八年级数学下册第十九章测试题

合集下载

人教版八年级下册数学第十九章一次函数测试题带答案

人教版八年级下册数学第十九章一次函数测试题带答案

人教版八年级下册数学第十九章测试卷一、选择题 (每题 3分,共 30分)1.函数 y=错误!未找到引用源。

+x-2的自变量 x 的取值范围是 ()A. x≥2B. x> 2C.x≠2D.x≤22.某种正方形合金板材的成本 y(元)与它的面积成正比 ,设边长为 x 厘米. 当 x=3 时,y=18,那么当成本为 72 元时,边长为 ( )A.6 厘米B.12 厘米C.24 厘米D.36 厘米3.已知在一次函数 y=-1.5x+3 的图象上 ,有三点(-3,y1),(-1,y2),(2,y3),则 y1,y2,y3 的大小关系为 ( )A.y1>y2>y3B. y1>y3>y 2C.y2>y 1>y 3D.无法确定4.已知一次函数 y=kx+b (k,b是常数,且 k≠0中) x与 y 的部分对应值如下表所示 ,那么不等式 kx+b< 0 的解集是 ( )x -2 -1 0 1 2 3y 3 2 1 0 -1 -2A.x<0B.x>0C.x<1D.x>15.直线 l 1:y=k1x+b与直线 l2:y=k2x在同一平面直角坐标系中的位置如图 , 则关于 x 的不等式 k2x<k1x+b 的解集为 ( )6. 已知一次函数 y=kx+b ,y 随着 x 的增大而减小 ,且 kb>0,则这个函数的7. 如图,过 A 点的一次函数的图象与正比例函数 y= 2x 的图象相交于点B,则这个一次函数的解析式是 ( )A.y=2x+3B.y=x- 3C.y= 2x-3D.y=-x+ 38. 如图,点A 的坐标为(-1,0),点B 在直线 y=x 上运动,当线段 AB 最短时,A.(0,0)B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找 到引用源。

9. 一辆慢车与一辆快车分别从甲、 乙两地同时出发 ,匀速相向而行 ,两车 在途中相遇后分别按原速同时驶往甲地 ,两车A. x<-1B. x>-1C. x>2D. x<2大致图象是(之间的距离 s(km)与慢车行驶时间 t(h)之间的函数图象如图所示 ,下列说法 :①甲、乙两地之间的距离为 560 km;②快车速度是慢车速度的 1.5 倍;③快车到达甲地时 ,慢车距离甲地 60 km;④相遇时,快车距甲地 320 km.其中正确的个数是D.410.如图,在等腰三角形 ABC中,直线 l垂直于底边 BC,现将直线 l沿线段BC从B点匀速平移至 C点,直线 l与△ABC的边相交于 E,F两点,设线段 EF 的长度为 y, 平移时间为 t,则能较好地反映y 与 t 的函数关系的图二、填空题(每题 3分,共 30分)11.函数 y=(m-2)x+m2-4是正比例函数 ,则 m= .12.一次函数 y= 2x-6 的图象与 x轴的交点坐标为 .13.如果直线 y=错误!未找到引用源。

八年级数学(下)第十九章《一次函数》同步练习题(含答案)

八年级数学(下)第十九章《一次函数》同步练习题(含答案)

八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。

人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案

人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案

人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案一、单选题(共10小题,满分40分)1.将直线y = 2x+5沿尤轴向左平移3个单位得到直线则直线&的解析式是()A. y=2x+2B. y=2x+8C. y=2x~lD. y=2x+ll 2.一次函数的图像经过点(1, 2)和(一3, -1),则它的表达式为()A 3 5 4 4A. y= —x — — B. y= —x ——J 4 4 ) 3 53 4C. y= —x+ — )4 53 5D. y= —x+ — '4 43.已知点(-2,叫),(-1见),(1,为)都在直线y=-5x+/?上,则/,力,为的大小关系是( )A. >3<>2<>1B. >1<>2<>34. D.为<乂<力C. >2<>1<>3如果函数y^~2x + m 的图象经过第二、三、四象限,那么农应满足的条件是()A. m>0B. m< 0C. m>0D. m<05.某快递公司每天上午8:00-9:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间工(分)之间的函数图象如图所示,那么当两仓库快递件C. 8:20D. 8:256.如图,直线y = -x + b 和"奴-3交于点尸,根据图象可知kx-3<-x+b 的解集为( )7.关于变量x, C. 0<x<l D. —y 有如下关系:①x-y=5;②y2=2x ; (3): y=|x|;④y=3x 4.其中y 是x 函数的是()A.①②③B.①②③④C.①③D.①③④8.已知两点M (4, 2), N (1, 1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为()A. (2, 0)B. (2.5, 0)C. (3, 0)D. (4, 0)9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()奇间时A. 这一天中最高气温是26°CB. 这一天中最高气温与最低气温的差为16°CC. 这一天中2时至14时之间的气温在逐渐升高D. 这一天中14时至24时之间的气温在逐渐降低10.已知一次函数y = kx+b (k, 8为常数,5)的图象如图所示,下列说法正确的是( )C.尤 >0 时 yv —2024 B. '随工的增大而减小D.方程kx+b = 0的解是x = 2024二、填空题(共8小题,满分32分)11. 若y 是'的一次函数,且不经过第三象限,请你写出一个符合条件的函数解析式.12. 李红爸爸到加油站加油,他应付的金额随加油量的变化而变化,在这个变化过程中,自变量是y = mx + n,13.如图,直线y^mx+n 与直线y = kx+b 的交点为A,则关于工,了的方程组( z 7的解是[y = kx +b14.已知直线l i:y=-2x+a和/2:>='+人图象上部分点的横坐标和纵坐标如下表所示,则关于X的方程—2x+a=x+Z?的解是-1012y——2x+a852-1y-x+b012315.一个弹簧秤不挂重物时长12cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长了(单位:cm)与所挂重物质量尤(单位:kg)的函数解析式是.16.一次函数y--5x+b的图象经过和热(1况),则>1,%的大小关系是.2117.若直线AB:y=-x+4与工轴、V轴分别交于点8和点A,直线CD:y=-尹+2与工轴、了轴分别交于点。

(必考题)初中八年级数学下册第十九章《一次函数》经典习题(含答案解析)

(必考题)初中八年级数学下册第十九章《一次函数》经典习题(含答案解析)

一、选择题1.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .B解析:B【分析】根据一次函数y kx b =+图像在坐标平面的位置,可先确定,k b 的取值范围,在根据,k b 的取值范围确定一次函数y bx k =+图像在坐标平面的位置,即可求解.【详解】根据一次函数y kx b =+经过一、二、四象限,则函数值y 随x 的增大而减小,可得0k <;图像与y 轴的正半轴相交则0b >,因而一次函数y bx k =+的一次项系数0b >,y 随x 的增大而增大,经过一三象限,常数0k <,则函数与y 轴的负半轴,因而一定经过一、三、四象限,故选:B .【点睛】本题考查了一次函数的图像与系数的关系,解题关键是根据已知函数图像的位置确定,k b 的取值范围.2.已知点()1,4P 在直线2y kx k =-上,则k 的值为( )A .43B .43-C .4D .4-D解析:D【分析】根据一次函数图象上的点的坐标特征,将P (1,4)代入反比例函数的解析式2y kx k =-,然后解关于k 的方程即可.【详解】解:∵点P (1,4)在反比例函数2y kx k =-的图象上,∴4=k-2k ,解得,k=-4.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键. 3.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和3A解析:A【分析】 根据题意可得OC 的解析式为y=-x ,再由各选项的数字得到点P 的坐标,代入解析式即可得出结论.【详解】解:由作图可知,OC 为第四象限角的平分线,故可得直线OC 的解析式为y=-x ,A 、当x=2,y=-1时,P (2,-2),代入y=-x ,可知点P 在射线OC 上,故A 符合题意;B 、当x=2,y=-2时,P (2,-3),代入y=-x ,可知点P 不在射线OC 上,故B 不符合题意;C 、当x=2,y=2时,P (2,1),代入y=-x ,可知点P 不在射线OC 上,故C 不符合题意; D/当x=2,y=3时,P (2,2),代入y=-x ,可知点P 不在射线OC 上,故D 不符合题意; 故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确的理解题意是解题的关键.4.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得: 227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.5.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫-⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-B 解析:B【分析】确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx中,得k=6(8)-=34-. 【详解】 ∵点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭, ∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6,∴点A '的坐标为(-8,6),∵点A '落在直线y kx =,∴6= -8k ,解得k=34-, 故选:B. .【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键. 6.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<B解析:B【分析】 由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.7.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限D 解析:D【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可.【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫ ⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意.故选:D .【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键. 8.函数2y x=+()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则∵00x x -≥⎧⎪⎨-≠⎪⎩,解得:0x <, ∴20x >,10x >-, ∴210y x x=+>-, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.9.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b >A解析:A【分析】 根据题意和题目中函数图象,可以延长,得到该函数图象经过的象限,从而可以得到k 、b 的正负情况,本题得以解决.【详解】解:由图象可得,该函数经过第一、三、四象限,0k ∴>,0b <,故选:A .【点睛】本题考查了一次函数的应用,一次函数的图象与系数的关系,解答本题的关键是明确题意,利用数形结合思想解答.10.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( )A .4B .1C .2D .-5C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】 11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.二、填空题11.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断ab 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断cd 的正负即可得出结论;③以解析:②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断a 、b 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断c 、d 的正负,即可得出结论;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④由两个一次函数图象的交点坐标的横坐标为1可得出结论;⑤由一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),可得d c->-1,解此不等式即可作出判断. 【详解】解:①由图象可得:一次函数y =ax +b 图象经过一、二、四象限,∴a <0,b >0,故①错误;②由图象可得:一次函数y =cx +d 图象经过一、二、三象限,∴c >0,d >0,∴ac <0,故②正确;③由图象可得:当x >1时,一次函数y =ax +b 图象在y =cx +d 的图象下方, ∴ax +b <cx +d ,故③错误;④∵一次函数y=ax+b与y=cx+d的图象的交点P的横坐标为1,∴a+b=c+d,故④正确;⑤∵一次函数y=cx+d图象与x轴的交点坐标为(dc-,0),且dc->-1,c>0,∴c>d.故⑤正确.故答案为:②④⑤.【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键.12.某生物小组观察一植物生长,得到植物高度y(位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴)请你算一下,该植物的最大高度是________厘米.16【分析】根据平行线间的距离相等可知50天后植物的高度不变也就是停止长高设直线AC的解析式为y=kx+b(k≠0)然后利用待定系数法求出直线AC的解析式再把x=50代入进行计算即可得解【详解】设直解析:16【分析】根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高,设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC的解析式,再把x=50代入进行计算即可得解.【详解】设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴63012 bk b=⎧⎨+=⎩,解得156kb⎧=⎪⎨⎪=⎩.所以,直线AC的解析式为165y x=+(0≤x≤50),当x=50时,15065y =⨯+=16cm . 答:该植物最高长16cm .【点睛】 本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.13.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.10【分析】根据两条直线平行比例系数k 相同求出k=-1把点代入即可求b 【详解】解:因为一次函数的图象与直线平行所以k=-1把点代入得解得b=10故答案为:10【点睛】本题考查了一次函数图象互相平行时解析:10【分析】根据两条直线平行,比例系数k 相同,求出k=-1,把点(8,2)代入即可求b .【详解】解:因为一次函数y kx b =+的图象与直线1y x =-+平行,所以k=-1,把点(8,2)代入y x b =-+,得28b =-+,解得,b=10,故答案为:10.【点睛】本题考查了一次函数图象互相平行时,比例系数的关系和待定系数法求解析式,解题关键是知道两条直线平行时比例系数k 相同.14.在平面直角坐标系中,直线6y kx =+与x 轴交于点A ,与y 轴交于点B ,若AOB 的面积为12,则k 的值为_________.或【分析】求出AB 点坐标在Rt △AOB 中利用面积构造方程即可解得k 值【详解】由直线与y 轴于B 则则∴直线与x 轴于A 令则∴∴∴∴∴解得:由k≠0符合题意则k 的值为或故答案为:或【点睛】本题主要考查了一次 解析:32-或32【分析】 求出A 、B 点坐标,在Rt △AOB 中,利用面积构造方程即可解得k 值.【详解】由直线6y kx =+与y 轴于B ,则0x =,则6y =,∴(0,6)B ,直线6y kx =+与x 轴于A ,令0y =,则60kx +=,6x k=-, ∴6,0A k ⎛⎫- ⎪⎝⎭, ∴6OA k =-,6OB =, ∴1122AOB S OA OB =⋅=△, ∴64k -=, ∴64k-=±, 解得:132k =-,232k =, 由k≠0,符合题意, 则k 的值为32-或32. 故答案为:32-或32. 【点睛】本题主要考查了一次函数问题,掌握图象上点的坐标特征以及利用面积构造方程,会解方程是解题关键.15.已知y =kx+b ,当﹣1≤x≤4时,3≤y≤6,则k ,b 的值分别是_____.k=b=或k=b=【分析】分 k >0和 k <0两种情况结合一次函数的增减性可得到关于 k b 的方程组求解即可【详解】解:当 k >0时此函数是增函数∵当﹣1≤x≤4时3≤y≤6∴当x =﹣1时解析:k =35,b =185或k =35-,b=275. 【分析】分 k >0和 k <0两种情况,结合一次函数的增减性,可得到关于 k 、 b 的方程组,求解即可.【详解】解:当 k >0时,此函数是增函数,∵当﹣1≤x≤4时,3≤y≤6,∴当x =﹣1时,y =3;当x =4时,y =6,∴346k b k b -+=⎧⎨+=⎩ ,解得35185k b ⎧=⎪⎪⎨⎪=⎪⎩; 当k <0时,此函数是减函数,∵当﹣1≤x≤4时,3≤y≤6,∴当x =﹣1时,y =6;当x =4时,y =3,∴643k b k b -+=⎧⎨+=⎩,解得35275k b ⎧=-⎪⎪⎨⎪=⎪⎩, 故答案为:k =35,b =185或k =35-,b=275. 【点睛】本题考查一次函数知识,涉及一次函数的增减性以及求一次函数解析式,属于基础题,熟练掌握一次函数的增减性以及解析式的求法是解决此题的关键.16.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.x =2【分析】交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】∵直线y =x+b 和y =ax ﹣3交于点P (21)∴当x =2时x+b =解析:x =2【分析】交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】∵直线y =x+b 和y =ax ﹣3交于点P (2,1),∴当x =2时,x+b =ax ﹣3=1,∴关于x 的方程x+b =ax ﹣3的解为x =2.故答案为:x =2.【点睛】本题考查了一次函数与二元一次方程(组):熟练掌握交点坐标同时满足两个函数的解析式是解题关键.17.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3.故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k的值不变.18.已知一次函数y=2x+b的图象经过点A(2,y1)和B(﹣1,y2),则y1_____y2(填“>”、“<”或“=”).>【分析】由k=2>0利用一次函数的性质可得出y随x的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k=2>0∴y随x的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k=2>0,利用一次函数的性质可得出y随x的增大而增大,结合2>﹣1即可得出y1>y2.【详解】解:∵k=2>0,∴y随x的增大而增大,又∵2>﹣1,∴y1>y2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k的正负,判断y随x的变化规律是解题关键.,且y随x的增大而减小,则这个一次函数的解19.已知一个一次函数的图象过点(1,2)析式为__________.(只要写出一个)y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b根据一次函数的性质得k<0取k=-1然后把(-12)代入y=-x+b 可求出b【详解】解:设一次函数的解析式为y=kx+b∵y随x的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b,根据一次函数的性质得k<0,取k=-1,然后把(-1,2)代入y=-x+b可求出b.【详解】解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k可取-1,把(-1,2)代入y=-x+b得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.20.平面直角坐标系中,点A坐标为(),将点A沿x轴向左平移a个单位后恰好落在正比例函数y=-的图象上,则a的值为__________.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A坐标为(23)∴将点A沿x轴向左平移a个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a=【分析】根据点的平移规律可得平移后点的坐标是,3),代入y=-计算即可.【详解】解:∵A坐标为3),∴将点A沿x轴向左平移a个单位后得到的点的坐标是-a,3),∵恰好落在正比例函数y=-的图象上,∴)3-=,a解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.设一次函数y1=kx﹣2k(k是常数,且k≠0).(1)若函数y1的图象经过点(﹣1,5),求函数y1的表达式.(2)已知点P(x1,m)和Q(﹣3,n)在函数y1的图象上,若m>n,求x1的取值范围.(3)若一次函数y2=ax+b(a≠0)的图象与y1的图象始终经过同一定点,探究实数a,b满足的关系式.解析:(1)151033y x =-+;(2)当k <0时,x 1<﹣3;当k >0时,x 1>﹣3;(3)2a +b =0.【分析】(1)将点(﹣1,5)代入y 1=kx ﹣2k ,求得k 值,即可得出函数解析式;(2)根据一次函数的性质,由k 值判断函数自变量的大小,即可得出结论;(3)根据一次函数y 1=kx ﹣2k 得y 1=k (x ﹣2),可得函数图象经过的定点为(2,0),再将定点坐标代入y 2=ax+b 即可求出实数a ,b 满足的关系式.【详解】解:(1)∵函数y 1的图象经过点(﹣1,5),∴5=﹣k ﹣2k ,解得k =53-, 函数y 1的表达式151033y x =-+; (2)当k <0时,若m >n ,则x 1<﹣3;当k >0时,若m >n ,则x 1>﹣3;(3)∵y 1=kx ﹣2k =k (x ﹣2),∴函数y 1的图象经过定点(2,0),当y 2=ax +b 经过(2,0)时,0=2a +b ,即2a +b =0.【点睛】本题考查了一次函数图象与性质,掌握一次函数的图象与性质并能准确理解题意进行解答是解题的关键.22.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM ,(1)求抛物线对应的函数表达式;(2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?解析:(1)21y x =-;(2)△ABM 为直角三角形,见解析;(3)向下平移6个单位过点(-2,-3)【分析】(1)将y=0,x=2,分别代入直线解析式求出x 、y 的值,即求得点A 、B 的坐标,再利用待定系数法即可求解抛物线解析式;(2)令x=0,代入抛物线解析式求得M 坐标,利用两点间的距离公式求得AB 、AM 、BM ,再利用勾股定理的逆定理即可判定△ABM 为直角三角形;(3)设抛物线2=1y x -平移后的解析式为y=x 2-1+m ,将点(-2,-3)代入上式,得到关于m 的方程,解方程即可得出结论.【详解】(1)当y=0时,有x+1=0,则x=-1.∴A (-1,0),当x=2时,y=2+1=3,∴B (2,3),将A ,B 两点代入2=y ax c +中,得0=34a c a c +⎧⎨=+⎩,解得=11a c ⎧⎨=-⎩, ∴抛物线的解析式为2=1y x -.(2)三角形ABM 为直角三角形,理由如下:在抛物线中,当x=0时,y=-1,∴M (0,-1),又∵A (-1,0),B (2,3), ∴=32AB ,=2AM =25BM ,又∵22220AM AB BM +==,∴三角形ABM 为直角三角形.(3)设抛物线2=1y x -沿y 轴平移后的解析式为2=1y x m -+,将点(-2,-3)代入上式,得m=-6,则向下平移6个单位过点(-2,-3).【点睛】本题考查待定系数法求解析式,一次函数图象上的坐标特征、两点间的距离公式及勾股定理的逆定理,解题的关键是(1)求出A 、B 的坐标,(2)求出求得AB 、AM 、BM 的长,(3)正确写出平移后的抛物线解析式,难度适中.23.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y (千米)与甲出发时间x (小时)的函数关系如图所示.(1)求甲、乙两人的速度.(2)求OC 和BD 的函数关系式.(3)求学校和博物馆之间的距离.解析:(1)甲、乙的速度分别是80千米/小时,40千米/小时;(2)OC 的函数关系式为:80y x =,BD 的函数关系式为:4030y x =+;(3)140千米.【分析】(1)根据函数图像,甲0.75小时行驶60千米,计算得出甲的速度;结合题意,乙行驶60千米时,所用总时间为:(0.750.75)+小时,计算得出乙的速度.(2)观察函数图像,根据A 点坐标,计算得出OC 的函数解析式;根据题意得出A 、B 两点的坐标,用待定系数法求出BD 的函数解析式.(3)设甲行驶时间为x 小时,根据甲乙两人行驶路程相等,列出一元一次方程,计算得出行驶时间,根据“路程=速度×时间”计算得出学校和博物馆之间的距离.【详解】解:(1)甲的速度:600.7580÷=(千米/小时),从8:00到8:45经过0.75小时,乙的速度为:60(0.750.75)40÷+=(千米/小时),甲、乙的速度分别是80千米/小时,40千米/小时.(2)∵根据题意得:A 点坐标为(0.75,60),当乙运动了45分钟后即0.75小时,距离学校:400.7530⨯=(千米),∴B 点坐标为(0,30).∵设直线OC 的函数关系式为1y k x =,将点A 代入得:1600.75k =,解得:180k =,∴直线OC 的函数关系式为80y x =,∵设BD 的函数关系式为2y k x b =+,将A 、B 两点的坐标值代入得:220.7560030k b k b +=⎧⎨⨯+=⎩,解得:24030k b =⎧⎨=⎩, ∴直线BD 的函数关系式为:4030y x =+.(3)∵设甲的行驶时间为x 小时,则乙所用的时间为:0.751 1.75x x ++=+(小时),列方程为:()8040 1.75x x =+ 解得:74x =, 7801404⨯=(千米). ∴学校和博物馆之间的距离是140千米.【点睛】本题考查一次函数的实际应用,从函数图像中获取相关信息是解题关键.24.如图,A ,B ,C 为三个超市,在A 通往C 的道路(粗实线部分)上有一D 点,D 与B 有道路(细实线部分)相通,A 与D ,D 与C ,D 与B 之间的路程分别为25km ,10km ,5km ,现计划在A 通往C 的道路上建一个配货中心H ,每天有一辆货车只为这三个超市送货,该货车每天从H 出发,单独为A 送货1次,为B 送货1次,为C 送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H ,设H 到A 的路程为km x ,这辆货车每天行驶的路程为km y .(1)用含的代数式填空:当025x ≤≤时:货车从H 到A 往返1次的路程为2km x ,①货车从H 到B 往返1次的路程为_______km .②货车从H 到C 往返2次的路程为_______km ,当2535x <≤时,这辆货车每天行驶的路程y =__________.(2)求y 与x 之间的关系式;(3)配货中心H 建在哪段,这辆货车每天行驶的路程最短?最短路程是多少?(直接写出结果,不必写出解答过程)解析:(1)①602x -;②1404x -;100;(2)2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩;(3)建在CD 段,100km .【分析】(1)根据当0≤x ≤25时,结合图象分别得出货车从H 到A ,B ,C 的距离,进而得出y 与x 的函数关系,再利用当25<x ≤35时,分别得出从H 到A ,B ,C 的距离,即可得出y =100;(2)利用(1)的结论可得y 与x 的函数关系;(3)根据一次函数的性质解答即可.【详解】解:(1)①如图1,当025x ≤≤时,货车从H 到A 往返1次路程为22km AH S x =货车从H 到B 往返1次的路程为:()22(255)HD DB S S x +=-+2(30)x =-602x =-;②货车从H 到C 往返2次的路程为:()44(2510)DH CD S S x +=-+4(35)x =-1404x =-,如图2,25DH S x =-,25,10(25)35DH CH S x S x x =-=--=-,∴2535x <≤时,货车从H 到A 往返1次路程为:2x ,货车从H 到B 往返1次的路程为:2(525)240x x +-=-,货车从H 到C 往返2次的路程为:4(35)1404x x -=-,∴这辆货车每天行驶的路程为:22401404100km y x x x =+-+-=.(2)由(1)可得:025x ≤≤时,26021404y x x x =+-+-2004x =-,2535x <≤时,100y =,∴2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩. (3)由②得,025x ≤≤时,4200y x =-+,2535x <≤时,100y =,如图所示,由图象可知,配货中心建在CD 段时,这辆货车每天行驶的路程最短为100km .【点睛】此题主要考查了一次函数的应用,利用已知分别表示出从P 到A ,B ,C ,D 距离是解题关键.25.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x1 2 3 4 温度()y ℃ 55 90 125 160 y x (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少?解析:(1)3520y x =+;(2)300;(3)相应的深度是14km .【分析】(1)根据图表可知,深度每增加1km ,温度增加35℃,据此直接直接写出y 与x 之间的关系式即可;(2)根据(1)所得关系式,令x=8,求得y 的值即可;(3)根据(1)所得关系式,令y=510,求得x 的值即可.【详解】(1)由图表可知,深度每增加1km ,温度增加35℃,5535(1)y x ∴=+-553535x =+-3520x =+,即y 与x 之间的关系式为:3520y x =+;(2)由3520y x =+令8x =时,则35820300y =⨯+=;(3)由3520y x =+令510y =时,则3520510x +=,解得14x =故相应的深度是14km .【点睛】本题主要考查一次函数的应用,明确题意、正确列出函数解析式成为解答本题的关键. 26.小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地走去,1y ,2y 分别表示小东、小明离B 地的距离()y km 与所用时间()x h 的关系,如图所示,根据图象提供的信息,回答下列问题:(1)试用文字说明交点P 所表示的实际意义;(2)求1y 与x 的函数关系式;(3)求小明到达A 地所需的时间.解析:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇;(2)1520y x =-+;(3)263h 【分析】(1)根据相遇问题的等量关系结合函数图象的表示的量,可知点P 横纵坐标表示两人相遇时的时间和两人离B 地的距离;(2)代入两个已知点坐标列出方程组,用待定系数法求出解析式即可;(3)根据时间等于路程除以速度,用小明走的路程除以小明走的速度即可得到结果.【详解】解:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇.(2)设1y 与x 的函数关系式为1y kx b =+(k ,b 为常数,且0k ≠),因为函数图象经过点()020,,()40,,所以20b =,①40k b +=,②解得5k =- 所以1y 与x 的函数关系式为1520y x =-+.(3)小明的速度为()7.5 2.53/km h ÷=,小明到达A 地所需的时间为()220363h ÷=. 【点睛】本题考查一次函数的应用、待定系数法求解析式和读懂函数图象的能力,熟练运用相遇问题的数量关系解决相关问题是解题的关键.27.某水果生产基地销售苹果,提供以下两种购买方式供客户选择:方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克. 方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元)﹒(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式.(备注:按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱.解析:(1)12003y x =+;(2)当15002400x <<时,选择方案二省钱;当 2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【分析】(1)根据题意即可得出y (元)与x (千克)之间的函数表达式;(2)设方式2购买时所需费用记作y 2元,求出y 2与x (千克)之间的函数表达式,结合(1)的结论解答即可;【详解】解:(1)根据题意得:12003y x =+.(2)方案一:112003y x =+,方案二:2 3.5y x =,当12y y >,12003 3.5,x x +>2400,x <当12,12003 3.5y y x x =+=,2400,x =当12,12003 3.5y y x x <+>2400,x >∴当15002400x <<时,选择方案二省钱;当2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【点睛】此题主要考查一次函数的应用;得到两种方案总付费的等量关系是解决本题的关键. 28.已知一次函数3y kx =-的图象经过点()2,1A .。

最新人教版数学八年级下册第十九章测试题(附答案解析)

最新人教版数学八年级下册第十九章测试题(附答案解析)

人教版数学八年级下册第十九章测试题姓名:分数:一、选择题1.下列函数关系式:①y=﹣x;②y=2x+11;③y=x2+x+1;④.其中一次函数的个数是()A.1个B.2个C.3个D.4个2.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.3.函数值y随x的增大而减小的是()A.y=1+x B.y=x﹣1 C.y=﹣x+1 D.y=﹣2+3x4.直线y=kx+b经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()A.y=2x+3 B.y=﹣x+2 C.y=3x+2 D.y=x+15.下列直线不经过第二象限的是()A.y=﹣3x+1 B.y=3x+2 C.y=x﹣1 D.y=﹣2x﹣16.下列函数(1)y=πx,(2)y=2x﹣1,(3)y=,(4)y=3﹣3x,(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个7.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较8.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是()A .B .C .D .二、填空题9.已知一个正比例函数的图象经过点(﹣2,4),则这个正比例函数的表达式是.10.已知一次函数y=kx+5的图象过点P(﹣1,2),则k=.11.已知函数y=3x﹣6,当x=0时,y=;当y=0时,x=.12.已知一直线经过原点和P(﹣3,2),则该直线的解析式为.13.长沙向北京打长途电话,设通话时间x(分),需付电话费y(元),通话3分以内话费为3.6元,请你根据如图所示的y随x的变化的图象,找出通话5分钟需付电话费元.14.写出同时具备下列两个条件的一次函数表达式(写出一个即可).(1)y随着x的增大而减小;(2)图象经过点(1,﹣3).15.某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表:质量x(千克)1234…售价y(元)3.60+0.207.20+0.2010.80+0.2014.40+0.2…由上表得y与x之间的关系式是.。

八年级数学(下)第十九章《一次函数》测试卷含答案

八年级数学(下)第十九章《一次函数》测试卷含答案

八年级数学(下)第十九章《一次函数》测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2 2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.4.在关于的正比例函数中,随的增大而减小,则的取值范围是( ) A.B.C.D.5.已知两点M (4,2),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为( ) A. (2,0) B. (2.5,0) C. (3,0) D. (4,0)6.如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx ﹣2的解集是( )A. 1<x <2B. 0<x <2C. 0<x <1D. 1<x7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 58.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A. B.C. D.10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y 1(km )和y 2(km )分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t (h )之间的关系,如图所示.下列说法:①折线段OAB 是表示小聪的函数图象y 1,线段OC 是表示小明的函数图象y 2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h ,其中不正确的个数为( )A. 0个B. 1个C. 2个D. 3个二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.12.如果点在直线上,则的值是__________.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.18.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B 端,且小明到达B 端后停止运动,小亮匀速跑步到达A 端后,立即按原速返回B 端(忽略调头时间),回到B 端后停止运动,已知两人相距的路程S (千米)与小亮出发时间t (秒)之间的关系如图所示,则当小明到达B 端后,经过_________秒,小亮回到B 端.19.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?22.(7分)已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=-1时,求y的值;(3)当y=0时,求x的值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x +2≥0,即x ≥2, 故选A.2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 【答案】A故选A.3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.【答案】A【解析】由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A . 4.在关于的正比例函数中,随的增大而减小,则的取值范围是( )A. B. C. D.【答案】A【解析】∵随的增大而减小,∴∴.故选A. 学科#网5.已知两点M(4,2),N(1,1),点P是x轴上一动点,若使PM+PN最短,则点P为()A. (2,0)B. (2.5,0)C. (3,0)D. (4,0)【答案】A6.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A. 1<x<2B. 0<x<2C. 0<x<1D. 1<x【答案】A【解析】由于直线y1=kx+b过点A(0,2),P(1,m),故选A .7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 5 【答案】A【解析】∵x=3>1, ∴y=-x+5=-3+5=2. 故选A. 学!科网8.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处 【答案】D【解析】观察图象可得:当R 在PN 上运动时,面积不断在增大,当点R 运动到PQ 上时,△MNR 的面积y 达到最大,且保持一段时间不变;到Q 点以后,面积y 开始减小;故当x=9时,点R 应运动到Q 处.故选D . 9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M→→→运动,则APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A. B.C. D.【答案】A10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】①小聪离甲地的距离先增加至最大然后减小直至为0,小明离乙地的距离逐渐增大直至最大30千故选B.二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.【答案】<<【解析】∵经过二、三、四象限,∴且12.如果点在直线上,则的值是__________.【答案】-3【解析】∵点在直线上,∴,解得.故答案为:-3.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.【答案】【解析】∵在中,当x=0时,y=4;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.【答案】【解析】设一次函数解析式∵与平行,∴,∴.∵一次函数经过,∴,,∴.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.【答案】4 {2 xy=-=-16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.【答案】6.【解析】小红家与学校的距离为6km,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h,故答案为:6.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.【答案】≠-2 =218.小明和小亮分别从同一直线跑道A、B 两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_________秒,小亮回到B端.【答案】45【解析】由题意得:设小明的速度为xm/s,小亮的速度为ym/s,则85 {{53103x yxyx y+==⇒= +=小明到达B端,所需时间为36072s 5=()小亮往返需要的总时间为7204531175-⨯=,则117-72=45(s)故答案:45.19.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).【答案】①③④⑤20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.【答案】)3,0 11333,2n n --⎫⎪⎪⎝⎭【解析】根据等腰三角形的三线合一的性质和30°角直角三角形的性质可求得131,22A ⎛⎫⎪ ⎪⎝⎭,)23,0A ,再由等腰三角形的三线合一的性质和30°角直角三角形的性质可求得3333,22A ⎛⎫⎪ ⎪⎝⎭, 5939,22A ⎛⎫⎪ ⎪⎝⎭,由此可得A 2n-1的坐标11333,22n n --⎛⎫⋅ ⎪ ⎪⎝⎭.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k 为何值时,y 随x 的增大而减小? (2)k 为何值时,它的图象经过原点? 【答案】(1)k >4;(2)k=-4. 【解析】考点:一次函数图象与系数的关系.22.(7分)已知y+3与x+2成正比例,且当x =3时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =-1时,求y 的值; (3)当y =0时,求x 的值. 【答案】(1)y=2x+1;(2)-1;(3)12-. 【解析】试题分析:(1)已知y+3与x+2成正比例,所以,设y+3=k( x+2),把x =3,y =7代入求出k 的值,即可写出y 与x 之间的函数关系式,(2)把x =-1代入y 与x 之间的函数关系式,求出y 的值. (3)把y =0代入y 与x 之间的函数关系式,求出x 的值.试题解析:(1)设y+3=k( x+2),把x =3,y =7代入得:7+3=(3+2)k,解得k=2,∴y+3=2(x+2),∴y=2x+1; (2)当x=-1时,y=2x+1=2×(-1)+1=-1;(3)当y=0时,有0=2x+1,解得x=12 .考点:1.正比例函数关系式.2.函数值和自变量值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.【答案】(1)m=2,一次函数解析式为y=2x﹣2;(2)S△AOB=2;(3)自变量x的取值范围是x>2.学科&网【解析】(3)自变量x的取值范围是x>2.考点:两条直线相交或平行问题24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.【答案】见解析【解析】考点:1、一次函数性质的应用;2、分类思想.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【答案】(1)1000;(2)y=300x-5000;(3)40.【解析】试题分析::(1)由图可知第20天的总用水量为1000m3;(2)设y=kx+b.把已知坐标代入解析式可求解;(3)令y=7000代入方程可得.试题解析:(1)第20天的总用水量为1000米3(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴100020400030k bk b+⎨⎩+⎧==,解得,3005000kb-⎧⎨⎩==,∴y与x之间的函数关系式为:y=300x-5000(3)当y=7000时,有7000=300x-5000,解得x=40;种植时间为40天时,总用水量达到7000米3考点:一次函数的应用.26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B 出发后几小时,两人相遇?【答案】(1)1,10 km/h;(2)1.8.【解析】考点:1.一次函数的应用;2. 待定系数法的应用;3.直线上点的坐标与方程的关系.27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.【答案】当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.【解析】考点:一次函数的应用.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段C D所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.【答案】(1)900;(2)y=75x(6≤x≤12);(3)0.75,6.75.【解析】考点:1、待定系数法;2、一次函数的应用.21。

【八年级】八年级数学下《第十九章一次函数》检测试题(人教版含答案)

【八年级】八年级数学下《第十九章一次函数》检测试题(人教版含答案)

【八年级】八年级数学下《第十九章一次函数》检测试题(人教版含答案)第十九章《一次函数》检测题一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.以下函数中,就是一次函数的存有( )①y=x;②y=3x+1;③y=;④y=kx-2.a.1个b.2个c.3个d.4个2.在函数y=√x/(x-1)中,自变量x的取值范围是()a.x≥1b.x≤1且x≠0c.x≥0且x≠1d.x≠0且x≠13.下列图象中,y不是x的函数的是()a.b.c.d.4.下面关于函数的三种表示方法叙述错误的是()a.用图象法则表示函数关系,可以直观地窥见因变量如何随着自变量而变化b.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值c.用公式法则表示函数关系,可以便利地排序函数值d.任何函数关系都可以用上述三种方法来表示5.甲、乙两车从a地驶往b地,并以各自的速度匀速高速行驶,甲车比乙车早高速行驶2h,并且甲车途中歇息了0.5h,例如图就是甲乙两车高速行驶的距离y(km)与时间x(h)的函数图象.则以下结论:(1)a=40,m=1;(2)乙的速度就是80km/h;(3)甲比乙迟h到达b地;(4)乙车高速行驶小时或小时,两车恰好距离50km.正确的个数是()a.1b.2c.3d.46.若函数y=(k+1)x+k^2-1是正比例函数,则k的值为()a.1b.0c.±1d.-17.一次函数y=2x-6的图象经过()a.第一、二、三象限b.第二、三、四象限c.第一、二、四象限d.第一、三、四象限8.例如图,函数y=2x和y=ax+4的图象平行于点a(m,3),则不等式2x<ax+4的边值问题为【】a.x<3/2b.x<3c.x>-3/2d.x>39.若直线y=x+2k+1与直线y=1/2x+2的交点在第一象限,则k的值域范围就是()a.-5/2<k<1/2b.-1/6<k<5/2c.k>5/2d.k>-5/210.体育课上,20人一组展开足球比赛,每人箭点球5次,未知某一组的进球总数为49个,进球情况记录如下表中,其中入2个球的存有x人,入3个球的存有y人,若(x,y)恰好就是两条直线的交点座标,则这两条直线的解析式就是()a.y=x+9与y=2/3x+22/3b.y=-x+9与y=2/3x+22/3c.y=-x+9与y=-2/3x+22/3d.y=x+9与y=-2/3x+22/3二、填空题(每小题3分,共15分)11.未知函数y=?x+3,当x=_____时,函数值0.12.已知,一次函数y=kx+b,当2≤x≤5时,?3≤y≤6.则2k+b的值是______.13.未知函数y=kx+b的部分函数值如表中右图,则关于x的方程kx+b+3=0的解法_____.x…?2?101…y…531?1…14.一次函数y=x+b(b<0)与y=x?1图象之间的距离等于3,则b的值为_____.15.例如图,在平面直角坐标系则中,直线y=x+2交x轴于点a,交y轴于点a1,若图中阴影部分的三角形都就是全等直角三角形,则从左往右第4个阴影三角形的面积就是_____,第2021个阴影三角形的面积就是_____.三、解答题(共55分)16.(本题10分后)未知一次函数.(1)若函数图象经过原点,求的值;(2)若随其的减小而减小,谋的值域范围.17.(本题10分)已知y+4与x成正比例,且x=6时,y=8.(1)算出y与x之间的函数关系式;(2)在所给的直角坐标系(如图)中画出函数的图象;(3)轻易写下当-4≤y≤0时,自变量x的值域范围.18.(本题11分)某商场计划销售a,b两种型号的商品,经调查,用1500元采购a 型商品的件数是用600元采购b型商品的件数的2倍,一件a型商品的进价比一件b型商品的进价多30元.(1)谋一件a,b型商品的市场价分别为多少元?(2)若该商场购进a,b型商品共100件进行试销,其中a型商品的件数不大于b型的件数,已知a型商品的售价为200元/件,b型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?19.(本题12分后)例如图,直线l1:y1=?x+m与y轴处设点a(0,6),直线l2:y=kx+1分别与x轴处设点b(?2,0),与y轴处设点c,两条直线交点记作d.(1)m= ,k= ;(2)谋两直线交点d的座标;(3)根据图象直接写出y1<y2时自变量x的取值范围.20.(本题12分后)某农产品生产基地斩获红薯192吨,准备工作运给甲、乙两地的承包商展开分销.该基地用大、大两种货车共18辆恰好能够一次性运完这批红薯,未知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表中:车型运费运往甲地/(元/辆)运往乙地/(元/辆)大货车720800大货车500650(1)求这两种货车各用多少辆;(2)如果精心安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,谋w关于a的函数关系式;(2)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案1.b【解析】①②属一次函数;③自变量x在分母上,故不是一次函数;④当k=0时,就不是一次函数,故一共存有2个一次函数.故选b.2.c【解析】分析:根据分式和二次根式有意义的条件进行计算即可.揭秘:由题意得:x≥0且x?1≠0.Champsaur:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故挑选c.3.b【解析】【分析】函数存有两个变量x与y,对于x的每一个确认的值,y都存有唯一的值与其对应,融合选项即可做出推论.【详解】a、c、d对于x的每一个确定的值,y都有唯一的值与其对应,符合函数的定义,只有b选项对于x的每一个确认的值,存有两个y与之对应,不合乎函数的定义,故选b.4.d【解析】分析:根据函数的表示方法的优缺点分析解答即可.揭秘:a.用图象法则表示函数关系,可以直观地窥见因变量如何随着自变量而变化,恰当;b.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值,正确;c.用公式法则表示函数关系,可以便利地排序函数值,恰当;d.并不是任何函数关系都可以用上述三种方法来表示,错误.故挑选d.5.c【解析】(1)由题意,得m=1.5?0.5=1.120÷(3.5?0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5?2)=80km/h(千米/小时),故(2)恰当;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得Champsaur:∴y=40x?20,根据图形获知:甲、乙两车中先抵达b地的就是乙车,把y=260代入y=40x?20得,x=7,∵乙车的高速行驶速度:80km/h,∴乙车的行驶260km需要260÷80=3.25h,∴7?(2+3.25)=h,∴甲比乙迟h到达b地,故(3)正确;(4)当1.5<x≤7时,y=40x?20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得Champsaur:∴y=80x?160.当40x?20?50=80x?160时,解得:x=.当40x?20+50=80x?160时,解得:x=.∴?2=,?2=.所以乙车行驶小时或小时,两车恰好相距50km,故(4)错误.故挑选c.6.a【解析】分析:先根据正比例函数的定义列举关于k的方程组,算出k的值即可.详解:∵函数y=(k+1)x+k2?1是正比例函数,∴{?(&k+1≠0@&k^2-1=0),解得:k=1.故挑选a.7.d【解析】分析:先根据一次函数的性质推论出来此函数图象所经过的象限,再展开答疑即可.详解:∵一次函数y=2x?6中,k=2>0,∴此函数图象经过一、三象限.∵b=?6<0,∴此函数图象与y轴正数半轴平行,∴此一次函数的图象经过一、三、四象限.故挑选d.8.a【解析】分析:先根据函数y=2x和y=ax+4的图象平行于点a(m,3),算出m的值,从而得出结论点a的座标,再根据函数的图象即可得出结论不等式2x<ax+4的边值问题.详解:∵函数y=2x和y=ax+4的图象相交于点a(m,3),∴3=2m,m=3/2,∴点a的座标就是(3/2,3),∴不等式2x<ax+4的解集为x<3/2;故挑选a.9.a【解析】分析:由两直线的解析式共同组成方程组,求出方程组的求解即为交点座标,再根据交点在第一象限确认k的值域范围.详解:由函数的解析式共同组成方程组可以得:{?(y=[emailprotected]=-1/2x+2)求解方程组得:{?(x=-4/3[emailprotected]=2/3k+5/3)又因为它们的交点在第一象限,所以{?(-4/3k+2/3>[emailprotected]/3k+5/3>0)Champsaur-5/2<k<1/2.故选a.10.c【解析】根据进球总数为49个得:2x+3y=49-5-3×4-2×5=22,整理得:y=-2/3x+22/3,∵20人一组展开足球比赛,∴1+5+x+y+3+2=20,整理得:y=-x+9,故挑选c.11.3【解析】分析:令y=0获得关于x的方程,从而可以求出x的值.详解:当y=0时,x+3=0,Champsaur:x=3.故答案为:3.12.?3或6.【解析】解:因为一次函数y=kx+b,当2≤x≤5时,?3≤y≤6.①当k>0,把(2,?3)和(5,6)代入函数解析式y=kx+b,可以得:{?(&2k+b=-3@&5k+b=6),Champsaur:{?(&k=3@&b=-9),所以2k+b=6?9=?3;②当k<0,把(2,6)和(5,?3)代入函数解析式y=kx+b。

人教版八年级数学下册第十九章测试题(附答案)

人教版八年级数学下册第十九章测试题(附答案)

人教版八年级数学下册第十九章测试题(附答案)一、单选题1.下列各图中,能表示y是x的函数的是()A. B. C. D.2.在函数中,自变量的取值范围是( )A. B. C. D.3.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是()A. B. C. D.4.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有( )(1)通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A. 1个B. 2个C. 3个D. 4个5.如图,反比例函数在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3.直线AB与x 轴交于点C,则△AOC的面积为()A. 8B. 10C. 12D. 246.已知正比例函数y=(3k﹣1)x,若y随x的增大而增大,则k的取值范围是()A. k<0B. k>0C. k<D. k>7.直线向右平移得到,平移了( )个单位长度.A. -2B. -1C. 1D. 28.若m<0, n>0, 则一次函数y=mx+n的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A. 修车时间为15分钟B. 学校离家的距离为2000米C. 到达学校时共用时间20分钟D. 自行车发生故障时离家距离为1000米10.一次函数y1=k1x+b1与y2=k2x+b2的图像如图所示,则下列结论中正确的个数为( ) (1)、b2>0, (2) k1<k2;(3) 当x<5时,y1>y2。

人教版八年级数学下册第十九章单元自测试题及答案

人教版八年级数学下册第十九章单元自测试题及答案

人教版八年级数学下册第十九章单元自测试题及答案一.单选题1.一本笔记本5元,买x 本共付y 元,则变量是( )A .5B .5和xC .xD .x 和y2.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .3.下列各点中,在一次函数21y x =-+的图像上的是( )A .()11-,B .()01,C .()22,D .()23-,4.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <5.函数y =的自变量x 的取值范围是( )A .1x >-B .1x ≥-C .或0x ≠D .且6.某地出租车计费方式如下:3km 以内只收起步价5元,超过3km 的除收起步价外,每超出1km 另加收1元;不足1km 的按1km 计费.则能反映该地出租车行驶路程 x (km)与所收费用 y (元)之间的函数关系的图象是( )A .B.1x ≥-1x ≥-0x≠C .D .7.已知正比例函数y kx =的图象经过点(24)-,,如果(1)A a ,和(1)B b -,在该函数的图象上,那么a 和b 的大小关系是( )A .a b≥B .a b>C .a b≤D .a b<8.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,9.如图,函数y =2x 和y =ax+5的图像交于点A(m,3),则不等式2x <ax+5的解集是( )A .x <32B .x <3C .x>D .x>310.如图,欣欣妈妈在超市购买某种水果所付金额y(元)与购买x(千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省( )元.A .4B .3C .2D .1二.填空题11.若函数y =,则函数x 的取值范围是 .12.平面直角坐标系中,点(13)(11)(3)A B C a --,,,,,在同一条直线上,则a 的值为 .13.如图,直线3y x =和2y kx =+相交于点12P b ⎛⎫ ⎪⎝⎭,,则不等式32x kx ≥+的解集为 .14.小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时,他的爸爸以每分32钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了3分钟后沿原路按原速骑车返回.设他们出发后经过t(分)时,小明与家之间的距离为 1s (米),小明爸爸与家之间的距离为 2s (米),图中折线OABD.线段EF 分别表示 . 与t 之间的函数关系的图象.小明从家出发,经过 分钟在返回途中追上爸爸.三.解答题15.如图,在靠墙(墙长8m)的地方围建一个矩形的养鸡场,另外三边用栅栏围成,如果栅栏总长为32m,求鸡场的一边y(m)与另一边x(m)的函数关系式,并求出自变量的取值范围.16.已知A.B 两地相距30km,小明以6km/h 的速度从A 步行到B 地的距离为y km,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数;(2)写出该函数自变量的取值范围.17.一次函数y=kx+b,当x=1时,y=5;当x=-1时,y=1.求k 和b 的值.18.由于灯管老化,现某学校要购进A.B 两种节能灯管320只,A.B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时,可使所付金额最少?最少为多少元?19.一辆轿车在高速公路上匀速行使,油箱存油量Q(升)与行使的路程S(km)成一次函数关系.若行使100km 时,油箱存油43.5升,当行使300km 时,油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S 的取值范围.四.综合题20.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.1s 2s(1)写出买地砖需要的钱数y(元)与m(米)的函数关系式 .(2)计算当m =3时,地砖的费用.21.学校组织暑期夏令营,学校联系了报价均为每人200元的两家旅行社,经协商,甲旅行社的优惠条件是:全部师生7.5折优惠;乙旅行社的优惠条件是:可免去一位老师的费用,其余师生8折优惠.(1)分别写出两家旅行社所需的费用y(元)与师生人数x(人)的函数关系式;(2)当师生人数是多少时,甲旅行社比乙旅行社更便宜.22.将正比例函数的图象平移后经过点()14,.(1)求平移后的函数表达式;(2)求平移后函数的图象与坐标轴围成的三角形的面积.23.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量千克与每平方米种植的株数构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求关于的函数表达式;(2)每平方米种植多少株时,能获得12.5kg 的产量?3y x =y x y x答案解析部分1.【答案】D【解析】【解答】解:一本笔记本的单价是5元不变的,因此5是常量,而购买的本数x,总费用y是变化的量,因此x和y是变量,故答案为:D.【分析】结合题意,利用变量的定义求解即可.2.【答案】D【解析】【解答】解:A.对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以y不是x的函数,故A不符合题意;B.对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以y不是x的函数,故B不符合题意;C.对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以y不是x的函数,故C不符合题意;D.对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以y是x的函数,故D符合题意;故答案为:D.【分析】根据函数的定义及函数的图象逐项判断即可.3.【答案】B【解析】【解答】解:A.∵当x=-1时,2(1)13y=-⨯-+=,∴点(-1,1)不在此函数的图象上,故本选项不符合题意;B.∵当x=0时,2011y=-⨯+=,∴点(0,1)在此函数的图象上,故本选项符合题意;C.∵当x=2时,2213y=-⨯+=-,∴点(2,2)不在此函数的图象上,故本选项不符合题意;D.∵当x=-2时,2(2)1y=-⨯-+=,∴点(-2,3)不在此函数的图象上,故本选项不符合题意;故答案为:B.【分析】分别将各选项的横坐标代入中求出y值,再对比判断即可.4.【答案】B【解析】【解答】解:由图中可以看出,当x<−3时,kx+b<2,故B符合题意.故答案为:B.【分析】结合函数图象直接求出不等式的解集即可.5.【答案】D【解析】【解答】解:根据题意得:10xx+≥⎧⎨≠⎩,解得:且.故答案为:D.21 y x=-+1x≥-0x≠【分析】先求出,再计算求解即可.6.【答案】D【解析】【解答】由题意得:()()()5035323x y x x x ≤≤⎧⎪=⎨+-=+>⎪⎩,∵每超出1km 另加收1元,不足1km 的按1km 计费,∴D 符合题意.故答案为:D.【分析】根据题意列出函数关系式,结合每超出1km 另加收1元,不足1km 的按1km 计费,判断出函数图象的形状,则可作答.7.【答案】D【解析】【解答】因为点(-2,4)在函数y=kx 的图象上,所以42k =-,解得2k =-,所以函数关系式为2y x =-.因为点(1,a)和点(-1,b)在该函数图象上,所以2a =-,2b =,所以a b <.故答案为:D .【分析】先将(-2,4)代入y=kx 中求出k=-2,即得,然后将(1,a)和点(-1,b)分别代入中求出a.b 的值,比较即得结论.8.【答案】B【解析】【解答】解:A. 将点代入直线得,左边3=,右边2231=-⨯+=-,左边≠右边,等式不成立,所以点不在直线上;B. 将点代入直线得,左边1=-,右边=,左边=右边,等式成立,所以点在直线上;C. 将点代入直线得,左边0=,右边2333=-⨯+=-,左边≠右边,等式不成立,所以点不在直线上;D. 将点代入直线得,左边3=-,右边2033=-⨯+=,左边≠右边,等式不成立,所以点100x x +≥⎧⎨≠⎩2y x =-2y x =-()23,23y x =-+()23,()21-,23y x =-+2231=-⨯+=-()21-,()30,23y x =-+()30,()03-,23y x =-+不在直线上;故答案为:B.【分析】分别将各个选项中的点的坐标代入y=-2x+3中进行验证即可.9.【答案】A【解析】【解答】解:把A(m,3)代入y=2x 得2m=3,解得m=,所以A 点坐标为(,3),当x <时,2x <ax+5.故答案为:A .【分析】把A(m,3)代入y=2x 求出A 点坐标,结合函数图象求出解集.10.【答案】C【解析】【解答】解:设OA 的解析式为,直线AB 的解析为y mx n =+,由函数图象可知:204k =,2044410m n m n =+⎧⎨=+⎩,解得:5k =,44m n =⎧⎨=⎩,∴OA 的解析式为5y x =,直线AB 的解析为44y x =+,把623x =÷=代入中,得5315y =⨯=,∴分2次购买的花费为15230⨯=元;把6x =代入中,得46428y =⨯+=,∴一次购买6千克的花费为28元.∴一次购买比三次购买可节省30282-=元.故答案为:C.【分析】先利用待定系数法求出直线OA 的解析式,再求解即可.11.【答案】x >6()03-,323232y kx =5y x =44y x =+【解析】【解答】解:由题意得:x-6>0,∴x>6.故答案为:x >6.【分析】根据二次根式的被开方数不能为负数及分式的分母不能为0可得x-6>0,求解即可.12.【答案】7【解析】【解答】解:设直线AB 的解析式为:y kx b =+,把(13)(11)A B --,,,代入得,31k bk b =+⎧⎨-=-+⎩,解得21k b =⎧⎨=⎩,∴直线的解析式为21y x =+∵点在同一条直线上,即点(3)C a ,在直线上,把代入得:2317a =⨯+=,∴a 的值为7.故答案为:7【分析】设直线AB 的解析式为:y=kx+b,由题意把A.B 的坐标代入解析式可得关于k.b 的二元一次方程组,解之求出k.b 的值,再把点C 的坐标代入所求解析式计算即可求解.13.【答案】12x ≥【解析】【解答】解:∵直线和相交于点,∴不等式的解集为,故答案为:.【分析】根据不等式可知:直线y=3x 的图象高于或等于直线y=kx+2的图象,观察图象符合题意的是这两个图象的交点的横坐标右边的值即为不等式的解集.14.【答案】653【解析】【解答】解:由题意得:B(13,2400),D(23,0),F(25,0),E(0,2400)设直线BD,EF 的关系式分别为 111s k t b =+ , 222s k t b =+把B(13,2400),D(23,0),F(25,0),E(0,2400)代入相应的关系式得:AB (13)(11)(3)A B C a --,,,,,AB (3)C a ,21y x =+3y x =2y kx =+12P b ⎛⎫ ⎪⎝⎭,32x kx ≥+12x ≥12x ≥1111132400230k b k b +=⎧⎨+=⎩, , 2222502400k b b +=⎧⎨=⎩,解得: 112405520k b =-⎧⎨=⎩, , 22962400k b =-⎧⎨=⎩,∴直线BD.EF 的关系式分别为 12405520s t =-+ , 2962400s t =-+ ,当 12s s = 时,即: 2405520962400t t -+=-+ ,解得: 653t =.故答案为:.【分析】由题意得B(13,2400),D(23,0),F(25,0),E(0,2400),设直线BD.EF 的关系式分别为s 1=k 1t+b 1,s 2=k 2t+b 2,将点B.D.E.F 的坐标代入求出k 1.b 1.k 2.b 2的值,据此可得直线BD.EF 的解析式,联立两直线解析式求出t 的值即可.15.【答案】解:(1)根据题意得:鸡场的长y(m)与宽x(m)有 y+2x=32:即y=-2x+32;(2)题中有8>y>0,-2x+32≤8∴x≥12又y>x-2x+35>x,解得x <16则自变量的取值范围为故答案为: 12≤x<16.【解析】【分析】根据长方形的面积公式和围成的长方形仅有三边,找到函数关系解答即可16.【答案】(1)解:由题意可得:y=6x,此函数是正比例函数;(2)解:∵A.B 两地相距30km,∴0≤6x≤30,解得:0≤x≤5,即该函数自变量的取值范围是:0≤x≤5.【解析】【分析】(1)利用行驶的距离与速度与时间的关系得出答案;(2)利用两地的距离得出x 的取值范围.17.【答案】解:把x=1时y=5;当x=-1时,y=1代入一次函数y=kx+b,得51k b k b +=⎧⎨-+=⎩,解得k=2,b=3.【解析】【分析】利用待定系数法求出函数解析式即可.65318.【答案】解:设购买A 种灯管x 只,则购买B 种灯管()320x -只,所付金额为W, 由题意得()253032059600W x x x =+-=-+,∵要求B 种灯管的数量不少于A 种灯管的3倍,∴32030x xx -≥⎧⎨>⎩,∴080x <≤,∵-5<0,∴W 随x 的增大而减小,∴当x=80时,W 最小=5809600=9200-⨯+,∴购买A 种灯管80只时,可使所付金额最少,最少为9200元.【解析】【分析】设购买A 种灯管x 只,则购买B 种灯管(32-x)只,所付金额为W,根据付款金额=A 灯管付款金额+B 灯管付款金额,可得,再由要求B 种灯管的数量不少于A 种灯管的3倍,可列不等式组,可求得x 的范围,再根据一次函数的增减性,可得当x=80时,W 最小,代入即可求得购买A 种灯管80只时,所付的最少金额.19.【答案】解:设:Q mS n =+,根据题意的方程组43.510030.5300m nm n =⨯+⎧⎨=⨯+⎩,解得1320050m n ⎧=-⎪⎨⎪=⎩,则该一次函数解析式为:1350200Q S =-+,当0Q =时,13500200S -+=,∴3769km 13S =,∴自变量S 的取值范围为3076913S ≤≤.【解析】【分析】设Q=mS+n,将S=100.Q=43.5;S=300.Q=30.5代入求解可得m.n 的值,据此可得一次函数的解析式,令Q=0,求出S 的值,据此解答.20.【答案】(1)2312060y m m =-(2)解:当3m =时,22312060312036038820m m -=⨯-⨯=(元),()253032059600W x x x =+-=-+32030x x x -≥⎧⎨>⎩∴当时,地砖的费用为8820元.【解析】【解答】解:(1)根据题意得,()2203260y m m m=+-⨯∴ ;故答案为:;【分析】(1)先求出小路的面积,再乘以每平方米地砖的价格,即得买地砖需要的钱数;(2)将m=3代入(1)中的关系式中计算即得.21.【答案】(1)解:由题意得:甲旅行社的所需的费用y(元)与师生人数x(人)的函数关系式:y 甲=0.75×200x=150x ;乙旅行社的所需的费用y(元)与师生人数x(人)的函数关系式:y 乙=200×0.8(x-1)=160x-160;(2)解:要使甲旅行社比乙旅行社更便宜,则满足y 甲<y 乙,即150x <160x-160,解得x >16,所以当师生人数大于16人时,选择甲旅行社优惠.【解析】【分析】(1)根据所需费用=优惠率×报价×人数列式可得y 关于x 的函数解析式;(2)要使甲旅行社比乙旅行社更便宜,则满足y 甲<y 乙,据此列出不等式,求解即可.22.【答案】(1)解:依题意,设平移后的解析式为3y x b =+,将点,代入得,43b =+,解得:1b =,∴平移后的函数表达式为:3y x =;(2)解:由,令0x =,解得1y =,令0y =,解得:13x =-,如图,设一次函数,分别与坐标轴交于点A B ,,则()10013A B ⎛⎫- ⎪⎝⎭,,∴平移后函数的图象与坐标轴围成的三角形的面积为1111236⨯⨯=.3m =2312060y m m =-2312060y m m =-()14,31y x =+31y x =+【解析】【分析】(1)设平移后的解析式为y=3x+b,将(1,4)代入求出b 的值,据此可得对应的函数解析式;(2)分别令(1)解析式中的x=0.y=0,求出y.x 的值,得到图象与坐标轴的交点坐标,然后根据三角形的面积公式进行计算.23.【答案】(1)解:∵每平方米种植的株数每增加1株,单株产量减少0.5千克,()40.520.55y x x ∴=--=-+,答:关于的函数表达式为0.55y x =-+(2)解:根据题意得:()0.5512.5x x -+=,解得125x x ==,答:每平方米种植5株时,能获得的产量.【解析】【分析】(1)由题意可得:当每平方米种植x 株时,平均每株的产量减少(x-2)×0.5,利用4减去减少的量即可得到y 与x 的函数关系式;(2)根据平均每株的产量×株数=总产量可得关于x 的方程,求解即可. y x 12.5kg。

新版人教版八年级数学下册第十九章-一次函数测试卷(含答案)

新版人教版八年级数学下册第十九章-一次函数测试卷(含答案)

24t/天S/t八年级第十九章测试题姓名 班级一、选择题1.下列变量之间的关系中,一个变量是另一个变量的正比例函数的是( ) A.正方形的面积S 随着边长x 的变化而变化.B.正方形的周长C 随着边长x 的变化而变化C.水箱以0.5L/min 的流量往外放水,水箱中的剩水量V L 随着放水时间t min 的变化而变化D.面积为20的三角形的一边a 随着这边上的高h 的变化而变化 2.如果某函数的图象如图所示,那么y 随x 的增大而( ) A.增大 B.减小 C.不变 D.有时增大有时减小 3.一次函数y=kx+b 中,y 随x 的正大而减小,b <0, 则这个函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限 4.如果P (2,m ),A (1,1),B (4,0)三点在同一直线上,则m 的值为( ) A.2 B.32-C.32D.15.某油箱容量为50L 的汽车,加满汽油后开了200km 时,油箱中的汽油大约消耗了41.如果加满汽油后汽车行驶的路程为xkm ,油箱中的剩油量为yL ,则y 与x 之间的函数关系式和自变量取值范围分别是( ) A.x y 0625.0=,x >0 B.x y 0625.050-=,x >0 C. x y 0625.0=,8000≤≤x D. x y 0625.050-=,8000≤≤x6.食用油沸点的温度远高于水的沸点温度(1000C ).小明为了用刻度不超过1000C 的温度计测量出某种食用油沸点的温度,在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s 测量一次A.2000CB.2300CC.2600CD.2900C 二、填空题(每小题5分,共20分)7.某电梯从1层(地面)直达3层用了20s ,若电梯运行时匀速的,则乘坐该电梯从2层直达8层所需要的时间是___________________s8.直线62-=x y 与y 轴的交点坐标为__________,与x 轴的交点坐标是_____________9.函数kx y =与x y -=6的图象如图所示,则=k ________________10.春耕期间,某农资门市部连续8天调进一批化肥进行销售,在开始调进化肥的第7天开始销售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数保持不变,这个门市部的化肥存量S (单位:t )与时间t (单位:天)之间的函数关系如图所示,则该门市部这次化肥销售活动(从开始进货到销售完毕)所用时间是_______________三、解答题(第11,12题每题10分,第13题14分,第14题16分,共50分) 11.一次函数图象经过(-2,1)和(1,3)两点. (1)求这个一次函数的解析式;(2)当x=3时,求y 的值.12.如图是小明散步过程中所走的路程S (单位:m )与步行时间t (单位:min )的函数图象. (1)小明在散步过程中停留了多少时间?(2)求小明散步过程步行的平均速度.(3)在哪一时间段,小明是匀速步行的?在这一时间段,他步行的速度是多少?13.直线a:和直线b:相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E. (1)求△ABC的面积;(2)求四边形ADOC的面积14.某景点的门票销售分两类:一类为散客门票,价格为40元/张;另一类为团体门票(一次性购买门票10张及以上),每张门票价格在散客门票价格的基础上打8折.某班部分同学要去该景点旅游,设参加旅游x人,购买门票需要y元.(1)如果每人分别买门票,求y与x之间的函数关系式;(2)如果买团体票,求y与x之间的函数关系式,并写出自变量的取值范围;(3)请根据人数变化设计一种比较省钱的购票方案.。

人教版八年级数学下册第十九章测试题(含答案)

人教版八年级数学下册第十九章测试题(含答案)

人教版八年级数学下册第十九章测试题(含答案)一、单选题1.已知y=kx+b,当x=0时,y=2;当x=2时,y=0,则当x=4时,y等于()A.-2B.0C.2D.42.直线y=-3x+2经过的象限为()A.第一、二、四象限B.第一、二、三象限C.第一、三、四象限D.第二、三、四象限3.对于函数y=−2x−4,下列结论不正确的是()A.它的图象必经过点(-1,-2)B.图象与y轴的交点是(-2,0)C.当x〈−2时,y〉0D.它的图象不经过第一象限4.一次函数y=kx﹣1的图象经过点P且y的值随x的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(5,﹣1)C.(2,1)D.(1,﹣3)5.已知点(﹣1,y1),(4,y2)在正比例函数y=kx(k<0)的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y2<0<y1D.y1<y2<06.如图,一次函数y=kx+b(k>0)的图象过点(−1,0),则不等式k(x−1)+b>0的解集是()A.x>−2B.x>−1C.x>0D.x>17.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2︰3,甲、乙两车离AB中点C的路程y(千米)与甲车出发时间t(时)的关系图象如图所示,则下列说法错误的是()A.A,B两地之间的距离为180千米B.乙车的速度为36千米/时C.a的值为3.75D.当乙车到达终点时,甲车距离终点还有30千米8.如图,直线a⊥b ,在某平面直角坐标系中,x轴//a,y轴//b,点A的坐标为(−3,2),点B的坐标为(2,−3),则坐标原点为()A.O1B.O2C.O3D.O49.如图,直线y=x+1与x轴、y轴分别相交于点A、B,过点B作BC⊥AB,使BC=2BA,将△ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的对应点C落在反比例函数y=k x的图象上,则k的值为()A.-4B.4C.-6D.610.小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,你认为正确的结论是()①小帅的骑车速度为16千米/小时;②点C的坐标为(0.5,0);③线段AB对应的函数表达式为y=8x+4(0.5≤x≤2.5);④当小帅到达乙地时,小泽距乙地还有4千米.A.①②B.②③C.①③④D.①②③④二、填空题11.已知函数y=(m−2)x|3−m|+5是关于x的一次函数,则m=.12.一个正比例函数的图象经过点A(3,-2),B(-9,a),则a=.13.已知一次函数y=(2m﹣6)x+5,y随着x的增大而减小,则m的取值范围是.14.与一次函数,y=2x-4图象平行的正比例函数图象经过第象限。

人教版初中数学八年级下册 第十九章《一次函数》检测题(含答案)(含答案)

人教版初中数学八年级下册 第十九章《一次函数》检测题(含答案)(含答案)

第十九章《一次函数》测试题一、选择题(每小题只有一个正确答案)1.下列函数中是正比例函数的是( )A .8y x =B .28y =C .2(1)y x =-D .y = 2.下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( )A .一次函数是正比例函数B .正比例函数是一次函数C .函数y =|x |+3不是一次函数D .在y =kx +b (k 、b 都是不为零的常数)中, y -b 与x 成正比例4.一次函数y =-x -1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.函数y =kx -2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( )A .322y x =-B .122y x =-C .122y x =+D .322y x =+7.若函数y =kx +b (k 、b 都是不为零的常数)的图象如图2所示,那么当y >0时,x 的取值范围为( )A .x >1B .x >2C .x <1D .x <28.已知一次函数y =kx -k ,若y 随x 的增大而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限二、填空题9.正比例函数12y x =-中,y 值随x 的增大而 .10.已知y=(k-1)x+k2-1是正比例函数,则k=11.若y+3与x成正比例,且x=2时,y=5,则x=5时,y= .12.直线y=7x+5,过点(,0),(0,).13.已知直线y=ax-2经过点(-3,-8)和12b⎛⎫⎪⎝⎭,两点,那么a= ,b= .14.写出经过点(1,2)的一次函数的解析式为(写出一个即可).15.在同一坐标系内函数112y x=+,112y x=-,12y x=的图象有什么特点.16.下表中,y是x三、简答题17.某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.18.已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.19、已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.20、如图3,在边长为2的正方形ABCD 的一边BC 上的点P 从B 点运动到C 点,设PB =x ,梯形APCD 的面积为S .(1)写出S 与x 的函数关系式;(2)求自变量x 的取值范围;(3)画出函数图象.21、小芳同学在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y (元)与售出西瓜x (千克)之间的函数关系式.(2)小芳从批发市场共购进多少千克西瓜?(3)小芳这次卖瓜赚了多少钱?参考答案:一、1.D 2.D3.A 4.A 5.D 6.A 7.D 8.B二、9.减小 10.1-11.17 12.57-,5 13.2,1- 14.略(答案不惟一) 15.三条直线互相平行16.22y x =+,表格从左到右依次填2-,0,4三、17.y x =-(答案不惟一)18.(1)2y x =+(2)419.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+(2)图略;(3)420.(1)4S x =-;(2)02x <<;(3)图略21.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元。

八年级数学(下)第十九章《正比例函数》同步练习题(含答案)

八年级数学(下)第十九章《正比例函数》同步练习题(含答案)

八年级数学(下)第十九章《正比例函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数y=(k-1)2k x为正比例函数,则A.k≠±1B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1,故选C.2.若y=x+2-b是正比例函数,则b的值是A.0 B.-2 C.2 D.-0.5【答案】C【解析】因为y=x+2-b是正比例函数,所以2-b=0,所以b=2,故选C.3.下列问题中,两个变量成正比例的是A.等腰三角形的面积一定,它的底边和底边上的高B.等边三角形的面积和它的边长C.长方形的一边长确定,它的周长与另一边长D.长方形的一边长确定,它的面积与另一边长【答案】D【解析】A.等腰三角形的面积一定,它的底边和底边上的高成反比例,故本选项错误;B.等边三角形的面积是它的边长的二次函数,故本选项错误;C.长方形的一边长确定,它的周长与另一边长成一次函数,故本选项错误;D.长方形的一边长确定,它的面积与另一边长成正比例,故本选项正确,故选D.4.关于函数y=2x,下列结论中正确的是A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图象不经过(2,1),故错误;B:k=2>0,∴函数图象经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误,故选C.5.正比例函数y=(k-3)x的图象经过一、三象限,那么k的取值范围是A.k>0 B.k>3 C.k<0 D.k<3【答案】B【解析】由正比例函数y=(k-3)x的图象经过第一、三象限,可得:k-3>0,则k>3,故选B.6.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随x的增大而增大,∴-3m>0,解得m<0,∴P(m,5)在第二象限,故选B.7.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y=kx(k≠0)中得,k=2>0,∴函数图象经过原点,且经过第一、三象限,故选C.8.如图,三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是A.a>b>c B.c>b>a C.b>a>c D.b>c>a【答案】C【解析】首先根据图象经过的象限,得a>0,b>0,c<0,再根据直线越陡,|k|越大,则b>a>c.故选C.二、填空题:请将答案填在题中横线上.9.已知正比例函数y =(4m +6)x ,当m __________时,函数图象经过第二、四象限.【答案】<-1.5【解析】∵函数经过第二、四象限,∴4m +6<0,即m <-1.5,故答案为:m <-1.5.10.已知直线y =(2-3m )x 经过点A (x 1,y 1)、B (x 2,y 2),当x 1<x 2时,有y 1>y 2,则m 的取值范围是__________.【答案】m >23【解析】∵直线y =(2-3m )x 经过点A (11x y ,)、B (22x y ,),当12x x <时,有12y y >,∴此函数是减函数,∴2-3m <0,解得m >23,故答案为:m >23. 三、解答题:解答应写出文字说明、证明过程或演算步骤.11.已知y =(k -3)x +2k -9是关于x 的正比例函数,求当x =-4时,y 的值.【解析】当290k -=且30k -≠时,y 是x 的正比例函数,故当k =-3时,y 是x 的正比例函数,∴6y x =-,当x =-4时,y =-6×(-4)=24.12.已知4y +3m 与2x -5n 成正比例,证明:y 是x 的一次函数.【解析】由题意,设4y +3m =k (2x -5n )(k ≠0), ∴1(35)24k y x m kn =⋅-+. ∵k 是不为0的常数.∴2k ,1(35)4m kn -+为常数,且02k ≠, ∴y 是x 的一次函数.13.已知正比例函数y =(2m +4)x ,求:(1)m 为何值时,函数图象经过第一、三象限?(2)m 为何值时,y 随x 的增大而减小?(3)m 为何值时,点(1,3)在该函数的图象上?【解析】(1)∵函数图象经过第一、三象限,∴2m +4>0,∴m >-2.(2)∵y 随x 的增大而减小,∴2m +4<0,∴m <-2.(3)依题意得(2m+4)×1=3,解得12m=-.14.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.【解析】(1)∵点A的横坐标为3,且△AOH的面积为3∴点A的纵坐标为-2,点A的坐标为(3,-2),∵正比例函数y=kx经过点A,∴3k=-2解得k=-23,∴正比例函数的解析式是y=-23 x.(2)∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5,∴点P的坐标为(5,0)或(-5,0).。

人教版八年级下册数学第十九章测试题(附答案)

人教版八年级下册数学第十九章测试题(附答案)

人教版八年级下册数学第十九章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.某地出租车计费方式如下:3 km以内只收起步价8元,超过3 km的除收起步价外,每超出1 km另加收2元;不足1 km的按1 km计费.则能反映该地出租车行驶路程x(km)与所收费用y(元)之间的函数关系的图象是( )A. B. C. D.2.无论m取何值,y=x+2m与y= -x+4的交点不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.某报亭老板以每份0.5元的价格从报社购进某种报纸500份,以每份0.8元的价格销售x 份(x<500),未销售完的报纸又以每份0.1元的价格由报社收回,这次买卖中该老板获利y 元,则y与x的函数关系式为()A. y=0.7x-200(x<500)B. y=0.8x-200(x<500)C. y=0.7x-250(x<500)D. y=0.8x-250(x<500)4.对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A. 是一条直线B. 过点(,﹣k)C. 经过一、三象限或二、四象限D. y随着x增大而减小5.一次函数y=kx+b(k≠0)的图象经过点B(2,0),C(0,6)两点,则kx+b≥2x的解集是()A. x≤B. x<2C. xD. x≤26.园林队在某公园进行绿化,中间休息了一段时间,绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A. 40平方米B. 50平方米C. 65平方米D. 80平方米7.在下列四个图形中,能作为y是x的函数的图象的是()A. B. C. D.8.函数y=2x-1的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.在一个标准大气压下,能反映水在均匀加热过程中,水的温度(T)随加热时间(t)变化的函数图象大致是( )A. B. C. D.10.某地海拔高度h与温度T的关系可用T=21﹣6h来表示(其中温度单位℃,海拔高度单位为千米),则该地区某海拔高度为2000米的山顶上的温度为()A. 15℃B. 9℃C. 3℃D. 7℃11.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC,BC边上,C,D两点不重合,设CD 的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A. B. C. D.12.如图,在平行四边形ABCD中,∠A=60°,AB=6厘米,BC=12厘米,点P、Q同时从顶点A出发,点P 沿A→B→C→D方向以2厘米/秒的速度前进,点Q沿A→D方向以1厘米/秒的速度前进,当Q到达点D 时,两个点随之停止运动.设运动时间为x秒,P、Q经过的路径与线段PQ围成的图形的面积为y(cm2),则y与x的函数图象大致是()A. B. C. D.二、填空题(共8题;共18分)13.如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集________.14.函数的定义域是________.15.如图,已知点A是第一象限内横坐标为2 的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是________.16.要使y=(m﹣2)x|m﹣1|+3是关于x的一次函数,则m=________ .17.摩托车油箱中有8升油,行驶时每小时耗油2升,在不加油的情况下,求余油量Q(升)与行驶时间t (小时)之间的函数关系式为________,这里的时间t的取值范围为________.18.已知一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),那么此一次函数的解析式为________.19.点(﹣1,y1)、(2,y2〕是直线y=2x+1上的两点,则y1 ________y2(填“>”或“=”或“<”).20.如图,长方形的顶点的坐标为,动点从原点出发,以每秒个单位的速度沿折线运动,到点时停止,同时,动点从点出发,以每秒个单位的速度在线段上运动,当一个点停止时,另一个点也随之停止.在运动过程中,当线段恰好经过点时,运动时间的值是________.三、解答题(共4题;共40分)21.已知函数y=(2m﹣1)是正比例函数,且y随着x的增大而增大,求m的值22.已知一次函数的图象过M(1,3),N(-2,12)两点.(1)求函数的解析式;(2)试判断点P(-2,-6)是否在函数的图象上,并说明理由.23.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P点坐标,若不存在,请说明理由.24.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4 ,(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.四、综合题(共4题;共38分)25.一批单价为20元的商品,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?26.某企业生产一种收音机,其成本24元.直接由厂家门市部销售,每台售价32元,门市部的销售需消耗费用每月2400元,如果委托商店销售,出厂价每台28元,销售多少台时两种销售方式所获得的利润相等?若销售量达每月2000台,问采用哪种销售方式,取得的利润较多?27.如图(1),平面直角坐标系中,一次函数y=﹣x+1的图象与y轴交于点A,点B是第二象限一次函数y=﹣x+1的图象上一点,且S△OAB=3,点C的坐标为(﹣2,﹣3).(1)求A,B的坐标;(2)如图(1)若点D是线段BC上一点,且三角形ABD的面积是三角形ABC的一半,求△ABC的面积和点D的坐标;(3)在(2)的条件下,如图(2),将线段AC沿直线AB平移,点A的对应点为A1,点C的对应点为C1,连接A1D,C1D,当△A1C1D直角三角形时,求A1的坐标.28.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的函数图象如图所示.请你根据图象,回答下列问题:(1)慢车比快车早出发________小时,快车追上慢车时行驶了________千米,快车比慢车早________小时到达B地;(2)在下列3个问题中任选一题求解(多做不加分):①快车追上慢车需几个小时?②求慢车、快车的速度;③求A、B两地之间的路程.答案一、单选题1. D2. C3. A4. C5.A6.A7.B8.B9. B 10.B 11. B 12. A二、填空题13. x>-1 14.15.2 16.0 17.Q=8﹣2t;0≤t≤4 18.y=﹣x﹣1 19.<20.2或5三、解答题21.解:∵此函数是正比例函数,∴,解得m=2.22.(1)解:设一次函数的解析式为y=kx+b,,解得所以y=-3x+6 (2)解:∵当x=-2 时,y=12≠-6,∴P不在直线上23.(1)解:对于直线y=2x+2,当x=0时,y=2;当y=0时,x=-1∴点A的坐标为(0,2),点B的坐标为(-1,0)又∵CO=CD=4,∴点D的坐标为(-4,4)设直线AD的函数表达式为y=kx+b,则有,解得,∴直线AD的函数表达式为y=-x+2;(2)解:存在,共有四个点满足要求.分别是P1(-4,9),P2(-4,-4),P3(-4,-1),P4(-4,).24.(1)解:∵,∴可设OC=x,则OA=2x,在Rt△AOC中,由勾股定理可得OC2+OA2=AC2,∴x2+(2x)2=(4 )2,解得x=4或x=-4(不合题意,舍去),∴OC=4,OA=8,∴A(8,0),C(0,4),设直线AC解析式为y=kx+b,∴,解得:,∴直线AC解析式为y= x+4(2)解:由折叠的性质可知AE=CE,设AE=CE=y,则OE=8-y,在Rt△OCE中,由勾股定理可得OE2+OC2=CE2,∴(8-y)2+42=y2,解得y=5,∴AE=CE=5,∵∠AEF=∠CEF,∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF=5,∴S△CEF= CF•OC= ×5×4=10,即重叠部分的面积为10;(3)解:由(2)可知OE=3,CF=5,∴E(3,0),F(5,4),设直线EF的解析式为y=k′x+b′,∴,解得:,∴直线EF的解析式为y=2x-6四、综合题25. (1)解:设y与x满足的函数关系式为:y=kx+b.由题意可得:,解得.故y与x的函数关系式为:y=﹣3x+108.(2)解:每天获得的利润为:P=(﹣3x+108)(x﹣20)=﹣3x2+168x﹣2160=﹣3(x﹣28)2+192.故当销售价定为28元时,每天获得的利润最大.26.解:(1)设每月销售x台时,所得利润相同,根据题意可得:(32﹣24)x﹣2400=(28﹣24)x,解得:x=600.答:每月销售600台时,所得利润相同;(2)当每月销售达2000台时,直接由厂家门市部出售的利润为:(32﹣24)×2000﹣2400=13600(元),委托商店销售的利润为:(28﹣24)×2000=8000(元).因此销售量达每月2000台,采用门市部的销售销售方式,取得的利润较多.27.(1)解:∵一次函数y=﹣x+1的图象与y轴交于点A,∴当x=0时,y=1,∴点A的坐标为(0,1),∴OA=1∵S△OAB=3,∴|x B|•OA=3,∴|x B|=6,∵点B是第二象限一次函数y=﹣x+1的图象上一点,∴B的横坐标为:﹣6,则y=﹣(﹣6)+1=7,∴点B的坐标为:(﹣6,7)(2)解:如图1,过点B作BE⊥x轴,过点C作CF⊥y轴于点F,交BE于点E,∵点C的坐标为(﹣2,﹣3),∴BE=10,EF=6,EC=4,CF=2,AF=4,∴S△ABC=S梯形ABEF﹣S△ACF﹣S△BEC= ×(4+10)×6﹣×4×2﹣×10×4=18;∵点D是线段BC上一点,且三角形ABD的面积是三角形ABC的一半,∴点D是BC的中点,∴点D的坐标为:(﹣4,2)(3)解:如图2,∵A(0,1),C(﹣2,﹣3),∴由平移可知:点C是点A向左平移2个单位,再向下平移4个单位所得,设A1(x,﹣x+1),则C1(x﹣2,﹣x+1﹣4),即(x﹣2,﹣x﹣3),当△A1C1D直角三角形时,分三种情况:①当∠DA1C1=90°时,如图2,由勾股定理得:= ,∴(x+4)2+(﹣x+1﹣2)2+(x﹣2﹣x)2+(﹣x﹣3+x﹣1)2=(x﹣2+4)2+(﹣x﹣3﹣2)2解得:x=2,∴A1(2,﹣1);②当∠A1C1D=90°时,如图3,由勾股定理得:,∴(x﹣2﹣x)2+(﹣x﹣3+x﹣1)2+(x﹣2+4)2+(﹣x﹣3﹣2)2=(x+4)2+(﹣x+1﹣2)2,解得:x=﹣8,∴A1(﹣8,9);③当∠A1DC1=90°时,如图4和图5,由勾股定理得:A1D2+C1D2=A1C12,∴(x+4)2+(﹣x+1﹣2)2+(x﹣2+4)2+(﹣x﹣3﹣2)2=(x﹣2﹣x)2+(﹣x﹣3+x﹣1)2,2x2+12x+13=0,解得:x= ,∴A1(,)或(,);综上所述,点A1的坐标为:(2,﹣1)或(﹣8,9)或(,)或(,)28.(1)2;276;4(2)解:设快车追上慢车时,慢车行驶了x小时,则慢车的速度可以表示为千米/小时,快车的速度为千米/小时,根据两车行驶的路程相等,可以列出方程解得x=6(小时).所以,①快车追上慢车需6﹣2=4(小时);②慢车的速度为千米/小时,快车的速度为千米/小时;③A、B两地间的路程为46×18=828千米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学 第十九章平行四边形单元检测
(时间90分钟 满分100分)
班级 学号 姓名 得分
一、选择题(每小题3分,共24分)
1.在平行四边形ABCD 中,∠B =110°,延长AD 至F , 延长CD 至E ,连结EF ,则∠E +∠F =( ) A .110°
B .30°
C .50°
D .70°
2.菱形具有而矩形不具有的性质是 ( ) A .对角相等
B .四边相等
C .对角线互相平分
D .四角相等
3.如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E
是BC 的中点.若OE =3 cm ,则AB 的长为 ( ) A .3 cm B .6 cm C .9 cm D .12 cm 4.已知:如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,则图中阴影部分的面积

( ) A .8
B .6
C .4
D .3
5.用两块全等的含有30°角的三角板拼成形状不同的平行四边形,最多可以拼成 ( ) A .1个
B .2个
C .3个
D .4个
6.如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所
示(单位:mm ),则该主板的周长是 ( ) A .88 mm B .96 mm C .80 mm
D .84 mm
7.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是AC 上的两点,当E 、F 满足下列哪个条件时,四边形DEBF
不一定是平行四边形 ( )
A .∠ADE =∠CBF
B .∠ABE =∠CDF
C .OE =OF
D .D
E =BF
8.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图
案.已知该图案的面积为49,小正方形的面积为4,若用x 、y 表示小矩形的两边长(x >y ),请观察图案,指出以下关系式中不正确的是
( )
A .7=+y x
B .2=-y x
C .4944=+xy
D .2522=+y x
二、填空题(每小题4分,共24分)
9.若四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是菱形.
10.如图,在平行四边形ABCD 中,已知对角线AC 和BD 相交于点
O ,
△ABO 的周长为
15,AB =6,那么对角线AC
+BD
= 11.如图,延长正方形ABCD 的边AB 到E ,使BE =AC ,则∠
E = °.
12.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形
内一点,且PB =PD =32,那么AP 的长为 .
13.在平面直角坐标系中,点A 、B 、C 的坐标分别是A (-2,5),B (-3,-1),
C (1,-1),在第一象限内找一点
D ,使四边形ABCD 是平行四边形,那么 点D 的坐标是 .
14.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,
A 1
B 1
C 1
D 1是中点四边形.如果AC =3,BD =4, 那么A 1B 1C 1D 1的面积为 三、解答题(52分)
15.(8分)如图,在矩形ABCD 中,AE 平分∠BAD ,∠1=15°.
(1)求∠2的度数.(2)求证:BO =BE .
第7题
第6题
16.(8分)已知:如图,D是△ABC的边BC上的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.当∠A满足什么条件时,四边形AFDE是正方形?请证明你的结论.
17.(8分)如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.
18.(8分)已知:如图,在正方形ABCD中,AC、BD交于点O,延长CB到点F,使BF=BC,连结DF交AB于E.求证:OE=( )BF(在括号中填人一个适当的常数,再证明).
19.(8分)在一次数学探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等.
(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有
组.
(2)请在下图的三个平行四边形中画出满足小强分割方法的直线.
(3)由上述实验操作过程,你发现所画的两条直线有什么规律
?
20.(12分)已知:如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.
(1)试猜想线段AE与BF有何关系?说明理由.
(2)若△ABC的面积为3cm2,请求四边形ABFE的面积.
(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.。

相关文档
最新文档