高考物理带电粒子在无边界匀强磁场中运动的技巧及练习题及练习题(含答案)

合集下载

高考物理高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d ,-3d<y<3d)外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(0,3d)点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d ,3d)处进入无场区. (1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)0mv qd(2)00243d dv v π+ (3)2(433)s k d d π=+,其中k =1、2、3…或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】 【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间; (3)画出粒子运动轨迹,注意讨论粒子运动的方向不同; 【详解】(1)由题条件可判断粒子做圆周运动半径为:R d =粒子在磁场中2v qvB m R=,得到:0mv B qd =;(2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102dt vπ=粒子在无场区运动时间:2043dt = 粒子再次回到P 点时间:12t t t =+ 得到:00243d dt v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323dd t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:4002332d dt v v ==①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3… 粒子运动距离:02s v t =得到:2(433)s k d d π=+,其中k =1、2、3… ②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3… 粒子运动距离为:02s v t ''= 得到:()8'234333d s d k d d ππ⎡⎤=++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.2.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。

高考物理带电粒子在无边界匀强磁场中运动解题技巧(超强)及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧(超强)及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧(超强)及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。

质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。

若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。

【答案】(1)0qBRv m=,2m t qB π=;(2)速度的方向与磁场边界的夹角为53°,0.6R ;(3)2 1.6B B = 【解析】 【分析】 【详解】(1)粒子从A 点进磁场D 点出磁场,作出轨迹如图由几何关系得轨道半径1r R =洛伦兹力提供匀速圆周运动的向心力,有200mv qv Bm= 解得0qBRv m =粒子在磁场中运动的圆心角为90°,有4T t =而周期为12r T v π=解得2mt qBπ=(2)粒子从C 点入射,作出轨迹如图由几何知识得EF 的长度L EF =R cos53°在三角形EFO 1中,有sin 0.6EFL Rθ== 即粒子转过的圆心角37θ=︒,则速度的方向与磁场边界的夹角为53° 而CE 的长度cos37CE L R R =-︒OF 的长度为sin 53OF CE L R L =︒-联立解得0.6OF L R =(3)粒子在右侧磁场的半径为2r ,由几何关系有22sin 37r r R ︒+=由向心力公式得2022mvqv Br=联立解得21.6B B=2.如图所示,圆心为O、半径为R的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O为坐标原点建立坐标系,在y=-3R 处有一垂直y轴的固定绝缘挡板,一质量为m、带电量为+q的粒子,与x轴成 60°角从M 点(-R,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N点离开磁场(N点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B的大小;(2)N点的坐标;(3)粒子从M点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mvqR(2)31(,)2R R- (3)(5)Rvπ+【解析】(1)设粒子在磁场中运动半径为r,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R=由洛伦兹力等于向心力:2vqv B mr=,得到:0mvBqR=.(2)由图几何关系可以得到:3sin60x R R==,1cos602y R R=-=-N点坐标为:1,2R R ⎫-⎪⎪⎝⎭. (3)粒子在磁场中运动的周期2mT qBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180,粒子在磁场中运动时间:12Tt =,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202s t v =,其中132s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+ 解得:()05Rt v π+=.3.如图,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外。

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,半径为R的半圆形区域内存在垂直纸面向内的匀强磁场,磁感应强度大小为B,圆弧上P点与圆心O的连线垂直于直径MN,P点放置一粒子源,其向纸面内各个方向均匀发射两种原子核、,的速率为v, 的速率为 ,沿PO方向发射的恰好从N点离开磁场,忽略原子核间的相互作用及原子核的重力,取sin53°=0.8,cos53°=0.6。

(1)求原子核的比荷 (用B、v、R表示)及其从P点到边界MN的最短时间;(2)其中一原子核的轨迹恰能与ON的中点A相切,求粒子的质量数a;(3)在直径MN上安装金属板,并与电阻r串联后接地,带正电的原子核到达金属板后被吸收形成电流。

已知粒子源P单位时间内发射n个粒子,其中占40%,占60%,求稳定后通过电阻r的电流大小。

(已知电子的电荷量为e)【答案】(1) ; (2) (3)【解析】【分析】(1)根据已知条件作出对应的运动轨迹图,根据几何关系求出最小的圆心解,再根据求解最短的运动时间;(2)根据已知条件作出对应的运动轨迹图,根据几何关系求出运动半径,根据洛伦兹力提供向心力求出比荷,即可求出质量数a;(3)根据已知条件作出对应的运动轨迹图,根据几何关系求出对应的角度,从而求出粒子可能出射击的范围,再根据电流的定义式求出电流的表达式。

【详解】(1)由已知条件得:圆周运动的半径为R,由,得弦OP最短,其所对应的圆心角也最小,对应的时间也最短,如图所示:由几何关系得:圆心角为,运动的周期为故运动的时间为(2)设圆周运动半径为,如图所示、:由几何关系得:解得:设Y粒子的质量为,电荷量为由,解得:联立解得:,即,解得:a=15(3)对Y粒子,设粒子初速度方向与切线PQ方向夹角为,如图所示:已知轨迹恰好与A 相切,则代入数据解得:,解得:由几何关系得Y 粒子在范围内出射能到达金属板单位时间打到金属板的Y 粒子数为由几何关系得Y 粒子在范围内出射能到达金属板单位时间打到金属板的Y 粒子数为 通过电阻r 上的电流【点睛】带电粒子在匀强磁场中运动,一般根据几何关系求得半径,然后由洛伦兹力做向心力求得磁感应强度;或由洛伦兹力做向心力求得半径,然后根据几何关系求得运动轨迹、运动时间。

高考物理高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在一直角坐标系xoy平面内有圆形区域,圆心在x轴负半轴上,P、Q是圆上的两点,坐标分别为P(-8L,0),Q(-3L,0)。

y轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy平面向外,磁感应强度的大小为B,y轴的右侧空间有一磁感应强度大小为2B的匀强磁场,方向垂直于xoy平面向外。

现从P点沿与x轴正方向成37°角射出一质量为m、电荷量为q的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求:(1)带电粒子的初速度;(2)粒子从P点射出到再次回到P点所用的时间。

【答案】(1)8qBLvm=;(2)41(1)45mtqBπ=+【解析】【详解】(1)带电粒子以初速度v沿与x轴正向成37o角方向射出,经过圆周C点进入磁场,做匀速圆周运动,经过y轴左侧磁场后,从y轴上D点垂直于y轴射入右侧磁场,如图所示,由几何关系得:5sin37oQC L=15 sin37O OQO Q L==在y轴左侧磁场中做匀速圆周运动,半径为1R,11R O Q QC =+21v qvB m R=解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oot T =带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高考物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d ,-3d<y<3d)外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(0,3d)点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d ,3d)处进入无场区.(1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)0mv qd(2)00243d d v π+ (3)2(433)s k d d π=+,其中k =1、2、3… 或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间; (3)画出粒子运动轨迹,注意讨论粒子运动的方向不同;【详解】(1)由题条件可判断粒子做圆周运动半径为:R d =粒子在磁场中20v qvB m R =,得到:0mv B qd =; (2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102d t vπ= 粒子在无场区运动时间:2043 d t = 粒子再次回到P 点时间:12t t t =+得到:00243d d t v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323d d t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:4002332d d t v v == ①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3…粒子运动距离:02s v t =得到:2(433)s k d d π=+,其中k =1、2、3…②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3…粒子运动距离为:02s v t ''=得到:()8'234333d s d k d d ππ⎡⎤=++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.2.在xOy 坐标中,有随时间周期性变化的电场和磁场(磁场持续t 1后消失;紧接着电场出现,持续t 2时间后消失,接着磁场......如此反复),如图所示,磁感应强度方向垂直纸面向里,电场强度方向沿y 轴向下,有一质量为m ,带电量为+q 的带电粒子,在t =0时刻,以初速v 0从0点沿x 轴正方向出发,在t 1时刻第一次到达y 轴上的M (0,L )点,t 1+t 2时刻第一次回到x 轴上的 N (-2L ,0)点,不计粒子重力,t 1、t 2均未知。

高考物理带电粒子在无边界匀强磁场中运动答题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动答题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动答题技巧及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。

质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。

若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。

【答案】(1)0qBRv m=,2m t qB π=;(2)速度的方向与磁场边界的夹角为53°,0.6R ;(3)2 1.6B B = 【解析】 【分析】 【详解】(1)粒子从A 点进磁场D 点出磁场,作出轨迹如图由几何关系得轨道半径1r R =洛伦兹力提供匀速圆周运动的向心力,有200mv qv Bm= 解得0qBRv m =粒子在磁场中运动的圆心角为90°,有4T t =而周期为12r T v π=解得2mt qBπ=(2)粒子从C 点入射,作出轨迹如图由几何知识得EF 的长度L EF =R cos53°在三角形EFO 1中,有sin 0.6EFL Rθ== 即粒子转过的圆心角37θ=︒,则速度的方向与磁场边界的夹角为53° 而CE 的长度cos37CE L R R =-︒OF 的长度为sin 53OF CE L R L =︒-联立解得0.6OF L R =(3)粒子在右侧磁场的半径为2r ,由几何关系有22sin 37r r R ︒+=由向心力公式得2022mvqv Br=联立解得21.6B B=2.如图所示,在竖直分界线MN的左侧有垂直纸面的匀强磁场,竖直屏与MN之间有方向向上的匀强电场。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。

现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。

【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R O Q QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,圆心为O、半径为R的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O为坐标原点建立坐标系,在y=-3R 处有一垂直y轴的固定绝缘挡板,一质量为m、带电量为+q的粒子,与x轴成 60°角从M点(-R,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N点离开磁场(N点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B的大小;(2)N点的坐标;(3)粒子从M点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mvqR (2)31(,)2R R- (3)(5)Rvπ+【解析】(1)设粒子在磁场中运动半径为r,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R=由洛伦兹力等于向心力:2vqv B mr=,得到:0mvBqR=.(2)由图几何关系可以得到:3sin60x R R==o,1cos602y R Ro=-=-N点坐标为:31,22R R⎛⎫-⎪ ⎪⎝⎭.(3)粒子在磁场中运动的周期2mTqBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180o ,粒子在磁场中运动时间:12Tt =,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202st v =,其中132s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+ 解得:()05Rt v π+=.2.如图所示,两个边长均为l 的正方形区域ABCD 和EFGH 内有竖直向上的匀强电场,DH 上方有足够长的竖直向下的匀强电场.一带正电的粒子,质量为m ,电荷量为q ,以速度v从B 点沿BC 方向射入匀强电场,已知三个区域内的场强大小相等,且,今在CDHE 区域内加上合适的垂直纸面向里的匀强磁场,粒子经过该磁场后恰能从DH 的中点竖直向上射入电场,粒子的重力不计,求:(1)所加磁场的宽度DH ; (2)所加磁场的磁感应强度大小;(3)粒子从B 点射入到从EFGH 区域电场射出所经历的总时间. 【答案】(1) (2)(3)【解析】(1)粒子在ABCD 区域电场中做类平抛运动,射出该电场时沿电场方向偏转距离为d由Eq=ma得a=由l=vt得t=故d=at2=l粒子射出ABCD区域电场时沿场强方向速度为v y=at=v速度偏向角为tanθ==1解得θ=粒子从DH中点竖直向上射入电场,由几何关系知得得(2)射入磁场的速度大小为v′=v由洛伦兹力提供向心力qv′B=m解得B=(3)粒子在左侧电场中偏转的运动时间t1=粒子在磁场中向上偏转运动时间t2=T其中T=在上方电场中运动减速到零的时间为t3=粒子运动轨迹如图所示,根据对称性可知粒子运动总时间为t=2(t1+t2+t3)得或t=点睛:本题考查了粒子在电场与磁场中的运动,粒子运动过程复杂,分析清楚粒子运动过程、作出粒子运动轨迹是解题的前提,作出粒子运动轨迹后,应用类平抛运动规律与牛顿第二定律可以解题,解题时注意几何知识的应用.3.如图所示,地面某处有一粒子发射器A ,发射器尺寸忽略不计,可以竖直向上发射速度介于v 0~2v 0的电子。

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。

x 轴下方有一匀强电场,电场强度为E 。

屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么:(1)电子释放位置与原点O 点之间的距离s 需满足什么条件?(2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】【分析】【详解】 (1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv = 在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r= 可得0mv r qB=根据题意有 (2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即 )2(2214sT T t n n a ++⋅=+ 由公式 eE ma =可得 eE a m =由公式 20v qvB m r = 和 02r T v π=可得 2m T eBπ=综上整理可得 ()212BL m t n E eBπ=++ (n =0,1,2,3…)2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间;(3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB d m θ【解析】【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强.【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ= 洛伦兹力做向心力:200v qv B m R= 解得0cos qBd v m θ= (2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d x θ=粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ= (3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B 解得2qB d E mcos θ= 【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。

高考物理带电粒子在无边界匀强磁场中运动的技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的技巧及练习题及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为q +、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示。

高考物理带电粒子在无边界匀强磁场中运动的技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的技巧及练习题及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,有一磁感强度39.110B T -=⨯的匀强磁场,C 、D 为垂直于磁场方向的同一平面内的两点,它们之间的距离l =0.1m ,今有一电子在此磁场中运动,它经过C 点的速度v 的方向和磁场垂直,且与CD 之间的夹角θ=30°。

(电子的质量319.110kg m -=⨯,电量191.610C q -=⨯)(1)电子在C 点时所受的磁场力的方向如何?(2)若此电子在运动后来又经过D 点,则它的速度应是多大? (3)电子从C 点到D 点所用的时间是多少?【答案】(1)见解析;(2)81.610m/s ⨯;(3)106.510s t -=⨯。

【解析】 【分析】 【详解】(1) 电子以垂直磁场方向的速度在磁场中做匀速圆周运动,洛伦兹力提供向心力,根据左手定则可判断电子在C 点所受磁场力的方向如图所示,垂直于速度方向。

(2)电子在洛伦兹力作用下作匀速圆周运动,夹角θ=30°为弦切角,圆弧CD 所对的圆心角为60°,即∠DOC =60°,△CDO 为等边三角形,由此可知轨道半径R =l由牛顿第二定律可得2mv evB R= 代入数值解得81.610m/s eBlv m==⨯ (3)将R =l 和eBl v m =代入周期公式2RT vπ=中得2mT eBπ=设电子从C 点到D 点所用时间为t ,由于电子做匀速圆周运动,所以1326t T ==ππ 由上两式得163m t T eBπ== 代入数据得106.510s t -=⨯2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间.【答案】(1)2q v mϕ=;(2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=3.如图所示,MN 为绝缘板,CD 为板上两个小孔,AO 为CD 的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m 电荷量为q 的粒子(不计重力)以某一速度从A 点平行于MN 的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O 点),已知图中虚线圆弧的半径为R ,其所在处场强大小为E ,若离子恰好沿图中虚线做圆周运动后从小孔C 垂直于MN 进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?【答案】(1)EqRm;(2)212R ;11n +;(3)2πmR Eq 。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。

质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。

若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。

【答案】(1)0qBRv m=,2m t qB π=;(2)速度的方向与磁场边界的夹角为53°,0.6R ;(3)2 1.6B B = 【解析】 【分析】 【详解】(1)粒子从A 点进磁场D 点出磁场,作出轨迹如图由几何关系得轨道半径1r R =洛伦兹力提供匀速圆周运动的向心力,有200mv qv Bm= 解得0qBRv m =粒子在磁场中运动的圆心角为90°,有4T t =而周期为12r T v π=解得2mt qBπ=(2)粒子从C 点入射,作出轨迹如图由几何知识得EF 的长度L EF =R cos53°在三角形EFO 1中,有sin 0.6EFL Rθ== 即粒子转过的圆心角37θ=︒,则速度的方向与磁场边界的夹角为53° 而CE 的长度cos37CE L R R =-︒OF 的长度为sin 53OF CE L R L =︒-联立解得0.6OF L R =(3)粒子在右侧磁场的半径为2r ,由几何关系有22sin 37r r R ︒+=由向心力公式得2022mvqv Br=联立解得21.6B B=2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为2L()oϕ>,内圆弧面CD的电势为φ,足够长的收集板MN平行边界ACDB,ACDB与MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回.(1)求粒子到达O点时速度的大小;(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有23能打到MN板上,求所加磁感应强度的大小;(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小4ELφ=,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ 与MN间运动的时间.【答案】(1)2qvmϕ=2)12mBL qϕ=3)060α∴=;22mLqϕ【解析】【分析】【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==x Eq v t m ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=3.在磁感应强度为B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出α粒子(42He )在与磁场垂直的平面内做圆周运动,其轨道半径为R .以m 、q 分别表示α粒子的质量和电荷量.(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,写出该α衰变的核反应方程.(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损△m .【答案】(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,则该α衰变的核反应方程为4422AA Z Z X Y H --→+ ;(2)α粒子的圆周运动可以等效成一个环形电流,则圆周运动的周期为 2m Bq π ,环形电流大小为 22Bq mπ ;(3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,则衰变过程的质量亏损△m 为损2211()()2BqR m M c + . 【解析】(1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为4422X Y He A A ZZ --→+(2)设α粒子在磁场中做圆周运动的速度大小为v ,由洛伦兹力提供向心力有2v qvB m R=根据圆周运动的参量关系有2πRT v=得α粒子在磁场中运动的周期2πmT qB=根据电流强度定义式,可得环形电流大小为22πq q BI T m==(3)由2v qvB m R =,得qBR v m=设衰变后新核Y 的速度大小为v ′,核反应前后系统动量守恒,有Mv ′–mv =0可得mv qBRv M M='=根据爱因斯坦质能方程和能量守恒定律有2221122mc Mv mv '∆=+ 解得22()()2M m qBR m mMc+∆= 说明:若利用44A M m -=解答,亦可. 【名师点睛】(1)无论哪种核反应方程,都必须遵循质量数、电荷数守恒.(2)α衰变的生成物是两种带电荷量不同的“带电粒子”,反应前后系统动量守恒,因此反应后的两产物向相反方向运动,在匀强磁场中,受洛伦兹力作用将各自做匀速圆周运动,且两轨迹圆相外切,应用洛伦兹力计算公式和向心力公式即可求解运动周期,根据电流强度的定义式可求解电流大小.(3)核反应中释放的核能应利用爱因斯坦质能方程求解,在结合动量守恒定律与能量守恒定律即可解得质量亏损.4.相距为L 的平行金属板 M 、N ,板长也为L ,板间可视为匀强电场,两板的左端与虚线 EF 对齐,EF 左侧有水平匀强电场,M 、N 两板间所加偏转电压为 U ,PQ 是两板间的中轴线.一质量为 m 、电量大小为+q 的带电粒子在水平匀强电场中 PQ 上 A 点由静止释放,水平电场强度与M 、N 之间的电场强度大小相等,结果粒子恰好从 N 板的右边緣飞出,立即进入垂直直面向里的足够大匀强磁场中 ,A 点离 EF 的距离为 L /2;不计粒子的重力,求: (1)磁感应强度B 大小(2)当带电粒子运动到 M 点后,MN 板间偏转电压立即变为−U ,(忽略电场变化带来的影响)带电粒子最终回到 A 点,求带电粒子从出发至回到 A 点所需总时间.【答案】(12mU L q 2)344L mL qUπ+()【解析】 【详解】(1)由题意知:对粒子在水平电场中从点A 到点O :有:21022U l qmv L =-……………① 在竖直向下的电场中从点O 到N 右侧边缘点B : 水平方向:0L v t =……………②竖直方向:2122L qU tmL=……………③ 在B 点设速度v 与水平初速度成θ角 有:2tan 21LLθ=⨯=……………④粒子在磁场中做匀速圆周运动 由几何关系可得:22R L =……………⑤ 又:2v qvB m R=……………⑥联解①②③④⑤⑥得:2L mUB q=……………⑦(2)粒子在磁场中运动的圆心角32πα=22R mT v qBππ== 在磁场中运动时间:2t T απ'=在水平电场中运动时间:00v v t qU a mL==''……………⑧总的时间:22t t t t '='++'总……………⑨联解得:344L mt L qUπ=+总()……………⑩5.如图所示,xOy 平面内存在垂直纸面向里的匀强磁场,磁感应强度B =0. 1T ,在原点O 有一粒子源,它可以在xOy 平面内向各个方向发射出质量276.410m -=⨯kg 电荷量193.210q -=⨯C 、速度61.010v =⨯m/s 的带正电的粒子。

高考物理高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.(加试题)有一种质谱仪由静电分析器和磁分析器组成,其简化原理如图所示。

左侧静电分析器中有方向指向圆心O 、与O 点等距离各点的场强大小相同的径向电场,右侧的磁分析器中分布着方向垂直于纸面向外的匀强磁场,其左边界与静电分析器的右边界平行,两者间距近似为零。

离子源发出两种速度均为v 0、电荷量均为q 、质量分别为m 和0.5m 的正离子束,从M 点垂直该点电场方向进入静电分析器。

在静电分析器中,质量为m 的离子沿半径为r 0的四分之一圆弧轨道做匀速圆周运动,从N 点水平射出,而质量为0.5m 的离子恰好从ON 连线的中点P 与水平方向成θ角射出,从静电分析器射出的这两束离子垂直磁场方向射入磁分析器中,最后打在放置于磁分析器左边界的探测板上,其中质量为m 的离子打在O 点正下方的Q 点。

已知OP=0.5r 0,OQ=r 0,N 、P 两点间的电势差2NPmvU q =,4cos θ5=,不计重力和离子间相互作用。

(1)求静电分析器中半径为r 0处的电场强度E 0和磁分析器中的磁感应强度B 的大小; (2)求质量为0.5m 的离子到达探测板上的位置与O 点的距离l (用r 0表示); (3)若磁感应强度在(B —△B )到(B +△B )之间波动,要在探测板上完全分辨出质量为m 和0.5m 的两東离子,求ΔBB的最大值 【答案】(1)200mv E qr =,00B mv qr =;(2)01.5r ;(3)12%【解析】 【详解】(1)径向电场力提供向心力:2c c cv E q m r =2c c c mv E qr = c cmv B qr =(2)由动能定理:22110.50.522c NP mv mv qU ⨯-⨯= 245NPc c qU v v v m=+= 或0.5152c mv r r qB == 2cos 0.5c l r r θ=-解得 1.5c l r =(3)恰好能分辨的条件:00022cos 211r r r B B B Bθ-=∆∆-+ 解得0017412BB∆=-≈2.在矩形区域abcd 中,存在如图甲所示的磁场区域(包括边界),规定磁场方向垂直纸面向里为正,其中22bc ab l e ==,为bc 边界上的一点,且2l ce ,=重力可忽略不计的正粒子从d 点沿dc 方向以初速度0v 射入磁场,已知粒子的比荷为k ,求:(1)如果在0时刻射入磁场的粒子经小于半个周期的时间从边界上的e 点离开,则磁场的磁感应强度0B 应为多大? (2)如果磁场的磁感应强度002v B kl=,欲使在小于半个周期的任意时刻射入磁场的粒子均不能由ad 边离开磁场,则磁场的变化周期0T 应满足什么条件? (3)如果磁场的磁感应强度002v B kl=,在bc 边的右侧加一垂直bc 边向左的匀强电场,0时刻射入磁场的粒子刚好经过0T 垂直bc 边离开磁场,再次进入磁场后经过0T 从a 点离开磁场区域,则电场强度E 以及粒子在电场中的路程x 分别为多大?【答案】(1)0045v B kl =; (2)0056l T v π≤;(3)()208,(01221v E n n kl π==⋯+,,);()21,(01238n lx nπ+==⋯,,,)【解析】【分析】【详解】(1)由题意作出粒子的运动轨迹,如图1所示,在磁场中,洛伦兹力提供向心力,有200vqv B mR=由几何关系,有22200()2lR l R=+-解得54R l=由于qkm=解得45vBkl=;(2)由0mvRqB=可知,粒子运动的半径为2lR=临界情况为粒子从t=0时刻射入,并且轨迹恰好与ad边相切,如图2所示圆周运动的周期为002m lT qB v ππ==; 由几何关系可知,02T t =内,粒子转过的圆心角为56π; 对应运动时间为1556212t T T ππ==应满足12T t ≥联立可得0056lT v π≤(3)根据题意画出粒子的运动轨迹如图3所示由题意有00122m T qB π=⨯ 得002lT v π=在电场中有qE ma =往返一次用时为2v t a∆=; 应有01()2t n T ∆=+,可得()20821v E n kl π=+,(n=0,1,2…);运动的路程为()02112228n l tx v π+∆=⨯⨯=,(n=0,1,2,3…)3.在xOy 坐标中,有随时间周期性变化的电场和磁场(磁场持续t 1后消失;紧接着电场出现,持续t 2时间后消失,接着磁场......如此反复),如图所示,磁感应强度方向垂直纸面向里,电场强度方向沿y 轴向下,有一质量为m ,带电量为+q 的带电粒子,在t =0时刻,以初速v 0从0点沿x 轴正方向出发,在t 1时刻第一次到达y 轴上的M (0,L )点,t 1+t 2时刻第一次回到x 轴上的 N (-2L ,0)点,不计粒子重力,t 1、t 2均未知。

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。

x 轴下方有一匀强电场,电场强度为E 。

屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么: (1)电子释放位置与原点O 点之间的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即)2(2214s T Tt n n a ++⋅=+ 由公式 eE ma =可得eEa m=由公式 20v qvB m r = 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)2.在矩形区域abcd 中,存在如图甲所示的磁场区域(包括边界),规定磁场方向垂直纸面向里为正,其中22bc ab l e ==,为bc 边界上的一点,且2lce ,=重力可忽略不计的正粒子从d 点沿dc 方向以初速度0v 射入磁场,已知粒子的比荷为k ,求:(1)如果在0时刻射入磁场的粒子经小于半个周期的时间从边界上的e 点离开,则磁场的磁感应强度0B 应为多大? (2)如果磁场的磁感应强度002v B kl=,欲使在小于半个周期的任意时刻射入磁场的粒子均不能由ad 边离开磁场,则磁场的变化周期0T 应满足什么条件? (3)如果磁场的磁感应强度002v B kl=,在bc 边的右侧加一垂直bc 边向左的匀强电场,0时刻射入磁场的粒子刚好经过0T 垂直bc 边离开磁场,再次进入磁场后经过0T 从a 点离开磁场区域,则电场强度E 以及粒子在电场中的路程x 分别为多大?【答案】(1)0045v B kl =; (2)0056l T v π≤;(3)()208,(01221v E n n klπ==⋯+,,);()21,(01238n l x n π+==⋯,,,)【解析】 【分析】 【详解】(1)由题意作出粒子的运动轨迹,如图1所示,在磁场中,洛伦兹力提供向心力,有2000v qv B m R =由几何关系,有22200()2l R l R =+-解得054R l =由于qk m= 解得045v B kl=; (2)由0mv R qB =可知,粒子运动的半径为 2l R =临界情况为粒子从t=0时刻射入,并且轨迹恰好与ad 边相切,如图2所示圆周运动的周期为002m lT qB v ππ==; 由几何关系可知,02T t =内,粒子转过的圆心角为56π; 对应运动时间为1556212t T T ππ==应满足12T t ≥联立可得0056lT v π≤(3)根据题意画出粒子的运动轨迹如图3所示由题意有00122m T qB π=⨯ 得002lT v π=在电场中有qE ma =往返一次用时为2v t a∆=; 应有01()2t n T ∆=+,可得()20821v E n kl π=+,(n=0,1,2…);运动的路程为()02112228n l tx v π+∆=⨯⨯=,(n=0,1,2,3…)3.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.4.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=5.在xOy 坐标中,有随时间周期性变化的电场和磁场(磁场持续t 1后消失;紧接着电场出现,持续t 2时间后消失,接着磁场......如此反复),如图所示,磁感应强度方向垂直纸面向里,电场强度方向沿y 轴向下,有一质量为m ,带电量为+q 的带电粒子,在t =0时刻,以初速v 0从0点沿x 轴正方向出发,在t 1时刻第一次到达y 轴上的M (0,L )点,t 1+t 2时刻第一次回到x 轴上的 N (-2L ,0)点,不计粒子重力,t 1、t 2均未知。

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为q +、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示。

该粒子运动到图中Q 点时的速度方向与P 点时速度方向垂直,如图中Q 点箭头所示。

已知P 、Q 间的距离为l 。

若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点。

不计重力。

求:(1)电场强度的大小。

(2)两种情况中粒子由P 运动到Q 点所经历的时间之差。

【答案】(1)22qlB E m=;(2)(1)2m qB π- 【解析】 【详解】(1)粒子在磁场中做匀速圆周运动,以0v 表示粒子在P 点的初速度,R 表示圆周半径,则有20v qv B m R= ①由于粒子在Q 点的速度垂直于它在4P 点时的速度,可知粒子由P 点到Q 点的轨迹是圆周的14,故有 2R =②联立①②得02v m③在电场中粒子做类平抛运动,分别以x 、y 、E 、a 、E t 表示射程、偏转位移、电场强度,加速度和运动时间,则qE ma = ④垂直0v 方向212E y R at == ⑤沿0v 方向0E x R v t == ⑥联立②③④⑤⑥各式可解得E =电场强度的大小为2E m=(2)由分析知粒子在磁场中由P 运动到Q 点所经历的时间B t 为14周期,故0112442B R m t T v qBππ==⋅= 在电场中由P 运动到Q 点所经历的时间0E R mt v qB== 由P 运动到Q 点所经历的时间之差(1)2B E mt t qBπ-=-两种情况中粒子由P 运动到Q 点所经历的时间之差为(1)2mqBπ-2.如图所示,平面直角坐标系xoy 被三条平行的分界线分为I 、II 、III 、IV 四个区域,每条分界线与x 轴所夹30º角,区域I 、II 分界线与y 轴的交点坐标(0,l ),区域I 中有方向垂直纸面向里、大小为B 的匀强磁场;区域 II 宽度为d ,其中有方向平行于分界线的匀强电场;区域III 为真空区域;区域IV 中有方向垂直纸面向外、大小为2B 的匀强磁场.现有不计重力的两粒子,粒子l 带正电,以速度大小v 1从原点沿x 轴正方向运动;粒子2带负电,以一定大小的速度从x 轴正半轴一点A 沿x 轴负向与粒子1同时开始运动,两粒子恰在同一点垂直分界线进入区域II ;随后粒子1以平行于x 轴的方向进入区域III ;粒子2以平行于y 轴的方向进入区域III ,最后两粒子均在第二次经过区城III 、IV 分界线时被引出.(1)求A 点与原点距离;(2)求区域II 内电场强度E 的大小和方向; (3)求粒子2在A 的速度大小;(4)若两粒子在同一位置处被引出,区城III 宽度应设计为多少? 【答案】(1)23OA l =(2)13Blv E =(3)21v v =(4)32d S l =-【解析】(1)因为粒子1和粒子2在同一点垂直分界线进入区域Ⅱ,所以粒子1在区域Ⅰ运动半径为R 1=l粒子2在区域Ⅰ运动半径为R 2由几何关系知22132R R l =+ 23R l =33323OA l l l =-=(2)要满足题设条件,区域Ⅱ中电场方向必须平行于分界线斜向左下方 两粒子进入电场中都做类平抛运动,区域Ⅱ的宽度为d ,出电场时,对粒子1沿电场方向的运动有 1313tan 30Ev v v ==︒11113q E d v m v =⋅又 21111v q v B m l= 所以111q v m Bl =1E d=(3)粒子2经过区域Ⅱ电场加速获得的速度大小为24E tan 60v v ==︒对粒子2在电场中运动有2222q E d m v =⋅ 又 222223v q v B m l= 所以2223Blq vm = 所以 21v v =(4)粒子1经过区域Ⅲ时的速度大小为1312sin 30v v v ==︒有 2313132v Bq v m R = 3R l = 粒子2经过区域Ⅲ时的速度大小为24cos30v v ==︒有 2424242v Bq v m R =4R =两粒子要在区域IV 运动后到达同一点引出,O 3圆对应的圆心角为60゜,O 4圆对应的圆心角为120゜3E 4E 34122cos30++tan 30tan 6022v v S S d dR R v v +︒=⋅+⋅︒︒2d S =-点睛:带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径.3.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性碰撞,A 的电量保持不变,P 、A 均可视为质点.(1)若A 从ed 边离开磁场,求k 的最大值;(2)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)1(2)57k =或13k = ;A 球在磁场中运动的最长时间32m qB π【解析】 【详解】(1)令P 初速度qBLv m=,设P 、A 碰后的速度分别为v P 和v A , 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 可得:A 21k qBL v k m=⋅+,可知k 值越大,v A 越大; 设A 在磁场中运动轨迹半径为R , 由牛顿第二定律:2A A mv qvB R= 可得:A mv R qB =,可知v A 越大,R 越大;即21kR L k =+,k 值越大,R 越大; 如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 可得:A qBLv m=,求得k 的最大值为1k =(2)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有()2221.52L R L R⎛⎫=+- ⎪⎝⎭解得:56L R =可得:57k = (II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.令电场强度26qB LE m=;如图3和如图4,由几何关系有:2223322L R R L ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭解得:58L R =或2LR = 可得:511k =或13k = 当58L R =时,A 58qBR qBL v m m ==,由于2A 175264mv qEL qEL ⋅=> 当2L R =时,A 2qBR qBL v m m ==,由于2A 1324mv qEL qEL ⋅=<此类情形取2L R =符合题意要求,即13k = 综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k = 或13k = A 球在磁场中运动周期为A 22R mT v qBππ== 当k =13时,如图4,A 球在磁场中运动的最长时间3342T m t qB π==4.如图所示,在正方形区域abcd 内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场.在t =0时刻,一位于ad 边中点o 的粒子源在abcd 平面内发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与od 边的夹角分布在0~180°范围内.已知沿od 方向发射的粒子在t t =0时刻刚好从磁场边界cd 上的p 点离开磁场,粒子在磁场中做圆周运动的半径恰好等于正方形边长L ,粒子重力不计,求:(1)粒子的比荷q /m ;(2)假设粒子源发射的粒子在0~180°范围内均匀分布,此时刻仍在磁场中的粒子数与粒子源发射的总粒子数之比;(3)从粒子发射到全部粒子离开磁场所用的时间.(若角度不特殊时可以用反三角表示,如:已知sinθ=0.3,则θ=arcsin0.3)【答案】(1)06Bt π(2)56(3)0125arcsin t π⎛⎫ ⎪ ⎪⎝⎭【解析】 【分析】由题中“在正方形区域abcd 内充满方向垂直纸面向里的”可知,本题考查带电粒子在有界磁场中的运动规律,根据洛伦兹力提供向心力和几何关系可分析本题. 【详解】(1)初速度沿od 方向发射的粒子在磁场中运动的轨迹如图,其圆心为n ,由几何关系得6onp π∠=012Tt =粒子做圆周运动的向心力由洛伦兹力提供,根据牛顿第二定律得22()Bqv m R Tπ=2RvTπ=解得6qm Btπ=(2)依题意,同一时刻仍在磁场中的粒子到o点距离相等,在t0时刻仍在粒子磁场中的粒子应位于o为圆心,op为半径的弧pw上.由图知56powπ∠=此时刻磁场中粒子数与总粒子数之比为56(3)在磁场中运动时间最长的粒子轨迹应该与b相交,设粒子运动轨迹的圆心角为θ,则5sin2θ=在磁场中运动的最长时间512arcsin42t T tθππ==所以从粒子发射到全部粒子离开共用时125t tπ⎛=⎝⎭5.如图甲所示,在xOy竖直平面内存在竖直方向的匀强电场,在第一象限内有一与x轴相切于点(2R, 0)、半径为R的圆形区域,该区域内存在垂直于xOy面的匀强磁场,电场与磁场随时间变化如图乙、丙所示,设电场强度竖直向下为正方向,磁场垂直纸面向里为正方向,电场、磁场同步周期性变化(每个周期内正、反向时间相同).一带正电的小球A沿y轴方向下落,t=0时刻A落至点03R(,),此时,另一带负电的小球B从圆形区域的最高点22R R (,)处开始在磁场内紧靠磁场边界做匀速圆周运动.当A 球再下落R 时,B 球旋转半圈到达点20R (,);当A 球到达原点O 时,B 球又旋转半圈回到最高点;然后A 球开始做匀速运动.两球的质量均m ,电荷量大小为q ,不计空气阻力及两小球之间的作用力,重力加速度为g ,求:(1)匀强电场的场强E 的大小;(2)小球B 做匀速圆周运动的周期T 及匀强磁场的磁感应强度B 的大小; (3)电场、磁场变化第一个周期末A 、B 两球间的距离S . 【答案】(1)mg qE =(2)2m gB qRπ=3225(22)π++【解析】 【分析】 【详解】(1)小球 B 做匀速圆周运动,则重力和电场力平衡,洛伦兹力提供向心力,则有 Eq =mg ,解得 mg qE =(2)设小球 B 的运动周期为 T ,对小球 A :Eq +mg =ma , 解得 a =2g ; 由 R =a (2T )2,得 2RT g= 对 B 小球:2=BB v Bqv m R22B Rv gR Tπ== 解得2m gB qRπ=(3)由题意分析可得:电(磁)场变化周期是 B 球做圆周运动周期的 2 倍 对小球 A :在原点的速度为32A R T v a T =+ , 在原点下的位移5A A y v T R ==2T 末,小球 A 的坐标为(0,-5R ) 对小球B :球 B 的线速度 v B =π2gR; 水平位移 x B =v B T =2πR ; 竖直位移为 y B =12aT 2=2R ; 2T 末,小球B 的坐标为[(2π+2)R ,0]则 2T 末,A 、B 两球的距离为: AB =225(22)π++R .6.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%7.在水平桌面上有一个边长为L的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P点(P为正方形框架对角线AC与圆盘的交点)以初速度v0水平射入磁场区,小球刚好以平行于BC边的速度从圆盘上的Q点离开该磁场区(图中Q点未画出),如图甲所示.现撤去磁场,小球仍从P点以相同的初速度v0水平入射,为使其仍从Q点离开,可将整个装置以CD边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g.求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x=r=v0t2,运动时间:t2=22Lv,则:t1:t2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r=2212at,解得,加速度:a=222vL,对小球,由牛顿第二定律得:a=mgsinmθ=g sinθ,AB 边距离桌面的高度:h =Lsinθ=222v g;8.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧和训练方法及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在一直角坐标系xoy平面内有圆形区域,圆心在x轴负半轴上,P、Q是圆上的两点,坐标分别为P(-8L,0),Q(-3L,0)。

y轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy平面向外,磁感应强度的大小为B,y轴的右侧空间有一磁感应强度大小为2B的匀强磁场,方向垂直于xoy平面向外。

现从P点沿与x轴正方向成37°角射出一质量为m、电荷量为q的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求:(1)带电粒子的初速度;(2)粒子从P点射出到再次回到P点所用的时间。

【答案】(1)8qBLvm=;(2)41(1)45mtqBπ=+【解析】【详解】(1)带电粒子以初速度v沿与x轴正向成37o角方向射出,经过圆周C点进入磁场,做匀速圆周运动,经过y轴左侧磁场后,从y轴上D点垂直于y轴射入右侧磁场,如图所示,由几何关系得:5sin37oQC L=15 sin37O OQO Q L==在y轴左侧磁场中做匀速圆周运动,半径为1R,11R O Q QC =+21v qvB m R=解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oot T =带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,圆心为O、半径为R的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O为坐标原点建立坐标系,在y=-3R 处有一垂直y轴的固定绝缘挡板,一质量为m、带电量为+q的粒子,与x轴成 60°角从M点(-R,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N点离开磁场(N点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B的大小;(2)N点的坐标;(3)粒子从M点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mvqR (2)31(,)2R R- (3)(5)Rvπ+【解析】(1)设粒子在磁场中运动半径为r,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R=由洛伦兹力等于向心力:2vqv B mr=,得到:0mvBqR=.(2)由图几何关系可以得到:3sin602x R R==,1cos602y R R=-=-N点坐标为:31,2R R⎫-⎪⎪⎝⎭.(3)粒子在磁场中运动的周期2mT qBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180,粒子在磁场中运动时间:12Tt =,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202s t v =,其中132s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+ 解得:()05Rt v π+=.2.在磁感应强度为B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出α粒子(42He )在与磁场垂直的平面内做圆周运动,其轨道半径为R .以m 、q 分别表示α粒子的质量和电荷量.(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,写出该α衰变的核反应方程.(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损△m .【答案】(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,则该α衰变的核反应方程为4422AA Z Z X Y H --→+ ;(2)α粒子的圆周运动可以等效成一个环形电流,则圆周运动的周期为 2m Bq π ,环形电流大小为 22Bq mπ ;(3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,则衰变过程的质量亏损△m 为损2211()()2BqR m M c + . 【解析】(1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为4422X Y He A A ZZ --→+(2)设α粒子在磁场中做圆周运动的速度大小为v ,由洛伦兹力提供向心力有2v qvB m R=根据圆周运动的参量关系有2πRT v=得α粒子在磁场中运动的周期2πmT qB=根据电流强度定义式,可得环形电流大小为22πq q BI T m==(3)由2v qvB m R =,得qBR v m=设衰变后新核Y 的速度大小为v ′,核反应前后系统动量守恒,有Mv ′–mv =0 可得mv qBR v M M='=根据爱因斯坦质能方程和能量守恒定律有2221122mc Mv mv '∆=+ 解得22()()2M m qBR m mMc+∆= 说明:若利用44A M m -=解答,亦可. 【名师点睛】(1)无论哪种核反应方程,都必须遵循质量数、电荷数守恒.(2)α衰变的生成物是两种带电荷量不同的“带电粒子”,反应前后系统动量守恒,因此反应后的两产物向相反方向运动,在匀强磁场中,受洛伦兹力作用将各自做匀速圆周运动,且两轨迹圆相外切,应用洛伦兹力计算公式和向心力公式即可求解运动周期,根据电流强度的定义式可求解电流大小.(3)核反应中释放的核能应利用爱因斯坦质能方程求解,在结合动量守恒定律与能量守恒定律即可解得质量亏损.3.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性碰撞,A 的电量保持不变,P 、A 均可视为质点.(1)若A 从ed 边离开磁场,求k 的最大值;(2)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)1(2)57k =或13k = ;A 球在磁场中运动的最长时间32m qB π【解析】 【详解】(1)令P 初速度qBLv m=,设P 、A 碰后的速度分别为v P 和v A , 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 可得:A 21k qBL v k m=⋅+,可知k 值越大,v A 越大; 设A 在磁场中运动轨迹半径为R , 由牛顿第二定律:2A A mv qvB R= 可得:A mv R qB =,可知v A 越大,R 越大;即21kR L k =+,k 值越大,R 越大; 如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 可得:A qBLv m=,求得k 的最大值为1k =(2)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有()2221.52L R L R ⎛⎫=+- ⎪⎝⎭解得:56L R =可得:57k = (II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.令电场强度26qB LE m=;如图3和如图4,由几何关系有:2223322L R R L ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭解得:58L R =或2LR = 可得:511k =或13k = 当58L R =时,A 58qBR qBL v m m ==,由于2A 175264mv qEL qEL ⋅=> 当2L R =时,A 2qBR qBL v m m ==,由于2A 1324mv qEL qEL ⋅=<此类情形取2L R =符合题意要求,即13k = 综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k = 或13k = A 球在磁场中运动周期为A 22R mT v qBππ== 当k =13时,如图4,A 球在磁场中运动的最长时间3342T m t qB π==4.如图所示,xOy 平面内存在垂直纸面向里的匀强磁场,磁感应强度B =0. 1T ,在原点O 有一粒子源,它可以在xOy 平面内向各个方向发射出质量276.410m -=⨯kg 电荷量193.210q -=⨯C 、速度61.010v =⨯m/s 的带正电的粒子。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。

现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。

【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R O Q QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高中物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理带电粒子在无边界匀强磁场中运动的技巧及练习题及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.(加试题)有一种质谱仪由静电分析器和磁分析器组成,其简化原理如图所示。

左侧静电分析器中有方向指向圆心O 、与O 点等距离各点的场强大小相同的径向电场,右侧的磁分析器中分布着方向垂直于纸面向外的匀强磁场,其左边界与静电分析器的右边界平行,两者间距近似为零。

离子源发出两种速度均为v 0、电荷量均为q 、质量分别为m 和0.5m 的正离子束,从M 点垂直该点电场方向进入静电分析器。

在静电分析器中,质量为m 的离子沿半径为r 0的四分之一圆弧轨道做匀速圆周运动,从N 点水平射出,而质量为0.5m 的离子恰好从ON 连线的中点P 与水平方向成θ角射出,从静电分析器射出的这两束离子垂直磁场方向射入磁分析器中,最后打在放置于磁分析器左边界的探测板上,其中质量为m 的离子打在O 点正下方的Q 点。

已知OP=0.5r 0,OQ=r 0,N 、P 两点间的电势差2NPmv U q =,4cos θ5=,不计重力和离子间相互作用。

(1)求静电分析器中半径为r 0处的电场强度E 0和磁分析器中的磁感应强度B 的大小;(2)求质量为0.5m的离子到达探测板上的位置与O点的距离l(用r0表示);(3)若磁感应强度在(B—△B)到(B+△B)之间波动,要在探测板上完全分辨出质量为m和0.5m的两東离子,求ΔBB的最大值【答案】(1)20 0mv Eqr=,0Bmvqr=;(2)1.5r;(3)12%【解析】【详解】(1)径向电场力提供向心力:2cccvE q mr=2cccmvEqr=ccmvBqr=(2)由动能定理:22110.50.522c NPmv mv qU⨯-⨯=245NPc cqUv v vm=+=或0.5152cmvr rqB==2cos0.5cl r rθ=-解得 1.5cl r=(3)恰好能分辨的条件:00022cos211r r rB BB Bθ-=∆∆-+解得0017412BB∆=-≈3.如图所示,在x轴上方有一匀强磁场,磁感应强度为B。

x轴下方有一匀强电场,电场强度为E。

屏MN与y轴平行且相距L,一质量为m,电荷量为e的电子,在y轴上某点A 自静止释放,如果要使电子垂直打在屏MN上,那么:(1)电子释放位置与原点O点之间的距离s需满足什么条件?(2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即2(2214s T T t n n a +⋅=+ 由公式 eE ma =可得eEa m=由公式 20v qvB m r= 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)4.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d,-3d<y<3d)外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(0,3d)点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d ,3d)处进入无场区. (1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)0mv qd(2)00243d dv π+ (3)2(433)s k d d π=+,其中k =1、2、3…或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】 【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间; (3)画出粒子运动轨迹,注意讨论粒子运动的方向不同; 【详解】(1)由题条件可判断粒子做圆周运动半径为:R d =粒子在磁场中2v qvB m R=,得到:0mv B qd =;(2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102dt v π=粒子在无场区运动时间:2043dt v = 粒子再次回到P 点时间:12t t t =+ 得到:00243d dt v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323dd t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:400233d dt ==①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3… 粒子运动距离:02s v t =得到:2(433)s k d d π=+,其中k =1、2、3… ②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3… 粒子运动距离为:02s v t ''= 得到:()8'234333d s d k d d ππ⎡⎤=++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.5.如图,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。

P 是圆外一点,OP =3r 。

一质量为m 、电荷量为q (q >0)的粒子从P 点在纸面内垂直于OP 射出。

己知粒子运动轨迹经过圆心O ,不计重力。

求(1)粒子在磁场中做圆周运动的半径;(2)粒子第一次在圆形区域内运动所用的时间。

【答案】(1)(2)【解析】【分析】本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力。

【详解】(1)找圆心,画轨迹,求半径。

设粒子在磁场中运动半径为R,由几何关系得:①易得:②(2)设进入磁场时速度的大小为v,由洛伦兹力公式和牛顿第二定律有③进入圆形区域,带电粒子做匀速直线运动,则④联立②③④解得6.在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与 x轴的交点A 处以速度 v沿-x方向射入磁场,它恰好从磁场边界与y轴的交点C处沿+y方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷qm;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ',该粒子仍从 A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B '多大?(3)此次粒子在磁场中运动所用时间 t 是多少?【答案】(1)v Br ;(23B ;(33R π 【解析】 【详解】(1)由粒子的飞行轨迹,利用左手定则可知,该粒子带负电荷粒子由A 点射入,由C 点飞出,其速度方向改变了90°,由几何关系可知,粒子轨迹半径:R =r由:2v Bqv m r=解得:q v m Br= (2)粒子从D 点飞出磁场速度方向改变了60°角,故A D 弧所对圆心角60°,由几何关系可知,粒子做圆周运动的半径:3tan 30rR r '==o由:2v B qv m R '='得:33B B qr'== (3)粒子在磁场中飞行周期:2RTvπ'=粒子在磁场中飞行时间:1363Rt Tvπ==7.如图所示,边长为L的正三角形ABC区域内有垂直于纸面向外的匀强磁场,D为AB边的中点,一个质量为m、电荷量为q的带正电的粒子平行BC边射入磁场,粒子的速度大小为v0,结果刚好垂直BC边射出磁场,不计粒子的重力,求:(1)匀强磁场的磁感应强度大小;(2)若要使粒子在磁场中的运动轨迹刚好与BC相切,粒子的速度大小为多少?粒子在磁场中运动的时间为多少?(3)增大粒子的速度,试分析粒子能不能从C点射出磁场。

相关文档
最新文档