河北省中考数学复习第六章统计与概率专项训练(八)统计与概率试题(含解析)

合集下载

中考数学复习《概率》经典题型及测试题(含答案)

中考数学复习《概率》经典题型及测试题(含答案)

中考数学复习《概率》经典题型及测试题(含答案)命题点分类集训命题点1 事件的分类【命题规律】1.事件的分类主要考查事件的判断,确定事件分为必然事件(概率为1)和不可能事件(概率为0),随机事件发生概率介于 0和1 之间.2.考查形式:①下列事件是…事件的是;②下列说法正确的是;③…事件是….【命题预测】事件的分类是研究概率知识的基础,值得关注.1.在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是( )A . 不确定事件B . 不可能事件C . 可能性大的事件D . 必然事件1. D 【解析】在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,是一定发生的事件,因而是必然事件,故选D.2.下列事件中,是必然事件是( )A . 两条线段可以组成一个三角形B . 400人中有两个人的生日在同一天C . 早上的太阳从西方升起D . 打开电视机,它正在播放动画片2. B3.下列说法中,正确的是( )A . 不可能事件发生的概率为0B . 随机事件发生的概率为12C . 概率很小的事件不可能发生D . 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次3. A正面朝上的次数不确定命题点2 一步概率计算【命题规律】1.主要考查概率计算公式P (A )=mn (m 表示满足事件A 的可能结果数,n 表示所有可能结果数)的应用,只需一步便可解决.2.解决此类问题,首先找准所有可能发生的结果数,再找准事件A 发生的可能结果数,最后应用概率公式直接运算,注意事件A 的可能结果数要不重不漏,避免出错.【命题趋势】一步概率计算结合一些简单的游戏设计进行计算,是常考的基础概率计算. 4.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是( )A . 110B . 19C . 13D . 124. A 【解析】随机选取一个数字,共有10种等可能结果,能打开密码锁的结果只有一种,所以一次就能打开密码锁的概率是110.5.已知袋中有若干个球,其中只有2个红球,它们除颜色外其他都相同,若随机摸出一个,摸到红球的概率是14,则袋中球的总个数是( )A . 2B . 4C . 6D . 85. D 【解析】由概率的意义可知:袋中球的总数=红球的个数÷摸到红球的概率,即袋中球的总个数是2÷14=8(个).6.如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是________.6. 34 【解析】由题意知,C ,D ,F 三点可与A ,B 构成等腰三角形,E 点不可以,则概率为34.第6题图 第7题图7.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是________.7. 35 【解析】∵黑色地砖有2块,白色地砖有3块,且小球停在每块地砖上的可能性相同,∴小球停在白色地砖上的概率为35.8.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是________.8. 45 【解析】从五个图形中任取一个,则共有5种等可能的结果,取到既是轴对称图形又是中心对称图形的有4种,故其概率为45.命题点3 树状图或列表法计算概率【命题规律】1.这类题的考查与实际生活比较贴近,命题背景一般有:①摸球游戏(分两次摸球或从两个袋子中分别摸球);②掷骰子游戏(两次求点数之和等);③抽卡片游戏;④和其他知识相结合如物理电路图.2.试题解法有固定的模式:主要是利用画树状图或列表法将所有等可能结果不重不漏地列举出来,使所有等可能结果清晰呈现,进而根据题设条件选择满足要求的事件的可能结果,最后再运用概率公式求解即可.【命题趋势】用树状图或列表法计算概率主要考查两步以上概率计算的方法,是概率计算命题的一大趋势.9.一个盒子装有除颜色外其他均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A . 25B . 23C . 35D . 3109. C 【解析】画树状图分析如下:红1、红2、白1、白2、白3,由树状图可知,共有20种均等可能的结果,其中取到一红一白的结果有12种,所以P (一红一白)=1220=35.故选C. 10.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是( )A . 12B . 14C . 310D . 1610. B 【解析】列表如下:第一次第二次 积1 2 3 4 5 6 1 1 2 3 4 5 6 2 2 4 6 8 10 12 3 3 6 9 12 15 18 4 4 8 12 16 20 24 5 5 10 15 20 25 30 661218243036共有36种等可能情况,其中积为奇数的有9种,所以P (积为奇数)=936=14.11.如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,能够使灯泡L 1,L 2同时发光的概率是________. 11. 15【解析】画树状图如解图:共有60种等可能结果,符合要求的结果是12种,故概率为1260=15.12.从数-2,-12,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第三、第一象限的概率是________. 12. 16【解析】画树状图如下:第由树状图可知共有12种等可能的结果,其中k =mn 为正的有2种,当k =mn 是正数时,正比例函数y =kx 的图象经过第一、第三象限.∴P =212=16.13.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级. (1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果; (2)求选手A 晋级的概率.13. 解:(1)用树状图表示选手A 获得三位评委评定的各种可能的结果,如解图:由树形图可知,选手A 一共能获得8种等可能的结果,这些结果的可能性相等. (2)由(1)中树状图可知,符合晋级要求的结果4种, ∴P(A 晋级)=48=12.14.A 、B 两组卡片共5张,A 中三张分别写有数字2、4、6,B 中两张分别写有3、5.它们除数字外没有任何区别.(1)随机地从A 中抽取一张,求抽到数字为2的概率;(2)随机地分别从A 、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?14. 解:(1)P(抽到数字为2)=13.(2)游戏规则不公平,理由如下.画树状图表示所有可能结果,如解图:由图知共有6种等可能结果,其中两数之积为3的倍数的有4种. ∴P(甲获胜)=46=23,P(乙获胜)=26=13∴游戏规则不公平.15.在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A ,B ,C ,D 表示) (2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.15. 解:(1)列表法如下:A B C D A AB AC AD B BA BC BD C CA CB CD DDADBDC或画树状图如下:(2)在A 中,22+32≠42;在B 中,32+42=52;在C 中,62+82=102;在D 中52+122=132,则A 中正整数不是勾股数,B ,C ,D 中的正整数是勾股数. ∴P(抽到的两张卡片上的数都是勾股数)=612=12.命题点4 统计与概率结合【命题规律】此类题将概率和统计结合,一般为2~3问,第1问通常考查统计知识,最后1问涉及列表或树状图法计算概率,有时还会涉及到游戏的公平性.【命题预测】统计与概率都是与日常生活结合紧密,联系实验生活,是全国命题趋势之一,值得关注. 16.为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意、一般、满意、非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)求此次调查中接受调查的人数; (2)求此次调查中结果为非常满意的人数; (3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或画树状图的方法求出选择的市民均来自甲区的概率. 16. 解:(1)由图知,满意20人,占调查人数的40%.∴此次调查中接受调查的人数为:20÷40%=50(人). (2)∵非常满意的人数占调查人数的36%, ∴非常满意的人数为:50×36%=18(人). (3)画树状图如下:∴市民均来自甲区的概率为:212=16.中考冲刺集训一、选择题1.在英文单词“parallel”(平行)中任意选择一个字母“a”的概率为( )A . 12B . 38C . 14D . 182.下列说法正确的是( )A . 为了审核书稿中的错别字,选择抽样调查B . 为了了解春节联欢晚会的收视率,选择全面调查C . “射击运动员射击一次,命中靶心”是随机事件D . “经过有交通信号灯的路口,遇到红灯”是必然事件3.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6.若任意抛掷一次骰子,朝上的面的点数记为x ,计算|x -4|,则其结果恰为2的概率是( )A . 16 B . 14 C . 13 D . 124.有5张看上去无差别的卡片,上面分别写着1,2,3,4,5.随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是( )A . 310B . 320C . 720D . 7105.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A . 613 B . 513 C . 413 D . 313二、填空题6.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记.掷一次骰子,向上的一面出现的点数是3的倍数的概率是________.7.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比的统计图,在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是________.8.不透明袋子中有1个红球、2个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是________.9.已知四个点的坐标分别是(-1,1),(2,2),(23,32),(-5,-15),从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.三、解答题10.已知反比例函数y =kx 与一次函数y =x +2的图象交于点A(-3,m).(1)求反比例函数的解析式;(2)如果点M 的横、纵坐标都是不大于3的正整数,求点M 在反比例函数图象上的概率.11.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数. (1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.12.甲、乙两人利用扑克牌玩“10点”游戏.游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现....甲、乙的“最终点数”,并求乙获胜的概率.13.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如下尚不完整的统计图表.评估成绩n(分) 评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m 的值;(2)在扇形统计图中,求B 等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.答案与解析:1. C2. C3. C 【解析】任意抛掷一次,朝上的面的点数有6种等可能的结果,其中满足|x -4|=2的有2和6两种,所以所求概率为26=13.4. A 【解析】从这5张卡片中,随机抽取3张,不同的抽法有:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种,其中抽到的三个数字作为边长能构成三角形的有(2,3,4),(2,4,5),(3,4,5),共3种,则P (能构成三角形)=310.5. B 【解析】∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5种情况,如解图所示,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是513.第5题解图6. 13 【解析】抛一枚质地均匀的正方体骰子,向上的一面有1,2,3,4,5,6这6种均等的结果,其中是3的倍数只有3和6两个,∴P(3的倍数)=26=13.7. 12 【解析】棕色糖果占总数的百分比为1-(20%+15%+30%+15%)=20%.绿色糖果或棕色糖果占总数的百分比为30%+20%=50%,∴取出的糖果的颜色为绿色或棕色的概率=50%,即12.8. 49 【解析】本题主要考查了古典概型中的概率问题.做此类型题目注意放回和不放回的区别,列表或画树状图都可解决此类问题.本题列表如下:红黄 黄由上表可知:4种,所以两次摸出球都是黄球的概率为49.9. 12 【解析】先将各点分别代入反比例函数解析式中,即y =1-1=-1≠1,y =12≠2,y =123=32,y =1-5=-15,所以(23,32),(-5,-15)这两个点在反比例函数y =1x 的图象上,因此,所求的概率为24=12.10. 解:(1)把A(-3,m)代入y =x +2中,得m =-3+2=-1, ∴A(-3,-1),把A(-3,-1)代入y =kx 中,得k =3,∴反比例函数的解析式为y =3x .(2)由题意列表如下:由上可知,共有9与(3,1)两种结果, ∴点M 在反比例函数图象上的概率P =29.11. 解:(1)所有可能的两位数用列表法列举如下表:(2)7,即大于16且小于49的两位数共6种等可能结果:17,18,41,44,47,48,则所求概率P =616=38.12. 解:(1)12.(2)画树状图如解图,第12题解图或列表如下:甲 乙4 5 6 7 4 (4,5) (4,6) (4,7) 5 (5,4) (5,6) (5,7) 6(6,4)(6,5)(6,7)7 (7,4) (7,5) (7,6)由树状图或列表法可以得出,所有可能出现的结果共有12种,他们的“最终点数”如下表所示:甲 9 9 9 10 10 10 0 0 0 0 0 0 乙109910910(7分)比较甲、乙两人的“最终点数”,可得P (乙获胜)=512.13. 解:(1)由统计图表知,评定为C 等级的有15家,占总评估连锁店数的60%, 则m =15÷60%=25.(2)由题意知B 等级的频数为25-(2+15+6)=2, 则B 等级所在扇形的圆心角大小为 225×360°=28.8°=28°48′. (3)评估成绩不少于80分的为A 、B 两个等级的连锁店.A 等级有两家,分别用A 1、A 2表示;B 等级有两家,分别用B 1、B 2表示,画树状图如下:第13题解图由树状图可知,任选2家共有12种等可能的情况,其中至少有一家是A 等级的情况有10种. 所以,从评估成绩不少于80分的连锁店中任选2家,其中至少有一家是A 等级的概率是P =1012=56.。

2020年中考数学复习解答题专项训练---统计与概率(无答案)

2020年中考数学复习解答题专项训练---统计与概率(无答案)

统计与概率一.统计1.(2019∙常州)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图。

(1)本次调查的样本容量是___,这组数据的众数为___元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数。

300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由。

的分数,请估计该九年级学生中约有多少人达到优秀等级。

4.(2019∙嘉兴)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.(3)从两人成绩的稳定性角度分析,应选派谁参加比赛合适。

6.(2019∙临沂)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下:(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是____;频数分布表中____;____。

(2)补全频数分布直方图。

(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数。

二.概率1.(2019∙南充) 现有四张完全相同的不透明卡片,其正面分别写有数字−2,−1,0,2,把这四张卡片背面朝上洗匀后放在桌面上。

(1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率。

(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率。

2024年中考数学总复习第一部分考点精练第八单元统计与概率第2课时概率

2024年中考数学总复习第一部分考点精练第八单元统计与概率第2课时概率
3
____4____.
第6题图
第2课时 概 率
7. (2023本溪)如图,等边三角形ABC是由9个大小相等的等边三 角形构成,随机地往△ABC内投一粒米,落在阴影区域的概率
5
为____9____.
第7题图
第2课时 概 率
8. [新考法——传统文化](2023山西改编)中国古代的“四书”是 指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心 著作,是中国传统文化的重要组成部分.若从这四部著作中随 机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则
的数量统计如图所示,他让弟弟从袋子里随机摸出一颗糖果,
则弟弟恰好摸到苹果味糖果的概率是( D )
A. 1B. 1来自23C. 1
D. 4
5
15
第4题图
第2课时 概 率
5. (人教九上P136例1改编)小强、小明、小华三人做抛硬币游戏,
规定:同时抛两枚质地均匀的硬币,若两枚硬币全部正面朝上,
则小强获胜;若两枚硬币一枚正面一枚反面朝上,则小明获胜;
第2课时 概 率
3. (2023丽水)某校准备组织红色研学活动,需要从梅岐、王村口、
住龙、小顺四个红色教育基地中任选一个前往研学,选中梅岐
红色教育基地的概率是( B )
A. 1
B. 1
2
4
C. 1
D. 3
3
4
第2课时 概 率
4. 小华将给弟弟买的糖果放到一个不透明的袋子中,这些糖果 除了口味和外包装的颜色外其余都相同,袋子里各种口味糖果
第2课时 概 率
然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出
1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析1.山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?【答案】(1)三年级有12名志愿者,两幅统计图补充完整见解析;(2)两名队长都是二年级志愿者的概率为.【解析】(1)设三年级有x名志愿者,由题意可列得方程 x=(18+30+x)×20%,求解此方程即可得到结果,二年级所占的百分比为1-50%-20%=30%,然后根据这些数据将两幅统计图补充完整即可;(2)首先根据题意画出树状图,然后由树状图可以看出,有12种等可能的结果,其中两人都是二年级志愿者的情况有两种,从而求出两名队长都是二年级志愿者的概率.试题解析:(1)设三年级有x名志愿者,由题意得 x="(18+30+x)×20%" .解得x=12.答:三年级有12名志愿者.····························1分如图所示:···········································3分(2)用A表示一年级队长候选人,B、C表示二年级队长候选人,D表示三年级队长候选人,树形图为··············5分从树形图可以看出,有12种等可能的结果,其中两人都是二年级志愿者的情况有两种,所以P(两名队长都是二年级志愿者)=.···········································7分【考点】条形统计图;扇形统计图;概率公式.2.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【答案】(1)600;(2)补图见解析;(3)3200;(4).【解析】(1)用B小组的频数除以B小组所占的百分比即可求得结论;(2)分别求得C小组的频数及其所占的百分比即可补全统计图;(3)用总人数乘以D小组的所占的百分比即可;(4)列出树形图即可求得结论.试题解析:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图;(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图;(列表方法略,参照给分).P(C粽)=.答:他第二个吃到的恰好是C粽的概率是.考点: 1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.3.为迎接中招体育加试,需进一步了解九年级学生的身体素质,体育老师随机抽取九年级一个班共50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下图所示:请根据图表信息完成下列问题:(1)直接写出表中a的值;(2)请把频数分布直方图补充完整;(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该班学生进行一分钟跳绳不合格的概率是多少?【答案】(1)18,(2)画图见解析;(3).【解析】分析:(1)用总数分别减去其它组的频数即可,(2)根据频数分布表把直方图补充完整即可,(3)用少于跳120次的人数除以总人数即可.试题解析:(1)根据题意得:a=50-6-8-12-6=18;(2)补充完整后的分数分布直方图如图所示(3)该班测试不合格的概率是;答:该班学生进行一分钟跳绳不合格的概率是.考点:1.频数(率)分布直方图;2.频数(率)分布表.4.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少学生?(2)补全统计表中所缺的数据.(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【答案】解:(1)∵较好的所占的比例是:,∴本次抽样共调查的人数是:70÷=200(人)。

中考复习数学分类检测试卷(8)统计与概率(含答案)

中考复习数学分类检测试卷(8)统计与概率(含答案)

中考复习数学分类检测八 统计与概率(时间:90分钟 总分:120分)一、选择题(每小题4分,共40分)1.下列调查中,适宜采用抽样调查方式的是( ) A .对我国首架大型民用直升机各零部件的检查 B .对某校初三(5)班第一小组的数学成绩的调查 C .对我市市民实施低碳生活情况的调查D .对2012年重庆市中考前200名学生的中考数学成绩的调查2.为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下表所示.则这10户家庭月用水量的众数和中位数分别为( )月用水量/t 10 13 14 17 18 户数22321A .14 t,13.5 tB .14 t,13 tC .14 t,14 tD .14 t,10.5 t3.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A .14B .12C .34D .14.甲、乙两人在同样条件下练习射击,每人打5发子弹,打中环数如下: 甲:6,8,9,9,8 乙:10,7,7,7,9 则甲、乙两人射击的成绩( ) A .甲比乙稳定 B .乙比甲稳定C .甲、乙稳定性相同D .甲、乙两人成绩无法比较5.2012年春某市发生了严重干旱,市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表:月用水量/t 5 6 7 户数262则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .极差是2C .平均数是6D .方差是46.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是( ) A .10 B .10 C .2 D . 27.有一个不透明的袋中,红色、黑色、白色的小球共有40个,除颜色外其他完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .248.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( )A .1万件B .19万件C .15万件D .20万件9.如图所示,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是( )A .13B .34C .25D .3510.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )A .34B .13C .12D .14二、填空题(每小题4分,共24分)11.“建设大美青海,创建文明城市”,西宁市加快了郊区旧房拆迁的步伐.为了解被拆迁的236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意.在这一抽样调查中,样本容量为__________.12.一组数据23,27,20,x ,18,12的中位数是21,则x =__________.13.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图所示的统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款__________元.14.已知数据a ,b ,c 的平均数是8,那么数据2a +3,2b +3,2c +3的平均数是__________. 15.某商场开展购物抽奖促销活动,抽奖箱中有200张抽奖卡,其中有一等奖5张,二等奖10张,三等奖25张,其余抽奖卡无奖.某顾客购物后参加抽奖活动,他从抽奖箱中随机抽取一张,则中奖的概率为__________.16.从-2,-1,0,1,2这5个数中任取一个数,作为关于x 的一元二次方程x 2-x +k =0的k 值,则所得的方程中有两个不相等的实数根的概率是__________.三、解答题(56分)17.(8分)市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛.同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:各奖项人数百分比统计图各奖项人数统计图(1)一等奖所占的百分比是__________.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整.(3)各奖项获奖学生分别有多少人?18.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,计算出甲的平均成绩是__________环,乙的平均成绩是__________环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.19.(9分)某市今年中考理、化实验操作考查,采用学生抽签方式决定自己的考查内容.规定:每位考生必须在三个物理实验(用纸签A,B,C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考查.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?20.(9分)某校部分男生分三组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如图所示.训练前后各组平均成绩统计图训练后第二组男生引体向上增加个数分布统计图(1)求训练后第一组的平均成绩比训练前增长的百分数.(2)小明在分析了统计图后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由.(3)你认为哪一组的训练效果最好?请提供一个合理的理由来支持你的观点.21.(10分)有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算摸出的小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.22.(12分)某校宣传栏中公示了担任下学期七年级班主任的12位老师的情况(见下表),小凤准备到该校就读七年级,请根据表中信息帮小凤进行如下统计分析:姓名性别年龄学历职称王雄辉男35 本科高级李红男40 本科中级刘梅英女40 中专中级张英女43 大专高级刘元男50 中专中级袁桂男30 本科初级蔡波男45 大专高级李凤女27 本科初级孙焰男40 大专中级彭朝阳男30 大专初级龙妍女25 本科初级杨书男40 本科中级(1)该校下学期七年级班主任老师年龄的众数是多少?(2)在图1中,将反映老师学历情况的条形统计图补充完整;(3)在图2中,标注扇形统计图中表示老师职称为初级和高级的百分比;(4)小凤到该校就读七年级,班主任老师是女老师的概率是多少?学历情况条形统计图职称情况扇形统计图图1 图2参考答案一、1.C2.C 从数据表看出:14 t 出现的次数最多,中位数应是第5个数、第6个数的平均数,是14 t ,故选C.3.B4.A x 甲=15×(6+8+9+9+8)=8,x 乙=15×(10+7+7+7+9)=8,s 2甲=15×[(6-8)2+(8-8)2+(9-8)2+(9-8)2+(8-8)2]=1.2, s 2乙=15×[(10-8)2+(7-8)2+(7-8)2+(7-8)2+(9-8)2]=1.6, ∴s 2甲<s 2乙.∴甲比乙稳定.5.D6.C 由已知可得15(3+a +4+6+7)=5,解得a =5,则方差为s 2=15×[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2.7.B 口袋中白色球的个数为40×(1-15%-45%)=16.8.B 该厂产品100件中有5件不合格,则合格率为1-5%=95%. 所以20万件中合格产品约为20×95%=19(万件). 9.D10.C 若设大正方形的边长为2a ,则它的内切圆的直径等于2a ,则这个圆的内接正方形的对角线长为2a ,其边长等于2a ,面积为2a 2.而大正方形的面积等于4a 2,所以小球停在小正方形内部区域的概率P =2a 24a 2=12. 二、11.5012.22 由题意得20+x2=21,解得x =22.13.31.2 x =5×8%+10×20%+20×44%+50×16%+100×12%=31.2. 14.19 15.1516.35 因为Δ=(-1)2-4k =1-4k ,当方程中有两个不相等的实数根时,Δ>0,即k <14.三、17.解:(1)一等奖所占的百分比为1-20%-24%-46%=10%. (2)从条形统计图可知,一等奖的获奖人数为20. ∴这次比赛中收到的参赛作品为2010%=200份.∴二等奖的获奖人数为200×20%=40. 条形统计图补充如下图所示:(3)一等奖获奖人数为20,二等奖获奖人数为40,三等奖获奖人数为48,优秀奖获奖人数为92. 18.解:(1)9 9 (2)s 2甲=23,s 2乙=43. (3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.19.解:(1)列表格如下:所有可能出现的结果:AD AE AF BD BE BF CD CE CF.(2)从表格或树状图可以看出,所有可能出现的结果共有9种,其中事件M 出现了一次, 所以P (M )=19.20.解:(1)训练后第一组的平均成绩比训练前增长的百分数是5-33×100%≈67%.(2)不同意小明的观点,因为第二组的平均成绩增加个数为8×10%+6×20%+5×20%+0×50%=3. (3)本题答案不唯一,如:我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.21.解:(1)列表如下:结果有12种,其中积为6的有2种, ∴P (积为6)=212=16.(2)游戏不公平.因为积为偶数的有8种情况,而积为奇数的有4种情况. P (积为奇数)=13,P (积为偶数)=23,13≠23.游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. 22.解:(1)该校下学期七年级班主任老师年龄的众数是40; (2)大专4人,中专2人(图略); (3)高级:25%,初级:33.3%; (4)班主任老师是女老师的概率是412=13.。

2021年全国中考数学真题分类汇编--统计与概率(试卷版)

2021年全国中考数学真题分类汇编--统计与概率(试卷版)

从中随机抽取一张,卡片上的数为无理数的概率是( )
A.
B.
C.
D.
10. (2021•广东省)同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为 7 的概率
是(

A. 1 12
B. 1 6
C. 1 3
D. 1 2
11. (2021•四川省乐山市) 在一次心理健康教育活动中,张老师随机抽取了 40 名学生进
D. 摸出的 2 个球都是红球
27. (2021•浙江省衢州卷)一个布袋里放有 3 个红球和 2 个白球,它们除颜色外其余都相 同.从布袋中任意摸出 1 个球,摸到白球的概率是( )
1
A.
3
2
B.
3
1
C.
5
2
D.
5
28. (2021•贵州省贵阳市)“一个不透明的袋中装有三个球,分别标有 1,2,x 这三个号码,
23. (2021•内蒙古包头市)柜子里有两双不同的鞋,如果从中随机地取出 2 只,那么取出的
鞋是同一双的概率为( )
1
A.
3
1
B.
4
1
C.
5
1
D.
6
24. (2021•齐齐哈尔市)五张不透明的卡片,正面分别写有实数 1,
1 2 , 15 ,
9,
5.06006000600006……(相邻两个 6 之间 0 的个数依次加 1).这五张卡片除正面的数不同外
1
A.
3
1
B.
5
3 C.
8
5
D.
8
17. (2021•湖南省娄底市)从背面朝上的分别画有等腰三角形、平行四边形、矩形、圆的

中考数学总复习易错题8统计与概率(含解析)

中考数学总复习易错题8统计与概率(含解析)

中考数学总复习易错题8统计与概率(含解析)易错题 8 统计与概率1.每年 4 月 23 日是“世界读书日”,为了了解某校八年级 500 名学生对“世界读书日”的知晓情况,从中随 机抽取了 10%进行调查.在这次调查中,样本容量是( )A .500B .10%C .50D .52.某班七个兴趣小组人数分别为 4,4,5,5,x ,6,7,已知这组数据的平均数是 5,则这组数据的众数 和中位数分别是( )A .4,5B .4,4C .5,4D .5,53.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数 中位数 众数 方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A .平均数B .众数C .方差D .中位数4.下列特征量不能反映一组数据集中趋势的是( )A .众数B .中位数C .方差D .平均数5.若一组数据 1、a 、2、3、4 的平均数与中位数相同,则 a 不可能是下列选项中的( )A .0B .2.5C .3D .56.下列图形:任取一个是中心对称图形的概率是( )A .14B .12C .34D .17.如图,在 5×5 的正方形网格中,从在格点上的点 A ,B ,C ,D 中任取三点,所构成的三角形恰好是直 角三角形的概率为( )A .13 B .12 C .23D .34 8.甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数 是白球个数的 2 倍;乙袋中,红球个数是白球个数的 3 倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸 出一个球,摸出红球的概率是( )A .512 B .712 C .1724D .259.如图,正方形 ABCD 内接于⊙O ,⊙O 分米,若在这个圆面上随意抛一粒豆子,则豆子落 在正方形 ABCD 内的概率是( )A .2πB .2π C .12πD10.已知一组数据x1,x2,x3,x4,x5 的平均数是5,方差是4,那么另一组数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的平均数和方差分别为()A.5,4 B.3,2 C.5,2 D.3,411.为了了解景德镇市中学生本学期的学习成绩整体情况,市教育局准备在初一年级中的语文、数学、英语三个学科和初二年级中的语文、数学、英语、物理四个学科中各抽取一个学科作为调研考试来考察,那么初一、初二年级都抽中数学的概率是()A 13B.14C.16D.112事件 A 必然事件 随机事件 m 的值 12.下列说法正确的是( )A .某市“明天降雨的概率是 75%”表示明天有 75%的时间会降雨B .400 人中一定有两人的生日在同一天C .在抽奖活动中,“中奖的概率是1100”表示抽奖 l00 次就一定会中奖 D .十五的月亮像一个弯弯的细钩13.一家鞋店在一段时间内销售某种女鞋50 双,各种尺码的销售量如表所示: 尺码(厘米) 22 22.5 23 23.5 24 24.5 25销售量(双) 1 2 31 5 7 3 1如果你是店长,为了增加销售量,你最关注哪个统计量( )A .平均数B .众数C .中位数D .方差14.x 1,x 2,…,x 10 的平均数为 a ,x 11,x 12,…,x 50 的平均数为 b ,则 x 1,x 2,…,x 50 的平均数为( )A .a+bB . 2a b +C 105060a b +D .104050a b + 15.如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知 AB=13,AC=5, BC=12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带 上,则小鸟落在花圃上的概率为 . 16.两组数据:3,5,2a ,b 与 b ,6,a 的平均数都是 6,若将这两组数据合并为 一组数据,则这组新数据的中位数和众数分别为 . 17.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测 试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最 小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于 130 次的成绩为优秀,全校共有 1200 名学 生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为 人.18.如图,随机地闭合开关 S 1,S 2,S 3,S 4,S 5 中的三个,能够使灯泡 L 1,L 2 同时发光的概率是 .19.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在偶数区域的概率是 .20.在一个不透明的袋子中装有仅颜色不同的 10 个小球,其中红球 4 个,黑球 6个.(1)先从袋子中取出 m (m >1)个红球,再从袋子中随机摸出 1 个球,将“摸出黑球”记为 事件 A .请完成下列表格:(2)先从袋子中取出 m 个红球,再放入 m 个一样的黑球并摇匀,随机摸出 1 个球是黑球的可能性大小是45,求 m 的值.21.锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有 3 个选项,第二道单选题有 4 个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15) 3 0.15第二组(15≤x<30) 6 a第三组(30≤x<45)7 0.35第四组(45≤x<60) b 0.20(1)频数分布表中a= ,b= ,并将统计图补充完整;(2)如果该校七年级共有女生 180 人,估计仰卧起坐能够一分钟完成 30 或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?23.2018 年某市学业水平体育测试即将举行,某校为了解同学们的训练情况,从九年级学生中随机抽取部分学生进行了体育测试(把成绩分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)求本次抽测的学生人数;(2)求扇形图中∠α的度数,并把条形统计图补充完整;(3)在测试中甲乙、丙、丁四名同学表现非常优秀,现决定从这四名同学中任选两名给大家介绍训练经验,求恰好选中甲、乙两名同学的概率(用树状图或列表法解答).24.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣2、l、2,它们除了数字不同外,其它都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字 l 的小球的概率为.(2)小红先从布袋中随机摸出一个小球,记下数字作为 k 的值,再把此球放回袋中搅匀,由小亮从布袋中随机摸出一个小球,记下数字作为 b 的值,请用树状图或表格列出 k、b 的所有可能的值,并求出直线 y=kx+b 不经过第四象限的概率.25.某中学决定在本校学生中开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m 名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.请你根据图中的信息,解答下列问题.(1)m= ,n= ;(2)请补全图中的条形图;(3)扇形统计图中,足球部分的圆心角是度;(4)根据抽样调查的结果,请估算全校1800 名学生中,大约有多少人喜爱踢足球.参考答案与试题解析1.【分析】根据样本容量是样本中包含的个体的数目,可得答案.【解答】解:500×10%=50,则本次调查的样本容量是50,故选:C.2.【分析】根据众数、算术平均数、中位数的概念,结合题意进行求解.【解答】解:∵这组数据的平均数是5,∴=5,解得:x=4,这组数据按照从小到大的顺序排列为:4,4,4,5,5,6,7,则众数为:4,中位数为:5.故选:A.3.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.4.【分析】根据中位数、众数、平均数和方差的意义进行判断.【解答】解:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故选:C.5.【分析】首先求出这组数据的平均数是多少,再根据题意,分5 种情况:(1)将这组数据从小到大的顺序排列后为 a,1,2,3,4;(2)将这组数据从小到大的顺序排列后为 1,a,2,3,4;(3)将这组数据从小到大的顺序排列后1,2,a,3,4;(4)将这组数据从小到大的顺序排列后为1,2,3,a,4;(5)将这组数据从小到大的顺序排列为1,2,3,4,a;然后根据这组数据1、a、2、3、4 的平均数与中位数相同,求出a 的值是多少,即可判断出a 不可能是选项中的哪个数.【解答】解:这组数据1、a、2、3、4 的平均数为:(1+a+2+3+4)÷5=(a+10)÷5=0.2a+2(1)将这组数据从小到大的顺序排列后为a,1,2,3,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=2,解得a=0,符号排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,3,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(3)将这组数据从小到大的顺序排列后1,2,a,3,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,3,a,4,中位数是3,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=3,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,3,4,a,中位数是3,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=3,解得a=5;符合排列顺序;综上,可得a=0、2.5 或5.∴a 不可能是3.故选:C.6.【分析】由共有4 种等可能的结果,任取一个是中心对称图形的有3 种情况,直接利用概率公式求解即可求得答案.【解答】解:∵共有4 种等可能的结果,任取一个是中心对称图形的有3 种情况,∴任取一个是中心对称图形的概率是:.故选:C.7.【分析】从点A,B,C,D 中任取三点,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【解答】解:∵从点 A,B,C,D 中任取三点能组成三角形的一共有 4 种可能,其中△ABD,△ADC,△ABC 是直角三角形,∴所构成的三角形恰好是直角三角形的概率为.故选:D.8.【分析】首先根据每个袋子中球的倍数设出每个袋子中球的个数,然后利用概率公式求解即可.【解答】解:∵甲袋中,红球个数是白球个数的2 倍,∴设白球为4x,则红球为8x,∴两种球共有12x 个,∵乙袋中,红球个数是白球个数的3 倍,且两袋中球的数量相同,∴红球为9x,白球为3x,∴混合后摸出红球的概率为:=,故选:C.9.【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【解答】解:因为⊙O 的直径为分米,则半径为分米,⊙O 的面积为π()2=平方分米;正方形的边长为=1 分米,面积为1 平方分米;因为豆子落在圆内每一个地方是均等的,所以P(豆子落在正方形ABCD 内)== .故选:A.10.【分析】根据平均数和方差的变化规律,即可得出答案.【解答】解:∵数据x1,x2,x3,x4,x5 的平均数是5,∴数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的平均数是5﹣2=3;∵数据x1,x2,x3,x4,x5 的方差是4,∴数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的方差不变,还是4;故选:D.11.【分析】依据题意画出树状图或列表,依据共有 12 种等可能的结果,其中初一、初二年级都抽中数学的情况有1 种,即可得到初一、初二年级都抽中数学的概率.【解答】解:画树状图可得:∵共有12 种等可能的结果,其中初一、初二年级都抽中数学的情况有1 种,∴P(初一、初二年级都抽中数学)=,故选:D.12.【分析】利用概率的意义以及实际生活常识分析得出即可.【解答】解:A、某市“明天降雨的概率是75%”表示明天有75%的概率降雨,故此选项错误; B、400 人中一定有两人的生日在同一天,正确; C、在抽奖活动中,“中奖的概率是”表示抽奖l00 次就有可能中奖,故此选项错误;D、十五的月亮是圆圆的,故此选项错误.故选:B.13.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.既然是对该鞋子销量情况作调查,那么应该关注那种尺码销的最多,故值得关注的是众数.【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:B.14.【分析】先求前10 个数的和,再求后40 个数的和,然后利用平均数的定义求出50 个数的平均数.【解答】解:前10 个数的和为10a,后40 个数的和为40b,50 个数的平均数为.故选:D.15.【分析】根据AB=13,AC=5,BC=12,得出AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径,求得直角三角形的面积和圆的面积,即可得到结论.【解答】解:∵AB=13,AC=5,BC=12,∴AB2=BC2+AC2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径= =2,∴S△ABC=A C•BC=×12×5=30,S 圆=4π,∴小鸟落在花圃上的概率==;故答案为:.16.【分析】先根据平均数均为6 得出关于a、b 的方程组,解方程组求得a、b 的值后,把两组数据合并、重新排列,根据中位数和众数的定义求解可得.【解答】解:根据题意,得:,解得:,则两组数据重新排列为3、4、5、6、8、8、8,∴这组新数据的中位数为6,众数为8,故答案为:6,8.17.【分析】首先由第二小组有 10 人,占20%,可求得总人数,再根据各小组频数之和等于数据总数求得第四小组的人数,利用总人数260 乘以样本中“一分钟跳绳”成绩为优秀的人数所占的比例即可求解.【解答】解:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×1200=480,故答案为:480.18.【分析】求出随机闭合开关 S1,S2,S3,S4,S5 中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关 S1,S2,S3,S4,S5 中的三个共有 10 种可能(任意开两个有4+3+2+1=10可能,故此得出结论),能够使灯泡L1,L2 同时发光有2 种可能(S1,S2,S4 或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5 中的三个,能够使灯泡L1,L2 同时发光的概率是=.故答案为.19.【分析】根据几何概率的求法:指针落在偶数区域的概率是就是所标数字为偶数的面积与总面积的比值.【解答】解:观察这个图可知:所标数字为偶数的面积占总面积的(+ )= ,故其概率为.20.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m 的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4 个红球时,摸到黑球是必然事件;∵m>1,当摸出2 个或3 个红球时,摸到黑球为随机事件,事件A 必然事件随机事件m 的值 4 2、3故答案为:4;2、3.(2)依题意,得,解得 m=2,所以m 的值为2.【点评】本题考查的是概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=.21.【分析】(1)锐锐两次“求助”都在第一道题中使用,第一道肯定能对,第二道对的概率为,即可得出结果;(2)由题意得出第一道题对的概率为,第二道题对的概率为,即可得出结果;(3)用树状图得出共有6 种等可能的结果,锐锐顺利通关的只有1 种情况,即可得出结果.【解答】解:(1)第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;故答案为:;(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为,第二道题对的概率为,所以锐锐能通关的概率为×=;故答案为:;(3)锐锐将每道题各用一次“求助”,分别用A,B 表示剩下的第一道单选题的2 个选项,a,b,c 表示剩下的第二道单选题的3 个选项,树状图如图所示:共有6 种等可能的结果,锐锐顺利通关的只有1 种情况,∴锐锐顺利通关的概率为:.22.【分析】(1)由统计图易得a 与b 的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【解答】解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30 或30 次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12 种等可能的结果,所选两人正好都是甲班学生的有3 种情况,∴所选两人正好都是甲班学生的概率是:=.23.【分析】(1)根据B 级的频数和百分比求出学生人数;(2)求出A 级的百分比,360°乘百分比即为∠α的度数,根据各组人数之和等于总数求得C 级人数即可补全图形;(3)根据列表法或树状图,运用概率计算公式即可得到恰好选中甲、乙两名同学的概率.【解答】解:(1)160÷40%=400,答:本次抽样测试的学生人数是400 人;(2)×360°=108°,答:扇形图中∠α的度数是108°;C 等级人数为:400﹣120﹣160﹣40=80(人),补全条形图如图:(3)画树状图如下:或列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣共有12 种等可能的结果,其中恰好选中甲、乙两位同学的结果有2 种,所以P(恰好选中甲、乙两位同学)==.24.【分析】(1)三个小球上分别标有数字﹣2、l、2,随机地从布袋中摸出一个小球,据此可得摸出的球为标有数字1 的小球的概率;(2)先列表或画树状图,列出k、b 的所有可能的值,进而得到直线y=kx+b 不经过第四象限的概率.【解答】解:(1)三个小球上分别标有数字﹣2、l、2,随机地从布袋中摸出一个小球,则摸出的球为标有数字1 的小球的概率=;故答案为;(2)列表:共有9 种等可能的结果数,其中符号条件的结果数为4,所以直线y=kx+b 不经过第四象限的概率=.25.【分析】(1)根据喜爱乒乓球的有10 人,占10%可以求得m 的值,从而可以求得n 的值;(2)根据题意和m 的值可以求得喜爱篮球的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以得到足球部分的百分比,即可得到足球部分的圆心角度数;(4)根据统计图中的数据可以估算出全校1800 名学生中,大约有多少人喜爱踢足球;【解答】解:(1)由题意可得,m=10÷10%=100,n%=15÷100=15%,故答案为:100,15;(2)喜爱篮球的有:100×35%=35(人),补全的条形统计图,如图所示:(3)扇形统计图中,足球部分的圆心角是360°×=144°;故答案为:144;(4)由题意可得,全校1800 名学生中,喜爱踢足球的有:1800×=720(人),答:全校1800 名学生中,大约有720 人喜爱踢足球;。

中考数学统计与概率专题知识易错题50题-含答案

中考数学统计与概率专题知识易错题50题-含答案

中考数学统计与概率专题知识易错题50题含答案一、单选题1.下列调查适合做普查的是()A.了解全国九年级学生身高的现状B.了解一批灯泡的平均使用寿命C.了解全球人类男女比例情况D.对患新型冠状病毒患者同一车厢的乘客进行医学检查2.下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了违禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率3.在开展“爱心捐助山区儿童”的活动中,某团小组8名团员捐款的数额分别为(单位:元):6,5,3,5,10,5,5,7.这组数据的中位数和众数分别是()A.10,3B.6,5C.7,5D.5,5 4.“命题”的英文单词为proposition,在该单词中字母o出现的频数是()A.0.3B.2C.3D.3 115.西安市今年10月11号至10月14号,每天的最高气温分别为11℃,12℃,13℃,13℃,则这几天最高气温的中位数和众数分别是()A.11℃,13℃B.12℃,12℃C.12.5℃,13℃D.13℃,12℃6.在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,其它均相同,从袋子里随机摸出一个球记下颜色不放回,再随机地摸出一个球,则两次都摸到白球的概率为()A.116B.18C.16D.127.数据2,2,4,8,9的中位数是()A.2B.3C.4D.68.在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5的概率B.朝上的点数是奇数的概率C.朝上的点数大于2的概率D.朝上的点数是3的倍数的概率9.深圳今年4月份某星期的最高气温如下(单位℃):26,25,27,28,27,25,25,则这个星期的最高气温的众数和中位数分别是()A.25,26B.25,26.5C.27,26D.25,28 10.下列调查中,最适合用普查方式的是()A.调查某品牌牛奶质量合格率B.调查三亚市实验中学七(1)班学生的平均身高C.调查三亚市中小学生收看2018年俄罗斯世界杯总决赛的情况D.调查海南省九年级学生一周内网络自主学习的情况11.必然事件的概率是()A.1B.0C.大于0且小于1D.大于1 12.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙、丁的成绩分析如表所示:根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁13.一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是()A.众数B.中位数C.平均数D.方差14.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数4相差2的概率是()A.12B.13C.14D.1515.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.072516.现有四张完全相同的卡片,上面分别标有数字1,4,5,7,把卡片背面朝上洗匀,两个人依次从中随机抽取一张卡片不放回,则这两个人抽取的卡片上的数字都是奇数的概率是().A.13B.12C.23D.1417.甲,乙两个班参加了学校组织的国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()A.乙班成绩优异的人数比甲班多B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲、乙两班的平均水平不相同18.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:x甲=x乙=80,s=240,s=180,则成绩较为稳定的班级是().A.甲班B.两班成绩一样稳定C.乙班D.无法确定19.为了解我市八年级学生的视力状况,从中随机抽取500名学生的视力状况进行分析,此项调查的样本为()A.500B.被抽取的500名学生C.被抽取500名学生的视力状况D.我市八年级学生的视力状况二、填空题20.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是____小时.21.甲、乙、丙、丁四人各进行20次射击测试,他们的平均成绩相同,方差分别是2222,,,,则射击成绩最稳定的是__________.====0.80.60.9 1.0s s s s乙丙甲丁22.某校学生到校方式情况的扇形统计图如图所示,若该校步行到校的学生有200人,则乘公共汽车到校的学生有___人.23.不透明布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是______.24.如图是边长为3cm的正方形健康码,为了估计图中黑色部分的总而限,在正方型区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为______2cm.25.现有两个不透明的袋子,甲袋中装有一个白球和两个红球,乙袋中装有两个白球和一个红球,两个袋子中的球除了颜色不同外其他都相同,如果从两个袋子中各摸出一个球,则摸出的球颜色相同的概率是___.26.一个袋中装有2个黄球和2个红球,任意摸出一个球后放回,再任意摸出一个球,则两次都找到红球的概率为__________.27.现有四张正面分别标有数字1-,1,2-,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后不放回,再从余下的卡P m n在第片中随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点(),二象限的概率是______.28.某校广播台要招聘一名播音员,应聘甲听,说,读,写的成绩分别为80,78,82,90,若成绩按3:3:2:2的比例计算,则甲的综合成绩为______.29.某校组织八年级三个班学生参加数学竞赛,竞赛结果三个班总平均分为72.5,已知一班参赛人数30人,平均分75分,二班参赛人数30人,平均分为80,三班参赛人数40人,则三班的平均分为_______分.30.某校女子排球队的12名队员的身高如表:则身高178cm出现的频率是____________31.100件某种产品中有五件次品,从中任意取一件,恰好抽到次品的概率是______.32.一副52张的扑克牌(无大、小王),从中任意取出一张,抽到“Q”的可能性大小是____________.33.某学校将举行中小学生运动会,某校从甲、乙、丙、丁四名选手中选一名参加男子100米跑项目,预先对这四名选手个测试了8次,平均成绩都是12.6秒,方差如表:则这四名选手中发挥最稳定的是_______.34.一组数2,3,5,5,6,7 的中位数是_______.35.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵葡萄树,每棵葡萄树产量的平均数x (单位:千克)及方差2s (单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是______.36.“明天的降水概率为80%”的含义有以下三种不同的解释: ℃ 明天80%的地区会下雨; ℃ 80%的人认为明天会下雨; ℃ 明天下雨的可能性比较大;你认为其中合理的解释是_________.(写出序号即可)37.为了解某校学生每周课外阅读时间的情况,随机抽取该校a 名学生进行调查,获得的数据整理后绘制成统计表如下:表中46x ≤<组的频数b 满足2535b ≤<.下面有四个推断: ℃表中a 的值为100; ℃表中c 的值可以为0.31:℃这a 名学生每周课外阅读时间的中位数一定不在6~8之间: ℃这a 名学生每周课外阅读时间的平均数不会超过6. 所有合理推断的序号是___________.38.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红球的概率是 .39.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a ,b .那么22a b +为完全平方数的概率是_________.三、解答题40.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表(1)求a的值(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?41.甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.42.已知一组同学练习射击,击中靶子的环数分别为103、98、99、101、100、98、97、104,计算它们的方差.43.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).组别时间(小时)频数(人数)频率A0≤t<0.5200.05B0.5≤t<1a0.3C1≤t<1.51400.35D 1.5≤t<2800.2E2≤t<2.5400.1请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.44.为了解某种新能源汽车的性能,对这种汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)这次被抽检的新能源汽车共有辆;(2)将图1补充完整;在图2中,C等级所占的圆心角是度;(3)估计这种新能源汽车一次充电后行驶的平均里程数为多少千米?(精确到千米)45.计划在某水库建一座至多安装4台发电机的水电站,过去50年的水文资料显示,水库年入流量x(年入流量:一年内.上游来水与库区降水之和,单位:亿立方米)都在40以上.过去50年的年入流量的统计情况如下表(假设各年的年入流量不相互影响).以过去50年的年入流量的统计情况为参考依据.(1)求年入流量不低于120的概率;(2)若水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量x的限制,并有如表关系:若某台发电机运行,则该台发电机年利润为6000万元;若某台发电机未运行,则该台发电机年亏损2000万元,水电站计划在该水库安装2台或3台发电机,你认为应安装2台还是3台发电机?请说明理由.46.上个月,某校对学生进行了一次垃圾分类的宣传活动,为了解这次宣传活动的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了下面所示的不完整的统计表和统计图.垃圾分类知识测试成绩统计表请结合统计表和统计图,回答下列问题:(1)求本次参与测试的学生人数;(2)统计表中m=__________,n=__________;(3)补全“垃圾分类知识测试成绩统计图”;(4)如果测试结果是“良好”或“优秀”为对垃圾分类知识比较了解,已知该校学生总数为3600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数.47.把分别标有数字2,3,4,5的四个小球放入A袋,把分别标有数字13,14,16的三个小球放入B袋,所有小球的形状、大小、质地均相同,A、B两个袋子不透明.(1)如果从A袋中摸出的小球上的数字为3,再从B袋中摸出一个小球,两个小球上的数字互为倒数的概率是;(2)小明分别从A,B两个袋子中各摸出一个小球,请用树状图或列表法列出所有可能出现的结果,并求这两个小球上的数字互为倒数的概率.48.某市提倡“诵读中华经典,营造书香校园”的良好诵读氛围,促进校园文化建设,进而培养学生的良好诵读习惯,使经典之风浸漫校园.某中学为了了解学生每周在校经典诵读时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:(1)表中的a=,b=;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加经典诵读时间至少有4小时的学生约为多少名?49.某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计),第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车,小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林,离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车从入口处到达塔林的时间.(2)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变).(3)若小聪在8:30至8:50之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过3分钟的概率是多少?参考答案:1.D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解全国九年级学生身高的现状,但所费人力、物力和时间较多,适合抽样调查,故本选项不合题意;B、了解一批灯泡的平均使用寿命,调查具有破坏性,适合抽样调查,故本选项不合题意;C、了解全球人类男女比例情况,但所费人力、物力和时间较多,适合抽样调查,故本选项不合题意;D、对患新型冠状病毒患者同一车厢的乘客进行医学检查,特别重要,必须普查,故本选项符合题意;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.C【详解】解:A、数量较大,普查的意义或价值不大时,应选择抽样调查;B、数量较大,具有破坏性的调查,应选择抽样调查;C、事关重大的调查往往选用普查;D、数量较大,普查的意义或价值不大时,应选择抽样调查.故选C.3.D【详解】试题分析:在这一组数据中5是出现次数最多的,故众数是5;将这组数据从小到大的顺序排列(3,5,5,5,5,6,7,10),处于中间位置的那两个数是5,则这组数据的中位数是5;故选D.考点:℃众数;℃中位数.4.C【分析】频数就是出现的次数,根据频数的定义求解即可.【详解】℃在英文单词为proposition中字母o出现的次数是3,℃在该单词中字母o出现的频数是3;故答案为C.【点睛】本题主要考查了频数的概念,熟记频数的定义是解题的关键.5.C【分析】利用中位数的定义“中位数是按顺序排列的一组数据中居于中间位置的数,且如果数据的个数是偶数,则中间那2个数据的算术平均值就是这群数据的中位数”和众数的定义“众数是在一组数据中,出现次数最多的数据”逐项判断即可解答.【详解】根据题意有4个数据,按顺序排列,处于中间的2个数据分别是12℃和13℃,所以中位数是(12℃+13℃)÷2=12.5℃;4个数据中13℃出现次数最多为2次,所以众数为13℃.故选C【点睛】本题考查中位数和众数的定义.注意数据的个数是偶数,那么中间那2个数据的算术平均值才是这群数据的中位数是本题解题关键.6.C【分析】根据题意画出树状图,然后由树状图求得所有等可能的结果,与两次摸到白球的情况,再利用概率公式求解即可.【详解】解:画树状图得:共有12种等可能的结果,两次都摸到白球的有2种情况,;两次都摸到白球的概率为:21=126故选:C.【点睛】本题考查概率的知识点,解题关键是采用列表法与树状图法求出概率即可.7.C【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);【详解】解:中位数是按从小到大排列后第3个数,所以是4,故选:C .【点睛】本题考查中位数的定义,中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),注意先进行排序. 8.D【分析】计算出各个选项中事件的概率,根据概率即可作出判断. 【详解】A 、朝上的点数是5的概率为.%≈116676,不符合试验的结果; B 、朝上的点数是奇数的概率为%==315062,不符合试验的结果;C 、朝上的点数大于2的概率.%≈466676,不符合试验的结果; D 、朝上的点数是3的倍数的概率是.%≈233336,基本符合试验的结果. 故选:D .【点睛】本题考查了频率估计概率,当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率. 9.A【分析】根据众数和中位数的定义,结合所给数据即可得出答案.【详解】将这组数据按从小到大的顺序排列为:25,25,25,26,27,27,28, 出现最多的数字为:25;故众数是25, 中位数为:26 故选:A .【点睛】此题考查众数和中未收到额定义,正确掌握众数和中位数的确定方法是解题的关键. 10.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行解答即可.【详解】调查某品牌牛奶质量合格率,适合用抽样方式,A 不合题意;调查三亚市实验中学七(1)班学生的平均身高,适合用普查方式,B 符合题意;调查三亚市中小学生收看2018年俄罗斯世界杯总决赛的情况,适合用抽样方式,C 不合题意;调查海南省九年级学生一周内网络自主学习的情况,适合用抽样方式,D 不合题意;所以B 选项是正确的【点睛】本题考查根据不同实际情况选择适合的调查方式,主要涉及抽样调查和普查知识11.A【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可解答. 【详解】℃必然事件就是一定发生的事件 ℃必然事件发生的概率是1. 故选A.【点睛】本题考查概率的意义,熟练掌握概率的意义是解题关键. 12.D【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【详解】解:℃甲,乙,丙,丁四个人中丙和丁的平均数最大且相等, 甲,乙,丙,丁四个人中丁的方差最小,℃综合平均数和方差两个方面说明丁成绩既高又稳定, ℃最合适的人选是丁. 故选D .【点睛】本题考查了方差和平均数,掌握相关知识并熟练使用,同时注意解题中需注意的事项是本题的解题关键. 13.D【分析】根据众数、中位数、平均数及方差可直接进行排除选项. 【详解】解:由题意得:原中位数为4,原众数为4,原平均数为2444645x ++++==,原方差为()()()()()2222222444444464855S ⎡⎤-+-+-+-+-⎣⎦==; 去掉一个数据4后的中位数为4442+=,众数为4,平均数为244644x +++==,方差为()()()()222222444446424S ⎡⎤-+-+-+-⎣⎦==; ℃统计量发生变化的是方差; 故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.【分析】由将一质地均匀的正方体骰子掷一次,共有6种等可能的结果,向上一面的点数,与点数4相差2的有2与6,直接利用概率公式求解即可求得答案.【详解】℃将一质地均匀的正方体骰子掷一次,共有6种等可能的结果,向上一面的点数,与点数4相差2的有2与6,℃向上一面的点数,与点数4相差2的概率是:21=.63故选B.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.B【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.16.B【分析】画树状图展示所有12种等可能的结果数,再找出这两个人抽取的卡片上的数字都是奇数的结果数,然后根据概率公式计算.【详解】画树状图为:共有12种等可能的结果数,其中这两个人抽取的卡片上的数字都是奇数的结果数为6,所以这两个人抽取的卡片上的数字都是奇数的概率=61 122=,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.17.A【分析】由两个班的中位数得出选项A正确;由众数的定义得出选项B不正确;由方差的性质得出选项C不正确;由两个班的平均数相同得出选项D不正确;即可得出结论.【详解】解:A、由两个班的中位数得出:甲班成绩优异的人数比乙班多;故A正确;B、甲、乙两班竞赛成绩的众数不确定;故B不正确;C、乙班的成绩比甲班的成绩稳定;故C不正确;D、甲、乙两班的平均水平相同;故D不正确;故选:A.【点睛】本题考查了平均数,众数,中位数,方差;正确的理解题意是解题的关键.18.C【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【详解】℃2S甲>2S乙,℃成绩较为稳定的班级是乙班.故答案选C.【点睛】本题考查的知识点是方差,解题的关键是熟练的掌握方差.19.C【分析】从总体中取出的一部分个体叫做这个总体的一个样本,依据样本的定义进行判断即可.【详解】为了解我市八年级学生的视力状况,从中随机抽取500名学生的视力状况进行分析,此项调查的样本为被抽取500名学生的视力状况,故选C.【点睛】本题主要考查了样本的定义,把组成总体的每一个考查对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本.20.6.4【详解】解:平均体育锻炼时间=510615720856.450⨯+⨯+⨯+⨯=(小时).故答案为:6.4 21.乙【分析】方差越小,数据越稳定. 【详解】解:0.60.80.9 1.0<<< ∴乙的射击成绩最稳定故答案为:乙.【点睛】本题考查方差的实际应用,是基础考点,掌握相关知识是解题关键. 22.400.【分析】根据题意,该校步行到校的学生有200人,占总数的20%,即可求得总人数,再由乘公共汽车到校的学生占总数的40%即可求得乘公共汽车到校的学生人数. 【详解】若该校步行到校的学生有200人,则该校的学生总人数为200÷20%=1000(人),所以乘公共汽车到校的学生有1000×40%=400(人), 故答案为:400.【点睛】本题主要考查了数据统计中总体人数的求解,找准百分比与对应人数之间的关系是解决本题的关键 23.13【详解】根据概率公式可得摸出的球是白球的概率是2123++= 13.点睛:本题属于基础型题目,学生只需熟练掌握概率的求法,即可完成. 24.5.4【分析】先计算正方形的面积,再建立方程求解即可. 【详解】解:边长为3cm 正方形面积为239=, 设黑色部分的总面积为x 2cm , ℃0.69x=, ℃ 5.4x =, 故答案为:5.4.【点睛】本题考查了用频率来估计概率,解题关键是理解频率与概率的关系与概率计算公式,明确题中黑色部分的面积与正方形的面积比等于概率是解题的关键.。

中考专题:数学统计与概率(答案解析)

中考专题:数学统计与概率(答案解析)

高频考点统计与概率试题参考答案与试题解析一.选择题(共9小题)1.(2018•河北)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:==13, ==15:s 甲2=s 丁2=3.6,s 乙2=s丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁解:∵=>=,∴乙、丁的麦苗比甲、丙要高, ∵s 甲2=s 丁2<s 乙2=s 丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐, 综上,麦苗又高又整齐的是丁, 故选:D .2.(2018•山西)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件): 太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78332.68302.34319.79725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( ) A .319.79万件 B .332.68万件 C .338.87万件D .416.01万件解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87 所以这组数据的中位数是338.87 故选:C .3.(2018•呼和浩特)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9解:A 、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B 、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C 、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D 、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意; 故选:D .4.(2018•山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .B .C .D .解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为, 故选:A .5.(2018•呼和浩特)随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是( )A .①的收入去年和前年相同B .③的收入所占比例前年的比去年的大C .去年②的收入为2.8万D .前年年收入不止①②③三种农作物的收入 解:A 、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;B 、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×1005=32.5%,此选项错误; C 、去年②的收入为80000×=28000=2.8(万元),此选项正确;D、前年年收入即为①②③三种农作物的收入,此选项错误;故选:C.6.(2018•包头)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1D.5,2解:数据1,3,4,4,4,5,5,6的众数是4,,则=2,故选:B.7.(2018•黑龙江)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94D.极差是20解:A 、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.8.(2018•齐齐哈尔)我们家乡的黑土地全国特有,肥沃的土壤、绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg 装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数B.平均数C.中位数D.方差解:对这个米店老板来说,他最应该关注的是这些数据(袋数)中的哪一包装卖得最多,即是这组数据的众数.故选:A.9.(2018•大庆)已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=()A.98 B.99 C.100 D.102 解:数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94,该组数据的平均数为 [92+94+98+91+95]=94,其方差为 [(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]=6,所以b=6所以a+b=94+6=100.故选:C.二.填空题(共7小题)10.(2018•天津)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.11.(2018•包头)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.解:列表如下:﹣2 ﹣1 1 2 ﹣2 2 ﹣2 ﹣4﹣1 2 ﹣1 ﹣21 ﹣2 ﹣1 22 ﹣4 ﹣2 2由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.12.(2018•北京)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤35 35<t≤40 40<t≤45 45<t≤50 合A 59 151 166 124 5B 50 50 122 278 5C 45 265 167 23 5早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B 线路公交车用时不超过45分钟的可能性为=0.444,C 线路公交车用时不超过45分钟的可能性为=0.954,∴C 线路上公交车用时不超过45分钟的可能性最大, 故答案为:C .13.(2018•呼和浩特)已知函数y=(2k ﹣1)x +4(k 为常数),若从﹣3≤k ≤3中任取k 值,则得到的函数是具有性质“y 随x 增加而增加”的一次函数的概率为 .解:当2k ﹣1>0时,解得:k >,则<k ≤3时,y 随x 增加而增加, 故﹣3≤k <时,y 随x 增加而减小,则得到的函数是具有性质“y 随x 增加而增加”的一次函数的概率为: =.故答案为:.14.(2018•赤峰)一组数据:﹣1,3,2,x ,5,它有唯一的众数是3,则这组数据的中位数是 3 .解:∵一组数据:﹣1,3,2,x ,5,它有唯一的众数是3, ∴x=3,∴此组数据为﹣1,2,3,3,5, ∴这组数据的中位数为3, 故答案为3.15.(2018•哈尔滨)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6, 故骰子向上的一面出现的点数是3的倍数的概率是: =. 故答案为:.16.(2018•通辽)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD 内随意投掷飞镖. 他们的各项成绩如下表所示:候选人 笔试成绩/分面试成绩/分甲 90 88 乙 84 92 丙 x 90 丁8886(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x 的值; (3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.解:(1)这四名候选人面试成绩的中位数为: =89(分);(2)由题意得,x ×60%+90×40%=87.6 解得,x=86,答:表中x 的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分), 乙候选人的综合成绩为:84×60%+92×40%=87.2(分), 丁候选人的综合成绩为:88×60%+86×40%=87.2(分), ∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.23.(2018•通辽)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m )绘制成不完整的频数分布表和频数分布直方图. 学生立定跳远测试成绩的频数分布表分组 频数 1.2≤x <1.6 a 1.6≤x <2.0 12 2.0≤x <2.4 b 2.4≤x <2.810 请根据图表中所提供的信息,完成下列问题:(1)表中a= 8 ,b= 20 ,样本成绩的中位数落在 2.0≤x <2.4 范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有多少人?解:(1)由统计图可得, a=8,b=50﹣8﹣12﹣10=20,样本成绩的中位数落在:2.0≤x <2.4范围内, 故答案为:8,20,2.0≤x <2.4;(2)由(1)知,b=20,补全的频数分布直方图如右图所示;(3)1000×=200(人),答:该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有200人.24.(2018•赤峰)国家为了实现2020年全面脱贫目标,实施“精准扶贫”战略,采取异地搬迁,产业扶持等措施.使贫困户的生活条件得到改善,生活质量明显提高.某旗县为了全面了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)将图1补充完整;(2)通过分析,贫困户对扶贫工作的满意度(A、B、C类视为满意)是95%;(3)市扶贫办从该旗县甲乡镇3户、乙乡镇2户共5户贫困户中,随机抽取两户进行满意度回访,求这两户贫困户恰好都是同一乡镇的概率.解:(1)∵被调查的总户数为60÷60%=100,∴C类别户数为100﹣(60+20+5)=15,补全图形如下:(2)贫困户对扶贫工作的满意度(A、B、C类视为满意)是×100%=95%,故答案为:95%;(3)画树状图如下:由树状图知共有20种等可能结果,其中这两户贫困户恰好都是同一乡镇的有8种结果,所以这两户贫困户恰好都是同一乡镇的概率为=.25.(2018•通辽)为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查为优秀,那么估计获得优秀奖的学生有多少人?解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.27.(2018•哈尔滨)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.28.(2018•齐齐哈尔)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有50人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?解:(1)全班学生人数为6÷0.12=50人,故答案为:50;(2)第二、三组频数之和为50×0.48=24,则第三组频数为24﹣6=18,∵自左至右第三,四,五组的频数比为9:8:3,∴第四组频数为16、第五组频数为6,则第六组频数为50﹣(1+6+18+16+6)=3,补全图形如下:(3)全年级700人中成绩达到优秀的大约有700×=350人;(4)小强同学能被选中领奖的概率是=.29.(2018•大庆)九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不完整的频数分布表和扇形统计图.类别频数(人数)频率小说16戏剧 4散文 a其他 b合计 1根据图表提供的信息,解答下列问题:(1)直接写出a,b,m的值;(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的2人恰好是乙和丙的概率.解:(1)∵被调查的学生总人数为4÷10%=40人,∴散文的人数a=40×20%=8,其他的人数b=40﹣(16+4+8)=12,则其他人数所占百分比m%=×100%=30%,即m=30;(2)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,所以选取的2人恰好乙和丙的概率为=.。

中考数学专题训练统计与概率(含解析)

中考数学专题训练统计与概率(含解析)

中考数学专题训练统计与概率(含解析)专题训练(统计与概率)(120分钟120分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列调查中,调查方式选择正确的是( )A.为了了解全市中学生课外阅读情况,选择全面调查B.为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C.为了了解一批手机的使用寿命,选择抽样调查D.旅客上飞机前的安检,选择抽样调查【解析】选C.为了了解全市中学生课外阅读情况,选择抽样调查,A错误;为了了解全国中学生“母亲节”孝敬母亲的情况,选择抽样调查,B错误;为了了解一批手机的使用寿命,选择抽样调查,C正确;旅客上飞机前的安检,选择全面调查,D错误.2.2019年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A.这1 000名考生是总体的一个样本B.1 000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【解析】选C.A.1 000名考生的数学成绩是总体的一个样本,故A错误;们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A. B. C. D.【解析】选C.因为布袋里装有5个红球,2个白球,3个黄球,所以从袋中摸出一个球是黄球的概率是.7.(2019·邵阳中考)“救死扶伤”是我国的传统美德.某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图.根据统计图判断下列说法,其中错误的一项是( )A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【解析】选D.认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1-27%-65%=8%,故C正确;认为该扶的占65%,故D错误.8.(2019·连云港中考)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数【解析】选A.根据方差的意义,可知方差越小,数据越稳定,因此可知比较两人成绩稳定性的数据为方差.9.(2019·成都中考)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解析】选C.根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故其中位数为80分.10.九年级(1)班和(2)班的第一次模拟考试的数学成绩统计如下表:班级参加人数中位数方差平均分(1)班50 120 103 122(2)班49 121 201 122根据上表分析得出如下结论:①两班学生成绩的平均水平基本一致;②(2)班的两极分化比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①②C.①③D.②③【解析】选B.由两班的平均数可得两班学生成绩的平均水平基本一致,故①正确;(2)班方差大于(1)班,因此(2)班的两极分化比较严重,故②正确;(2)班中位数为121,(2)班比(1)班少1人,无法判断哪个班优秀的人数多,故③错误.11.(2019·南充中考)某校数学兴趣小组在一次数字课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:成绩/分36 37 38 39 40人数/人 1 2 1 4 2下列说法正确的是( )A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【解析】选C.10名学生的体育成绩中39分出现的次数最多,众数为39分; 排序后第5和第6名同学的成绩的平均值为中位数,中位数为=39分; 平均数==38.4分,方差=[(36-38.4)2+2×(37-38.4)2+(38-38.4)2+4×(39-38.4)2+2×(40- 38.4)2]=1.64;所以选项A,B,D错误.12.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A.中位数B.众数C.平均数D.方差【解析】选A.因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入前3名了.13.若将30°,45°,60°的三角函数值填入表中,则从表中任意取一个值,是的概率为( )α30°45°60°sinαcosαtanαA. B. C. D.【解析】选D.∵表中共有9个数,有两个,∴从表中任意取一个值,是的概率为.α30°45°60°sinαcosαtanα 114.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是A.平均数B.中位数C.众数D.方差【解析】选B.去掉一个最高分和一个最低分对中位数没有影响.15.(2019·金华中考)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲,乙同学获得前两名的概率是( ) A. B. C. D.【解析】选D.画树状图得:所以一共有12种等可能的结果,甲,乙同学获得前两名的有2种情况,所以甲,乙同学获得前两名的概率是=.16.一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )A.2个B.3个C.4个D.5个【解析】选B.∵重复该试验多次,摸到白球的频率稳定在0.4,∴估计摸到白球的概率0.4,设袋子中黑球的个数为x,∴=0.4,解得x=3,∴可判断袋子中黑球的个数为3.17.(2019·眉山中考)下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【解析】选C.A.给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B.给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C.给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意.18.一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如表所示:鞋的尺码(单位:cm) 22.5 23 23.5 24 24.5销售量(单位:双) 3 6 12 9 8根据统计的数据,鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比是A.1∶2∶4 B.2∶4∶5C.2∶4∶3D.2∶3∶4【解析】选C.鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比为6∶12∶9=2∶4∶3.19.(2019·绍兴中考)下表记录了甲,乙,丙,丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环) 9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择A.甲 B.乙 C.丙 D.丁【解析】选D.比较四名射击运动员成绩的平均数可得,乙和丁的成绩更好,而乙的方差>丁的方差,所以丁的成绩更稳定些.20.学校食堂午餐有10元,12元、15元三种价格的盒饭供选择,若经过统计发现10元、12元、15元的盒饭卖出数量恰好分别占50%,30%,20%,则卖出盒饭价格的中位数是( )A.10元B.11元C.12元D.无法确定【解析】选B.∵10元,12元,15元的盒饭卖出数量恰好分别占50%,30%、20%, ∴最中间的两个数是10元,12元,∴中位数是10和12的平均数,(10+12)÷2=11(元).二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.(2019·重庆模拟)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.【解析】由统计图可知,一共有6+9+10+8+7=40(人),所以该班这些学生一周锻炼时间的中位数是第20个和第21个学生对应的数据的平均数,所以该班这些学生一周锻炼时间的中位数是11小时.答案:1122.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______ (填>或<).【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>.答案:>23.(2019·岱岳区模拟)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.【解析】因为所得函数的图象经过第一、三象限,所以5-m2>0,所以m2<5,所以3,0,-1,-2,-3中,3和-3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=-4<0,无实数根;将m=-1代入(m+1)x2+mx+1=0中得,-x+1=0,x=1,有实数根;将m=-2代入(m+1)x2+mx+1=0中得,x2+2x-1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为.答案:24.(2019·张店区一模)某校射击队从甲,乙,丙,丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是________.【解析】因为=5.1,=4.7,=4.5,=4.5,所以>>=,因为丁的平均数大,所以最合适的人选是丁.答案:丁三、解答题(本大题共5个小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2019·天津中考)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为________,图①中m的值为________.(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【解析】(1)4030(2)观察所给的条形统计图,因为==15(岁),所以这组数据的平均数为15岁;因为在这组数据中,16出现了12次,出现的次数最多,所以这组数据的众数为16岁;因为将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有=15(岁),所以这组数据的中位数为15岁.26.(8分)(2019·连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率.(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【解析】(1)一共有3类,所以甲投放的垃圾恰好是A类的概率为.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==.即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.27.(10分)(2019·安徽中考)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数中位数方差甲8 8乙8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率. 【解析】(1)平均数中位数方差甲 2乙丙 6(2)因为2<2.2<3,所以<<,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率P==. 28.(10分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2).根据图中的信息解答下列各题:(1)请求出九(2)班全班人数.(2)请把折线统计图补充完整.(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.【解析】(1)全班总人数为=48(人).(2)由(1)可知,九(2)班全班人数为48人.从扇形统计图中可以得到国学诵读占总人数的百分比为50%,所以国学诵读的人数为48×50%=24(人).描点、连线,补充完整的折线统计图如图所示:(3)画树状图如图:列表如下:南南书法演讲国学诵读征文宁宁书法√演讲√国学诵读√征文√南南和宁宁参加比赛一共有16种可能的结果,每种结果出现的可能性相等,而他们参加比赛项目相同的情况有4种,记南南和宁宁参加相同比赛项目为事件A,则P(A)==.29.(12分)为全面开展“大课间”活动,某校准备成立“足球”“篮球”“跳绳”“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)m=________,n=________,并将条形统计图补充完整.(2)试问全校2019人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1)因为样本容量为15÷15%=100,所以“篮球”所占百分比为=25%,所以m=25;因为“跳绳”对应扇形的圆心角为×360°=108°,所以n=108.(2)全校报名参加足球活动小组的人数为2019×=600(人).(3)列表如下:男1 男2 女1 女2男1 ×(男1,男2) (男1,女1) (男1,女2)男2 (男2,男1) ×(男2,女1) (男2,女2)女1 (女1,男1) (女1,男2) ×(女1,女2)女2 (女2,男1) (女2,男2) (女2,女1) ×画树状图如下:因为所有可能出现的结果为12种,其中出现一男一女两名同学的结果为8种, 所以恰好选中一男一女两名同学的概率为=.。

2023年中考数学--统计与概率练习(解析)

2023年中考数学--统计与概率练习(解析)

专题28 统计与概率一、单选题1.(2022·辽宁沈阳·中考真题)下列说法正确的是( ) A .任意掷一枚质地均匀的骰子,掷出的点数一定是奇数 B .“从一副扑克牌中任意抽取一张,抽到大王”是必然事件 C .了解一批冰箱的使用寿命,采用抽样调查的方式D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则甲组数据更稳定 【答案】C 【分析】依据随机事件、抽样调查以及方差的概念进行判断,即可得出结论. 【详解】解:A .任意掷一枚质地均匀的骰子,掷出的点数不一定是奇数,故原说法错误,不合题意;B .“从一副扑克牌中任意抽取一张,抽到大王”是随机事件,故原说法错误,不合题意;C .了解一批冰箱的使用寿命,适合采用抽样调查的方式,说法正确,符合题意;D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则乙组数据更稳定,故原说法错误,不合题意;故选:C .2.(2022·全国九年级课时练习)已知一组数据2,6,5,2,4,则这组数据的中位数是( ) A .2 B .4C .5D .6【答案】B 【分析】将一组数据从小到大排列,处于最中间的数字就是中位数,本题有5个数字,则排在第三个的就是中位数. 【详解】把数据从小到大排列为:2,2,4,5,6, 中间的数是4, ∴中位数是4, 故选:B .3.(2022·江苏盐城·景山中学九年级月考)截止2022年3月,“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为:29,27,31,31,31,29,29,31,则由年龄组成的这组数据的众数是( )A.27 B.29 C.30 D.31【答案】D【分析】根据众数的定义:一组数据中出现次数最多的一个数或多个数,进行求解即可.【详解】解:由题意可知,这组数据中31出现了4次,出现的次数最多,∴这组数据的众数为31,故选D.4.(2022·东莞市东莞中学初中部九年级)如图,两个转盘被分成几个面积相等的扇形,分别自由转动一次,当转盘停止后,指针各指向一个数字所在的扇形(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止).将两指针所指的两个扇形中的数相加,和为6的概率是()A.16B.13C.12D.56【答案】B【分析】画树状图,共有6个等可能的结果,两指针所指的两个扇形中的数相加,和为6的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有6个等可能的结果,两指针所指的两个扇形中的数相加,和为6的结果有2个,∴两指针所指的两个扇形中的数相加,和为6的概率为26=13,故选B.5.(2022·重庆实验外国语学校九年级)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗平均长度一样,甲、乙的方差分别是10.9、9.9,则下列说法正确是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐【答案】B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲、乙的方差的分别为10.9、9.9,∴甲的方差大于乙的方差,∴乙秧苗出苗更整齐.故选:B.6.(2022·深圳市新华中学九年级期末)一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是()A.49B.23C.12D.13【答案】D【分析】根据题意画出树状图,由概率公式即可得两次都摸到红球的概率.【详解】解:画出树状图:根据树状图可知:所有等可能的结果共有6种,其中两次都摸到红球的有2种,∴两次都摸到红球的概率是26=13;故选:D.7.(2022·四川广元·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【分析】依据平均数、中位数、众数、方差的定义和公式求解即可. 【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=,添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意. 故选:B .8.(2022·湖北随州·)如图,从一个大正方形中截去面积为23cm 和212cm 的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为( )A .49B .59C .25D .35【答案】A 【分析】求出阴影部分的面积占大正方形的份数即可判断. 【详解】解:∵两个小正方形的面积为23cm 和212cm , ∴323 ∴3+23=33∴大正方形的面积为27=, ∴阴影部分的面积为2731212--=, ∴米粒落在图中阴影部分的概率为124=279, 故选:A .9.(2022·山东聊城·)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是( ) A .样本为40名学生 B .众数是11节 C .中位数是6节 D .平均数是5.6节【答案】D 【分析】根据样本定义可判定A ,利用众数定义可判定B ,利用中位数定义可判定C ,利用加权平均数计算可判定D 即可. 【详解】解:A . 随机抽取40名学生对收集废旧电池的数量是样本,故选项A 样本为40名学生不正确; B . 根据众数定义重复出现次数最多的数据是5节或6节,故选项B 众数是11节不正确, C . 根据中位数定义样本容量为40,中位数位于4020,212=两个位置数据的平均数,第20位、第21位两个数据为6节与7节的平均数676.52+=节,故选项C 中位数是6节不正确; D . 根据样本平均数()1495116117584 5.640x =⨯+⨯+⨯+⨯+⨯=节 故选项D 平均数是5.6节正确. 故选择:D .10.(2022·全国九年级课时练习)现在要选拔一人去参加全国青少年数学竞赛,小明和小刚的三次选拔成绩分别为:小明:96,85,89,小刚:90,91,89,最终决定选择小刚去参加,那么,最终依据是( ) A .小刚的平均分高 B .小刚的中位数高 C .小刚的方差小 D .小刚最低分高【答案】C利用平均数、中位数及方差的定义进行计算,再根据各统计量特点判断即可.【详解】解:A.平均数:小明的平均数=96+85+89=903,小刚的平均数=90+91+89=903,平均数相同,故此项错误;B.中位数:小明的中位数89,小刚的中位数90,89<90,但中位数不能代表平均水平,故此项错误;C.方差:小明的方差=()()()2229690+8590+899062=33---,小刚的方差=()()()2229090+9190+89902=33---,623>23,小刚的波动较小,故小刚的方差较小,故此项正确;D. 此时不能选择最低分来比较两人的水平,故此项错误.故选C.二、填空题11.(2022·上海宝山区·九年级)如果一组数a,2,4,0,5的中位数是4,那么a可以是_______(只需写出一个满足要求的数).【答案】4【分析】由于一共5个数,4一定排在第3个才能是中位数,所以a可以在第4个或第5个,从而确定a的取值即可.【详解】解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).12.(2022·江苏镇江·中考真题)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为__.【答案】3【分析】分别假设放入的红球个数为1、2和3,画树状图列出此时所有等可能结果,从中找到摸出一红一黄和两个红球的结果数,从而验证红球的个数是否符合题意.解:(1)假设袋中红球个数为1,此时袋中由1个黄球、1个红球,搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.(2)假设袋中的红球个数为2,列树状图如下:由图可知,共有6种情况,其中两次摸到红球的情况有2种,摸出一红一黄的有4种结果,∴P(摸出一红一黄)=42=63,P(摸出两红)=21=63,不符合题意,(3)假设袋中的红球个数为3,画树状图如下:由图可知,共有12种情况,其中两次摸到红球的情况有6种,摸出一红一黄的有6种结果,∴P(摸出一红一黄)=P(摸出两红)=61=122,符合题意,所以放入的红球个数为3,故答案为:3.13.(2022·山东九年级期中)一个不透明的袋子中装有4个小球,小球上分别标有数字-3,122,它们除所标数字外完全相同,摇匀后从中随机摸出两个小球,则两球所标数字之积是正数的概率为______.【答案】12【分析】列表得出所有等可能的情况数,找出两球上所标数字之积是正数的情况,即可求出所求的概率.【详解】解:列表如下:所有等可能的情况有12种,其中两球上所标数字之积是正数的情况有6种,则两球所标数字之积是正数的概率为6÷12=12,故答案是:12.14.(2022·山东九年级期末)已知线段a的长度为11,现从1~10这10条整数线段中任取两条,能和线段a组成三角形的概率为___.【答案】4 9【分析】由10条线段中任意取2条,是一个列举法求概率问题,是无放回的问题,共有90种可能结果,每种结果出现的机会相同,满足两边之和大于第三边构成三角形的有40个结果.因而就可以求出概率.【详解】从1~10这10条整数线段中任意取1条,有10种可能结果;再从剩下9条线段中任意取1条,有9种可能结果;所以从1~10这10条整数线段中任意取2条有10×9=90种等可能的情况,三角形两边之和大于第三边,其中能和线段 a 组成三角形,即这2条线段的长度之和大于11的有:(2,10),(3,9),(3,10),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,5),(7,6),(7,8),(7,9),(7,10),(8,4),(8,5),(8,6),(8,7),(8,9),(8,10)(9,3),(9,4),(9,5),(9,6),(9,7),(9,8),(9,10),(10,2),(10,3),(10,4),(10,5),(10,6),(10,7),(10,8),(10,9)一共有1+2+3+4十4+5+6+7+8=40种等可能的情况;故能和线段 a 组成三角形的概率为:404=909. 故答案为:49.15.(2022·铜陵市第十五中学九年级期末)如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a 、b ,把a 、b 作为点A 的横、纵坐标;求点A (a ,b )的个数为:__________;点A (a ,b )在函数y x =的图象上的概率为:______.【答案】16 14【分析】(1)根据题意采用列表法,即可求得所有点的个数; (2)求得所有符合条件的情况,求其比值即可求得答案. 【详解】 解:(1)列表得:(1,4)(2,4) (3,4) (4,4)(1,3) (2,3) (3,3) (4,3) (1,2)(2,2) (3,2) (4,2)(1,1)(2,1)(3,1)(4,1)∴点(,)A a b 的个数是16;(2)当a b =时,(,)A a b 在函数y x =的图象上,∴点(,)A a b 在函数y x =的图象上的有4种,分别是:(1,1),(2,2),(3,3),(4,4), ∴点(,)A a b 在函数y x =的图象上的概率是41164=; 故答案是:16,14.三、解答题16.(2022·沭阳县怀文中学九年级月考)一个不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球1个.(1)现从中任意摸出一个球,求摸到黄球的概率;(2)现规定:摸到红球得5分,摸到蓝球得2分,摸到黄球得3分,甲同学先随机摸出一个小球(不放回),乙同学再随机摸出一个小球为一次游戏.请用画树状图或者列表法,求一次游戏甲、乙摸球所得分数之和不低于8分的概率.【答案】(1)14;(2)见解析,12【分析】(1)由概率公式即可得出答案;(2)画出树状图,共有16个等可能的结果,所得分数之和不低于8分的结果有8个,由概率公式即可得出答案.【详解】解:(1)任意摸出一个是黄球的概率为1211++=14;(2)画树状图如图:共有16个等可能的结果,甲、乙摸球所得分数之和不低于8分的结果有8个,∴一次游戏甲、乙摸球所得分数之和不低于8分的概率为816=12.17.(2022·云南师范大学实验中学九年级期末)从今年开始,云南将在全省集中开展为期一年半,以“清垃圾、扫厕所、勤洗手、净参观、常消毒、管集市、众参与”为主题的爱国卫生“7个专项行”为了动员广大师生朋友,争做爱国生的参与者,传播者,监督者,自觉投身爱国卫生专项行动.现做如下活动:在一个不透明的盒子中装有4张分别标有A、B、C、D的卡片,A、B、C、D四张卡片的背面分别写有“清垃圾、勤洗手、常消毒、众参与”,它们的形状、大小完全相同,现随机从盒子中摸出两张卡片.(1)请用树状图或列表法表示摸出的两张卡片可能出现的所有结果;(2)求摸出的两张卡片中的含有词语“众参与”卡片的概率.【答案】(1)见解析;(2)12【分析】(1)根据题意可以画出相应的树状图;(2)根据(1)中的树状图可以求得摸出的两张卡片中的含有词语“众参与”的概率.【详解】解:(1)树状图如下图所示,(2)由树状图得:共有12个等可能的结果,摸出的两张卡片中含有词语“众参与”的结果有6个,∴摸出的两张卡片中含有词语“众参与”的概率是61 122.18.(2022·全国九年级专题练习)某学生在篮球场对自己进行篮球定点投球测试,下表是他的测试成绩及相关数据:第一回投球第二回投球第三回投球第四回投球第五回投球第六回投球每回投球次数 5 10 15 20 25 30每回进球次数 3 8 6 16 17 18相应频率(1)请将数据表补充完整.(2)画出该同学进球次数的频率分布折线图.(3)如果这个测试继续进行下去,每回的投球次数不断增加,根据上表数据,测试的频率将稳定在他投球1次时进球的概率附近,请你估计这个概率是多少?(结果用小数表示)【答案】(1)0.6;0.8;0.4;0.8;0.68;0.6;(2)见解析;(3)0.65【分析】(1)根据频率计算方法:频率=每回进球次数÷每回的投球次数,即可求解;(2)利用描点法画图即可;(3)利用样本估计总体即可求解.【详解】(1)∵3÷5=0.6;8÷10=0.8;6÷15=0.4;16÷20=0.8;17÷25=0.68;18÷30=0.6;故将数据表补充如下:第一回投第二回投第三回投第四回投第五回投第六回投球球球球球球每回投球次数5 10 15 20 25 30每回进球次数3 8 6 16 17 18相应频率0.6 0.8 0.4 0.8 0.68 0.6 (2)如图:进球次数的频率分布折线图如下:(3)386161718 51015202530++++++++++≈0.65.答:估计这个概率是0.65.19.(2022·武汉一初慧泉中学九年级月考)某校为了了解学校女生的身高情况,抽查了部分女生的身高,并绘制了以下不完整的统计图.请根据以上图表信息,解答下列问题:(1)本次调查的女生共有______人,E组人数m=______;(2)扇形统计图中E部分所对应的扇形圆心角的大小是______;(3)该校共有女生550名,请你估计该校女生身高不低于160cm的人数.【答案】(1)50,10;(2)72°;(3)308人【分析】(1)从扇形统计图中获取D 部分的比重,从频数分布直方图中获取D 部分的人数,即可求解;求得C 组人数,即可求解.(2)求得E 组的所占的百分比,即可求解;(3)求得女生身高不低于160cm 所占的百分比,即可求解. 【详解】解:(1)从扇形统计图中获取D 部分的比重为26% 从频数分布直方图中获取D 部分的人数为13 总人数为1326%=50÷人 C 组的人数为5028%=14⨯人50261413510m =-----=故答案为:50,10(2)E 部分所对应的扇形圆心角的大小是103607250⨯︒=︒ 答:E 部分所对应的扇形圆心角的大小是72︒ (3)样本中女生身高不低于160cm 的人数有28人2855030850⨯= 答:估计该校女生身高不低于160cm 的有308人.20.(2022·全国九年级课时练习)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔赛,他们的跳高成绩(单位:cm )如下: 甲:172 168 175 169 174 167 166 169 乙:164 175 174 165 162 173 172 175 (1)甲、乙两名运动员跳高的平均成绩分别是多少? (2)分别求出甲、乙跳高成绩的方差; (3)哪个人的成绩更为稳定?为什么?(4)经预测,跳高165cm 以上就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?若预测跳高170cm 方可获得冠军,又应该选哪位运动员参赛?【答案】(1)都是170cm ;(2)29.5s =甲,225.5s =乙;(3)甲运动员的成绩更为稳定,理由见解析;(4)跳高165cm 以上就很可能获得冠军的情况下,选甲运动员参加;跳高170cm 方可获得冠军的情况下,应选乙运动员参加 【分析】(1)根据平均数的计算方法,先将数据求和,再除以8即可得到甲乙两人各自的平均成绩; (2)根据方差的计算公式分别计算即可,(3)由题(2)的计算结果,根据方差的意义可知,方差越小,即波动越小,数据越稳定即可判断; (4)根据题意分情况分析数据即可判断. 【详解】(1)甲的平均成绩为:1(172168175169174167166169)170(cm)8⨯+++++++=,乙的平均成绩为:1(164175174165162173172175)170(cm)8⨯+++++++=,(2)()()()()()()22222221[1721701681701751701691701741701671708s =⨯-+-+-+-+-+-甲221(166170)(169170)769.58⎤+-+-=⨯=⎦22222221(164170)(175170)(174170)(165170)(162170)(173170)8s ⎡=⨯-+-+-+-+-+-⎣乙221(172170)(175170)20425.58⎤+-+-=⨯=⎦;(3)∵9.525.5<, ∴22s s<甲乙,∴甲运动员的成绩更为稳定;(4)若跳过165cm 以上就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm ,而乙只有5次,所以应选甲运动员参加;若跳过170cm 才能得冠军,则在8次成绩中,甲只有3次都跳过了170cm ,而乙有5次,所以应选乙运动员参加.21.(2022·湖北黄石八中)2022年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会,目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机抽查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图(如图1).根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;扇形统计图中“篮球”对应的扇形圆心角的度数为______.(2)请把图2的条形统计图补充完整;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大学生运动会的志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【答案】(1)180,126°;(2)画图见解析;(3)1 6【分析】(1)根据跳水的人数及其百分比求得总人数;然后出田径及游泳的人数,再用总人数减去田径人数、游泳人数、跳水人数即可得到篮球人数,求出其所占总数的百分比,最后乘以360°即可得到结果;(2)根据(1)的计算结果补全统计图即可;(3)画树状图展示所有12种等可能的结果,再找出恰好选中甲、乙两位同学的结果数,然后根据概率公式求解..【详解】(1)54÷30%=180(人)田径人数:180×20%=36(人),游泳人数:180×15%=27(人),篮球人数为:180-54-36-27=63(人)图中“篮球”对应的扇形圆心角的度数为:360°63= 180126°,故答案为:180,126°;(2)补全统计图如下所示:(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种. 所以P (恰好选中甲、乙两位同学)=21=126. 22.(2022·靖江市靖城中学)对某篮球运动员进行3分球投篮测试结果如下表:(1)计算、直接填表:表中投篮150次、200次相应的命中率. (2)这个运动员投篮命中的概率约是_____. (3)估计这个运动员3分球投篮15次能得多少分? 【答案】(1)0.6,0.6;(2)0.6;(3)27分 【分析】(1)由命中次数除以投篮次数即可得到相应的命中率; (2)由大量实验是前提下,利用频率估计概率即可得到答案; (3)先计算15次投篮的命中数,从而可得答案. 【详解】解:(1)投篮150次、200次的命中率分别为:90120=0.6,=0.6.150200(2)随着投篮次数的增加,这个运动员投篮命中率稳定在0.6附近, 所以这个运动员投篮命中的概率约是0.6. 故答案为:0.6.(3)这个运动员3分球投篮15次大约投中150.6=9⨯次, 所以这个运动员3分球投篮15次的得分大约为:39=27⨯分.23.(2022·重庆实验外国语学校九年级月考)每年都有很多人因火灾丧失生命,某校为提高学生的逃生意识,开展了“防火灾,爱生命”的防火灾知识竞赛,现从该校七、八年级中各抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A :8085x ≤<,B :8590x ≤<,C :9095x ≤<,D :95100x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩是:100,81,84,83,90,89,89,98,97,99; 八年级抽取的10名学生的竞赛成绩是:100,80,85,83,90,95,92,93,93,99;七、八年级抽取的学生竞赛成绩统计表年级平均分 中位数 众数 方差七年级 91 a 89 45.2 八年级 9192.5b39.2八年级抽取的学生竞赛成绩频数分布直方图请根据相关信息,回答以下问题:(1)直接写出表格中a ,b 的值并补全八年级抽取的学生竞赛成绩频数分布直方图:(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防火安全知识较好?请说明理由(一条理由即可);(3)该校七年级有800人,八年级有1000人参加了此次竞赛活动,请估计参加此次竞赛活动成绩优秀(90x ≥)的学生人数是多少.【答案】(1)89.5;93;见解析;(2)八年级,见解析;(3)1100人 【分析】(1)根据中位数、众数的意义求解即可,求出“C 组”的频数才能补全频数分布直方图; (2)从中位数、众数、方差的角度比较得出结论; (3)分别计算七年级、八年级优秀人数即可. 【详解】解:(1)将七年级10名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为: 899089.52+=, 因此中位数是89.5,即89.5a =;八年级10名学生成绩出现次数最多的是93,共出现2次,因此众数是93,即b =93, 八年级10名学生成绩处在“C 组”的有10-2-3-1=4(人), 补全频数分布直方图如下:(2)八年级学生掌握防火安全知识较好.因为七、八年级平均分相等,八年级中位数92.5大于七年级中位数89.5,所以八年级学生掌握防火安全知识较好.(3)17 80010001100210⨯+⨯=(人);答:参加此次竞赛活动成绩优秀的学生人数是1100人.。

中考数学统计与概率专题知识易错题50题(含答案)

中考数学统计与概率专题知识易错题50题(含答案)

中考数学统计与概率专题知识易错题50题含答案一、单选题1.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是()A.抽101次也可能没有抽到一等奖B.抽100次奖必有一次抽到一等奖C.抽一次不可能抽到一等奖D.抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖2.某中学46名女生体育中考立定跳远成绩如下表:这些立定跳远成绩的中位数和众数分别是()A.185,170B.180,170C.7.5,16D.185,163.下列事件中,是随机事件的是()A.守株待兔B.水涨船高C.拔苗助长D.瓮中捉鳖4.对某班学生在家做家务的时间进行调查后,将所得数据分成4组,第一组的频率为0.15,第二组和第三组的频率之和为0.75,则第四组的频率为()A.0.35B.0.30C.0.20D.0.105.下列调查中,调查方式选择合理的是()A.了解某河的水质情况,选择抽样调查B.了解某种型号节能灯的使用寿命,选择全面调查C.了解一架Y﹣8GX7新型战斗机各零部件的质量,选择抽样调查D.了解一批药品是否合格,选择全面调查6.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6 7.数据:-2,1,1,2,4,6的中位数是()A.1B.2C.1.5D.1或28.在一次男子马拉松长跑比赛中,抽得10名选手所用的时间(单位:min)如下:136,140,129,180,146,145,158,175,165,148,则这10名选手的成绩中位数是()A.145B.145.5C.146D.1479.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁10.下列事件中,是确定事件的有()A.打开电视,正在播放广告B.三角形三个内角的和是180°C.两个负数的和是正数D.某名牌产品一定是合格产品11.下列事件是随机事件的是()A.从一副扑克牌中抽取一张牌是红桃KB.投掷一颗骰子两次,向上的面数字之和大于12C.2018年6月14日至7月15日进行的世界杯在俄罗斯举办D.北京大学的校训是“爱国进步民主科学”12.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A.13B.14C.12D.3413.下列命题是真命题的是()A.一个正数的算术平方根一定比这个数小B.若22a b=,则a b= C.三角形的任意两边之和大于第三边D.“守株待兔”是必然事件14.一组数据由m 个a 和n 个b 组成,那么这组数据的平均数是( ) A .2a b+ B .a bm n++ C .ma nba b++ D .ma nbm n++ 15.在一次数学测试中,某小组的成员得分如下:95、85、95、85、80、95、90、95这组数据的平均数、中位数和众数分别为( ) A .92、95和90 B .92、95和85 C .90、92.5和95D .90、80和8516.下列统计量中,能够刻画一组数据的离散程度的是( ) A .方差或标准差B .平均数或中位数C .众数或频率D .频数或众数17.“递减数”是一个数中右边数字比左边数字小的自然数(如:32,421,9732等),任取一个两位数,是“递减数”的概率是( ) A .718 B .25C .35D .1218.甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是( )A .从甲袋摸到黑球的概率较大B .从乙袋摸到黑球的概率较大C .从甲、乙两袋摸到黑球的概率相等D .无法比较从甲、乙两袋摸到黑球的概率19.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m ,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宣传画上世界杯图案的面积为( )A .22.4mB .23.2mC .24.8mD .27.2m20.我国古代有着辉煌的数学研究成果,其中《算经十书》是指汉、唐一千多年间的十部著名的数学著作,这些数学著作曾经是隋唐时代国子监算学科的教科书.十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》、《五曹算经》、《孙子算经》、《算经十书》标志着中国古代数学的高峰.《算经十书》这10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中据说有6部成书于魏晋南北朝时期.其中《张丘建算经》、《夏侯阳算经》就成书于魏晋南北朝时期.某中学拟从《算经十书》专著中的魏晋南北朝时期的6部算经中任选2部作为“数学文化”进行推广学习,则所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为( ) A .13B .15C .115D .118二、填空题21.若1x , 2 x ,3x 的平均数为3,则15+1x , 2 5+2x ,35+3x 的平均数为________. 22.在某中学举行的演讲比赛中,七年级5名参赛选手的成绩如下表所示,根据表中提供的数据,则3号选手的成绩为_____.23.从1,2,3三个数字中任取两个不同的数字,其和是奇数的概率是_________. 24.为保证新冠疫情防控工作的口罩供应,某公司及时转产,开设了多条生产线批量生产口罩,以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:估计这一批口罩的合格率为_____(结果精确到0.01).25.对某校九年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图(图①)和扇形统计图(图①).根据图中信息,这些学生的平均分数是________分.26.某学校招聘一名教师,对甲、乙、丙三名候选人进行了笔试、面试测试,他们的各项测试成绩如下表所示,根据要求,学校将笔试、面试得分按6:4的比例确定各人的最后成绩,然后录用得分最高的候选人,最终被录用的是______.27.在一个不透明的袋子中装有仅颜色不同的8个球,其中红球3个,黄球5个.请你从袋子中取出m 个红球,再从袋子中随机摸出一个球,将“摸出的球为黄色”记为事件A ,若此事件为必然事件,则m 的值为__________.28.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是4,方差是5,将这组数据中的每个数据都减去2,得到一组新数据,则这组新数据的方差是______. 29.某公司25名员工年薪的具体情况如下表:则该公司全体员工年薪的中位数比众数多_____万元.30.在4张完全一样的纸条上分别写上1、2、3、4,做成4支签,放入一个不透明的盒子中搅匀,则抽到的签是偶数的概率是 ___.31.一个圆形转盘被平均分成红、黄、蓝3个扇形区域,向其投掷一枚飞镖,飞镖落在红色区域的概率是__________.32.冬奥会单板U 型池比赛中,某单板滑雪动员的成绩(单位:分)为81,89,83,88,84,83.则这组数据的中位数是________.33.编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是___.34.如图是某中学七年级学生视力统计图,其中近视400度以上的学生所在扇形的圆心角为_____度_______分______秒.35.远远在一个不透明的盒子里装了4个除颜色外其他都相同的小球,其中有3个是红球,1个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是_____.36.现有下列长度的五根木棒:5,6,8,12,13,从中任取三根,可以组成直角三角形的概率为______.37.山西地质博物馆是山西唯一一家普及矿产资源和地球科学知识的博物馆,为了解全省人民参观山西地质博物馆的情况,宜采用______________的方式调查.(填“普查”或“抽样调查”)38.(2016·荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.39.盒子里有3张分别写有整式x+1,x+2,3的卡片,现从中随机抽取两张,把卡片的整式分别作为分子和分母,则能组成分式的概率是________.三、解答题40.在一个不透明的口袋里装有4个白球和6个红球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出一个球,摸到球的概率大(填白或红);(2)从中任意摸出一个球,摸到白球的概率是;(3)从口袋里取走x个红球后,再放入x个白球,并充分摇匀,若随机摸出白球的概率是45,求x的值.41.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中①α的度数是° ,把图2条形统计图补充完整;(3)该区九年级有学生4500名,如果全部参加这次体育科目测试,请估计不及格的人数是多少?42.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:=a______;b=______;(2)请估计当n很大时,频率将会接近______,假如你去转动该转盘一次,你获得“书画作品”的概率约是______;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加多少度?43.近年来,“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n 名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果 绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题: n 名学生对使用计算器影响计算能力的发展看法人数统计表(1)求n 的值;(2)统计表中的m=;(3)估计该校1800名学生中认为“影响很大”的学生人数. 44.综合题(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)(2)如果甲跟另外n (n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是________(请直接写出结果).45.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?46.小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小张同学共调查了名居民的年龄,扇形统计图中a=;(2)补全条形统计图,并注明人数;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计该辖区居民人数是多少人.47.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题(1)填写表格.(2)这三个厂家的推销广告分别利用了哪一种表示集中趋势的特征数?(3)如果你是位顾客,宜选购哪家工厂的产品?为什么?48.2021年2月10日,“天问一号”火星探测器抵达火星轨道,成为中国首颗人造火星卫星.某学校组织首届“航天梦报国情”航天知识竞赛活动,九年级全体同学参加了“航天知识竞赛”,为了解本次竞赛的成绩,小彬进行了下列统计活动,收集数据:现随机抽取九年级40名同学“航天知识竞赛”的成绩(单位:分)如下:75 85 75 80 75 75 85 70 75 90 75 80 80 70 75 80 85 80 80 95 95 75 90 80 70 80 95 85 75 85 80 80 70 80 75 80 80 55 70 60整理分析:小彬按照如下表格整理了这组数据,并绘制了如下的频数分布直方图和频数分布表,(1)请直接写出m,n的值,并补全图形.(2)活动组委会决定,给“航天知识竞赛”成绩在90分及以上的同学授予“小宇航员”称号.根据上面的统计结果,估计该校九年级840人中约有多少人将获得“小宇航员”称号,(3)本次活动中获得“小宇航员”称号的小颖得到了A,B,C,D四枚纪念章(除图案外完全相同),她将这四枚纪念章背面朝上放在桌面上,从中随机选取两枚送给小彬,求小颖送给小彬的两枚纪念章中恰好有一枚是A的概率.49.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写大赛”预赛,各参赛选手的成绩如下:八(1)班:91,92,93,93,93,94,98,88,98,100八(2)班:93,93,93,95,96,96,98,89;98,99通过整理,得到数据分析表如下:(1)直接写出表中a,b,c的值;(2)依据数据分析表,有人说:“八(1)班的最高分100大于八(2)班的最高分99,八(1)班的成绩比八(2)班好”,但也有人说八(2)班的成绩比较好,请给出两条支持八(2)班成绩好的理由.参考答案:1.A【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖,抽101次也可能没有抽到一等奖.故选:A.【点睛】本题考查概率的意义,概率是对事件发生可能性大小的量的表现.2.B【分析】根据中位数和众数的定义求解即可.【详解】由上表可得中位数是180,众数是170故答案为:B.【点睛】本题考查了中位数和众数的问题,掌握中位数和众数的定义是解题的关键.3.A【详解】A、是随机事件,故A选项符合题意;B、是必然事件,故B选项不符合题意;C、是不可能事件,故C选项不符合题意;D、是必然事件,故D选项不符合题意;故选:A.【点睛】本题考查了随机事件的定义,解题的关键是熟练掌握随机事件的定义:在一定条件下,可能发生也可能不发生的事件.4.D【分析】根据各组频率之和为1即可求出答案.【详解】解:根据题意得:第四组的频率为10.150.750.10.故选:D【点睛】本题考查频率的性质,解题的关键是熟练运用各组频率之和为1,本题属于基础题型.5.A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.了解某河的水质情况,应该选择抽样调查,故A正确;B.了解每种型号节能灯的使用寿命,应该选择抽样调查;故B错误;C.了解一架Y-8GX7新型战斗机各零部件的质量,应该选择全面调查,故C错误;D.了解一批药品是否合格,应该选择抽样调查,故D错误.故选A.【点睛】本题主要考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于破坏性的调查、无法进行普查、普查的意义和价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.C【详解】试题分析:在试验中,可能出现也可能不出现事件叫做随机事件;一定出现的事件叫必然事件;一定不出现的事件叫不可能事件.所以任意打开七年级下册数学教科书,正好是97页是随机事件,故C错误.考点:简单随机事件7.C【分析】根据中位数的定义即可得.【详解】解:将这组数据从小到大排序得-2,1,1,2,4,6,其中最中间的两个数为1,2,∴这组数据的中位数为121.52+=,故选:C.【点睛】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,熟记中位数的定义是解题的关键.8.D【分析】根据中位数的定义找出最中间的两个数,再求出它们的平均数即可.【详解】解:这10名选手的成绩从小到大排列为:129,136,140,145,146,148,158,165,175,180,则中位数为1461482+=147(mm ). 故选:D .【点睛】此题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9.B【分析】根据平均数与方差的意义解答即可.【详解】解: =x x x x <=甲乙丁丙, ∴乙与丁二选一,又22s s <乙丁,∴选择乙.【点睛】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键. 10.B【详解】试题分析:解:分析4个事件可得:B .符合三角形内角和定理,是必然事件;C .两个负数的和是正数,是不可能事件;A .打开电视,不一定正在播放广告;D .某名牌产品不一定是合格产品,故它们是不确定事件;故确定事件的有B ;故选B .考点:事件的分类.11.A【分析】根据随机事件的定义逐项判断即可【详解】A.从一副扑克牌中抽取一张牌是红桃K ,这是随机事件,故符合题意;B.投掷一颗骰子两次,向上的面数字之和大于12,因为数字之和的最大值为12,所以这不是随机事件,故不符合题意;C.2018年6月14日至7月15日进行的世界杯在俄罗斯举办,这是已经确定的事实,不是随机事件,故不符合题意;D.北京大学的校训是“爱国进步民主科学”, 这是已经确定的事实,不是随机事件,故不符合题意;故选:A【点睛】本题考查了随机事件的定义,理解随机事件的定义是解决问题的关键12.B【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【详解】从四条线段中任意选取三条,所有的可能有:4,6,8;4,6,10;6,8,10;4,8,10共4种,其中构成直角三角形的有6,8,10共1种,则P(构成直角三角形)=1 4故选B.【点睛】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.13.C【分析】根据算术平方根和平方根的定义,三角形三边的关系,随机事件的定义逐一判断即可.【详解】解:A、如1的算术平方根是1,但是1=1,故一个正数的算术平方根不一定比这个数小,是假命题,此选项不符合题意;B、若22a b=,则a b=±,是假命题,此选项不符合题意;C、三角形的任意两边之和大于第三边,是真命题,符合题意;D、“守株待兔”是随机事件,是假命题,不符合题意;故选C.【点睛】本题主要考查了判断命题真假,算术平方根,平方根,三角形三边的关系,随机事件,熟知相关知识是解题的关键.14.D【分析】由题意知,这组数总共有m+n个,m个a和为ma,n个b的和为nb,则根据平均数的定义即可求得该组数据的平均数.【详解】该组数据的和=ma+nb,该组数据的个数=m+n;则平均数nbmam n++;故选D.【点睛】本题考查了平均数的计算,弄清数据的和以及个数是解题的关键.15.C【分析】根据平均数、中位数、方差的定义逐一进行求解即可得.【详解】这组数据的平均数是18×(95+85+95+85+80+95+90+95)=90;将95、85、95 、85 、80 、95 、90、95按照从小到大的顺序排列是:80,85,85,90,95,95,95,95,则中位数是90952=92.5;①95出现了4次,出现的次数最多,①众数是95,故选C.【点睛】本题考查了平均数、中位数和众数,熟练掌握定义和公式是解题的关键.16.A【详解】由于方差、标准差都能反映数据的波动大小,而中位数是一组数据按大小排序后最中间一个数(或中间两个数的平均数),平均数反应的是一组数据的平均量,众数是一组数据中出现次数最多的数,而频率和频数反应的是数据的比值和数目.故选A.17.D【分析】由共有90个两位数,其中是“递减数”的有45个,直接利用概率公式求解即可求得答案.【详解】①共有90个两位数,其中是“递减数”的有45个,①任取一个两位数,是“递减数”的概率是:12.故选D.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.18.B【详解】试题分析:根据概率的计算法则可得:甲袋P(摸到黑球)=;乙袋P(摸到黑球)=.根据可得:从乙袋摸到黑球的概率较大.考点:概率的计算19.B【分析】利用频率估计概率得到估计骰子落在世界杯图案中的概率为0.4,然后根据几何概率的计算方法计算世界杯图案的面积.【详解】①骰子落在世界杯图案中的频率稳定在常数0.4左右,①估计骰子落在世界杯图案中的概率为0.4,①估计宣传画上世界杯图案的面积=0.4×(4×2)=3.2(m 2).故选B .【点睛】本题考查了频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.20.C【分析】设六部成书于魏晋南北朝的算经分别用A 、B 、C 、D 、E 、F 表示,其中《张丘建算经》、《夏侯阳算经》分别用A 、B 表示,列树形图表示所有等可能性,根据概率公式即可求解.【详解】解:设六部成书于魏晋南北朝的算经分别用A 、B 、C 、D 、E 、F 表示,其中《张丘建算经》、《夏侯阳算经》分别用A 、B 表示,根据题意列树形图得由树形图得共有30种等可能性,其中两部专著恰好是A 、B 即《张丘建算经》、《夏侯阳算经》的有两种等可能性,①所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为213015P ==. 故选:C【点睛】本题考查了列树形图求概率,根据题意分别用字母表示六种算经并正确列出树形图是解题关键.21.17【分析】根据平均数的定义得到1x + 2 x +3x =9,再求出15+1x , 2 5+2x ,35+3x 的和即可求解.【详解】①1x ,2x ,3x 的平均数是3,①()123123515253512351x x x x x x +++++=+++++=, ①51173x ==.故填:17.【点睛】此题主要考查平均数的求解,解题的关键是熟知平均数的性质.22.93【分析】先求出5名参赛选手的总成绩,再减去其它选手的成绩,即可得出3号选手的成绩.【详解】解:①观察表格可知5名选手的平均成绩为91分,①3号选手的成绩为91×5﹣90﹣95﹣89﹣88=93(分);故答案为:93.【点睛】此题考查了算术平均数,掌握算术平均数的计算方法是解题的关键.23.23【分析】由1,2,3三个数字组成的无重复数字的两位数字共有6个,其中奇数有4个,由此求得所求事件的概率.【详解】解:由1,2,3三个数字组成的无重复数字的两位数字共有3×2=6个,其中奇数有2×2=4个,故从中任取一个数,则恰为奇数的概率是42 63 =,故答案为:23.【点睛】本题考查古典概型及其概率计算公式的应用,属于基础题.解题的关键是掌握概率公式进行计算.24.0.92【分析】由抽检的合格率即可估计这批产品的合格率.【详解】解:由图标可得,抽检的数量越大,合格率与接近0.92,∴估计这批产品的合格率是0.92.故答案为:0.92.【点睛】本题考查用频率估计概率,掌握抽查数据越大,频率越接近概率是解题的关键.25.2.95【详解】略26.甲【分析】分别计算甲、乙、丙三名候选人的加权平均数,然后做出判断即可.。

中考数学专题训练:统计与概率(含答案)

中考数学专题训练:统计与概率(含答案)

中考数学专题训练:统计1. (2012福建)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;请根据上述统计表和扇形提供的信息,完成下列问题: (1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?【答案】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135;儿童玩具占得百分比是(90÷300)×100%=30%。

童装占得百分比1-30%-25%=45%。

补全统计表和统计图如下:(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×85%=63.75,童装中合格的数量是135×80%=108,∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是8163.7510884.25%300++=。

2. (2012湖北) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率. 【答案】解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人。

(2)喜爱C 粽的人数:600-180-60-240=120,频率:120÷600=20%; 喜爱A 粽的频率:180÷600=30%。

(名师整理)最新人教版数学中考冲刺压轴题《统计与概率》专题训练(含答案解析)

(名师整理)最新人教版数学中考冲刺压轴题《统计与概率》专题训练(含答案解析)

中考数学压轴题强化训练:统计与概率1、在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ). (1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y=﹣2x的图象上的概率.2、某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B.C.D.E).3、在四个完全相同的小球上分别标上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,小明同学随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;(1)请你用画树状图或列表的方法分别表示小明同学摸球的所有可能出现的结果。

(2)按照小明同学的摸球方法,把第一次取出的小球的数字作为点M的横坐标,把第二次取出的小球的数字作为点M的纵坐标,试求出点M(x,y)落在直线y=x上的概率是多少?4、《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m= ,n= ;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?5、某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图(1),图(2)),请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).图(1)项目人数/人108246C图(2)6、如图,转盘A 的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别标有数字1,2,3,4。

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。

2021年河北省中考数学二轮复习统计与概率特训

2021年河北省中考数学二轮复习统计与概率特训

统计与概率特训 题型1 概率算法1.在一个不透明的袋子里装有6个白色乒乓球和若干个红色乒乓球,这些球除颜色外其余均相同,搅拌均匀后,从这个袋子里随机摸出一个乒乓球,是红球的概率为13.(1)求该袋内红球的个数;(2)小明取出3个白色乒乓球分别标上1,2,3三个数字,装入另一个不透明的袋子里搅拌均匀,第一次从袋里摸出一个球并记录下该球上的数字,重新放回袋中搅拌均匀,第二次从袋里摸出一个球并记录下该球上的数字,求这两个数字之积是3的倍数的概率.(用画树状图或列表的方法求解)2.(2020·保定定兴县一模)一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上都各标一个不小于-2的数,已知其中3个乒乓球上标的数分别是-2,2,4,所标的4个数的中位数是0.(1)求这4个数的众数;(2)从这个口袋中随机摸出1个球,求摸出的球面上的数是正数的概率;(3)从这个口袋中随机摸出1个球(不放回),再从余下的球中随机摸出1个球,用列表法求两次摸出的球面上的数之和为负数的概率.3.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大.”小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用画树状图或列表的方法求出两枚骰子朝上的点数之和为3的倍数的概率.4.为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是________;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用画树状图或列表的方法求小丽回答正确的概率.水 重 富 山 疑 路 无复穷九宫格5.如图,放在直角坐标系中的正方形ABCD 的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中点M 的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用画树状图或列表的方法,求点M 落在正方形ABCD 面上(含内部与边界)的概率;(2)将正方形ABCD 平移整数个单位,则是否存在某种平移,使点M 落在正方形ABCD 面上的概率为34 ?若存在,指出一种具体的平移过程;若不存在,请说明理由.题型2 数据分析1.(2020·遵化市一模)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.2.(2020·河北模拟)期末考试结束后,数学老师对本班的数学成绩进行了统计.根据图中信息回答下列问题.(1)该班级的人数为,D等级的学生有人.根据数据补全统计图;(2)若规定80分以上为及格,求该班级的及格率;(3)若在各个分数段的人数这一组数据上,再添加一个数据a(a为正整数),该组数据的中位数没有改变,请直接写出a的值.3.(2020·邯郸复兴区二模)A,B两所学校的学生都参加了某次体育测试,成绩均为7~10分,且为整数.亮亮分别从这两所学校各随机抽取一部分学生的测试成绩,共200份,并绘制了如下尚不完整的统计图.(1)这200份测试成绩的中位数是分,m=;(2)补全条形统计图;扇形统计图中,求成绩为10分所在扇形的圆心角的度数;(3)亮亮算出了“1名A校学生的成绩被抽到”的概率是111,请你估计A校成绩为8分的学生有多少名.4.(2020·邢台沙河市模拟)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有________人;(2)表中m的值为________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.5.(2020·河北中考样题)某数学老师将本班学生的身高数据(精确到1 cm)交给甲、乙两同学,要求他们各自独立地绘制一幅频数分布直方图,甲绘制如图1所示,乙绘制如图2所示.经确认,甲绘制的图是正确的,乙在整理数据与绘图的过程中均有个别错误.请回答下列问题: (1)该班学生有多少人?(2)某同学身高为165 cm ,他说:“我们班上比我高的人不超过14 ”,他的说法正确吗?(3)写出乙同学在整理或绘图过程中的错误(写出一个即可); (4)设该班学生的身高数据的中位数为a ,试写出a 的值.6.疫情期间,某校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取七年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B ,E 两组发言人数的比为5∶2,请结合图中相关数据回答下列问题:F(1)E 组人数为________人;(2)被调查的学生人数为________人,A 组人数为________人,并补全频数分布直方图; (3)求出扇形统计图中,“B ”所对应的圆心角的度数;(4)七年级共有学生1 500人,请估计全年级在这天里发言次数不少于12次的人数.题型3 统计与概率综合1.(2020·石家庄市模拟)文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知P (一次拿到7元本)=23.(1)求这6个本价格的众数;(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.2.(2020·唐山市二模)某销售公司年终进行业绩考核,人事部门把考核结果按照A ,B ,C ,D 四个等级,绘制成两个不完整的统计图,如图1、图2所示.(1)参加考试的人数是________人,扇形统计图中D 部分所对应的圆心角的度数是________,请把条形统计图补充完整;(2)若公司领导计划从考核人员中选一人交流考核意见,求所选人员考核为A 等级的概率;(3)为推动公司进一步发展,公司决定计划两年内考核A 等级的人数达到30人,求平均每年的增长率.(精确到0.01,5 ≈2.236)3.(2020·衡水市模拟)某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.初三(1)班得分情况小知识难度系数的计算公式为L=XW,其中L为难度系数,X为样本平均数,W为试题满分值.《考试说明》指出:L在0.7以上的题为容易题;在0.4~0.7之间的题为中档题;在0.2~0.4之间的题为较难题.解答下列问题:(1)m=________,n=________,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率;(3)根据“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题.4.(2020·遵化市二模)为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用如图的折线统计图表示(甲为实线,乙为虚线).(1)依据折线统计图,得到下面的表格:其中a=,b=;(2)甲成绩的众数是环,乙成绩的中位数是环;(3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定;(4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用画树状图或列表的方法,求出恰好选到1男1女的概率.5.(2020·石家庄市模拟)在抗击新型冠状病毒肺炎战役中,某市党员积极响应国家号召,参加志愿者活动,为人民服务,现随机抽查部分党员一个月来参加志愿者活动的次数,并绘制成如下尚不完整的条形统计图(图1)和扇形统计图(图2).(1)“4次”所在扇形的圆心角度数是________,请补全条形统计图;(2)若从抽查的党员中随机选择一位接受媒体的采访,求该党员一个月来参加志愿者活动次数不少于3次的概率;(3)设随机抽查的党员一个月来参加志愿者活动次数的中位数为a,若去掉一部分党员参加志愿者活动的次数后,得到一组新数据的众数为b,当b>a时,求最少去掉了几名党员参加志愿者活动的次数.6.(2020·黔西南中考)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如下两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是____名;(2)扇形统计图中表示A级的扇形圆心角α的度数是____,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为____;(4)某班有4名优秀的同学(分别记为E,F,G,H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.答案专题四 统计与概率特训题型1 概率算法1.在一个不透明的袋子里装有6个白色乒乓球和若干个红色乒乓球,这些球除颜色外其余均相同,搅拌均匀后,从这个袋子里随机摸出一个乒乓球,是红球的概率为13.(1)求该袋内红球的个数;(2)小明取出3个白色乒乓球分别标上1,2,3三个数字,装入另一个不透明的袋子里搅拌均匀,第一次从袋里摸出一个球并记录下该球上的数字,重新放回袋中搅拌均匀,第二次从袋里摸出一个球并记录下该球上的数字,求这两个数字之积是3的倍数的概率.(用画树状图或列表的方法求解)解:(1)设该袋内红球有x 个.根据题意,得 x x +6 =13.解得x =3. 经检验,x =3是原分式方程的解. ∴该袋内红球有3个; (2)画树状图:由图可知,共有9种等可能的结果,其中这两个数字之积是3的倍数的结果有5种, ∴P (这两个数字之积是3的倍数)=59 .2.(2020·保定定兴县一模)一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上都各标一个不小于-2的数,已知其中3个乒乓球上标的数分别是-2,2,4,所标的4个数的中位数是0.(1)求这4个数的众数;(2)从这个口袋中随机摸出1个球,求摸出的球面上的数是正数的概率;(3)从这个口袋中随机摸出1个球(不放回),再从余下的球中随机摸出1个球,用列表法求两次摸出的球面上的数之和为负数的概率.后摸 先摸解:(1)设另一个球面上标的数是x .由题意,得 x +22=0.解得x =-2. ∴这4个数的众数是-2;(2)∵4个球中球面上的数是正数的有2个, ∴P (摸出的球面上的数是正数)=24 =12 ;(3)列表:后摸 先摸 -2 2 4 -2 -2 (-2,2)(-2,4) (-2,-2) 2 (2,-2) (2,4) (2,-2) 4 (4,-2) (4,2) (4,-2)-2(-2,-2)(-2,2)(-2,4)由表可知,共有12种等可能的结果,其中两次摸出的球面上的数之和为负数的结果有2种, ∴P (两次摸出的球面上的数之和为负数)=212 =16 .3.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数 1 2 3 4 5 6 出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大.”小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用画树状图或列表的方法求出两枚骰子朝上的点数之和为3的倍数的概率. 解:(1)“3点朝上”的频率是660 =110,“5点朝上”的频率是2060 =13;(2)小颖和小红的说法都是错误的.“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当实验的次数足够大时,该事件发生的频率才会稳定在事件发生的概率附近;事件发生具有随机性,故投掷600次,“6点朝上”的次数不一定是100次;(3)列表如下:由表可知,共有36种等可能的结果,其中两枚骰子朝上的点数之和为3的倍数的结果有12种, ∴P (两枚骰子朝上的点数之和为3的倍数)=1236 =13.4.为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是________;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用画树状图或列表的方法求小丽回答正确的概率.九宫格解:(1)12 ;(2)画树状图如下:由图可知,共有4种等可能的结果,其中小丽回答正确的结果有1种, ∴P (小丽回答正确)=14.5.如图,放在直角坐标系中的正方形ABCD 的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中点M 的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用画树状图或列表的方法,求点M 落在正方形ABCD 面上(含内部与边界)的概率;(2)将正方形ABCD 平移整数个单位,则是否存在某种平移,使点M 落在正方形ABCD 面上的概率为34 ?若存在,指出一种具体的平移过程;若不存在,请说明理由.解:(1)正方形四个顶点的坐标分别是A (-2,2), B (-2,-2),C (2,-2),D (2,2). 列表:由表可知,共有16种等可能的结果,其中点M 落在正方形ABCD 面上(含内部与边界)的结果有(1,1),(1,2),(2,1),(2,2),共4种,∴点M 落在正方形ABCD 面上(含内部与边界)的概率是416 =14;(2)若使点M 落在正方形ABCD 面上的概率为34 ,则只有4个点不在正方形面上,故可把正方形ABCD 先向右平移2个单位长度,再向上平移1个单位长度或先向右平移1个单位长度,再向上平移2个单位长度即可(答案不唯一).题型2 数据分析1.(2020·遵化市一模)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.解:(1)该市蛋糕店的总数为150÷90360 =600(家),甲公司经营的蛋糕店数量为600×60360 =100(家);(2)设甲公司增设x 家蛋糕店.由题意,得 20%×(600+x )=100+x .解得x =25. 答:甲公司需要增设25家蛋糕店.2.(2020·河北模拟)期末考试结束后,数学老师对本班的数学成绩进行了统计.根据图中信息回答下列问题.(1)该班级的人数为 ,D 等级的学生有 人.根据数据补全统计图; (2)若规定80分以上为及格,求该班级的及格率;(3)若在各个分数段的人数这一组数据上,再添加一个数据a (a 为正整数),该组数据的中位数没有改变,请直接写出a 的值.解:(1)100;5;补全统计图如图所示;[该班级的人数为45÷45%=100(人),D 等级人数为100×(1-15%-45%-35%)=5(人),A 等级人数为100×15%=15(人),C 等级人数为100×35%=35(人).](2)该班级的及格率为45%+15%=60%;(3)a =25.[∵原分数段人数的数据为5,15,35,45, ∴中位数为15+352=25.若要使中位数不发生改变,则需添加数据25,即a =25.]3.(2020·邯郸复兴区二模)A ,B 两所学校的学生都参加了某次体育测试,成绩均为7~10分,且为整数.亮亮分别从这两所学校各随机抽取一部分学生的测试成绩,共200份,并绘制了如下尚不完整的统计图.(1)这200份测试成绩的中位数是 分,m = ;(2)补全条形统计图;扇形统计图中,求成绩为10分所在扇形的圆心角的度数;(3)亮亮算出了“1名A 校学生的成绩被抽到”的概率是111 ,请你估计A 校成绩为8分的学生有多少名.解:(1)9;12;[200份成绩的中位数是第100、第101个数据的平均数,把这些成绩按大小排列后,第100、第101 个数据都是9分,故中位数是9+92=9(分).m =200×10%-8=12(人).] (2)补全条形统计图如图所示;成绩为10分所在扇形的圆心角的度数为54+36200 ×360°=162°;(3)8+20+38+54=120(名), 120÷111 =1 320(名),1 320×20120=220(名).答:A 校成绩为8分的学生大约有220名.4.(2020·邢台沙河市模拟)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a .七年级成绩频数分布直方图:b .七年级成绩在70≤x <80这一组的是:70 72 74 75 76 76 77 77 77 78 79 c .七、八年级成绩的平均数、中位数如下:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有________人; (2)表中m 的值为________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数. 解:(1)23;(2)77.5;[七年级50人成绩的中位数是第25、第26个数据的平均数,而第25、第26个数据分别为77,78, ∴m =77+782=77.5.](3)学生甲在该年级的排名更靠前.理由:∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生成绩的25名之前, 八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生成绩的25名之后, ∴学生甲在该年级的排名更靠前;(4)估计七年级成绩超过平均数76.9分的人数为400×5+15+850=224(人). 5.(2020·河北中考样题)某数学老师将本班学生的身高数据(精确到1 cm)交给甲、乙两同学,要求他们各自独立地绘制一幅频数分布直方图,甲绘制如图1所示,乙绘制如图2所示.经确认,甲绘制的图是正确的,乙在整理数据与绘图的过程中均有个别错误.请回答下列问题: (1)该班学生有多少人?(2)某同学身高为165 cm ,他说:“我们班上比我高的人不超过14 ”,他的说法正确吗?(3)写出乙同学在整理或绘图过程中的错误(写出一个即可); (4)设该班学生的身高数据的中位数为a ,试写出a 的值. 解:(1)该班学生有10+15+20+10+5=60(人); (2)正确.从图1可得身高高于165 cm 的有10+5=15(人),15÷60=14.∴他的说法正确;(3)乙同学在整理数据时,漏了一个数据,这个数据落在169.5~173.5范围内(或总人数少1人); (4)由图1知中位数大于159.5,由图2知中位数小于161.5.∴159.5<a <161.5. ∵身高为整数,∴a =160,160.5或161.6.疫情期间,某校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取七年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B ,E 两组发言人数的比为5∶2,请结合图中相关数据回答下列问题:F(1)E 组人数为________人;(2)被调查的学生人数为________人,A 组人数为________人,并补全频数分布直方图; (3)求出扇形统计图中,“B ”所对应的圆心角的度数;(4)七年级共有学生1 500人,请估计全年级在这天里发言次数不少于12次的人数. 解:(1)4;[∵B ,E 两组发言人数的比为5∶2, ∴E 组人数为10×25=4(人).](2)50;3;补全频数分布直方图如图所示;[被调查的学生人数为4÷8%=50(人), A 组人数为50×6%=3(人),C 组的人数是50×30%=15(人).](3)“B ”所对应的圆心角的度数是360°×1050=72°; (4)F 组所占的百分比是550 ×100%=10%,则全年级在这天里发言次数不少于12次的约有1 500×(10%+8%)=270(人).题型3 统计与概率综合1.(2020·石家庄市模拟)文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知P (一次拿到7元本)=23.(1)求这6个本价格的众数;(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.解:(1)6×23=4(本).∴7元本有4本,则这6个本的价格为4元、5元、7元、7元、7元、7元. ∴这6个本价格的众数是7元; (2)①相同.理由:原来6本价格为4元、5元、7元、7元、7元、7元,价格的中位数是7+72=7(元),所剩的5个本价格为4元、5元、7元、7元、7元,价格的中位数是7元,∴中位数相同;②列表:由表可知,共有20种等可能的结果,其中嘉嘉两次都拿到7元本的结果有6种, ∴P (嘉嘉两次都拿到7元本)=620 =310.2.(2020·唐山市二模)某销售公司年终进行业绩考核,人事部门把考核结果按照A ,B ,C ,D 四个等级,绘制成两个不完整的统计图,如图1、图2所示.(1)参加考试的人数是________人,扇形统计图中D 部分所对应的圆心角的度数是________,请把条形统计图补充完整;(2)若公司领导计划从考核人员中选一人交流考核意见,求所选人员考核为A 等级的概率;(3)为推动公司进一步发展,公司决定计划两年内考核A 等级的人数达到30人,求平均每年的增长率.(精确到0.01,5 ≈2.236)解:(1)50;36;补全条形统计图如图所示;[参加考试的人数是24÷48%=50(人),扇形统计图中D 部分所对应的圆心角的度数是360°×550=36°,C 等级的人数是50-24-15-5=6(人).](2)∵参加考试的有50人,考核为A 等级有24人, ∴P (所选人员考核为A 等级)=2450 =1225 ;(3)设平均每年增长率是x .由题意,得 24(1+x )2=30. 解得x 1=-1+52 ≈0.12,x 2=-1-52(舍去). 答:平均每年增长率为12%.3.(2020·衡水市模拟)某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.初三(1)班得分情况小知识难度系数的计算公式为L =XW,其中L 为难度系数,X 为样本平均数,W 为试题满分值.《考试说明》指出:L 在0.7以上的题为容易题;在0.4~0.7之间的题为中档题;在0.2~0.4之间的题为较难题.解答下列问题:(1)m =________,n =________,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率; (3)根据“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题. 解:(1)25;20;补全条形统计图如图所示;。

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)

中考数学复习---《概率》知识点总结与专项练习题(含答案解析)知识点总结1. 事件:①确定事件:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件。

②随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。

2. 事件的可能性(概率)大小:事件的可能性大小用概率来表示。

表示为()事件P 。

必然事件的概率为1;不可能事件的概率为0;随机事件的概率为10<<P 。

3. 概率的定义与计算公式:①概率的意义:一般地,在大量重复实验中,如果事件A 发生的频率n m 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率,记为()A P =p②概率公式:随机事件A 的概率()所有可能出现的结果数随机事件出现的次数=A P 。

4. 几何概率:在几何中概率的求解皆用部分面积比总面积,或部分长度比总长度,或部分角度比整个大角角度。

专项练习题1.(2022•巴中)下列说法正确的是( )A .4是无理数B .明天巴中城区下雨是必然事件C .正五边形的每个内角是108°D .相似三角形的面积比等于相似比【分析】根据二次根式的化简可得=2,随机事件,正五边形每个内角是108°,相似三角形的性质,逐一判断即可解得.【解答】解:A.∵=2,∴是有理数,故A不符合题意;B.明天巴中城区下雨是随机事件,故B不符合题意;C.正五边形的每个内角是108°,故C符合题意;D.相似三角形的面积比等于相似比的平方,故D不符合题意;故选:C.2.(2022•宁夏)下列事件为确定事件的有()(1)打开电视正在播动画片(2)长、宽为m,n的矩形面积是m n(3)掷一枚质地均匀的硬币,正面朝上(4)π是无理数A.1个B.2个C.3个D.4个【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:(1)打开电视正在播动画片,是随机事件,不合题意;(2)长、宽为m,n的矩形面积是mn,是确定事件,符合题意;(3)掷一枚质地均匀的硬币,正面朝上,是随机事件,不合题意;(4)π是无理数,是确定事件,符合题意;故选:B.3.(2022•辽宁)下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.任意买一张电影票,座位号是2的倍数D.从一个只装有红球的盒子里摸出一个球是红球【分析】根据随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、射击运动员射击一次,命中靶心,是随机事件,故A不符合题意;B、掷一次骰子,向上一面的点数是6,是随机事件,故B不符合题意;C、任意买一张电影票,座位号是2的倍数,是随机事件,故C不符合题意;D、从一个只装有红球的盒子里摸出一个球是红球,是必然事件,故D符合题意;故选:D.4.(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况【分析】根据三角形内角和定理,随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、三角形内角和是180°,是必然事件,故A符合题意;B、端午节赛龙舟,红队获得冠军,是随机事件,故B不符合题意;C、掷一枚均匀骰子,点数是6的一面朝上,是随机事件,故C不符合题意;D、打开电视,正在播放神舟十四号载人飞船发射实况,是随机事件,故D不符合题意;故选:A.5.(2022•武汉)彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件【分析】根据随机事件,必然事件,不可能事件的定义,即可判断.【解答】解:彩民李大叔购买1张彩票,中奖.这个事件是随机事件,故选:D.6.(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是()A.小星抽到数字1的可能性最小B.小星抽到数字2的可能性最大C.小星抽到数字3的可能性最大D.小星抽到每个数的可能性相同【分析】根据概率公式求出小星抽到各个数字的概率,然后进行比较,即可得出答案.【解答】解:∵3张同样的纸条上分别写有1,2,3,∴小星抽到数字1的概率是,抽到数字2的概率是,抽到数字3的概率是,∴小星抽到每个数的可能性相同;故选:D.7.(2022•襄阳)下列说法正确的是()A.自然现象中,“太阳东方升起”是必然事件B.成语“水中捞月”所描述的事件,是随机事件C.“襄阳明天降雨的概率为0.6”,表示襄阳明天一定降雨D .若抽奖活动的中奖概率为501,则抽奖50次必中奖1次 【分析】根据概率的意义,概率公式,随机事件,必然事件,不可能事件的特点,即可解答.【解答】解:A 、自然现象中,“太阳东方升起”是必然事件,故A 符合题意; B 、成语“水中捞月”所描述的事件,是不可能事件,故B 不符合题意;C 、襄阳明天降雨的概率为0.6”,表示襄阳明天降雨的可能性是60%,故C 不符合题意;D 、若抽奖活动的中奖概率为,则抽奖50次不一定中奖1次,故D 不符合题意;故选:A .8.(2022•长沙)下列说法中,正确的是( )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次【分析】根据概率的意义,全面调查与抽样调查,条形统计图,随机事件,逐一判断即可解答.【解答】解:A 、调查某班45名学生的身高情况宜采用全面调查,故A 符合题意; B 、“太阳东升西落”是必然事件,故B 不符合题意;C 、为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,故C 不符合题意;D 、任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数可能是13次,故D 不符合题意;故选:A .9.(2022•东营)如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是( )A .32B .21C .31D .61 【分析】根据轴对称图形的概念、概率公式计算即可.【解答】解:如图,当涂黑1或2或3或4区域时,所有黑色方块构成的图形是轴对称图形,则P (是轴对称图形)==,故选:A .10.(2022•丹东)四张不透明的卡片,正面标有数字分别是﹣2,3,﹣10,6,除正面数字不同外,其余都相同,将它们背面朝上洗匀后放在桌面上,从中随机抽取一张卡片,则这张卡片正面的数字是﹣10的概率是( )A .41B .21C .43D .1【分析】用﹣10的个数除以总数即可求得概率.【解答】解:由题意可知,共有4张标有数字﹣2,3,﹣10,6的卡片,摸到每一张的可能性是均等的,其中为﹣10的有1种,所以随机抽取一张,这张卡片正面的数字是﹣10的概率是,故选:A .11.(2022•益阳)在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A ,B ,C ,D ,E ,F ,考生从中随机抽取一道试题,则某个考生抽到试题A 的概率为( )A .32B .41C .61D .241 【分析】根据抽到试题A 的概率=试题A 出现的结果数÷所有可能出现的结果数即可得出答案.【解答】解:总共有24道题,试题A 共有4道,P (抽到试题A )==,故选:C . 12.(2022•兰州)无色酚酞溶液是一种常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是( )A .51B .52C .53D .54 【分析】总共5种溶液,其中碱性溶液有2种,再根据概率公式求解即可.【解答】解:∵总共5种溶液,其中碱性溶液有2种,∴将酚酞试剂滴入任意一瓶液体后呈现红色的概率是,故选:B .13.(2022•铜仁市)在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )A .红球B .黄球C .白球D .蓝球【分析】根据概率的求法,因为红球的个数最多,所以摸到红球的概率最大.【解答】解:在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,因为红球的个数最多,所以摸到红球的概率最大,摸到红球的概率是:, 故选:A .14.(2022•百色)篮球裁判员通常用抛掷硬币的方式来确定哪一方先选场地,那么抛掷一枚均匀的硬币一次,正面朝上的概率是( )A .1B .21C .41D .61 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:抛硬币有两种结果:正面向上、反面向上,则正面向上的概率为.故选:B .15.(2022•呼和浩特)不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( )A .b a b +B .a bC .b a a +D .ba 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是.故选:A . 16.(2022•齐齐哈尔)在单词statistics (统计学)中任意选择一个字母,字母为“s ”的概率是( )A .101B .51C .103D .52 【分析】根据题意,可以写出任意选择一个字母的所有可能性和选择的字母是s 的可能性,从而可以求出相应的概率.【解答】解:在单词statistics (统计学)中任意选择一个字母一共有10种可能性,其中字母为“s ”的可能性有3种,∴任意选择一个字母,字母为“s ”的概率是, 故选:C .17.(2022•镇江)从2021、2022、2023、2024、2025这五个数中任意抽取3个数.抽到中位数是2022的3个数的概率等于 .【分析】列举得出共有10种等可能情况,其中中位数是2022有3种情况,再由概率公式求解即可.【解答】解:从2021、2022、2023、2024、2025这五个数中任意抽取3个数为:2021、2022、2023,2021、2022、2024,2021、2022、2025,2021、2023、2024,2021、2023、2025,2021、2024、2025,2022、2023、2024,2022、2023、2025,2022、2024、2025,2023、2024、2025,共有10种等可能情况,其中中位数是2022有3种情况,∴抽到中位数是2022的3个数的概率为,故答案为:.18.(2022•阜新)如图,是由12个全等的等边三角形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .41B .43C .32D .21 【分析】先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,再根据几何概率的求法即可得出答案.【解答】解:先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,则这个点取在阴影部分的概率是=.故选:D .19.(2022•徐州)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A .41B .31C .21D .33 【分析】如图,将整个图形分割成图形中的小三角形,令小三角形的面积为a ,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【解答】解:如图所示,设每个小三角形的面积为a ,则阴影的面积为6a ,正六边形的面积为18a ,∴将一枚飞镖任意投掷到镖盘上,飞镖落在阴影区域的概率为=,故选:B .20.(2022•朝阳)如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .83B .21C .85D .1【分析】根据阴影部分的面积所占比例得出概率即可.【解答】解:由图知,阴影部分的面积占图案面积的,即这个点取在阴影部分的概率是,故选:A .21.(2022•通辽)如图,正方形ABCD 及其内切圆O ,随机地往正方形内投一粒米,落在阴影部分的概率是( )A .4πB .1﹣4πC .8πD .1﹣8π 【分析】直接表示出各部分面积,进而得出落在阴影部分的概率.【解答】解:设圆的半径为a,则圆的面积为:πa2,正方形面积为:4a2,故随机地往正方形内投一粒米,落在阴影部分的概率为:.故选:B.22.(2022•黔东南州)如图,已知正六边形ABCDEF内接于半径为r的⊙O,随机地往⊙O 内投一粒米,落在正六边形内的概率为()A.π233B.π23C.π43D.以上答案都不对【分析】求出正六边形的面积占圆面积的几分之几即可.【解答】解:圆的面积为πr2,正六边形ABCDEF的面积为r×r×6=r2,所以正六边形的面积占圆面积的=,故选:A.23.(2022•苏州)如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A .12πB .24πC .6010πD .605π 【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为5×6=30,其中阴影部分面积为=, ∴飞镖落在阴影部分的概率是=,故选:A . 24.(2022•成都)如图,已知⊙O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .【分析】作OD ⊥CD ,OB ⊥AB ,设⊙O 的半径为r ,根据⊙O 是小正方形的外接圆,是大正方形的内切圆,可得OB =OC =r ,△AOB 、△COD 是等腰直角三角形,即可得AE =2r ,CF =r ,从而求出答案.【解答】解:作OD ⊥CD ,OB ⊥AB ,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=r,∴AE=2r,CF=r,∴这个点取在阴影部分的概率是=,故答案为:.。

2021年数学统计与概率真题(附解析)

2021年数学统计与概率真题(附解析)

2021年数学统计与概率真题(附解析)一、选择题(共14小题;共70分)1. 小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图及条形图(柱的高度从高到低排列).条形图不小心被撕了一块,图中”应填的颜色是A. 蓝B. 粉C. 黄D. 红2. 为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是A. 样本为名学生B. 众数是节C. 中位数是节D. 平均数是节3. 已知一组数据:,,,,,则这组数据的中位数是A. B. C. D.4. 一组数据:,,,,若添加一个数据,则不发生变化的统计量是A. 平均数B. 中位数C. 众数D. 方差5. 某校男子足球队的年龄分布如下表:则这些队员年龄的众数和中位数分别是A. ,B. ,C. ,D. ,6. 高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(.科普,.文学,.体育,.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误的是A. 样本容量为B. 类型所对应的扇形的圆心角为C. 类型所占百分比为D. 类型的人数为人7. 某校九年级进行了次数学模拟考试,甲、乙、丙三名同学的平均分为及方差如表所示,那么这三名同学数学成绩最稳定的是A. 甲B. 乙C. 丙D. 无法确定8. 如图,有张形状大小质地均相同的卡片,正面印有速度滑冰、冰球、单板滑雪、冰壶四种不同的图案,背面完全相同,现将这张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是冰壶项目图案的概率是D.9. 以下调查中,最适合用来全面调查的是A. 调查柳江流域水质情况B. 了解全国中学生的心理健康状况C. 了解全班学生的身高情况D. 调查春节联欢晚会收视率10. 现有张卡片,正面图案如图所示,它们除此之外完全相同,把这张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是C. D.11. 以下命题是假命题的是A. 的算术平方根是B. 有两边相等的三角形是等腰三角形C. 一组数据:,,,,的中位数是D. 过直线外一点有且只有一条直线与已知直线平行12. 为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级个班级一周回收废纸情况如表:则每个班级回收废纸的平均重量为13. 同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是14. 经过某路口的汽车,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两车经过该路口,恰好有一车直行,另一车左拐的概率为A. B. C. D.二、填空题(共6小题;共30分)15. 有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是.16. 一组数据,,,,的众数为.17. 一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.18. 如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为岁,最大为岁,根据统计图所提供的数据,该小组组员年龄的中位数为岁.19. 东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为:,,,,,,.则这组数据的中位数为.20. 某外贸公司要出口一批规格为克/盒的红枣,现有甲、乙两个厂家提供货源,它们的价格相同,品质也相近.质检员从两厂产品中各随机抽取盒进行检测,测得它们的平均质量均为克,每盒红枣的质量如图所示,则产品更符合规格要求的厂家是(填“甲”或“乙”).三、解答题(共13小题;共169分)21. “此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止年月日,全球接种“新冠”疫苗的比例为;中国累计接种亿剂,占全国人口的.以下是某地甲、乙两家医院月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:(1)根据上面图表信息,回答下列问题:①填空:,,;②在甲、乙两医院当天接种疫苗的所有人员中,周岁年龄段人数在扇形统计图中所占圆心角为;(2)若,,三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.22. 为庆祝中国共产党成立周年,某校举行党史知识竞赛活动,赛后随机抽取了部分学生的成绩,按得分划分为,,,四个等级,并绘制了如下不完整的统计表和统计图.根据图表信息,回答下列问题:(1)表中;扇形统计图中,等级所占的百分比是;等级对应的扇形圆心角为度;若全校共有名学生参加了此次知识竞赛活动,请估计成绩为等级的学生共有人;(2)若分以上的学生有人,其中甲、乙两人来自同一班级,学校将从这人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有人被选中的概率.23. 为庆祝中国共产党建党周年,某校拟举办主题为“学党史跟党走”的知识竞赛活动.某年级在一班和二班进行了预赛,两个班参加比赛的人数相同,成绩分为,,,四个等级,其等级对应的分值分别为分、分、分、分,将这两个班学生的最后等级成绩分析整理绘制成了如图的统计图.(1)这次预赛中,二班成绩在等及以上的人数是多少?(2)分别计算这次预赛中一班成绩的平均数和二班成绩的中位数;(3)已知一班成绩等的人中有两个男生和个女生,二班成绩等的都是女生,年级要求从这两个班等的学生中随机选人参加学校比赛,若每个学生被抽取的可能性相等,求抽取的人中至少有个男生的概率.24. 年是中国共产党建党周年华诞.“五一”后某校组织了八年级学生参加建党周年知识竞赛,为了了解学生对党史知识的掌握情况,学校随机抽取了部分同学的成绩作为样本,把成绩按不及格、合格、良好、优秀四个等级分别进行统计,并绘制了如下不完整的条形统计图与扇形统计图:请根据图中提供的信息解答下列问题:(1)根据给出的信息,将这两个统计图补充完整(不必写出计算过程);(2)该校八年级有学生人,请估计成绩未达到“良好”及以上的有多少人?(3)“优秀”学生中有甲、乙、丙、丁四位同学表现突出,现从中派人参加区级比赛,求抽到甲、乙两人的概率.25. 为庆祝建党周年,让同学们进一步了解中国科技的快速发展,东营市某中学九()班团支部组织了一次手抄报比赛.该班每位同学从.“北斗卫星”;.“时代”;.“东风快递”;.“智轨快运”四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成不完整的统计图,请根据统计图中的信息解答下列问题:(1)九()班共有名学生;(2)补全折线统计图;(3)D所对应扇形圆心角的大小为.(4)小明和小丽从A,B,C,D 四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.26. 高尔基说:“书,是人类进步的阶梯.”阅读可以启智增慧,拓宽视野,为了解学生寒假阅读情况,开学初学校进行了问卷调查,并对部分学生假期(天)的阅读总时间作了随机抽样分析.设被抽样的每位同学寒假阅读的总时间为(小时),阅读总时间分为四个类别:,,,,将分类结果制成两幅统计图(尚不完整).根据以上信息,回答下列问题:(1)本次抽样的样本容量为;(2)补全条形统计图;(3)扇形统计图中的值为,圆心角的度数为;(4)若该校有名学生,估计寒假阅读的总时间少于小时的学生有多少名?对这些学生用一句话提一条阅读方面的建议.27. 年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科.第一轮,各市从语文、数学、英语三个学科中随机抽取一科;第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.(1)黄冈在第一轮抽到语文学科的概率是;(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.28. 为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到图表:该地区每周接种疫苗人数统计表根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第周开始这些点大致分布在一条直线附近,现过其中两点,作一条直线(如图所示,该直线的函数表达式为),那么这条直线可近似反映该地区接种人数的变化趋势.请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为万人;该地区的总人口约为万人.(2)若从第周开始,每周的接种人数仍符合上述变化趋势.①估计第周的接种人数约为万人;②专家表示:疫苗接种率至少达,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第周开始接种人数将会逐周减少()万人,为了尽快提高接种率,一旦周接种人数低于万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在万人.如果,那么该地区的建议接种人群最早将于第几周全部完成接种?29. 圆周率是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对有过深入的研究.目前,超级计算机已计算出的小数部分超过万亿位.有学者发现,随着小数部分位数的增加,这个数字出现的频率趋于稳定接近相同.(1)从的小数部分随机取出一个数字,估计数字是的概率为;(2)某校进行校园文化建设,拟从以上位科学家的画像中随机选用幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)30. 为迎接中国共产党建党周年,某校开展了以“不忘初心,缅怀先烈”为主题的读书活动,学校政教处对本校七年级学生五月份“阅读该主题相关书籍的读书量”(下面简称“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:(1)补全下面图的统计图;(2)本次所抽取学生五月份“读书量”的众数为;(3)已知该校七年级有名学生,请你估计该校七年级学生中,五月份“读书量”不少于本的学生人数.31. 年月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取名进行问卷调查,并将调查结果用统计图描述如下.调查问卷.近两周你平均每天睡眠时间大约是小时.如果你平均每天睡眠时间不足小时,请回答第个问题.影响你睡眠时间的主要原因是(单选).A.校内课业负担重B.校外学习任务重C.学习效率低D.其他平均每天睡眠时间(时)分为组:①;②;③;④;⑤.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第(填序号)组,达到小时的学生人数占被调查人数的百分比为;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.32. 为庆祝中国共产党成立周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)这次抽样调查的总人数为人,扇形统计图中“舞蹈”对应的圆心角度数为;(2)若该校有名学生,估计选择参加书法的有多少人?(3)学校准备从推荐的位同学(两男两女)中选取人主持活动,利用画树状图或表格法求恰为一男一女的概率.33. 九()班准备从甲、乙两名男生中选派一名参加学校组织的一分钟跳绳比赛,在相同的条件下,分别对两名男生进行了八次一分钟跳绳测试.现将测试结果绘制成如下不完整的统计图表,请根据统计图表中的信息解答下列问题:(1)求,的值;(2)若九()班选一位成绩稳定的选手参赛,你认为应选谁,请说明理由;(3)根据以上的数据分析,请你运用所学统计知识,任选两个角度评价甲乙两名男生一分钟跳绳成绩谁优.答案第一部分1. D2. D【解析】A.样本为名学生收集废旧电池的数量,此选项错误;B.众数是节和节,此选项错误;C.中位数为(节),此选项错误;D.平均数为(节).3. C【解析】将这组数据重新排列为,,,,,所以这组数据的中位数为.4. B【解析】A、原来数据的平均数是,添加数字后平均数为,故不符合题意;B、原来数据的中位数是,添加数字后中位数仍为,故符合题意;C、原来数据的众数是,添加数字后众数为和,故不符合题意;D、原来数据的方差,添加数字后的方差,故方差发生了变化,故不符合题意;故选:B.5. D【解析】根据图表数据,同一年龄人数最多的是岁,共人,所以众数是;根据图表数据可知共有名队员,按照年龄从小到大排列,第名队员与第名队员的年龄都是岁,所以,中位数是.6. C【解析】(人),样本容量为,故A正确,,类型所对应的扇形的圆心角为,故B正确,,类型所占百分比为,故C错误,(人),类型的人数为人,故D正确,说法错误的是C.7. A【解析】因为,,,且平均数相等,所以,所以这三名同学数学成绩最稳定的是甲.8. A【解析】有张形状、大小、质地均相同的卡片,冰壶项目图案的有张,从中随机抽取一张,抽出的卡片正面恰好是冰壶项目图案的概率是.9. C【解析】A.调查柳江流域水质情况,适合抽样调查,故本选项不合题意;B.了解全国中学生的心理健康状况,适合抽样调查,故本选项不合题意;C.了解全班学生的身高情况,适合普查,故本选项符合题意;D.调查春节联欢晚会收视率,适合抽样调查,故本选项不合题意.10. A【解析】把张卡片分别记为:,,,,画树状图如图:共有种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有种,两张卡片正面图案恰好是“天问”和“九章”的概率为.11. A【解析】A.的算术平方根是,原命题是假命题,符合题意;B.有两边相等的三角形是等腰三角形,是真命题,不符合题意;C.一组数据:,,,,的中位数是,原命题是真命题,不符合题意;D.过直线外一点有且只有一条直线与已知直线平行,原命题是真命题,不符合题意.12. C【解析】每个班级回收废纸的平均重量为.13. C【解析】画树形图得:由树形图可知共种等可能的结果,一枚硬币正面向上,一枚硬币反面向上的有种结果,一枚硬币正面向上,一枚硬币反面向上的的概率为.14. A【解析】画树状图为:共有种等可能的结果数,其中恰好有一车直行,另一车左拐的结果数为种,恰好有一车直行,另一车左拐的概率第二部分【解析】由题意得,共有种等可能情况,其中能打开锁的情况有种,.16.【解析】这组数据,,,,中出现次数最多的是,共出现次,因此众数是.17.【解析】若将每个方格地砖的面积记为,则图中地砖的总面积为,其中阴影部分的面积为,该小球停留在黑色区域的概率是18.【解析】根据题意排列得:,,,,,,,,,,,,,,,,,,则该小组组员年龄的中位数为(岁).19.【解析】将这组数据重新排列为:,,,,,,,所以这组数据的中位数为.20. 甲【解析】从图中折线可知,乙的起伏大,甲的起伏小,乙的方差大于甲的方差,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,产品更符合规格要求的厂家是甲.第三部分21. (1)①;;②【解析】①在甲医院接种人数为:(人),,,在乙医院的接种人数为:(人),.②在甲、乙两医院当天接种疫苗的所有人员中,周岁年龄段人数为:(人),周岁年龄段人数在扇形统计图中所占圆心角为:.(2)画树状图如图:共有种等可能的结果,,,三人在同一家医院接种的结果有种,三人在同一家医院接种的概率为.22. (1);;;【解析】抽取的学生人数为:(人),,等级所占的百分比是,等级对应的扇形圆心角为:,估计成绩为等级的学生共有:(人).(2)分以上的学生有人,其中甲、乙两人来自同一班级,其他两人记为丙、丁,画树状图如图:共有种等可能的结果,甲、乙两人至少有人被选中的结果有种,甲、乙两人至少有人被选中的概率为.23. (1)由条形图可知,一班比赛的人数为:(人),两个班参加比赛的人数相同,二班参赛人数为人,这次预赛中,二班成绩在等及以上的人数为:(人).(2)一班成绩的平均数为:(分),由题意得:二班成绩的中位数为分.(3)二班成绩等的都是女生,二班成绩等的人数为:(人),把一班成绩等的个男生分别记为,,其他成绩等的个女生分别记为,,,,画树状图如图:共有种等可能的结果,抽取的人中至少有个男生的结果有种,抽取的人中至少有个男生的概率为.24. (1)将两个统计图补充完整如下:【解析】抽取的学生人数为:(人),则达到“良好”的学生人数为:(人),达到“合格”的学生所占的百分比为:,达到“优秀”的学生所占的百分比为:.(2)(人),答:估计成绩未达到“良好”及以上的有人.(3)画树状图如图:共有种等可能的结果,抽到甲、乙两人的结果有种,所以抽到甲、乙两人的概率为.25. (1)【解析】九()班共有学生人数为:(名).(2) D的人数为:(名),补全折线统计图如下:(3)【解析】D所对应扇形圆心角的大小为:.(4)画树状图如图:共有种等可能的结果,小明和小丽选择相同主题的结果有种,小明和小丽选择相同主题的概率为.26. (1)【解析】本次抽样的人数为(人),样本容量为,故答案为;(2)组的人数为(人),统计图如下:(3);【解析】组所占的百分比为,的值为,,故答案为,.(4)总时间少于小时的学生的百分比为,全校寒假阅读的总时间少于小时的学生估计有(名),建议:读书是人类文明进步的阶梯,建议每天读书至少小时.27. (1)【解析】黄冈在第一轮抽到语文学科的概率是(2)列表如下:由表可知共有种等可能结果,其中抽到的学科恰好是历史和地理的只有种结果,28. (1);【解析】(万人),这八周中每周接种人数的平均数为万人.(万人),该地区的总人口约为万人.(2)①②疫苗接种率至少达,实现全民免疫所需的接种人数为(万人).设最早到第周,该地区可达到实现全民免疫的标准,则由题意可得接种的总人数为..化简得:.当时,,最早到第周,该地区可达到实现全民免疫的标准.【解析】①当时,,估计第周的接种人数约为万人.(3)由题意得:第周的接种人数为(万).第周的接种人数为,第周的接种人数为,第周的接种人数为,设第周接种人数不低于万人,即:,.解得:.当周时,接种人数不低于万人,当周时,低于万人;从第周开始周接种人数,当时,总接种人数为:.解得:.当为周时全部完成接种.29. (1)【解析】因为随着小数部分位数的增加,这个数字出现的频率趋于稳定,所以从的小数部分随机取出一个数字共有种等可能结果,其中出现数字的只有种结果,所以从的小数部分随机取出一个数字,估计是数字的概率为.(2)将祖冲之、刘徽、韦达、欧拉四位数学家分别记作甲、乙、丙、丁,列表如下:因为共有种等可能的情况,其中有一幅是祖冲之的有种结果,所以其中有一幅是祖冲之的概率为.30. (1)抽样调查的学生总数为:(人),“读书量”本的人数所占的百分比是,“读书量”本的人数有:(人),补全图的统计图如下,(2)【解析】根据统计图可知众数为.(3)根据题意得,(人),答:估计该校七年级学生中,五月份“读书量”不少于本的学生有人.31. (1)③;【解析】由统计图可知,抽取的这名学生平均每天睡眠时间的中位数为第个和第个数据的平均数,故落在第③组;睡眠达到小时的学生人数占被调查人数的百分比为:.(2)答案不唯一,言之有理即可.例如:该校大部分学生睡眠时间没有达到通知要求;建议①:该校各学科授课老师精简家庭作业内容,师生一起提高在校学习效率;建议②:建议学生减少参加校外培训班,校外辅导机构严禁布置课后作业.32. (1);【解析】这次抽样调查的总人数为:(人),则参加舞蹈”的学生人数为:(人),扇形统计图中“舞蹈”对应的圆心角度数为:.(2)(人),即估计选择参加书法有人.(3)画树状图如图:共有种等可能的结果,恰为一男一女的结果有种,恰为一男一女的概率为.33. (1)甲的成绩从小到大排列为:,,,,,,,,甲的中位数,出现了次,出现的次数最多,众数是,故,.(2)应选乙,理由:乙的方差为:,乙的方差小于甲的方差,所以乙的成绩比甲的稳定.(3)乙的方差为:,①从平均数和方差相结合看,乙的成绩比较稳定;②从平均数和中位数相结合看,甲的成绩好些.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专项训练(八) 统计与概率一、 选择题1. (2018,张家口模拟)下列说法正确的是( C ) A. 三角形的外心到三边的距离相等B. “任意画出一个等边三角形,它是轴对称图形”是随机事件C. “任意画出一个平行四边形,它是中心对称图形”是必然事件D. 对飞机乘客的安检应采用抽样调查【解析】 三角形的内心到三边的距离相等,故选项A 错误.“任意画出一个等边三角形,它是轴对称图形”是必然事件,故选项B 错误.“任意画出一个平行四边形,它是中心对称图形”是必然事件,故选项C 正确.对飞机乘客的安检应采用全面调查,故选项D 错误.2. (2018,怀化)下列说法正确的是( A )A. 调查舞水河的水质情况,采用抽样调查的方式B. 数据2,0,-2,1,3的中位数是-2C. 可能性是99%的事件在一次试验中一定会发生D. 从2 000名学生中随机抽取100名学生进行调查,样本容量为2 000名学生【解析】 A. 调查舞水河的水质情况,采用抽样调查的方式,故这个选项正确.B. 数据2,0,-2,1,3的中位数是1,故这个选项错误.C. 可能性是99%的事件在一次试验中不一定会发生,故这个选项错误.D. 从2 000名学生中随机抽取100名学生进行调查,样本容量为100,故这个选项错误.3. (2018,青岛改编)已知甲、乙两组数据的折线图如图所示,设甲、乙两组数据的方差分别为s 2甲,s 2乙,则s 2甲与s 2乙的大小关系为( A )第3题图A. s 2甲>s 2乙B. s 2甲=s 2乙C. s 2甲<s 2乙 D. 不能确定【解析】 从题图看出乙组数据的波动较小,故乙组数据的方差较小,即s 2甲>s 2乙.4. 在猜某一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图所示的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,则他一次就能猜中的概率是( C )第4题图A. 12B. 13 C. 14 D. 23【解析】 可能出现的情况有:当拿走3时,剩下的数是560;当拿走5时,剩下的数是360;当拿走6时,剩下的数是350;当拿走0时,剩下的数是356.出现这4种结果的可能性相等,其中他一次就能猜中的结果只有1种,故其概率是14.5. (2018,抚顺)抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同.其中一名参赛选手想知道自己能否进入前4名,他除了要知道自己的成绩外还要知道这7名学生成绩的( A )A. 中位数B. 众数C. 平均数D. 方差 【解析】 因为一共有7名学生,且他们的成绩各不相同,所以第4名的成绩是中位数.要判断是否进入前4名,应知道中位数的大小.6. (2018,黔西南州改编)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,下面表格反映的是各组平时成绩(单位:分)的平均数x 及方差s 2.如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( C )A. 甲组B. 乙组C. 丙组D. 丁组【解析】 因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩较好且状态稳定,所以应选的组是丙组.7. (2018,湖州)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是(C )A. 19B. 16C. 13D. 23【解析】从表中可以看出,一共有9种等可能的结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率是39=13.8. (2018,唐山路北区模拟)某校男子足球队的年龄分布情况如下表:A. 15,15B. 15,14C. 16,15D. 14,15【解析】 同一年龄人数最多的是15岁,共8人,所以众数是15.22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以中位数是(15+15)÷2=15.9. (2018,北京改编,导学号5892921)从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:min)的数据,统计如下:则早高峰期间,从甲地到乙地“公交车用时不超过45 min ”的概率最大的线路是(C ) A. A B. B C. C D. 都一样【解析】 ∵A 线路上的公交车用时不超过45 min 的概率为59+151+166500=0.752,B 线路上的公交车用时不超过45 min 的概率为50+50+122500=0.444,C 线路上的公交车用时不超过45 min 的概率为45+265+167500=0.954,∴C 线路上的公交车用时不超过45 min 的概率最大.二、 填空题 10. (2018,成都)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球.若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是 6 .【解析】 由题意,得该盒子中装有黄色乒乓球的个数是16×38=6.11. (2018则该公司全体员工年薪的中位数比众数多 0.5 . 【解析】 一共有25个数据,将这组数据按从小到大的顺序排列后,处于中间位置的是4,所以这组数据的中位数是4.这组数据中3.5是出现次数最多的,所以众数是3.5.所以中位数比众数多4-3.5=0.5.12. (2018,舟山)小明和小红玩抛硬币游戏,连续抛两次,小明说:“若两次都是正面,则你赢;若两次都是一正一反,则我赢.”小红赢的概率是( 14 ),该游戏 不公平 (填“公平”或“不公平”).【解析】 因为抛两次硬币,所有机会均等的结果为正正,正反,反正,反反,所以出现两次正面的概率为14,一正一反的概率为24=12.因为二者概率不相等,所以游戏不公平.三、 解答题13. (2018,遵义)某超市在端午节期间开展优惠活动,凡购物者都可以通过转动转盘(如图所示)的方式享受折扣优惠.本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受九折优惠.指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,则所购买物品享受八折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘).(1)若顾客选择方式一,则享受九折优惠的概率为( 14);(2)若顾客选择方式二,请用画树状图法或列表法列出所有可能,并求顾客享受八折优惠的概率.第13题图【思路分析】 (1)转动转盘甲共有4种等可能的结果,其中指针指向A 区域的结果只有1种,利用概率公式计算可得.(2)画树状图得出所有等可能的结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.解:(1)14(2)画树状图如答图.第13题答图从树状图中可以看出,一共有12种等可能的结果,其中指针指向每个区域的字母相同的结果有2种,所以指针指向每个区域的字母相同的概率,即顾客享受八折优惠的概率为212=16.14. (2018,江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部的姓名分别写在4张完全相同的卡片正面,把4张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生小刚被抽中是 不可能 事件,小悦被抽中是 随机 事件(填“不可能”“必然”或“随机”);第一次抽取卡片小悦被抽中的概率为( 14);(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小惠被抽中的概率.【思路分析】 (1)根据随机事件和不可能事件的概念及概率公式解答可得.(2)列举出所有等可能的结果,看所求的结果数占总数的多少即可.解:(1)不可能 随机 14(2)记小悦、小惠、小艳和小倩这四位女同学分别为A ,B ,C ,D.列表如下:从表中可以看出,一共有12种等可能的结果,其中小惠被抽中的结果有6种, 所以小惠被抽中的概率为612=12.15. (2018,承德模拟)九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,根据调查结果将学生参与类别分为主动质疑、独立思考、专注听讲、讲解题目四种.评价组随机抽取了若干名九年级学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整).第15题图(1)在这次评价调查中,一共抽查了 560 名学生;(2)在扇形统计图中,参与类别“主动质疑”所在的扇形的圆心角的度数为 54° ; (3)请将条形统计图补充完整;(4)如果全市有6 000名九年级学生,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?【思路分析】 (1)根据“专注听讲”的人数是224,所占的百分比是40%,即可求得抽查的总人数.(2)利用360°乘对应的百分比即可求解.(3)利用总人数减去其他各类别的人数,即可求得“讲解题目”的人数,从而补全条形统计图.(4)利用6 000乘对应的百分比即可.解:(1)560 (2)54°(3)如答图所示.第15题答图(4)在试卷讲评课中,“独立思考”的九年级学生约有6 000×168560=1 800(人).16. 某班级要从甲、乙两位同学中选派一人参加“秀美山河”知识竞赛.老师对他们的五次模拟成绩(单位:分)进行了整理,计算出甲成绩的平均数是80,甲、乙成绩的方差分别是320,40,但制作的统计图(如图)表尚不完整.根据以上信息,请你解答下列问题: (1)a = 70 ;(2)请完成图中表示甲成绩变化情况的折线; (3)求乙成绩的平均数;(4)从平均数和方差的角度分析,谁将被选中.第16题图【思路分析】 (1)根据平均数公式即可求得a 的值.(2)根据(1)中计算的结果即可作出甲成绩变化情况的折线.(3)利用平均数公式即可求解.(4)首先比较平均数,选择平均数大的;若平均数相同,则比较方差,选择方差小,比较稳定的.解:(1)70(2)如答图所示.第16题答图(3)x 乙=15×(80+70+80+90+80)=80.(4)因为甲、乙成绩的平均数相同,乙成绩的方差小于甲成绩的方差, 所以乙的成绩比甲的成绩稳定. 所以乙将被选中. 17. (2018,张家口模拟,导学号5892921)垫球是排球队常规训练的重要项目之一.下列图(如图)表中的数据是甲、乙、丙三人每人10次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.第17题图(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为s 2甲=0.8,s 2乙=0.4,s 2丙=0.81)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能地传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?【思路分析】 (1)观察表格可知运动员甲测试成绩的众数和中位数都是7.(2)易求得x 甲=7,x 乙=7,x 丙=6.3,根据题意判断.(3)画出树状图,即可解决问题.解:(1)运动员甲测试成绩的众数是7,中位数是7. (2)∵x 甲=(5+6+7×5+8×3)÷10=7,x 乙=(6×2+7×6+8×2)÷10=7, x 丙=(5×2+6×4+7×3+8)÷10=6.3,∴x 甲=x 乙>x 丙. ∵s 2甲>s 2乙,∴选运动员乙更合适. (3)画树状图如答图所示.第17题答图由树状图中可以看出,一共有8种等可能的结果,其中第三轮结束时球回到甲手中的结果有2种,∴第三轮结束时球回到甲手中的概率是28=14.。

相关文档
最新文档