的关系等方面的常识.在收集数据,查阅文献资料等基础上,运用统计方法、图表等数学知识与数学方法以及现代化的技术手段,来分析一年中的气温变化情况,气温变化与二十四个节气关系,气温变化与流行病的发作、预防,气温变化对日常生活的影响等.当然,该课题的研究需要一定的主、客观条件,学生研究的成果很可能不尽如人意,当然,研究性学习“重过程、重参与、重应用、重体验”,而且在实施过程学生不仅巩固了本部分所学的统计知识、提高了能力,还学到了一些书本上学不到的东西,如人际交往,社情教育,服务意识,科学的态度和科研的艰辛等.9.教师进行必要的教学反思《新课标》指出:“教师不仅是知识的传授者,而且也是学生学习的引导者、组织者、和合作者.”教学过程是师生交往、共同发展的互动过程,教师的主要职能已从知识的传播者转变为学生发展的促进者.这一转变无论是在思想上,还是在对数学、数学内容、对课堂教学的把握上,都对教师提出了新的挑战.数学教师对这些新理念的领悟,新观点的接受,新要求的落实,不是通过短期的学习就能达到的,必然要经过一个较长的转变过程,必然要经过实践——反思——实践——反思的循环往复的过程.因此数学教学反思是实施新课程教学不可或缺的技能要求.一个优秀教师的成长历程也离不开不断的教学反思这一重要环节.因此,任何一名教师都应自觉地把自己的课堂教学实践,作为认识对象而进行全面深入的冷静思考和总结,以激活自己的教学智慧,探索教材内容的最好表达方式.为了学生的全面发展,教师必须进行教学反思;为了自身的专业成长,教师必须进行教学反思.对概率和统计部分在新的课标中又有所增强,从内容上看不难,但教师掌握的往往不够到位,讲起课来不得法.因此,对本部分教师尤其需要进行反思.六、在学习统计与概率的过程中注重发展学生的能力1.注重数学知识与实际的联系,发展学生应用数学的意识和能力在数学教学中,应注重发展学生的应用意识;通过丰富的实例引入数学知识,引导学生应用数学知识解决实际问题,经历探索、解决问题的过程,体会数学的应用价值.帮助学生认识到:数学与我有关,与实际生活有关,数学是有用的,我要用数学,我能用数学.概率统计与实际生活联系很密切,在课堂教学过程中,要通过对案例的分析、研究,培养学生应用数学的意识和能力.还可指导学生直接应用数学知识解决一些简单问题,通过数学建模活动引导学生从实际情境中发现问题,并归结为数学模型,尝试用数学知识和方法去解决问题;也可向学生介绍数学在社会中的广泛应用,鼓励学生注意数学应用的事例,开阔他们的视野.2.开展数学实验课,提高学生创新精神和实践能力数学实验具有直观、形象、生动的特点.在实验的过程中能够进行体验和感受,通过亲历的过程,易于激活思维,因此可以成为数学建构未知数学知识的起点,加速数学知识的迁移和促进数学知识的同化,也可能促使学生在积极思维的过程中迸发出创新的火花.在概率与统计教学中,一般有习题课,而没有实验课,习题课对于巩固课堂教学起着重要的。

几何概型 PPT课件

几何概型 PPT课件

A.15
B.25
C.35
D.45
(2)如图所示,在直角坐标系内,射线OT落在30°角的终边上,任
作一条射线OA,则射线OA落在∠yOT内的概率为
.
三、知识的综合应用(高考的高层次要求)
考点2与面积、体积有关的几何概型
例3(1)(2015南昌二模)若在圆C:x2+y2=4内任取一点P(x,y),则
满足 y> x
式。
2.难点
几何概型应用中集合度量的确定及运算。
三、基础知识的深刻理解(高考的初级层次要求)
问题情境
问题1:射箭比赛的箭靶涂有五个彩色得分环, 从外向内为白色、黑色、蓝色、红色,靶心 为金色.金色靶心叫“黄心”.
奥运会的比赛靶面直径为 122cm,靶心直径为12.2cm, 运动员在70m外射.假设射箭 都能中靶,且射中靶面内任意 一点都是等可能的,那么射中 黄心的概率有多大?
30m
20m
2m
解:设事件A“海豚嘴尖离岸边小于2m”(见阴影部分)
P(A)=
d的测度 D的测度

30 20 2616 184 0.31
30 20
600
答:海豚嘴尖离岸小于2m的概率约为0.31.
三、基础知识的深刻理解(高考的初级层次要 (1)求在)区间(0,10)内的所有实数中随机取一个实数a,
三角形边长是 3 ,在圆内随机取一条弦,求弦长 超过 3 的概率.
4.一个服务窗口每次只能接待一名顾客,两名顾客将 在 8 小时内随机到达.顾客甲需要 1 小时服务时间, 顾客乙需要 2 小时.计算有人需要等待的概率.
下课了,期待再见!
SUCCESS
THANK YOU
2019/7/9

高中数学_几何概型

高中数学_几何概型

几何概型知识图谱几何概型知识精讲一.几何概型1.定义:如果每个事件发生的概率只与构成该事件的区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型几何概型,可以将每个基本事件看成从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会一样;这里区域可以是线段、平面图形、立体图形等.2.特点:(1)结果的无限性,即在一次试验中,所有可能出现的结果(基本事件)的个数可以是无限的,且全体结果可用一个有度量的几何区域来表示;(2)等可能性,每个基本事件的发生的可能性是均等的.二.几何概型的计算公式几何概型中,事件A的概率定义为:()AP A=构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)三点剖析一.方法点拨1.几何概型与古典概型的联系与区别在古典概型及几何概型中,基本事件的发生都是等可能的;在古典概型中基本事件的个数是有限的,而在几何概型中基本事件的个数是无限的.2.几何概型求解的一般步骤(1)首先要判断几何概型,尤其是判断等可能性,这方面比古典概型可能更难于判断;(2)把基本事件转化为与之对应的区域;(3)计算基本事件空间与事件A所含的基本事件对应的区域的几何度量(长度、面积、体积等);(4)利用公式代入求解.3.几何概型的应用要把实际问题转化成几何概型,精读问题,注意适当选择观察角度,抓住关键词,把问题转化为数学问题,几何概型问题解决的关键是构造出事件对应的几何图形,利用几何图形的几何度量来求随机事件的概率.注意分辨清楚属于一维、二维或三维问题.尤其是二维问题一直是考试的重点.一维情形例题1、将一条5米长的绳子随机地切断成两条,事件T表示所切两段绳子都不短于1米的事件,则事件T发生的概率为()A.1 2B.15C.25D.35例题2、在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为()A.1 6B.13C.23D.45例题3、在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为_________.例题4、如图,在三角形AOB中,已知∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,求△AOC为钝角三角形的概率.()A.0.6B.0.4C.0.2D.0.1随练1、某公交车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,那么一个乘客候车时间不超过6分钟的概率为____.随练2、平面上有一组平行线,且相邻平行线间的距离为3cm,把一枚半径为1cm的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是()A.1 4B.13C.12D.23随练3、在长为12cm的线段AB上任取一点C.现做一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为()A.1 6B.13C.23D.45二维情形例题1、如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1-2πB.12-1πC.2πD.1π例题2、二次函数f(x)=ax2+2bx+1(a≠0).(1)若a∈{-2,-1,2,3},b∈{0,1,2},求函数f(x)在(-1,0)内有且只有一个零点的概率;(2)若a∈(0,1),b∈(-1,1),求函数f(x)在(-∞,-1)上为减函数的概率.例题3、设有-4×4正方形网格,其各个最小的正方形的边长为4cm,现用直径为2cm的硬币投掷到此网格上;假设每次投掷都落在最大的正方形内或与最大的正方形有公共点.求:(1)硬币落下后完全在最大的正方形内的概率;(2)硬币落下后与网格线没有公共点的概率.例题4、小钟和小薛相约周末去爬尖刀山,他们约定周日早上8点至9点之间(假定他们在这一时间段内任一时刻等可能的到达)在华岩寺正大门前集中前往,则他们中先到者等待的时间不超过15分钟的概率是____(用数字作答).随练1、分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为()A.7 10B.310C.35D.25随练2、设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于1的概率为____.随练3、小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率.三维情形例题1、在500mL的水中有一个细菌,现从中随机取出2mL水样放到显微镜下观察,则发现这个细菌的概率是()A.0.004B.0.002C.0.04D.0.02例题2、在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点O 在底面ABCD 中心,在正方体ABCD-A 1B 1C 1D 1内随机取一点P 则点P 与点O 距离大于1的概率为()A.12π B.1-12π C.6π D.1-6π随练1、1升水中有2只微生物,任取0.1升水化验,含有微生物的概率是()A.0.01 B.0.19 C.0.1 D.0.2随练2、一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是()A.18 B.116 C.127 D.38拓展1、在区间[﹣4,4]上随机地抽取一个实数x ,若x 满足x 2≤m 的概率为34,则实数m 的值为________2、一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是________、________、________.(1)红灯;(2)黄灯;(3)不是红灯.3、在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S 的概率是()A.13 B.12 C.34 D.144、在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与281cm 之间的概率为()A.56 B.12 C.13 D.165、已知圆O :x 2+y 2=4(O 为坐标原点),点P (1,0),现向圆O 内随机投一点A ,则点P 到直线OA 的距离小于12的概率为()A.23 B.12 C.13 D.166、在区间[0,1]上随机取两个数m ,n ,求关于x 的一元二次方程x 2n 有实根的概率.7、假设在5秒内的任何时刻,两条不相关的短信机会均等地进人同一部手机,若这两条短信进人手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A.425 B.825 C.1625 D.24258、已知函数:f (x )=x 2+bx+c ,其中:0≤b≤4,0≤c≤4,记函数f (x )满足条件:(2)12(1)3f f ≤⎧⎨-≤⎩的事件为A ,则事件A 发生的概率为()A.58 B.516 C.38 D.129在棱长为a的正方体-A1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为()A.22B.22C.16D.16π。

高中数学第五章统计与概率频率与概率学案新人教B版必修第二册

高中数学第五章统计与概率频率与概率学案新人教B版必修第二册

5.3.4 频率与概率【课程标准】结合实例,会用频率估计概率.新知初探·自主学习——突出基础性教材要点知识点频率与概率一般地,如果在n次重复进行的试验中,事件A发生的频率为m,则当n很大时,可以n.不难看出,此时也有0≤P(A)≤1.认为事件A发生的概率P(A)的估计值为mn状元随笔(1)正确理解频率与概率之间的关系随机事件的频率,是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动的幅度越来越小.我们给这个常数取一个名字,叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.(2)概率与频率的区别与联系:基础自测1.(多选)下列说法错误的是( )A.随机事件A的概率是频率的稳定值,频率是概率的近似值B.任意事件A发生的概率P(A)总满足0<P(A)<1C.若事件A的概率趋近于0,即P(A)→0,则事件A是不可能事件D.某事件发生的概率随着试验次数的变化而变化2.将一个容量为n的样本分成若干组,已知某组的频数和频率分别是30和0.25,则n 为( )A.120 B.160C.60 D.903.某人将一枚硬币连掷10次,正面朝上的情况出现了8次,若用A表示“正面朝上”这一事件,则A的( )A.概率为45B.频率为45C.频率为8 D.概率接近于84.某制药厂正在测试一种减肥药的疗效,有1000名志愿者服用此药,体重变化结果统计如下:A.0.1 B.0.2C.0.5 D.0.6课堂探究·素养提升——强化创新性题型1 概率概念的理解[数学抽象]例1 (1)下列说法正确的是( )A.由生物学知道生男生女的概率约为0.5,一对夫妇先后生两小孩,则一定为一男一女B.一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖C.10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大D.10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1(2)我们知道,每次抛掷硬币的结果出现正、反的概率都为0.5,则连续抛掷质地均匀的硬币两次,是否一定出现“一次正面向上,一次反面向上”呢?方法归纳(1)概率是随机事件发生的可能性大小的度量,是随机事件A的本质属性,随机事件A 发生的概率是大量重复试验中事件A发生的频率的近似值.(2)由概率的定义我们可以知道随机事件A在一次试验中发生与否是随机的,但随机中含有规律性,而概率就是其规律性在数量上的反映.(3)正确理解概率的意义,要清楚概率与频率的区别与联系.对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件.跟踪训练1 (1)若某种彩票准备发行1000万张,其中有1万张可以中奖,则买一张这种彩票的中奖概率是多少?买1000张的话是否一定会中奖?(2)下列叙述随机事件的频率与概率的关系中哪个是正确的( )A.随着试验次数的增加,频率一般会越来越接近概率B.频率是客观存在的,与试验次数无关C.概率是随机的,在试验前不能确定D.频率就是概率题型2 用频率估计概率例2 某射手在同一条件下进行射击,结果如表所示:(1)(2)这个射手射击一次,击中靶心的概率约是多少?状元随笔(1)正确认识频率与概率的关系.(2)由表中数据→计算事件频率→观察频率的稳定值→估计概率.方法归纳随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现出一定的规律性,可以用事件发生的频率去“测量”,因此可以通过计算事件发生的频率去估算概率.跟踪训练2 李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来的考试成绩分布:先由表中的数据算出频率,再估计出概率.经济学院一年级的学生王小慧下学期将选修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位).(1)90分以上;(2)60分~69分;(3)60分以上.题型3 频率分布直方图的应用[经典例题]例3 (1)在某次赛车中,50名参赛选手的成绩(单位:min)全部介于13到18之间(包括13和18),将比赛成绩分为五组:第一组[13,14),第二组[14,15),…,第五组[17,18].其频率分布直方图如图所示,若成绩在[13,15)内的选手可获奖,则这50名选手中获奖的人数为( )A.39 B.35C.15 D.11(2)某家电公司销售部门共有200名销售员,每年部门对每名销售员都有1400万元的年度销售任务.已知这200名销售员去年的销售额都在区间[2,22](单位:百万元)内,现将其分成5组,第1组、第2组、第3组、第4组、第5组对应的区间分别为[2,6),[6,10),[10,14),[14,18),[18,22],并绘制出如下的频率分布直方图.①求a的值,并计算完成年度任务的人数;②用分层抽样的方法从这200名销售员中抽取容量为25的样本,求这5组分别应抽取的人数;③现从②中完成年度任务的销售员中随机选取2名,奖励海南三亚三日游,求获得此奖励的2名销售员在同一组的概率.方法归纳频率分布直方图的意义(1)频率分布直方图以面积的形式反映了数据落在各组内频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1.(3)频数/相应的频率=样本容量.跟踪训练 3 某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90 B.75C.60 D.455.3.4 频率与概率新知初探·自主学习[基础自测]1.解析:A:根据概率和频率的定义,正确.B.提示:任意事件A发生的概率P(A)总满足0≤P(A)≤1.C:概率趋近于0不表示概率为0,错误.D:事件发生的概率是固定值,是不随试验次数的变化而变化的,所以错误.解析:BCD=0.25,所以n=30×4=120.2.解析:由题意知,30n答案:A.如果多次进3.解析:做n次随机试验,事件A发生了m次,则事件A发生的频率为mn行试验,事件A发生的频率总在某个常数附近摆动,那么这个常数才是事件A的概率.故810为事件A的频率.=45答案:B4.解析:由表中数据得:=0.6.估计这个人体重减轻的概率约为p=6001 000答案:D课堂探究·素养提升例 1 【解析】(1)一对夫妇生两小孩可能是(男,男),(男,女),(女,男),(女,女),所以A不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是0.1,所以C不正确,D正确.(2)不一定.这是因为统计规律不同于确定的数学规律,对于具体的一次试验而言,它带有很大的随机性(即偶然性),通过具体试验可以知道除上述结果外,也可能出现“两次都是正面向上”“两次都是反面向上”.尽管随机事件的概率不像函数关系那样具有确定性,但是如果我们知道某事件发生的概率的大小,也能得出科学的决策.例如:做连续抛掷两枚质地均匀的硬币的试验1000次,可以预见:“两个都是正面向上”大约出现250次,“两个都是反面向上”大约出现250次,而“一个正面向上、一个反面向上”大约出现500次.【答案】 (1)D (2)见解析 跟踪训练1 解析:(1)中奖的概率为11 000;买1000张也不一定中奖,因为买彩票是随机的,每张彩票都可能中奖也可能不中奖.买彩票中奖的概率为11 000,是指试验次数相当大,即随着购买彩票的张数的增加,大约有11 000的彩票中奖.(2)事件A 的频率是指事件A 发生的频数与n 次事件中事件A 出现的次数比,一般来说,随机事件A 在每次实验中是否会发生是不能预料的,但在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上,这个常数就是事件A 的概率.∴随着试验次数的增加,频率一般会越来越接近概率. 答案:(1)见解析 (2)A例2 【解析】 (1)根据表中数据,计算依次填入的数据为:810=0.80,1920=0.95,4450=0.88,92100=0.92,178200=0.89,455500=0.91;(2)16×(0.80+0.95+0.88+0.92+0.89+0.91)≈0.89,由于频率稳定在常数0.89附近,所以这个射手射击一次,击中靶心的概率约是0.89. 跟踪训练2 解析:总人数为43+182+260+90+62+8=645,根据公式可计算出选修李老师的高等数学课的人的考试成绩在各个段上的频率依次为:43645≈0.067,182645≈0.282,260645≈0.403,90645≈0.140,62645≈0.096,8645≈0.012.用已有的信息,可以估计出王小慧下学期选修李老师的高等数学课得分的概率如下: (1)将“90分以上”记为事件A ,则P (A )≈0.067; (2)将“60分~69分”记为事件B ,则P (B )≈0.140;(3)将“60分以上”记为事件C ,则P (C )≈0.067+0.282+0.403+0.140=0.892. 例3 【解析】 (1)由频率分布直方图知成绩在[15,18]内的频率为(0.38+0.32+0.08)×1=0.78,所以成绩在[13,15)内的频率为1-0.78=0.22,则成绩在[13,15)内的选手有50×0.22=11(人),即这50名选手中获奖的人数为11,故选D.(2)①∵(0.02+0.08+0.09+2a )×4=1,∴a =0.03, ∴完成年度任务的人数为2×0.03×4×200=48. ②第1组应抽取的人数为0.02×4×25=2, 第2组应抽取的人数为0.08×4×25=8, 第3组应抽取的人数为0.09×4×25=9, 第4组应抽取的人数为0.03×4×25=3, 第5组应抽取的人数为0.03×4×25=3,③在②中完成年度任务的销售员中,第4组有3人,记这3人分别为A 1,A 2,A 3;第5组有3人,记这3人分别为B 1,B 2,B 3.从这6人中随机选取2名,所有的基本事件为A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 1B 3,A 2A 3,A 2B 1,A 2B 2,A 2B 3,A 3B 1,A 3B 2,A 3B 3,B 1B 2,B 1B 3,B 2B 3,共有15个基本事件,获得此奖励的2名销售员在同一组所包含的基本事件有6个,故所求概率P =615=25.【答案】 (1)D (2)见解析跟踪训练3 解析:产品净重小于100克的频率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,设样本容量为n ,则36n =0.300,所以n =120,净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.答案:A。

几何概型 讲义

几何概型 讲义

几 何 概 型 的 常 见 题 型几何概型是高中新课改后增加的一种概率类型,也是高考的一个新增热点,但由于试题设计的背景不同,试题所呈现的方式也不同,此试卷通过对几何概型试题的归纳整理,以便更好地理解和掌握此类问题.一.几何概型的定义1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.特点:(1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P =说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量.4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的.(2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的;②两种概型的概率计算公式的含义不同.二.常见题型1.与长度有关的几何概型例1.(2009山东卷·文理)在区间]1,1[-上随机取一个数x ,2cos xπ的值介于0到21之间的概率为( ).A.31 B.π2C.21D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos2xπ的值介于0到21之间, 需使223xπππ-≤≤-或322xπππ≤≤∴213x -≤≤-或213x ≤≤,区间长度为32,由几何概型知使cos 2x π的值介于0到21之间的概率为31232===度所有结果构成的区间长符合条件的区间长度P . 故选A.练1. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是.A.21 B.31C.41D.不确定 3. 两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率是________.2. 在等腰Rt △ABC 中,在斜边AB 上任取一点M ,求AM 的长小于AC 的长的概率.4. 平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,硬币不与任一条平行线相碰的概率.5. 在半径为1的圆周上,有一定点A ,以A 为端点任连一弦,另一端点在圆周上等可能的选取,求弦长超过√3 的概率。

高一数学《概率》导学学案 3.3.2几何概型(2) 新人教版必修3

高一数学《概率》导学学案 3.3.2几何概型(2) 新人教版必修3

必修3学案 §3.3.2几何概型(2) ☆学习目标:1. 了解均匀随机数的概念;2. 掌握利用计算器(计算机)产生均匀随机数的方法;3. 会利用均匀随机数解决具体的有关概率的问题.☻知识情境: 1. 基本事件的概念: 一个事件如果 事件,就称作基本事件.基本事件的两个特点:10.任何两个基本事件是 的;20.任何一个事件(除不可能事件)都可以 .2. 古典概型的定义古典概型有两个特征:10.试验中所有可能出现的基本事件 ;20.各基本事件的出现是 ,即它们发生的概率相同.具有这两个特征的概率称为古典概率模型. 简称古典概型.3. 古典概型的概率公式, 设一试验有n 个等可能的基本事件,而事件A 恰包含其中的m 个基本事件,则事件A 的概率P(A)定义为:()P A == .4.几何概型的概念:10.将每个基本事件理解为从某个特定的几何 ,该区域中每一点被取到的机会都一样;20.一个随机事件的发生理解为恰好取到上述区域内的 .用这种方法处理随机试验,称为几何概型.5.几何概型的概率公式:在区域D 中随机地取一点, 记事件A ="该点落在其内部一个区域d 内",则事件A 发生的概率为:()P A == . ☻自我评价:1. (1)在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求:AM 小于AC 的概率.(2) 60AOB ∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求: AOC ∆为钝角三角形的概率.2. 有一个半径为5的圆,现在将一枚半径为1硬币向圆投去,如果不考虑硬币完全落在圆外的情况,试求:硬币完全落入圆内的概率.3. (会面问题)两人相约7点到8点在某地会面, 先到者等候另一人20分钟, 求:两人会面的概率.4. 某路公共汽车5分钟一班准时到达某车站,求:任一人在该车站等车时间少于3分钟的概 率(假定车到来后每人都能上).☆问题探究:用随机模拟的方法估计圆周率的值.在如图的正方形中, 随机地撒一把豆子, 每个豆子落在正方形内 任何一点是等可能的, 落在每个区域的豆子数与这个区域的面积成正比. 即 ≈圆的面积落在圆中的豆子数正方形的面积落在正方形的豆子数假设正方形的边长为2, 则 224ππ==⨯圆的面积正方形的面积由于落在每个区域的豆子数是可以数出来的, 所以 4π≈⨯落在圆中的豆子数落在正方形的豆子数 这样一来就得到了π的近似值.可以发现, 随着试验次数的增加, π的近似值的精确度会越来越高.☆感悟:利用几何概型, 并通过随机模拟的方法可以近似地计算不规则图形的面积. ☆例题学习:例1 利用随机模拟的方法计算21y y x ==和所围成的图形(图中阴影部分)的面积.解 (1)利用计算器或计算器产生两组0~1区间的均匀随机数,1,a RAND b RAND ==;(2)进行平移和伸缩变换: 1()a a =-⋅(3)数出落在阴影内的点数1N : 即满足 的数对(,)a b .(4)用几何概型公式计算阴影部分)的面积.假如做1000次实验, 即1000N =, 数得1698N =, 那么S ≈=. 例2 利用随机模拟的方法计算曲线1y x=,1x =,2x =和0y =所围成的图形的面积.☻试一试1.如图,某人向圆内投镖, 如果他每次都投入圆内,那么他投中正方形区域的概率为( )A .2πB .1πC .23D .132.如图,有一圆盘其中的阴影部分的圆心角为45,若向圆内投镖,如果某人每次都投入圆内, 第1题那么他投中阴影部分的概率为( ) 第2题 A .18 B .14 C .12 D .343.现有100ml 的蒸馏水, 假定里面有一个细菌,现从中抽取20ml 的蒸馏水, 则抽到细菌的概率为( ) A .1100 B .120 C .110 D .154.利用随机模拟的方法近似计算21,6y x y =+=所围成区域的面积.参考答案:区域内随机地取一点 某个指定区域中的点☻自我评价:1.(1)分析:点M 随机地落在线段AB 上,故线段AB 为区域D .当点M 位于图中线段'AC内时,AM AC <,故线段'AC 即为区域d .解:在AB 上截取'AC AC =.于是'()()P AM AC P AM AC <=<'AC AB =AC AB==. 答:AM 小于AC 的(2)解:如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形记"AOC ∆为钝角三角形"为事件M ,则11()0.45OD EB P M OB ++===即AOC ∆为钝角三角形的概率为0.4.2. 解:由题意,如图,因为硬币完全落在圆外的情况是不考虑的,所以硬币的中心均匀地分布在半径为6的圆O 内,且只有中心落入与圆O 同心且半径为 4的圆内时,硬币才完全落如圆内.记"硬币完全落入圆内"为事件A ,则2244()69P A ππ==. 答:硬币完全落入圆内的概率为49. 3. 因为两人谁也没有讲好确切的时间,故样本点由两个数(甲乙两人各自到达的时刻)组成. 以7点钟作为计算时间的起点,设甲乙各在第x 分钟和第y 分钟到达,则样本空间为 Ω:{(x,y) | 0≤x ≤60,0≤y ≤60},画成图为一正方形.会面的充要条件是|x -y| ≤20, 即事件A={可以会面}所对应的区域是图中的阴影线部分.P(A)=4. 可以认为人在任一时刻到站是等可能的. 设上一班车离站时刻为a ,则某人到站的一切可能时刻为 Ω= (a ,a +5),记A={等车时间少于3分钟}, 则他到站的时刻只能为g = (a +2, a +5)中的任一时刻,故P(A)= . 例2解:(1)利用计算器或计算机产生两组0到1区间上的随机数,1a RAND =,b RAND =; (2)进行平移变换:11a a =+;(其中,a b 分别为随机点的横坐标和纵坐标) (3)数出落在阴影内的点数1N ,用几何概型公式计算阴影部分的面积.例如,做1000次试验,即1000N =,模拟得到1689N =,9560)2060(60222=--=Ω的面积的面积g 53=Ω的长度的长度g所以 10.6891S N N ≈=,即0.689S ≈.。

高中数学同步导学(2017新课标)(统计与概率)四 古典概型 含解析

高中数学同步导学(2017新课标)(统计与概率)四 古典概型 含解析

1.基本事件和基本事件空间的概念(1)在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为____________.(2)所有基本事件构成的集合称为______________,常用大写希腊字母________表示.2.基本事件的特点(1)任何两个基本事件是____________的.(2)任何事件(除不可能事件)都可以表示成____________的和.3.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型:(1)试验中所有可能出现的基本事件只有__________个.(2)每个基本事件出现的可能性____________.4.古典概型的概率公式在古典概型中,一次试验可能出现的结果有n个,如果某个事件A 包含的结果有m个,那么事件A的概率为P(A)=________。

【参考答案】【自主测试】1 某班级有正、副两位班长,则其性别的基本事件空间为( )A.{男男,女女}B.{男女,女男}C.{男男,女男,女女}D.{男男,女男,男女,女女}解:每位班长性别有2种可能性,正、副两位班长有4种等可能情形.故选D.2 将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x,第二次出现的点数为y。

则事件“x+y≤3"的概率为()A。

错误!B。

错误!C。

错误! D. 错误!解:满足条件的数对(x,y)为(1,2),(1,1),(2,1)共3种,则P=336=错误!.故选A.3 在三棱锥的六条棱中任意选择两条,则这两条棱是一对异面直线的概率为()A.错误!B。

错误! C.错误!D。

错误!4 有6位身高全不相等的同学拍照留念,摄影师要求前后两排各3个,则后排每人均比前排所有同学高的概率为______.解:因后排每人均比前排同学高,所以6人中较高的3人放在后排,其余3个站前排,∴P=错误!=错误!.故填错误!。

(余继光)新课程数学中统计与概率及其教学研究授课提纲

(余继光)新课程数学中统计与概率及其教学研究授课提纲

新课程高中数学“统计与概率”及其教学研究授课提纲绍兴柯桥中学余继光(正高)第一部分:高中统计与概率内容与教学现状分析第二部分,统计与概率教育中的若干问题思考与教学建议问题1.统计与概率的教育价值是什么?1.必要性——素质2.思想性——深刻3.应用性——广泛4.综合性——交互5.系统性——案例问题2.如何把握统计与概率的教学目标?1.与统计和概率联系的一般目标2.与统计和概率联系的具体目标例1、概率条件下的决策方案问题3.如何理解随机思想与统计思想?例2、NBA总决赛比赛收益问题例3、高考填报志愿问题问题4.概率教学的难点在哪里?1.概率的抽象性;2. 统计规律的隐含性;案例1、频率估计概率,计算估计的可靠性案例2、美国的一个电视游戏节目问题5.统计教学的难点在哪里?1.传统的数学思维模式对统计思维方法的影响2.统计方法的评价与统计结果的解释3.统计原理的理解与运用案例3 目前流行的甲型H1N1流感传染性问题6.如何引导学生学会收集数据的方法?案例4、高中生的课桌椅高度设计问题探究案例5、数学会考与高考成绩相关性研究与教学对策问题7.如何创设问题新情境,学好茎叶图?例4、某赛季篮球运动员技术分析方法问题8.线性回归分析是教学重点吗?它的教学难点是什么?本节的核心:了解最小二乘法的思想最小二乘法推导线性回归方程(录像)案例6、人体的脂肪百分比和年龄的关系例5、小卖店每天卖出的热饮杯数与当天气温的关系案例7、FREIGHT CHARGES ——航空货运费用问题例6、2007年广东高考题问题9.统计案例的回归分析基本思想和独立性检验思想如何处理?案例8、此药是否有效?问题10.新课程中如何进行概率概念教学?1.先讲统计后讲概率设计理由是什么?2.在没讲排列组合的情况下如何讲概率?案例9、概率的古典定义(教学设计)例7(2008年上海春季高考数学题)问题11.几何概型的教学关注什么问题?例8、基本事件(样本空间)确定易错题问题12.随机数的产生的教学重点是什么?案例10、整数随机数产生(录像)问题13.条件概率概念如何教学?例9:样本空间变化引起的概率问题问题14.统计与概率的教学对策是什么?1.充分挖掘概念内涵与外延2.充分挖掘教材情境的功能3.充分讲活教材中系列案例4.恰时恰点变式编活问题串5.充分挖掘问题的应用价值6.探索新课程数学教学模式“问题、变式、反思、体验”数学教学设计模式研究问题15.如何把握新课程高考中统计与概率题的命题趋势?1.新课程区高考数学应用题命题趋势分析新课程高考新增内容考情一览表2.高考中概率的主流题型是什么?3.高考中统计的主流题型是什么?.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个满足条件的数的机会是____________.利用计算器,Excel ,Scilab 等都可以产生随机数. 2.几何概型的定义如果每个事件发生的概率只与构成该事件区域的____________(____________或____________)成比例,则称这样的概率模型为________________,简称____________.3.概率计算公式在几何区域D 中随机地取一点,记事件“该点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率P (A )= .求试验中几何概型的概率,关键是求得事件所占区域d 和整个区域D 的几何度量,然后代入公式即可求解. 【参考答案】【自主测试】1 利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”发生的概率为( ) A .13B .12C .23D .56解:3a -1<0,即a <13,∴所求概率P =131=13.故选A .2 如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( )A .1-π4B .π2-1C .2-π2D .π4解:由几何概型可知所求概率为P =1-12×π×122×1=1-π4.故选A .3 已知球O 是正方体ABCD ­A 1B 1C 1D 1的内切球,则在正方体ABCD ­A 1B 1C 1D 1内任取一点M ,点M 在球O 内的概率是( ) A .π4B .π8C .π6D .π124 在区间上随机地取一个数x ,若x 满足||x ≤m 的概率为56,则m =____________.解:显然m >2,由几何概型得m -(-2)4-(-2)=56,解得m =3.故填3.5 如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为____________.解:∵S 阴影=⎠⎛0 -1(x -x )d x =⎪⎪⎭⎫ ⎝⎛-2232132x x 1=16, S 正=1,∴由几何概型可知所求概率P =S 阴影S 正=16.故填16. 【典例】类型一 以长度为度量的几何概型例一 在半径为1的圆内的一条直径上任取一点,过这个点作垂直于该直径的弦,则弦长超过圆内接等边三角形边长的概率是________.【评析】①以线段长度为度量的几何概型概率计算公式:P (A )=事件A 对应的线段长试验的全部结果对应的线段长.※②本题实际是著名的贝特朗悖论的解答之一,该“悖论”是说:在一半径为1的圆C 内任意作一弦,此弦长度大于该圆内接正三角形边长(3)的概率是多少?由于题中“任意作一弦”的提法不明确,与之对应的随机试验及基本事件也不同,从而产生不同的概率问题.除了本例给出的解答外,还有两种常见解答,而这三种解答结果各不相同,从而形成所谓的“悖论”.另外两种如下:(Ⅰ)以12为半径作圆C 的同心圆C 1(图1),易证弦的中点M 落在圆C 1内的充要条件为弦长l >3,故所求概率等于二圆面积之比14;(Ⅱ)设弦AB 的一端固定于圆上,于是弦的另一端B 是“任意”的,考虑正三角形ADE (图2),弦长l >3的充要条件为B 落在劣弧DE ︵上,故所求概率为劣弧DE ︵的弧长与圆周长之比13.有兴趣的同学可以翻阅相关资料,并不妨探究一下:这三种解答采用的都是何种等可能性的假定?变式 已知函数f (x )=ln xx,导函数为'f (x ).在区间上任取一点x 0,则使得'f (x 0)>0的概率为____________.解:由已知得'f (x )=1-ln x x 2,故'f (x )>0⇔1-ln xx2>0,解得0<x <e ,故由几何概型可得所求事件的概率为e -23-2=e -2.故填e -2.类型二 以面积为度量的几何概型例二 (1)如图所示,在边长为1的正方形OABC 内任取一点P (x ,y ).①求△APB 的面积大于14的概率;②求点P 到原点的距离小于1的概率.解:①如图,取线段BC ,AO 的中点E ,F ,连接EF ,则当点P 在线段EF 上时,S △APB =14,故满足条件的点P 所在的区域为矩形OFEC (阴影部分).故所求概率为S 矩形OFEC S 正方形OABC =12.【评析】①以面积为度量的几何概型概率计算公式:P =事件A 构成区域的面积整个试验的全部结果构成区域的面积.②解此类问题的主要步骤为:列出条件组,画出图形,计算面积,再求概率.③多注意数形结合.(2)甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.求两人能会面的概率.【评析】①平面直角坐标系内用x 轴表示甲到达约会地点的时间,y 轴表示乙到达约会地点的时间,用0分到60分表示6时到7时的时间段,则横轴0到60与纵轴0到60的正方形中任一点的坐标(x ,y )就表示甲、乙两人分别在6时到7时时间段内到达的时间.而能会面的时间由||x -y ≤15所对应的图中阴影部分表示.②本题的难点在于把实际问题转化为几何模型. 变式 (1)在可行域内任取一点,规则如程序框图所示,求能输出数对(x ,y )的概率.解:由题意,设输出数对(x ,y )的概率为P ,也即x 2+y 2≤12所表示的平面区域与不等式组⎩⎪⎨⎪⎧-1≤x +y ≤1,-1≤x -y ≤1所表示的平面区域面积的比. 如图所示,所求概率P =π×122×2=π4.(2)甲、乙两艘轮船都要停靠同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,求有一艘船停靠泊位时必须等待一段时间的概率. 解:甲比乙早到4小时内乙须等待,甲比乙晚到2小时内甲须等待.以x 和y 分别表示甲、乙两船到达泊位的时间,则有一艘船停靠泊位时须等待一段时间的充要条件为-2<y -x <4,在如图所示的平面直角坐标系内,(x ,y )的所有可能结果是边长为24的正方形,而事件A “有一艘船停靠泊位时须等待一段时间”的可能结果由阴影部分表示.由几何概型公式得: P (A )=242-12×222-12×202242=67288. 故有一艘船停靠泊位时必须等待一段时间的概率是67288.类型三 以体积为度量的几何概型例三 在棱长为a 的正方体ABCD ­A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离不大于a 的概率为( ) A .22B .22π C .16D .π6解:满足条件的点在以A 为球心,半径为a 的18球内,所以所求概率为P =18×43πa 3a 3=π6.故选D .【评析】①以体积为度量的几何概型概率计算公式:P =构成事件A 的区域的体积试验的全部结果构成的区域的体积;②对于以体积为度量的几何概型,要根据空间几何体的体积计算方法,把概率计算转化为空间几何体的体积计算.变式 在边长为1的正方体ABCD ­A 1B 1C 1D 1的内部随机取一点P ,则V P­ABCD >16的概率为( )A .12 B .13C .16D .118类型四 几何概型与平面区域的综合性问题例四 将长为l 的木棒随机折成3段,求3段能构成三角形的概率.解:记事件A =“3段能构成三角形”,x ,y 分别表示其中2段的长度,则第3段的长度为l -x -y .则试验的全部结果可构成集合Ω={(x ,y )|0<x <l ,0<y <l ,0<x +y <l },要使3段构成三角形,当且仅当任意两段之和大于第3段,即x +y >l -x -y ⇒x +y >l2,x +l -x -y >y ⇒y <l2,y +l -x -y >x ⇒x <l2.故所求结果构成集合A =⎩⎨⎧⎭⎬⎫(x ,y )|x +y >l 2,0<y <l 2,0<x <l 2. 由图可知,所求概率为 P (A )=A 的面积Ω的面积=12·⎝ ⎛⎭⎪⎫l 22l 22=14.【评析】对Ω和事件A 的描述和表达是解决问题的关键,利用隐含条件“两边之和大于第三边”建立不等式组,再利用线性规划知识解题.变式 在区间上任意取两个实数a ,b ,则函数f (x )=12x 3+ax -b 在区间(-1,1)上有且仅有一个零点的概率为________.由线性规划知识,在平面直角坐标系aOb 中画出这个不等式组所表示的可行域,如图,再由几何概型可以知道,函数f (x )=12x 3+ax -b 在(-1,1)上有且仅有一个零点的概率为可行域的面积除以正方形的面积,计算可得面积之比为78.故填78.类型五 随机模拟例五 一只海豚在水池中游弋,水面为长30 m ,宽20 m 的长方形,随机事件A 记为“海豚嘴尖离岸边不超过2 m”.(1)试设计一个能估算出事件A 发生的概率的算法; (2)求P (A )的准确值.这里几何区域D 所表示的范围为长方形:x ∈(-15,15),y ∈(-10,10),事件A 所表示的区域为图中的阴影部分d :||x |-15|≤2,或||y |-10|≤2. 算法框图如下:(2)如图所示,所求概率为P (A )=阴影部分的面积区域D 的面积=30×20-26×1630×20=2375.【评析】①简单说明:n 记录做了多少次试验,m 记录其中有多少次(x ,y )出现在阴影部分;rand()×30-15产生-15~15之间的随机数作为海豚嘴尖的横坐标,rand()×20-10产生-10~10之间的随机数y 作为海豚嘴尖的纵坐标;||||x -15≤2或||||y -10≤2判断(x ,y )是否落在阴影部分.②随机模拟的是计算机产生随机数,而算法的引入为模拟提供了可能,随着新课标注重应用的不断深入,此类问题会倍受关注.变式 甲盒中有红、黑、白皮笔记本各3本,乙盒中有黄、黑、白皮笔记本各2本,且所有笔记本的规格质地相同,从两盒中各取一本.(1)请设计一种随机模拟的方法,来近似计算取出的两本是不同颜色笔记本的概率; (2)计算取出的两本是不同颜色笔记本的概率.(2)记从甲盒中任取一本笔记本,取出的是红色笔记本的概率为P甲红,依此类推,则有P甲红=P 甲黑=P 甲白=P 乙黄=P 乙黑=P 乙白=13.因此为了方便计算,我们不妨设甲盒中有红、黑、白三种颜色笔记本各一本,乙盒中有黄、黑、白三种颜色笔记本各一本.那么从两盒中各取一本的所有情形为(红,黄),(红,黑),(红,白);(黑,黄),(黑,黑),(黑,白);(白,黄),(白,黑),(白,白),共9种.两本笔记本颜色相同的情形为(黑,黑),(白,白),共2种. 故所求概率为P =1-29=79.【名师点睛】1.几何概型与古典概型的关系几何概型是古典概型的补充和推广,它要求随机试验的基本事件空间包含无穷多个元素,每个基本事件由在几何空间(一维、二维、三维)中的某一区域G 内随机而取的点的位置来确定;而“基本事件发生或出现是等可能的”这一要求,两种概率模型是高度统一的. 2.解决几何概型问题,注意把握好以下几点: (1)能正确区分古典概型与几何概型.例1:在区间上任意取一个整数x ,则x 不大于3的概率为________. 例2:在区间上任意取一个实数x ,则x 不大于3的概率为________.例1的基本事件总数为有限个11,不大于3的基本事件有4个,此为古典概型,故所求概率为411.例2的基本事件总数为无限个,属于几何概型,故所求概率为310. (2)准确分清几何概型中的测度.例3:在等腰Rt△ABC 中,∠C =90°,在直角边BC 上任取一点M ,求∠CAM <30°的概率. 例4:在等腰Rt△ABC 中,∠C =90°,在∠CAB 内作射线交线段BC 于点M ,求∠CAM <30°的概率.例3中的测度定性为线段长度,当∠CAM 0=30°,CM 0=33AC =33CB .满足条件的点M 等可能的分布在线段CM 0上,故所求概率等于CM 0CB =33.例4中的测度定性为角度,过点A 作射线与线段CB 相交,这样的射线有无数条,均匀分布在∠CAB 内,∠CAB =45°.所以所求概率等于∠CAM 0∠CAB =30°45°=23.(3)科学设计变量,数形结合解决问题.例5:某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待时间不多于10分钟的概率.例6:某人午觉醒来,发现表停了,求表停的分钟数与实际分钟数差异不超过5分钟的概率. 例5是《必修3》P 136的例题,此题中的变量(单变量)可看作是时间的长度,故所求概率为1060=16.例6容易犯解例5形成的定势思维的错误,得到错误答案560=112.原因在于没有认清题中的变量,本题的变量有两个:手表停的分钟数和实际分钟数,都可取内的任意时刻,故所求概率需用到面积型几何概型,由|x -y |≤5结合线性规划知识可解,故所求概率为602-552602=23144.通过这两道例题我们也可以看出,单变量多用线型测度,多变量需用面积(或体积)型测度.在画好几何图形后,利用数形结合思想解题.3.几何概型并不限于向平面(或直线、空间)投点的试验,如果一个随机试验有无限多个等可能的基本结果,每个基本结果可以用平面(或直线、空间)中的一点来表示,而所有基本结果对应于一个区域Ω,这时,与试验有关的问题即可利用几何概型来解决. 【针对训练】1.在区间上随机取一个数x ,则事件“sin x ≥12”发生的概率为( )A .14B .13C .12D .23解:sin x ≥12,又x ∈,∴π6≤x ≤56π.∴所求概率P =5π6-π6π-0=23.故选D .2.为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是()A .12B .9C .8D .6解:正方形面积为36,阴影部分面积为200800×36=9.故选B .3.在正方体ABCD ­A 1B 1C 1D 1的上底面ABCD 内有一点Q ,则在该正方体内任取的一点M 落在四棱锥Q ­A 1B 1C 1D 1内的概率是( ) A .12 B .13C .14D .23解:由体积比为1∶3知B 正确,故选B .4.如图所示,设M 是半径为R 的圆周上的一个定点,在圆周上等可能地任取一点N ,连结MN ,则弦MN 的长超过2R 的概率为( )A .15B .14C .13D .12解:在圆上过圆心O 作与OM 垂直的直径CD ,则MD =MC =2R ,当点N 不在半圆弧CMD ︵上时,MN >2R ,故所求的概率P (A )=πR 2πR =12.故选D . 5.已知函数f (x )=kx +1,其中实数k 随机选自区间.则∀x ∈,f (x )≥0的概率是( ) A .13B .12C .23D .34解:当x =0时,k ∈,当x ∈(0,1]时,只要kx +1≥0,即k ≥-1x ,而x ∈(0,1]⇒-1x∈(-∞,-1],故k ≥-1.从而k ∈.综上,k ∈符合题意.因此所求概率为1-(-1)1-(-2)=23.故选C .6.在区间上随机取一个数x ,使得||x +1-||x -2≥1成立的概率为____________.7.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则AD AB=____________.解:如图,设CD =4,根据对称性,由题中条件知,P 的活动范围为2,即CP ∈(1,3). 当CP =3时,BP =4,解得BC =42-32=7.∴AD ∶AB =7∶4,故填74. 8.向面积为S 的△ABC 内任投一点P ,则△PBC 的面积小于S 2的概率为多少?解:∵S △PBC <12S △ABC ,∴h ′<h2(其中h ′为△PBC 中BC 边上的高,h 为△ABC 中BC 边上的高),设DE 为△ABC 的中位线(如图),则梯形BCED 中(阴影部分)的点满足要求,∴所求概率P =S 梯形BCED S △ABC=34. 9.正四面体ABCD 的体积为V ,P 是正四面体ABCD 内部的点.设“V P -ABC ≥14V ”的事件为X ,求概率P (X ).10.如图所示,在边长为1的正方形OABC 内任取一点P (x ,y ).求以x ,y ,1为边长能构成锐角三角形的概率.解:首先由x +y >1得构成三角形的点P 在△ABC 内,若构成锐角三角形,则最大边1所对的角α必是锐角,cos α=x 2+y 2-122xy>0,x 2+y 2>1,即点P 在以原点为圆心,1为半径的圆外.∴点P 在边AB ,BC 及圆弧AC 围成的区域内.∴其概率为:12-π4×1212=1-π4. 11.已知平面区域D 1=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧2<||,2<||),(y x y x , D 2={(x ,y )|kx -y +2<0}.在区域D 1内随机选取一点M ,若点M 恰好取自区域D 2的概率为p ,且0<p ≤18,则k 的取值范围是__________.解:如图所示,平面区域D 1是边长等于4的正方形内部的点,其面积为16,直线kx -y +2=0恒过定点P (0,2).由于原点必在区域D 2外,而图中每个阴影三角形的面积与大正方形面积之比均为18,故当k >0时,k ∈(0,1];当k <0时, k ∈.故填.。

相关文档
最新文档