高中数学之简单几何练习题

合集下载

人教版高中数学选修一3.1.2 椭圆的简单几何性质(一)-A基础练(学生版)

人教版高中数学选修一3.1.2 椭圆的简单几何性质(一)-A基础练(学生版)

3.1.2椭圆的简单几何性质(1) -A 基础练一、选择题1.(2020·南京市天印高级中学月考)椭圆2219y x +=的短轴长为( ) A .6 B .3 C .1 D .22.(2020福建泰宁一中月考)点(,1)A a 在椭圆22142x y +=的内部,则a 的取值范围是( )A .(),-∞⋃+∞B .(C .⎡⎣D .()2,2-3.(2020河北正定县弘文中学高二月考)椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .2B .C .4D .4. (2020·全国高二单元测试)若点O 和点F 分别为椭圆2212x y +=的中心和右焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最小值为( )A .2B .12C .2+D .15.(多选题)(2020·湖南怀化高二月考)若椭圆222:11x y C m m +=-的一个焦点坐标为()0,1,则下列结论中正确的是( )A .2m =B .CC .C 的短轴长为D .C 6. (多选题)已知椭圆x 2a 2+y 2b 2=1与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b 2=1的短轴长与椭圆y 221+x 29=1的短轴长相等,则下列结论不正确的有( )A.a2=25,b2=16B.a2=9,b2=25C.a2=25,b2=9或a2=9,b2=25D.a2=25,b2=9二、填空题7.(2020·四川阆中中学开学考试)已知椭圆22221(0)x ya ba b+=>>的一个焦点是圆22680x y x+-+=的圆心,且短轴长为8,则椭圆的左顶点为.8.(2020全国高二课时练)若椭圆x2k+8+y29=1的离心率e=12,则k的值为.9.(2020山东泰安高二期中)阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的半长轴长与半短轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为45,面积为20π,则椭圆C的标准方程为.10.已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是()三、解答题11.(2020全国高二课时练)焦点在x轴上的椭圆的方程为2214x ym+=,点2,1)P在椭圆上.(1)求m的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率.12.(2020山东菏泽三中高二期中)如图,已知椭圆x2a2+y2b2=1(a>b>0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.(1)若∠F 1AB=90°,求椭圆的离心率;(2)若椭圆的焦距为2,且AF 2⃗⃗⃗⃗⃗⃗⃗ =2F 2B ⃗⃗⃗⃗⃗⃗⃗ ,求椭圆的方程.。

2020_2021学年高中数学第2章圆锥曲线与方程2.4.2抛物线的简单几何性质限时规范训练含解析新

2020_2021学年高中数学第2章圆锥曲线与方程2.4.2抛物线的简单几何性质限时规范训练含解析新

第二章 2.4 2.4.2基础练习1.直线y =x -1被抛物线y 2=4x 截得的线段的中点坐标是( ) A .(1,2) B .(2,1) C .(2,3) D .(3,2) 【答案】D【解析】将y =x -1代入y 2=4x ,整理,得x 2-6x +1=0.由根与系数的关系,得x 1+x 2=6,x 1+x 22=3.∴y 1+y 22=x 1+x 2-22=6-22=2.∴所求点的坐标为(3,2).2.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A .2 B .4 C .6D .8 【答案】A【解析】由已知可知抛物线的准线x =-p2与圆(x -3)2+y 2=16相切,圆心为(3,0),半径为4,圆心到准线的距离d =3+p2=4.解得p =2.3.(2020年某某五校联考)直线l 过抛物线y 2=-2px (p >0)的焦点,且与该抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A.y 2=-12xB.y 2=-8xC.y 2=-6xD.y 2=-4x 【答案】B【解析】设A (x 1,y 1),B (x 2,y 2),根据抛物线的定义可知|AB |=-(x 1+x 2)+p =8.又AB 的中点到y 轴的距离为2,∴-x 1+x 22=2,∴x 1+x 2=-4,∴p =4,∴所求抛物线的方程为y 2=-8x .故选B.4.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|FA |=2|FB |,则k 的值为( )A .13B .23C .23D .223【答案】D【解析】C 的准线为l :x =-2,直线y =k (x +2)过定点P (-2,0).过点A ,B 分别作AM ⊥l 于点M ,BN ⊥l 于点N ,由|FA |=2|FB |,则|AM |=2|BN |,点B 为AP 的中点.连接OB ,则|OB |=12|AF |,∴|OB |=|BF |.∴点B (1,22).∴k =22-01--2=223.故选D .5.(2019年某某某某期末)已知抛物线C 1:x 2=2py (p >0)的准线与抛物线C 2:x 2=-2py (p >0)交于A ,B 两点,C 1的焦点为F ,若△FAB 的面积等于1,则C 1的方程是__________________.【答案】x 2=2y【解析】由题意得F ⎝ ⎛⎭⎪⎫0,p 2,不妨设A ⎝ ⎛⎭⎪⎫p ,-p 2,B ⎝⎛⎭⎪⎫-p ,-p 2,∴S △FAB =12·2p ·p =1,则p =1,即抛物线C 1的方程是x 2=2y .6.(2020年某某某某质量监测)已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作PA ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF |=.【答案】43【解析】设l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF |=2,所以|AB |=233.设P (x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,从而|PF |=|PA |=y 0+1=43.7.斜率为1的直线经过抛物线y 2=4x 的焦点且与抛物线相交于A ,B 两点,求线段AB 的长.解:如图,由抛物线的标准方程可知焦点F (1,0),准线方程为x =-1.由题意,直线AB 的方程为y =x -1,代入抛物线方程y 2=4x ,整理得x 2-6x +1=0. (方法一)由x 2-6x +1=0,得x 1+x 2=6,x 1·x 2=1,∴|AB |=2|x 1-x 2|=2×x 1+x 22-4x ·x 2=2×62-4=8.(方法二)设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=|AA 1|=x 1+1,|BF |=|BB 1|=x 2+1,∴|AB |=|AF |+|BF |=x 1+x 2+2=6+2=8.8.设抛物线C :y 2=2px (p >0)上有两动点A ,B (AB 不垂直于x 轴),F 为焦点且|AF |+|BF |=8,线段AB 的垂直平分线恒过定点Q (6,0),求抛物线C 的方程.解:设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则x 1+x 2=8-p .又|QA |=|QB |,∴(x 1-6)2+y 21=(x 2-6)2+y 22,即(x 1+x 2-12)(x 1-x 2)=2p (x 2-x 1).∵x 1≠x 2,∴x 1+x 2=12-2p .∴12-2p =8-p .解得p =4. ∴所求抛物线C 的方程为y 2=8x .能力提升9.过抛物线y 2=4x 的焦点,作一条直线与抛物线交于A ,B 两点,若它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有两条C .有无穷多条D .不存在 【答案】B【解析】设A (x 1,y 1),B (x 2,y 2),由抛物线定义知|AB |=x 1+x 2+p =5+2=7.又直线AB 过焦点且垂直于x 轴的直线被抛物线截得的弦长最短,且|AB |min =2p =4,∴这样的直线有两条.故选B .10.(多选题)如图,AB 为过抛物线y 2=2px (p >0)焦点F 的弦,点A ,B 在抛物线准线上的射影分别为A 1,B 1,且A (x 1,y 1),B (x 2,y 2),直线AB 的斜率存在,则( )A.|AB |=x 1+x 2+pB.x 1x 2=p 24C.y 1y 2=-p 2D.以AB 为直径的圆与抛物线的准线相切 【答案】ABCD【解析】由抛物线的定义知|AB |=|AF |+|BF |=|AA 1|+|BB 1|=x 1+x 2+p ,A 正确.设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,联立抛物线方程,消x 得y 2-2pk y -p 2=0,∴y 1y 2=-p 2,x 1x 2=y 212p ·y 222p =p 24,B ,C 正确.设AB 的中点为M ,M 到准线的距离为d ,则d =|AA 1|+|BB 1|2=|AF |+|BF |2=|AB |2,∴以AB 为直径的圆与准线相切,D 正确.综上,ABCD 全选. 11.(2020年某某永州模拟)已知点M ,N 是抛物线y =4x 2上不同的两点,F 为抛物线的焦点,且满足∠MFN =135°,弦MN 的中点P 到直线l :y =-116的距离为d ,若|MN |2=λ·d 2,则λ的最小值为.【答案】2+2【解析】抛物线y =4x 2的焦点F ⎝ ⎛⎭⎪⎫0,116,准线为y =-116.设|MF |=a ,|NF |=b ,由∠MFN =135°,得|MN |2=|MF |2+|NF |2-2|MF |·|NF |·cos ∠MFN =a 2+b 2+2ab .由抛物线的定义得M 到准线的距离为|MF |,N 到准线的距离为|NF |,由梯形的中位线定理得d =12(|MF |+|NF |)=12(a +b ).由|MN |2=λ·d 2,得14λ=a 2+b 2+2ab (a +b )2=1-(2-2)ab (a +b )2≥1-(2-2)ab(2ab )2=1-2-24=2+24,得λ≥2+2,当且仅当a =b 时,取得最小值2+2.12.已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A ,B 两点且|AB |=52p ,求AB 所在的直线方程.解:焦点F ⎝ ⎛⎭⎪⎫p 2,0,设A (x 1,y 1),B (x 2,y 2).若AB ⊥x 轴,则|AB |=2p <52p ,不合题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2(k ≠0).由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系,得y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |=1+1k2|y 1-y 2|=1+1k2·y 1+y 22-4y1y 2=2p ⎝ ⎛⎭⎪⎫1+1k 2=52p .解得k =±2.∴AB 所在直线方程为y =2⎝ ⎛⎭⎪⎫x -p 2或y =-2⎝ ⎛⎭⎪⎫x -p 2.。

高中数学第八章立体几何初步之简单几何体的表面积与体积(精练)(必修第二册)(教师版含解析)

高中数学第八章立体几何初步之简单几何体的表面积与体积(精练)(必修第二册)(教师版含解析)

8.3 简单几何体的表面积与体积(精练)【题组一 多面体表面积】1.(2020·全国高一课时练习)长方体的高为2,底面积等于12,过不相邻两侧棱的截面(对角面)的面积为10,则此长方体的侧面积为( )A .12B .24C .28D .32 【答案】C【解析】设长方体底面矩形的长与宽分别为,a b ,则12ab =.又由题意知22210a b +⨯=,解得4,3a b ==或3,4a b ==.故长方体的侧面积为()243228⨯+⨯=.故选:C.2.(2021·江苏南通市)一个正四棱锥的底面边长为2,高为3,则该正四棱锥的全面积为A .8B .12C .16D .20 【答案】B【解析】由题得侧面三角形的斜高为223+1=2, 所以该四棱锥的全面积为212+422=122⋅⋅⋅. 故选B 3.(2020·全国高一课时练习)若正三棱台上、下底面边长分别是a 和2a ,棱台的高为336a ,则此正三棱台的侧面积为( )A .2aB .212aC .292aD .232a 【答案】C 【解析】如图,1,O O 分别为上、下底面的中心,1,D D 分别是AC ,11A C 的中点,过1D 作1D E OD ⊥于点E .在直角梯形11ODD O 中,1332323OD a a =⨯⨯=,11133326O D a a =⨯⨯=,1136DE OD O D a ∴=-=.在1RtDED中,1336D E a =, 则22133366D D a a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭223333636a a a =+=. 2193(2)22S a a a a ∴=⨯+=侧.故选:C4.(2020·河北沧州市一中高一月考)正四棱锥底面正方形的边长为4,高与斜高的夹角为30,则该四棱锥的侧面积( )A .32B .48C .64D .323【答案】A【解析】如图:正四棱锥的高PO ,斜高PE ,底面边心距OE 组成直角△POE .∵OE =2cm ,∠OPE =30°,∴斜高h ′=PE =4sin 30o OE =,∴S正棱锥侧=114443222ch=⨯⨯⨯='故选:A5.(2020·全国高一课时练习)已知正四棱锥的底面边长是2,侧棱长是5,则该正四棱锥的表面积为( ) A.3B.12C.8D.43【答案】B【解析】如图所示,在正四棱锥S ABCD-中,取BC中点E,连接SE,则SBE△为直角三角形,所以22512SE SB BE=-=-=,所以表面积1422422122SBCABCDS S S=+⨯=⨯+⨯⨯⨯=正方形△.故选:B.6.(2021·内蒙古包头市·高三期末(文))已知一个正四棱锥的底面边长为4,以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则该正四棱锥的侧面积为( )A.()451+B.51-C.()451-D.()851+【答案】D【解析】正四棱锥如图,设四棱锥的高OE h =,由底面边长为4,可知2OF =,斜高24EF h =+,故221442h h =⨯⨯+,解得2=225h +, 故侧面积为()22144448858152h h ⨯⨯⨯+==+=+, 故选:D. 7.(2020·山西吕梁市)已知,AB CD 是某一棱长为2的正方体展开图中的两条线段,则原正方体中几何体ABCD 的表面积为( )A .24223++B .22223++C .22243++D .24243++【答案】A 【解析】由所给正方体的展开图得到直观图,如图:则此三棱锥的表面积为:△△△△+++=BCD ABC ADC ABD S S S S111132222222222222422322222⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯=++ 故选:A8.(2020·黑龙江哈师大青冈实验中学)长方体一个顶点上的三条棱长分别为3,4,a ,表面积为108,则a 等于( )A .2B .3C .5D .6 【答案】D【解析】长方体一个顶点上的三条棱长分别为3,4,a ,则长方体的表面积为342+2423108a a ⨯⨯⨯+⨯=,解得a =6,故选:D9.(2020·湖北省汉川市第一高级中学高一期末)一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,如果正四棱柱的底面边长为2cm ,那么该棱柱的表面积为( )A .2(242)cm +B .2(482)cm +C .2(8162)cm +D .2(16322)cm + 【答案】C【解析】∵一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,正四棱柱的底面边长为2cm , ∴球的直径为正四棱柱的体对角线∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为22,正四棱柱的高为224(22)22-=,∴该棱柱的表面积为2×22+4×2×22=8+162(2cm ),故选:C【题组二 多面体台体积】1.(2021·扶风县法门高中)正方体的全面积为18cm 2,则它的体积是_________ 3cm 【答案】33【解析】设该正方体的棱长为a cm ,由题意可得,2618a =,解得3a =,所以该正方体的体积为333V a ==3cm .故答案为:332.(2021·湖南长沙市)如图,在长方体1AC 中,棱锥1A ABCD -的体积与长方体的体积之比为( )A.2∶3 B.1∶3 C.1∶4 D.3∶4【答案】B【解析】设长方体过同一顶点的棱长分别为,,a b c则长方体的体积为1V abc=,四棱锥1A ABCD-的体轵为213V abc=,所以棱锥1A ABCD-的体积与长方体1AC的体积的比值为13.故选:B.3.(2020·浙江高一期末)由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21 米,底宽34米,则该金字塔的体积为( )A.38092m B.34046mC.324276m D.312138m【答案】A【解析】如图正四棱锥P ABCD -中,34AB BC ==,21PO =,所以正四棱锥P ABCD -的体积为311343421809233ABCD S PO m ⨯⨯=⨯⨯⨯=, 故选:A4.(2020·辽宁沈阳市·沈阳二中高一期末)《九章算术》问题十:今有方亭,下方五丈,上方四丈.高五丈.问积几何(今译:已知正四棱台体建筑物(方亭)如图,下底边长5a =丈,上底边长4b =丈.高5h=丈.问它的体积是多少立方丈?( )A .75B .3053C .3203D .4003 【答案】B【解析】()()222211++=33V S S S S h a a b b h ''=⋅++⋅ ()22221130555445615333=+⨯+⨯=⨯⨯=. 故选:B 5.(2021·浙江高一期末)出华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧楼长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .32427mD .312138m【答案】A【解析】如图正四棱锥P ABCD-中,PO⊥底面ABCD,21PO=,34AB=,底面正方形的面积为234341156S m=⨯=,则正四棱锥P ABCD-的体积为311115621809233S PO m⨯⨯=⨯⨯=,故选:A6.(2020·济南市·山东师范大学附中高一月考)如图,在棱长为2的正方体1111ABCD A B C D-中,截去三棱锥1A ABD-,求(1)截去的三棱锥1A ABD-的表面积;(2)剩余的几何体1111A B C D DBC-的体积.【答案】(1)623+;(2)203【解析】(1)由正方体的特点可知三棱锥1A ABD-中,1A BD是边长为22的等边三角形,1A AD、1A AB、ABD△都是直角边为2的等腰直角三角形,所以截去的三棱锥1A ABD-的表面积()1112312232262342A BD A AD A AB ABDS S S S S=+++=⨯+⨯⨯⨯=+(2)正方体的体积为328=,三棱锥1A ABD -的体积为111142223323ABD SAA ⨯⨯=⨯⨯⨯⨯=, 所以剩余的几何体1111A B C D DBC -的体积为420833-=. 【题组三 旋转体的表面积】1.(2021·浙江丽水市)经过圆锥的轴的截面是面积为2的等腰直角三角形,则圆锥的侧面积是( )A .42πB .4πC .22πD .2π 【答案】C【解析】设圆锥的底面半径为r ,母线长为l ,则2l r =,由题可知()21222r ⨯=, ∴2,2r l ==,侧面积为22rl ππ=,故选:C.2.(2020·全国高一课时练习)某圆台的上、下底半径和高的比为1:4:4,母线长为10,则该圆台的表面积为( )A .81πB .100πC .168πD .169π 【答案】C【解析】该圆台的轴截面如图所示.设圆台的上底面半径为r ,则下底面半径4r r '=,高4h r = 则它的母线长()2222(4)(3)510h r r l r r r '+-=+===∴2r,8r '=. ∴()(82)10100S r r l πππ'=+=+⨯=侧,22100464168S S r r ππππππ'=++=++=表侧.故选:C3.(2020·全国高一课时练习)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,且该圆台的母线长为9,则截去的圆锥的母线长为( )A .94B .3C .12D .36【答案】B【解析】根据题意,设圆台的上、下底面的半径分别为r 、R ,设圆锥的母线长为L ,截得小圆锥的母线长为l ,∵圆台的上、下底面互相平行∴14l r L R ==,可得L=4l ∵圆台的母线长9,可得L ﹣l =9 ∴3L 4=9,解得L=12, ∴截去的圆锥的母线长为12-9=3故选B4.(2020·全国高一课时练习)圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .7【答案】D 【解析】设圆台较小底面圆的半径为r ,由已知有另一底面圆的半径为3r ,而圆台的侧面积公式为(3)4384,7r r l r r πππ+=⨯⨯==,选D.5.(2020·江苏淮安市·淮阴中学高一期末)圆柱底面半径为1,母线长为2,则圆柱侧面积为( )A .4πB .3πC .5πD .2π 【答案】A【解析】圆柱底面半径为1,母线长为2,圆柱侧面积为224S rl =π=π⨯1⨯2=π ,故选:A6.(2021·广西河池市·高一期末)已知圆柱的底面半径为1,若圆柱的侧面展开图的面积为8π,则圆柱的高为________.【答案】4【解析】设圆柱的高为h ,有28h ππ=,得4h =.故答案为:4.7.(2021·河南焦作市·高一期末)已知圆锥的底面半径为2,高为4,在圆锥内部有一个圆柱,则圆柱的侧面积的最大值为______.【答案】4π【解析】如图是圆锥与圆柱的轴截面,设内接圆柱的高为a,圆柱的底面半径为r()02r<<,则由224r a-=,可得42a r=-,所以圆柱的侧面积()22242484(1)4S r r r r rπππππ=⋅-=-+=--+,所以1r=时,该圆柱的侧面职取最大值4π.故答案为:4π.8.(2020·北京高一期末)将底面直径为8,高为23的圆锥体石块打磨成一个圆柱,则该圆柱侧面积的最大值为______.【答案】43π【解析】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h,底面半径为r,则23423h r-=,解得3232h r=-;所以()232223342S rh r r r rπππ⎛⎫==-=-⎪⎪⎝⎭圆柱侧;当2r时,S圆柱侧取得最大值为43π故答案为:43π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.9.(2021·陕西西安市·西安中学高一期末)若圆锥的侧面展开图是圆心角为90︒的扇形,则该圆锥的侧面积与底面积之比为___________.【答案】4:1【解析】设圆锥的底面半径为r ,母线长为l ,由题意得:22l r ππ=,即4l r ,所以其侧面积是214S rl r ππ==,底面积是22S r π=,所以该圆锥的侧面积与底面积之比为4:1故答案为:4:1【题组四 旋转体的体积】1.(2020·山东菏泽市·高一期末)若圆锥的底面半径为3cm ,侧面积为215cm π,则该圆锥的体积为( )A .4π3cmB .9π3cmC .12π3cmD .36π3cm【答案】C 【解析】设圆锥母线长为l ,则侧面积为123152S l r l πππ=⋅==,故5l =. 故圆锥的高224h l r =-=,圆锥体积为21123V r h ππ==3cm .故选:C. 2.(2021·黑龙江双鸭山市·双鸭山一中)现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm .【答案】128π【解析】设铁皮扇形的半径和弧长分别为R 、l ,圆锥形容器的高和底面半径分别为h 、r ,则由题意得R=10,由1802Rl π=,得16l π=, 由2l r π=得8r =.由222R r h =+可得6h =.∴()231164612833V r h cm πππ==⋅⋅=∴该容器的容积为3128cmπ.故答案为128π.3.(2020·湖南长沙市·高一期末)圆锥的母线与底面所成的角为60︒,侧面积为8π,则其体积为________. 【答案】833π【解析】如图所示,圆锥的母线与其底面所成角的大小为60︒,60SAO∴∠=︒,由题意设圆锥的底面半径为r,则母线长为2l r=,高为3h r=圆锥的侧面积为8π,2228S rl r r rππππ∴==⋅⋅==侧面积,解得2r,23h=,∴圆锥的体积为221183223333V r hπππ=⋅⋅=⨯⨯=圆锥.故答案为:833π.4.(2020·江苏南京市·高一期末)把一个棱长为2的正方体木块,切出一个最大体积的圆柱,则该圆柱的体积为( )A.23πB.πC.2πD.4π【答案】C【解析】正方体棱长为2,所以正方体底面正方形的内切圆半径为1,面积为21ππ⨯=,以此内切圆为底、高为2的圆柱是可切出的最大圆柱.且该圆柱的体积为22ππ⨯=.故选:C5.(2020·山东日照市·高一期末)《五曹算经》是我国南北朝时期数学家甄驾为各级政府的行政人员编撰的一部实用算术书,其第四卷第九题如下:“今有平地聚粟,下周三丈,高四尺,问粟几何”?其意思为场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?已知1丈等于10尺,1斛稻谷的体积约为1.62立方尺,圆周率约为3,估算堆放的稻谷约有多少斛(保留两位小数)( )A .61.73B .61.71C .61.70D .61.69 【答案】A【解析】设圆锥的底面半径为r ,高为h ,体积为V ,则230r π=,所以=5r ,故221135410033V r h π==⨯⨯⨯=(立方尺), 因此10061.731.62V =≈(斛). 故选:A.6.(2020·江苏无锡市·高一期末)某养路处有一圆锥形仓库用于储藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12米,高4米,为存放更多的食盐,养路处拟重建仓库,将其高度增加4米,底面直径不变,则新建仓库比原仓库能多储藏食盐的体积为( )A .24π米3B .48π米3C .96π米3D .192π米3 【答案】B【解析】原仓库圆锥的底面半径为6米,高为4米,则容积为21614483V ππ=⨯⨯⨯=立方米; 仓库的高增加4米,底面直径不变,则仓库的容积为22618963V ππ=⨯⨯⨯=立方米. 所以新建仓库比原仓库能多储藏食盐的体积为2148V V π-=立方米.故选:B.【题组五 球】1.(2021·天津滨海新区)在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43,则正方体外接球的体积为( )A .43πB .6πC .323πD .86π 【答案】B【解析】设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======,由于三棱锥11A B CD -的表面积为43,所以()12133442242AB C S S a ==⨯⨯=所以2a =所以正方体的外接球的半径为()()()222222622++=,所以正方体的外接球的体积为346632ππ⎛⎫= ⎪ ⎪⎝⎭故选:B .2.(2020·广东高二期末)在长方体1111ABCD A B C D -中,22AB BC ==,若此长方体的八个顶点都在体积为92π的球面上,则此长方体的表面积为( ) A .16B .18C .20D .22 【答案】A【解析】根据长方体的结构特征可得,长方体外接球直径等于长方体体对角线的长,因为长方体外接球的体积为92π,设外接球半径为R , 则33924R ππ=,解得32R =, 因此22212R AB BC BB =++,因为22AB BC ==, 所以21341BB =++,解得:12BB =,因此长方体的表面积为:1122248416S AB BC AB BB BC BB =⨯⨯+⨯⨯+⨯⨯=++=.故选:A.3.(2020·江苏无锡市第六高级中学高一期中)正三棱柱有一个半径为3cm 的内切球,则此棱柱的体积是( ).A .393cmB .354cmC .327cmD .3183cm【答案】B【解析】∵正三棱柱有一个半径为3cm的内切球,则正三棱柱的高为23cm,底面正三角形的内切圆的半径为3cm,设底面正三角形的边长为a cm,则31323a⨯=,解得6a=cm,∴正三棱柱的底面面积为13669322⨯⨯⨯=cm2,故此正三棱柱的体积V=932354⨯=cm3.故选:B.4.(2021·全国高一)如图所示,球内切于正方体.如果该正方体的棱长为a,那么球的体积为( ) A.343aπB.3a C.332aπD.316aπ【答案】D【解析】因为球内切于正方体,所以球的半径等于正方体棱长的12,所以球的半径为2a,所以球的体积为334326a aππ⎛⎫=⎪⎝⎭,故选:D.5.(2021·湖南邵阳市·高一期末)一个球的体积为36π,则这个球的表面积为( )A.12πB.36πC.108πD.4π【答案】B【解析】设球的半径为R ,球的体积为3436=3R ππ,解得3R =,则球的表面积244936R πππ=⨯=, 故选:B6.(2020·浙江高一期末)已知正方体外接球的体积是323π,那么该正方体的内切球的表面积为_____________.【答案】163π 【解析】设正方体棱长为a ,则34332323a ππ⎛⎫⨯= ⎪ ⎪⎝⎭,解得433a =, ∴内切球半径为2323a r ==,表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故答案为:163π.【题组六 组合体的体积表面积】1.(2020·全国高一课时练习)如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有________个面,其体积为________.【答案】20 162323- 【解析】由图形观察可知,几何体的面共有2(242)20⨯⨯+=个,该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为222432V =⨯⨯⨯=.交叉部分的体积为四棱锥S ABCD -的体积的2倍.在等腰ABS 中,22,SB SB =边上的高为2,则 6.SA =由该几何体前后,左右上下均对称,知四边形ABCD 为边长为6的菱形.设AC 的中点为H ,连接,BH SH 易证SH 即为四棱锥S ABCD -的高,在Rt ABH 中,2262 2.BH AB AH =-=-= 又22AC SB ==所以 12222422ABCD S =⨯⨯⨯= 因为BH SH =,所以11822422333ABCD S ABCD V S -=⨯=⨯⨯=四棱柱, 所以求体积为8216232232.33-⨯=- 故答案为:20;16232.3-2.(2020·新疆巴音郭楞蒙古自治州·高一期末)如图,直三棱柱,高为6,底边三角形的边长分别为3、4、5,以上下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积.【答案】366π-【解析】因为222345+=,所以底面是直角三角形,所以上、下底面内切圆半径34512r +-==, 所以剩余部分几何体的体积21346163662V ππ=⨯⨯⨯⨯=-⨯-, 所以剩余部分几何体的体积为366π-.3.(2021·江西九江市)在底面半径为2,高为22的圆锥中内接一个圆柱,且圆柱的底面积与圆锥的底面积之比为1:4,求圆柱的表面积.【答案】2(21)π+【解析】由圆柱的底面积与圆锥的底面积之比为1:4,知:底面半径比为1:2,即圆柱底面半径1r =,若设圆柱的高为h ,则有221222h -=,即2h =, ∴由圆柱的表面积等于侧面积加上两底面的面积,即:2222(21)S rh r πππ=+=+.。

高中数学课件-简单几何体(习题)

高中数学课件-简单几何体(习题)

所以AO= 33×8=833,
所以VO= VA2-AO2

2
62-8
3
32=2
3
6.
|素养提升|
1.简单旋转体的底面和截面的性质
几何体 截面
圆柱
圆锥
底面
上下底面为两个相 只有一个底面,为
等圆面
圆面
轴截面(过 旋转轴的
截面)
有无数多个,均为 全等矩形,一对边 为底面直径,一对
边为母线
有无数多个,均为 全等等腰三角形,
【解析】 (1)根据圆台的定义知该几何体为圆台. (2)因为是由圆绕其直径所在直线旋转180°,故所形成的几何 体是球面.
跟踪训练 3 (1)正四棱锥S-ABCD的所有棱长都等于a,过不
相邻的两条侧棱作截面SAC,如图,则截面的面积为( A )
A.12a2
B.a2
C.32a2
D.13a2
(2)在正三棱锥V-ABC中,若其底面
|自我尝试|
1.判断正误.(正确的打“√”,错误的打“×”) (1)矩形绕其一边所在直线旋转一周而形成的曲面所围成的几 何体是圆柱.( √ ) (2)直角三角形绕其一边所在直线旋转一周而形成的曲面所围 成的几何体是圆锥.( × ) (3)直角梯形绕其腰所在直线旋转一周而形成的曲面所围成的 几何体是圆台.( × ) (4)圆以一条直径所在的直线为轴,旋转180°围成的几何体是 球.( √ ) (5)棱柱的侧面都是平行四边形.( √ ) (6)棱锥的侧面都是三角形.( √ )
类型二 旋转体及应用 [例2] (1)以边长为1的正方形的一边所在直线为旋转轴,将该 正方形旋转一周所得圆柱的轴截面(过圆柱的轴作截面)的面积为 ( C) A.2π B.π C.2 D.1 (2)圆台的母线长为2a,母线与轴的夹角为30°,一个底面半径 是另一个底面半径的2倍,则两底面半径分别为____a____、 ___2_a____.

北师大高中数学选择性必修第一册第二章课时作业19抛物线的简单几何性质(含解析)

北师大高中数学选择性必修第一册第二章课时作业19抛物线的简单几何性质(含解析)

北师大高中数学选择性必修第一册第二章课时作业19抛物线的简单几何性质(含解析)北师大高中数学选择性必修第一册第二章课时作业19抛物线的简单几何性质(原卷版)角一、选择题1. 顶点在原点,焦点为F的抛物线的标准方程是(C)A.y2=xB.y2=3xC.y2=6xD.y2=-6x2. 过抛物线y2=16x的焦点的最短弦长为(A)A.16B.8C.32D.4弦长即通径长,故长度为2p=16.3. 已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(B)A. B.2C. D.34. 已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,MF的中点坐标是(2,2),则p的值为(D)A.1B.2C.3D.4=2×2,解得p=4.5. O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为(C)A.2B.2C.2D.46. 设抛物线的顶点在原点,其焦点F在y轴上,又抛物线上的点(k,-2)与F点的距离为4,则k的值是(B)A.4B.4或-4C.-2D.2或-27. 如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF 与△ACF的面积之比是(A)A.B.C.D.8. (多选题)对于抛物线y2=10x,下列结论正确的是(AD)A.焦点在x轴上B.抛物线上横坐标为1的点到焦点的距离等于6C.抛物线的通径长为5D.抛物线的准线方程为x=-二、填空题9. 已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9. 则该抛物线的方程为y2=8x;此抛物线的准线方程为x=-2.10. 抛物线C:y=ax2的准线方程为y=-,则其焦点坐标为,实数a 的值为1 .11. 若抛物线y2=mx与椭圆=1有一个共同的焦点,则m=±8.三、解答题12. 已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离为5,求抛物线的方程和m的值.13. 设抛物线C:y2=4x,O为C的顶点,F为C的焦点,过F的直线l与C相交于A,B两点.(1)设l的斜率为1,求|AB|的大小;(2)求证:是一个定值. +14. 已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为(B)A.x=1B.x=-1C.x=2D.x=-215. 已知平行于x轴的直线l交抛物线x2=4y于A,B两点,且|AB|=8,则l的方程为y=4.16. 如图所示,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB 的斜率.北师大高中数学选择性必修第一册第二章课时作业19抛物线的简单几何性质(解析版)一、选择题1. 顶点在原点,焦点为F的抛物线的标准方程是(C)A.y2=xB.y2=3xC.y2=6xD.y2=-6x解析:顶点在原点,焦点为F的抛物线的标准方程可设为y2=2px(p >0),由题意知,故p=3. 因此,所求抛物线的标准方程为y2=6x.2. 过抛物线y2=16x的焦点的最短弦长为(A)A.16B.8C.32D.4解析:过抛物线焦点的最短弦长即通径长,故长度为2p=16.3. 已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(B)A. B.2C. D.3解析:由题可知l2:x=-1是抛物线y2=4x的准线,设抛物线的焦点为F(1,0),则动点P到l2的距离等于|PF|,则动点P到直线l1和直线l2的距离之和的最小值,即焦点F到直线l1:4x-3y+6=0的距离,所以最小值是=2.4. 已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,MF 的中点坐标是(2,2),则p的值为(D)A.1B.2C.3D.4解析:抛物线C:y2=2px(p>0)的焦点为F,设M,由中点坐标公式可知=2×2,y1+0=2×2,解得p=4.5. O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为(C)A.2B.2C.2D.4解析:设点P的坐标为(x0,y0),则由抛物线的焦半径公式得|PF|=x0+=4,x0=3,代入抛物线的方程,得|y0|=2,S△POF=|y0|·|OF|=2,故选C.6. 设抛物线的顶点在原点,其焦点F在y轴上,又抛物线上的点(k,-2)与F点的距离为4,则k的值是(B)A.4B.4或-4C.-2D.2或-2解析:由题意,设抛物线的标准方程为x2=-2py,由题意,得+2=4,△p=4,x2=-8y. 又点(k,-2)在抛物线上,△k2=16,k=±4. 故选B.7. 如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF 与△ACF的面积之比是(A)A.B.C.D.解析:由图形可知,△BCF与△ACF有公共的顶点F,且A,B,C三点共线,易知△BCF与△ACF的面积之比就等于. 由抛物线方程知其焦点F(1,0),作准线l,则l的方程为x=-1. △点A,B在抛物线上,过A,B分别作AK,BH与准线垂直,垂足分别为点K,H,且与y轴分别交于点N,M. 由抛物线定义,得|BM|=|BF|-1,|AN|=|AF|-1. 在△CAN中,BM△AN,△. 故选A.8. (多选题)对于抛物线y2=10x,下列结论正确的是(AD)A.焦点在x轴上B.抛物线上横坐标为1的点到焦点的距离等于6C.抛物线的通径长为5D.抛物线的准线方程为x=-解析:对于A,y2=10x的焦点为,故A正确;对于B,准线方程为x=-,抛物线上横坐标为1的点到焦点的距离为1+,故B错误;对于C,通径长为2p=10. 故C错误;对于D,准线方程为x=-,故D正确. 故选AD.二、填空题9. 已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9. 则该抛物线的方程为y2=8x;此抛物线的准线方程为x=-2.解析:易知直线AB的方程是y=2,与y2=2px联立,消去y得4x2-5px+p2=0,则x1+x2=①. 由焦点弦长公式得|AB|=x1+x2+p =9 ②. 由①②解得p=4,从而抛物线的方程是y2=8x. 抛物线的准线方程为x=-2.10. 抛物线C:y=ax2的准线方程为y=-,则其焦点坐标为,实数a 的值为1.解析:由题意得焦点坐标为,抛物线C的方程可化为x2=y,由题意得-,解得a=1.11. 若抛物线y2=mx与椭圆=1有一个共同的焦点,则m=±8.解析:椭圆焦点为(-2,0)和(2,0),因为抛物线与椭圆有一个共同焦点,故m=±8.三、解答题12. 已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离为5,求抛物线的方程和m的值.解:设抛物线方程为y2=-2px(p>0),则准线方程为x=,由抛物线定义,M点到焦点的距离等于M点到准线的距离,有-(-3)=5,所以p=4.所求抛物线方程为y2=-8x,又因为点M(-3,m)在抛物线上,故m2=(-8)×(-3),所以m=±2.13. 设抛物线C:y2=4x,O为C的顶点,F为C的焦点,过F的直线l与C相交于A,B两点.(1)设l的斜率为1,求|AB|的大小;(2)求证:是一个定值.解:(1)△焦点坐标为F(1,0),△直线l的方程为y=x-1,与y2=4x联立消去y可得x2-6x+1=0.设A(x1,y1),B(x2,y2),则x1+x2=6,从而焦点弦长|AB|=x1+x2+p=6+2=8.(2)证明:设直线l的方程为x=ky+1,与y2=4x联立消去x可得y2-4ky-4=0. 设A(xA,yA),B(xB,yB),则yA+yB=4k,yAyB=-4.△xAxB=(kyA+1)(kyB+1)=k2yAyB+k(yA+yB)+1=-4k2+4k2+1=1.△=xAxB+yAyB=1-4=-3.即是一个定值.14. 已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为(B)A.x=1B.x=-1C.x=2D.x=-2解析:设A(x1,y1),B(x2,y2),代入抛物线方程得①-②得,(y1+y2)(y1-y2)=2p(x1-x2).又△y1+y2=4,△=k=1,△p=2. △所求抛物线的准线方程为x=-1. 故选B.15. 已知平行于x轴的直线l交抛物线x2=4y于A,B两点,且|AB|=8,则l的方程为y=4.解析:如图,|AB|=8 xB=4,将xB=4代入x2=4y得yB=4,则直线l的方程为y=4.16. 如图所示,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB 的斜率.解:(1)由已知条件,可设抛物线的方程为y2=2px(p>0).因为点P(1,2)在抛物线上,所以22=2p×1,解得p=2.故所求抛物线的方程是y2=4x,准线方程是x=-1.(2)设直线PA的斜率为kPA,直线PB的斜率为kPB.则kPA=(x1≠1),kPB=(x2≠1),因为PA与PB的斜率存在且倾斜角互补,所以kPA=-kPB.由A(x1,y1),B(x2,y2)均在抛物线上,得所以,所以y1+2=-(y2+2).所以y1+y2=-4.由①-②得,=4(x1-x2),所以kAB==-1(x1≠x2).。

高中数学《简单几何体的外接球与内切球问题》练习题

高中数学《简单几何体的外接球与内切球问题》练习题

简单几何体的外接球与内切球问题一、外接球的问题:(一) 由球的定义确定球心在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.由上述性质,可以得到确定简单多面体外接球的球心的如下结论.结论1:正方体或长方体的外接球的球心其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.结论4:正棱锥的外接球的球心在其高上,具体位置可通过计算找到.结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.例1、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 43π 例2、已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 .24π例3、在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积 .1603π例46 (二)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处.以下是常见的、基本的几何体补成正方体或长方体的途径与方法.途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体.途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体.途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体.途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.例6、在三棱锥BCD A -中,BC CD BCD AB ⊥⊥,平面,543===CD BC AB ,,,则三棱锥BCD A -外接球的表面积 . 50π例7、在三棱锥BCD A -中,2,3,4AB CD AD BC AC BD ======,则三棱锥BCD A -外接球的体积 .(三) 由性质确定球心利用球心O 与截面圆圆心1O 的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.例6、正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 . 43π 例8、三棱锥S_-ABC 中,SA ⊥面ABC ,SA=2。

高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)

高中数学必修二   8  简单几何体的表面积与体积(精讲)(含答案)

8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD ­-A 1B 1C 1D 1中,三棱锥D 1­AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1­AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。

高中数学8.3 《简单几何体的表面积与体积》基础过关练习题目

高中数学8.3 《简单几何体的表面积与体积》基础过关练习题目

第八章8.3第1课时A级——基础过关练1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π【答案】C【解析】底面圆半径为1,高为1,侧面积S=2πrh=2π×1×1=2π.故选C.2.(2020年上海徐汇区月考)一个棱锥被平行于底面的平面所截,截面面积恰好是棱锥底面面积的一半,则截得的小棱锥与原棱锥的高之比是()A.1∶2B.1∶8C.2∶2D.2∶4【答案】C【解析】∵在棱锥中,平行于底面的平面截棱锥所得的截面与底面相似,相似比等于截得的小棱锥与原棱锥对应棱长之比.∵一个棱锥被平行于底面的平面所截截面面积恰好是棱锥底面面积的一半,∴相似比为1∶2=2∶2.则截得的小棱锥与原棱锥的高之比是2∶2.故选C.3.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于()A.πB.2πC.4πD.8π【答案】B【解析】设圆柱的底面半径为r,则圆柱的母线长为2r,由题意得S圆柱侧=2πr×2r=4πr2=4π,所以r=1,所以V圆柱=πr2×2r=2πr3=2π.故选B.4.(2020年赤峰期末)南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面α所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为V1,V2,被平行于这两个平面的任意平面截得的两个截面面积分别为S1,S2,则()A.如果S1,S2总相等,则V1=V2B .如果S 1=S 2总相等,则V 1与V 2不一定相等C .如果V 1=V 2,则S 1,S 2总相等D .存在这样一个平面α使S 1=S 2相等,则V 1=V 2【答案】A 【解析】由题意可知如果S 1,S 2总相等,则V 1=V 2.故选A .5.(2020年赤峰期末)用边长分别为2与4的矩形作圆柱的侧面,则这个圆柱的体积为( )A .4πB .6πC .6π或8πD .4π或8π【答案】D 【解析】圆柱的侧面展开图是边长为2与4的矩形,当母线为2时,圆柱的底面半径是42π=2π,此时圆柱体积是π×⎝⎛⎭⎫2π2×2=8π;当母线为4时,圆柱的底面半径是22π=1π,此时圆柱的体积是π×⎝⎛⎭⎫1π2×4=4π.综上,所求圆柱的体积是4π或8π.故选D . 6.如图,ABC -A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是________.【答案】23 【解析】因为V C -A ′B ′C ′=13V ABC -A ′B ′C ′=13,所以V C -AA ′B ′B =1-13=23.7.表面积为3π的圆锥,它的侧面展开图是一个半圆面,则该圆锥的底面直径为________. 【答案】2 【解析】设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr ,解得r =1,即直径为2.8.圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为________.【答案】168π 【解析】先画轴截面,再利用上、下底面半径和高的比求解.圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,则它的母线长为l =h 2+(R -r )2=(4r )2+(3r )2=5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π(8+2)×10=100π,S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.9.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积. 解:设圆锥的底面半径为r ,母线为l , 则2πr =13πl ,得l =6r .又S 锥=πr 2+πr ·6r =7πr 2=15π,得r =157, 圆锥的高h =35×157, V =13πr 2h =13π×157×35×157=2537π. 10.在长方体ABCD -A 1B 1C 1D 1中,截下一个棱锥C -A 1DD 1,求棱锥C -A 1DD 1的体积与剩余部分的体积之比.解:已知长方体可以看成直四棱柱,设它的底面ADD 1A 1的面积为S ,高为h ,则它的体积为V =Sh .而棱锥C -A 1DD 1的底面积为12S ,高为h ,故三棱锥C -A 1DD 1的体积VC -A 1DD 1=13·⎝⎛⎭⎫12S h =16Sh , 余下部分体积为Sh -16Sh =56Sh .所以棱锥C -A 1DD 1的体积与剩余部分的体积之比1∶5.B 级——能力提升练11.(2020年株洲期末)《九章算术》卷5《商功》记载一个问题“今有圆堡壔(dǎo),周四丈八尺,高一丈-尺,文积几何?”意思是:今有圆柱形土筑小城堡,底面周长为4丈8尺,高1丈1尺,问它的体积是多少立方尺?这个问题的答案是(π≈3,1丈=10尺)( )A .2 112B .2 111C .4 224D .4 222【答案】A 【解析】由已知,圆柱底面圆的周长为48尺,圆柱的高为11尺,∴底面半径r =482π=8(尺),∴它的体积V =11πr 2=2 112(立方尺).故选A .12.(2020年达州模拟)斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有.图1和图2是斗拱实物图,图3是斗拱构件之一的“斗”的几何体.本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是400 cm 2,900 cm 2,高为9 cm ,长方体形凹橹的体积为4 300 cm 3,那么这个斗的体积是( )A .5 700 cm 3B .8 100 cm 3C .10 000 cm 3D .9 000 cm 3【答案】C 【解析】由题意可知这个斗的体积V =13×(400+400×900+900)×9+4300=10 000(cm 3).故选C .13.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.【答案】262-1 【解析】依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.设题中的半正多面体的棱长为x ,则22x +x +22x =1,解得x =2-1,故题中的半正多面体的棱长为2-1.14.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.【答案】8 【解析】如图1为棱长为1的正方体礼品盒,先把正方体的表面按图所示方式展开成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图2所示,由图知正方形的边长为22,其面积为8.15.降水量是指水平平面上单位面积降水的深度,现用上口直径为38 cm 、底面直径为24 cm 、深度为35 cm 的圆台形水桶(轴截面如图所示)来测量降水量.如果在一次降雨过程中,此桶盛得的雨水正好是桶深的17,求本次降雨的降水量是多少毫米?(精确到1 mm)解:因为这次降雨的雨水正好是桶深的17,所以水深为17×35=5(cm).如图,设水面半径为r cm ,在△ABC 中,AC A ′C =CB C ′B ,所以7r -12=7,r =13.所以V 水=13×(π×122+π×122×π×132+π×132)×5=2 3453π(cm 3). 水桶的上口面积是S =π×192=361π(cm 2), 所以V 水S =2 3453π361π×10≈22(mm).故此次降雨的降水量约是22 mm.16.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱. (1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大?解:(1)作圆锥的轴截面,如图所示.设圆柱底面半径为r , 因为r R =H -x H ,所以r =R -R H x .所以S 圆柱侧=2πrx =2πRx -2πR Hx 2(0<x <H ). (2)因为-2πR H <0,所以当x =2πR 4πR H=H2时,S 圆柱侧最大.故当x =H2时,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.C 级——探索创新练17.一个封闭的正三棱柱容器,高为3,内装水若干(如图1,底面处于水平状态).将容器放倒(如图2,一个侧面处于水平状态),这时水面所在的平面与各棱交点E ,F ,F 1,E 1分别为所在棱的中点,则图1中水面的高度为( )A .3B .2C .332D .94【答案】D 【解析】设正三棱柱的底面积为S ,则VABC -A 1B 1C 1=3S .∵E ,F ,F 1,E 1分别为所在棱的中点.∴S AEF S =14,即S AEF =14S .∴S BCEF =34S .∴VBCFE -B 1C 1F 1E 1=3×34S =94S .则图1中水面的高度为94.故选D .。

高中数学新教材必修第二册第八章 立体几何初步 8.3 简单几何体的表面积与体积(南开题库含详解)

高中数学新教材必修第二册第八章  立体几何初步 8.3  简单几何体的表面积与体积(南开题库含详解)

第八章 立体几何初步 8.3 简单几何体的表面积与体积一、选择题(共40小题;共200分)1. 一个四面体的所有棱长都为 √2 ,四个顶点在同一球面上,则此球的表面积为 ( ) A. 3πB. 4πC. 3√3πD. 6π2. 有一个几何体的三视图及其尺寸如图(单位:cm ),该几何体的表面积和体积为 ( )A. 24π,12πB. 15π,12πC. 24π,36πD. 以上都不正确3. 已知下列三个命题:①若一个球的半径缩小到原来的 12,则其体积缩小到原来的 18; ②若两组数据的平均数相等,则它们的标准差也相等; ③直线 x +y +1=0 与圆 x 2+y 2=12 相切.其中真命题的序号是 ( ) A. ①②③B. ①②C. ①③D. ②③4. 如图,是一个几何体的三视图,其主视图、左视图是直角边长为 2 的等腰直角三角形,俯视图为边长为 2 的正方形,则此几何体的表面积为 ( )A. 8+4√2B. 8+4√3C. 6+6√2D. 8+2√2+2√35. 一个四棱锥的三视图如图所示,其侧视图是等边三角形.则该四棱锥的体积等于 ( )A. 8√3B. 16√3C. 24√3D. 48√36. 如图,在长方体ABCD−A1B1C1D1中,AB=6,AD=4,AA1=3,分别过BC,A1D1的两个平行截面将长方体分成三部分,其体积分别记为V1=V AEA1−DFD1,V2=V EBE1A1−FCF1D1,V3=V B1E1B−C1F1C.若V1:V2:V3=1:4:1,则截面A1EFD1的面积为( )A. 4√10B. 8√3C. 4√13D. 167. 一个几何体的三视图如图所示,则该几何体的体积(单位:cm3)为( )A. π+√33B. 2π+√33C. 2π+√3D. π+√38. 一个几何体的三视图如图所示,则该几何体的体积是( )A. 64B. 72C. 80D. 1129. 在△ABC中,AB=2,BC=1.5,∠ABC=120∘,若使该三角形绕直线BC旋转一周,则所形成的几何体的体积是( )A. 32π B. 52π C. 72π D. 92π10. 某空间几何体的三视图如图所示,则该几何体的表面积为( )A. 180B. 240C. 276D. 30011. 已知某四棱锥的三视图,如图所示.则此四棱锥的体积为( )A. 6B. 5C. 4D. 312. 正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是( )A. π3a B. π2a C. 2πa D. 3πa13. 一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A. √3+√6B. √3+√5C. √2+√6D. √2+√514. 某几何体的三视图如图所示,则该几何体的体积为( )A. 8−2πB. 8−πC. 8−π2D. 8−π415. 直三棱柱ABC−A1B1C1的直观图及三视图如下图所示,D为AC的中点,则下列命题是假命题的是( )A. AB1∥平面BDC1B. A1C⊥平面BDC1C. 直三棱柱的体积V=4D. 直三棱柱的外接球的表面积为4π16. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A. 9πB. 10πC. 11πD. 12π17. 一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A. 1+2π2πB. 1+4π4πC. 1+2ππD. 1+4π2π18. 一个几何体的三视图如图所示,则该几何体的体积是( )A. 23π+4 B. 2π+4 C. π+4 D. π+219. 在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2π3B. 4π3C. 5π3D. 2π20. 如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )A. √23B. √33C. 43D. 3221. 小明在“欧洲七日游”的游玩中对某著名建筑物的景观记忆犹新,现绘制该建筑物的三视图如图所示,若网格纸上小正方形的边长为1,则小明绘制的建筑物的体积为( )A. 16+8πB. 64+8πC. 64+8π3D. 16+8π322. 正三棱锥的底面边长为a,高为√66a,则此棱锥的侧面积为( )A. 34a2 B. 32a2 C. 3√34a2 D. 3√32a223. 已知正方形ABCD的边长为6,空间有一点M(不在平面ABCD内)满足∣MA∣+∣MB∣=10,则三棱锥A−BCM的体积的最大值是( )A. 48B. 36C. 30D. 2424. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A. 18B. 17C. 16D. 1525. 棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( )A. a33B. a34C. a36D. a31226. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2√23π B. 4√2π3C. 2√2πD. 4√2π27. 已知A,B是球O的球面上两点,∠AOB=90∘,C为该球面上的动点,若三棱锥O−ABC体积的最大值为36,则球O的表面积为( )A. 36πB. 64πC. 144πD. 256π28. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是( )A. 2B. 92C. 32D. 329. 如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A. 500π3cm3 B. 866π3cm3 C. 1372π3cm3 D. 2048π3cm330. 一个棱锥三个侧面两两互相垂直,它们的面积分别为12cm2,8cm2,6cm2,那么这个三棱锥的体积为( )A. 8√2πB. 8√23C. 24√2D. 8√231. E,F分别是边长为1的正方形ABCD边BC,CD的中点,沿线AF,AE,EF折起来,则所围成的三棱锥的体积为( )A. 13B. 16C. 112D. 12432. 如图,三棱柱ABC−A1B1C1中,D是棱AA1的中点,平面BDC1分此棱柱为上下两部分,则这上下两部分体积的比为( )A. 2:3B. 1:1C. 3:2D. 3:433. 正方体的全面积为a2,它的顶点都在同一个球面上,这个球的半径是( )A. √36a B. √24a C. √22a D. √32a34. 如图,△ABC为正三角形,AA1∥BB1∥CC1,CC1⊥底面△ABC,若BB1=2AA1=2,AB=CC1=3AA1,则多面体ABC−A1B1C1在平面A1ABB1上的投影的面积为( )A. 274B. 92C. 9D. 27235. 如图,已知直三棱柱ABC−A1B1C1,点P,Q分别在侧棱AA1和CC1上,AP=C1Q,则平面BPQ把三棱柱分成两部分的体积比为( )A. 2:1B. 3:1C. 3:2D. 4:336. 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A. 1B. 2C. 4D. 837. 如图所示,正方体ABCD−AʹBʹCʹDʹ的棱长为1,E,F分别是棱AAʹ,CCʹ的中点,过直线E F的平面分别与棱BBʹ,DDʹ交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDDʹBʹ;②当且仅当x=12时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥Cʹ−MENF的体积V=ℎ(x)为常函数.以上命题中假命题的序号为( )A. ①④B. ②C. ③D. ③④38. 如图,正方体ABCD−A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=√33.给出下列四个结论:①CE⊥BD;②三棱锥E−BCF的体积为定值;③△BEF在底面ABCD内的正投影是面积为定值的三角形;④在平面ABCD内存在无数条与平面DEA1平行的直线.其中,正确结论的个数是( )A. 1B. 2C. 3D. 439. 已知正方体ABCD−A1B1C1D1棱长为1,点P在线段BD1上,当∠APC最大时,三棱锥P−ABC的体积为( )A. 124B. 118C. 19D. 11240. 一个圆锥被过顶点的平面截去了较小的一部分,余下的几何体的三视图如图,则该几何体的表面积为( )A. √5+3√3π2+3π2+1 B. 2√5+3√3π+3π2+1C. √5+3√3π2+3π2D. √5+3√3π2+π2+1二、填空题(共40小题;共200分)41. 已知某球体的体积与其表面积的数值相等,则此球体的半径为.42. 若一个球的体积为4√3π,则它的表面积为.43. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为.44. 一个正方体的各顶点均在同一球的球面上,若该球的体积为4√3π,则该正方体的表面积为.45. 某几何体的三视图如图所示,则该几何体的体积是.46. 已知某几何体的三视图如图所示,则该几何体的体积为.47. 一个几何体的三视图如图所示,则该几何体的体积为.48. 已知一个正方体的所有顶点在一个球面上,若球的体积为9π,则正方体的棱长为.249. 如图是一个几何体的三视图.若它的体积是3√3,则a=.50. 某空间几何体的三视图如图所示,则该几何体的体积为.51. 用半径为6的半圆形铁皮卷成一个圆锥的侧面,则此圆锥的体积是.52. 用一张长为12米,宽为8米的矩形铁皮围成圆柱的侧面,则这个圆柱的体积为.53. 有一个几何体的三视图及其尺寸(单位cm)如下图所示,则该几何体的表面积为:.54. 一个几何体的三视图如图所示(单位:m),则这个几何体的体积为m3.55. 底面是正方形,容积为256的无盖水箱,它的高为时最省材料.56. 某几何体的三视图如图所示,则该几何体的体积为.57. 一个几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3.58. 已知一个四棱锥的三视图如图所示,则此四棱锥的体积为.59. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.60. 某几何体的三视图如图所示,则该几何体的体积为.61. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.62. 几何体的三视图如图所示,其侧视图是一个等边三角形,则这个几何体的体积是.63. 一空间几何体的三视图如图所示,则该几何体的体积为.64. 用半径为6的半圆形铁皮卷成一个圆锥的侧面,则此圆锥的体积为.65. 已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.66. 如图是一个几何体的三视图,则这个几何体的体积为.,则正视图与侧视图中x的值67. 一空间几何体的三视图如右图所示,该几何体的体积为12π+8√53为.68. 如图是—个几何体的三视图,则该几何体的表面积为.69. 一个几何体的三视图如图,正视图和侧视图都是由一个半圆和一个边长为2的正方形组成,俯视图是一个圆,则这个几何体的表面积为.70. 如图所示,一款冰淇淋甜筒的三视图中俯视图是以3为半径的圆,则该甜筒的表面积为.71. ―个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.72. 正方体ABCD−A1B1C1D1的棱长为2√3,则四面体A−B1CD1的外接球的体积为.73. 已知正方体ABCD−A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M−EFGH的体积为.74. 如图,已知正方体ABCD−A1B1C1D1的棱长为1,则四棱锥A1−BB1D1D的体积为.75. 已知某三棱锥的三视图如图所示,则它的外接球体积为.76. 如图是一个几何体的三视图,已知侧视图是一个等边三角形,根据图中尺寸(单位:cm)可知该几何体的表面积为.77. 图中的三个直角三角形是一个体积为20cm3的几何体的三视图,该几何体的外接球表面积为cm278. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.79. 一个圆锥体被过其顶点的平面截去一部分,余下的几何体的三视图如图所示(单位:cm),则余下的几何体的体积为cm3.80. 棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段长度分别为d1,d2,d3,d4,则d1+d2+d3+d4的值为.三、解答题(共20小题;共260分)81. 如图,长方体ABCD−A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.82. 三棱锥S−ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB中点,E为AC中点,求四棱锥S−BCED的体积.83. 在单位正方体AC1中,点E,F分别是棱BC,CD的中点.(1)求证:D1E⊥平面AB1F;(2)求三棱锥E−AB1F的体积;(3)设直线B1E,B1D1与平面AB1F所成的角分别为α,β,求cos(α+β)的值.84. 如图,三棱锥S−ABC内接于一个圆锥(有公共顶点和底面,侧棱与圆锥母线重合).已知AB=5cm,BC=3cm,AC=4cm,SA=SB=SC=10cm,(1)求圆锥的侧面积及侧面展开图的中心角;(2)求A经过圆锥的侧面到B点的最短距离.85. 如图,四棱锥P−ABCD中,底面ABCD为平行四边形,PA⊥平面ABCD,BC=AP=5,AB=3,AC=4,M,N分别在线段AD,CP上,且AMMD =PNNC=4.(1)求证:MN∥平面PAB;(2)求三棱锥P−AMN的体积.86. 如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45∘,AB=2AD=2,∠BAD=60∘.(1)求证:BD⊥平面ADG;(2)求此多面体的全面积.87. 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12(m),高4(m),养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4(m)(高不变);二是高度增加4(m)(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?88. 如图,ABCD是边长为2的正方形,直线l与平面ABCD平行,E和F是l上的两个不同点,且EA=ED,FB=FC,Eʹ和Fʹ是平面ABCD内的两点,EʹE和FʹF都与平面ABCD垂直.(1)证明:直线EʹFʹ垂直且平分线段AD.(2)若∠EAD=∠EAB=60∘,EF=2,求多面体ABCDEF的体积.89. 如图,三棱锥A−BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A−MBC的体积.90. 如图,四棱锥 P −ABCD 中,底面是以 O 为中心的菱形,PO ⊥ 底面 ABCD ,AB =2,∠BAD =π3,M 为 BC 上一点,且 BM =12.(1)证明:BC ⊥ 平面 POM ; (2)若 MP ⊥AP ,求四棱锥 P −ABMO 的体积.91. 如图,平行四边形 ABCD 中,∠DAB =60∘,AB =2,AD =4,将 △CBD 沿 BD 折起到 △EBD的位置,使平面 EBD ⊥ 平面 ABD .(1)求证:AB ⊥DE ; (2)求三棱锥 E −ABD 的侧面积.92. 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为 12 m ,高 4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大 4 m (高不变);二是高度增加 4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的侧面积; (3)哪个方案更经济些?93. 如图所示,三棱柱 ABC −A 1B 1C 1 中,AA 1⊥平面ABC ,D ,E 分别为 A 1B 1,AA 1 的中点,点 F在棱 AB 上,且 AF =14AB .(1)求证:EF ∥平面BC 1D ;(2)在棱 AC 上是否存在一个点 G ,使得平面 EFG 将三棱柱分割成的两部分体积之比为 1:15,若存在,指出点 G 的位置;若不存在,请说明理由.94. 如图,四棱锥P−ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求四面体N−BCM的体积.95. 如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;,求该三棱锥的侧面积.(2)若∠ABC=120∘,AE⊥EC,三棱锥E−ACD的体积为√6396. 如图,在斜三棱柱ABC−A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,侧面B1BCC1与底面ABC所成的二面角为120∘,E、F分别是棱B1C1、A1A的中点.(1)求A1A与底面ABC所成的角;(2)证明A1E∥平面B1FC;(3)求经过A1、A、B、C四点的球的体积.97. 如图1,∠ACB=45∘,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90∘(如图2所示).(1)当BD的长为多少时,三棱锥A−BCD的体积最大;(2)当三棱锥A−BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.98. 如图,四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D−AE−C为60∘,AP=1,AD=√3,求三棱锥E−ACD的体积.99. 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(1)证明:BD⊥PC;(2)若AD=4,BC=2,直线PD与平面PAC所成的角为30∘,求四棱锥P−ABCD的体积.100. 如图,已知正方体ABCD−A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM= AN=1.(1)证明:M,N,C,D1四点共面;(2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.答案第一部分1. A2. A3. C4. A 【解析】由三视图知,该几何体是底面为正方形的四棱锥,其直观图如下图.所以其表面积为2×2+2×(12×2×2)+2×(12×2×2√2)=8+4√2.5. A【解析】由三视图可以看出,该几何体为四棱锥,所以V=13×12(2+4)×4×2√3=8√3.6. C7. A8. C 【解析】该几何体是由一个正方体和一个四棱锥组合而成,V=4×4×4+13×4×4×3=80.9. A 【解析】如图:△ABC中,绕直线BC旋转一周,则所形成的几何体是以ACD为轴截面的圆锥中挖去了一个以ABD为轴截面的小圆锥后剩余的部分.因为AB=2,BC=1.5,∠ABC=120∘,所以AE=ABsin60∘=√3,BE=ABcos60∘=1,设V1是以ACD为轴截面的圆锥的体积,V2是以ABD为轴截面的圆锥的体积.V1=13π⋅AE2⋅CE=52π,V2=13π⋅AE2⋅BE=π,所以V=V1−V2=32π.10. B【解析】由三视图可知,该几何体是由一个四棱锥和一个正方体组成,所以表面积=4×12×6×5+ 5×62=240.11. C 【解析】V=13×12×(2+4)×2×2=412. B 【解析】设球的半径为R,则正方体的对角线长为2R,依题意知43R2=16a,即R2=18a,所以S球=4πR2=4π⋅18a=π2a.13. C 【解析】由三视图可得:该几何体是四棱锥(如图所示),所以BA=BC=√2,BP=1,PA=PC=√3,PD=√5,可得PA⊥AD;S△PBC=S△PBA=1 2×√2×1=√22,S△PDC=S△PDA=12×√2×√3=√62,所以该几何体的侧面积S=2S△PBC+2S△PDC=√2+√6.14. B 【解析】该几何体为一个棱长为2的正方体在两端各削去一个14圆柱,V=2×2×2−2×14×(π×12×2)=8−π.15. D16. D17. A18. C19. C 【解析】提示:分析知,围成的几何体为如图所示一个圆柱挖去一个圆锥.20. A【解析】提示:如图,作AM⊥EF于点M,BN⊥EF于点N,则可将原多面体分成一个直三棱柱和两个三棱锥,然后去求其体积.21. C 【解析】由三视图可知,该建筑物由一个圆锥、一个圆柱以及一个正方体拼接而成,故所求几何体的体积V=13×π×12×2+π×12×2+4×4×4=64+8π3.22. A 【解析】利用高、底面正三角形的边心距和斜高组成的直角三角形可得斜高为√(√66a)2+(13×√32a)2=12a,于是侧面积S=3×12×a×12a=34a2.23. D24. D25. C【解析】提示:算出一个正四棱锥的体积再乘2即可.26. B27. C 【解析】在三棱锥O−ABC中,底面OAB的面积确定,所以要使O−ABC的体积最大,则C到平面OAB的距离最大,即为球的半径.设球半径为R,则三棱锥O−ABC的体积V max=13×12×R2×R=36,解得R=6,此时球的表面积S=4πR2=144π.28. D29. A30. D31. D 【解析】设AF,AE,EF折起交于点P,因为AP⊥PF,AP⊥PE,所以AP⊥面PEF,所以V P−AEF=V A−PEF=13×1×12×12×12=124.32. B【解析】不妨设此三棱柱为正三棱柱,AB=1,AA1=2,则正三棱柱的体积V=√34×2=√32,V下面部分=13×√32×32=√34,所以V上面部分=√34,所以上下两部分的体积的比为1:133. B 【解析】由正方体外接球的直径2R等于正方体的体对角线的长,得2R=√3⋅√a26,所以R=√24a.34. A35. A【解析】设B到AC的距离为m,AC=x,棱柱的高为ℎ,可得V四棱锥B−ACQP =16xℎm,V三棱柱ABC−A1B1C1=12xℎm,V四棱锥B−ACQPV三棱柱ABC−A1B1C1=13,所以平面BPQ把三棱柱分成两部分的体积比为1:2.36. B 【解析】提示:此组合体是过圆柱对称轴的平面截圆柱所得的半个圆柱和一个半球组成的组合体.37. C 【解析】因为EF⊥BD,EF⊥面BDDʹBʹ,EF⊂面EMFN,所以平面MENF⊥平面BDDʹBʹ成立;又因为四边形EMFN为菱形,∣MN∣2=(1−2x)2+2,所以S MENF=12∣EF∣×∣MN∣=1 2×√2×√4x2−4x+3,当x=12时,面积最小,所以②成立;四边形MENF的周长L=f(x)=4√4x 2−4x +3,在 (0,12) 上是单调递减函数,在 (12,1) 上是单调递增函数,所以命题③不正确;V Cʹ−MENF =2V Cʹ−MNF =2V M−CʹNF =16,所以 V =ℎ(x ) 为常函数.38. D 【解析】因为在正方体 ABCD −A 1B 1C 1D 1 中,BD ⊥平面AA 1CC 1,CE ⊂平面AA 1CC 1,所以 BD ⊥CE ,①正确;EF =√33,而 C 到 EF 的距离即为 C 到 AC 1 的距离,所以 △EFC 面积为定值,又 B点到 平面EFC 的距离为定值,所以三棱锥 E −BCF 的体积为定值,②正确;因为 EF 为定值,且在体对角线 AC 1 上,所以 EF 在底面上的投影为定值,而点 B 到 AC 的距离为定值,所以 △BEF 在底面 ABCD 内的正投影是面积为定值的三角形,③正确;因为平面 ABCD 与平面 DEA 1 不重合,显然在平面 ABCD 内存在无数条与平面 DEA 1 平行的直线,④正确.39. B 【解析】设 AP =CP =a ,在 △PAC 中,利用余弦定理有 cos∠APC =a 2+a 2−22a 2=1−1a 2,又因为当 AP ⊥BD 1 时,AP 最小,当 P 与点 D 1 重合时最大,所以 a ∈[√63,√2],所以当 AP ⊥BD 1 时,∠APC 最大,在 △BDD 1 中,BP =√33,则 P 到面 ABC 的距离为 √33√3=13.所以 V P−ABC =12×1×1×13×13=118.40. A【解析】圆锥母线为 l =√(√5)2+1=√6,高为 ℎ=√(√5)2−1=2,圆锥底面半径为 r =√l 2−ℎ2=√2,截去的底面弧的圆心角为直角,截去的弧长是底面圆周的 14,圆锥侧面剩余 34,即为 S 1=34⋅π⋅rl =34π⋅√2×√6=3√32π,截面三角形的面积为 S 2=12×2×√5=√5,底面剩余部分为S 3=34πr 2+12×√2×√2=1+3π2,所以被截后该几何体的表面积为 S =3π2+3√3π2+√5+1.第二部分 41. 3 42. 12π【解析】提示:球的半径为 √3. 43. 14π 44. 24【解析】球的半径为 √3 ,则正方体的体对角线长为 2√3 ,从而正方体的棱长为 2 ,表面积为 6×22=24 . 45. 16π−16 46. 12π【解析】提示:由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成.47. 12+π【解析】该几何体是一个长方体和一个圆柱的组合体.由三视图可知长方体的长、宽、高分别为4、3、1,圆柱的底面半径为1,高为1,故该组合体的体积为V=4×3×1+π×1×1=12+π.48. √349. √3【解析】三视图对应的空间几何体是以2为底、高为a的三角形作为底面,以3为高的卧放的一个三棱柱.50. 2π+2√3351. 9√3π52. 288πcm3或192πcm3.53. 24πcm2【解析】由三视图可知:该几何体是一个圆锥,其母线长是5cm,底面直径是6cm.所以该三棱锥的表面积S=π×32+12×6π×5=24πcm2.54. 6+π【解析】如图:该几何体为一个棱柱与一个圆锥的组合体.所以V=3×2×1+13π×12×3=6+π.55. 456. 108+3π【解析】由三视图可知,该几何体由两个长方体和一个圆柱组成.所以V=2×6×6×32+π×12×3=108+3π.57. 48【解析】由三视图可知,该几何体为四棱锥,所以V=13×62×4=48.58. 5359. 9π260. 13【解析】由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A−BCDE的高为1,四边形BCDE是边长为1的正方形,则V=13×1×1×1=13.61. 20π3【解析】三视图可得该几何体是组合体,上面是底面圆的半径为2m、高为2m的圆锥,下面是底面圆的半径为1m、高为4m的圆柱,所以该几何体的体积是13×4π×2+4π=20π3(m3).62. 8√3+4√3π3【解析】由三视图可知,该几何体是由半个圆锥和一个四棱锥组成,所以体积为12×13×π×22×2√3+13×3×4×2√3=8√3+4√33π.63. 16+8π【解析】由三视图可知,该几何体是由一个长方体和半个圆柱形成,所以体积为V=2×2×4+ 12π×22×4=16+8π.64. 9√3π【解析】如下图所示:PO=√62−32=3√3,所以体积为13⋅3√3⋅π⋅32=9√3π.65. 20π3【解析】该几何体的体积为π⋅4+13π⋅22⋅2=20π3m3.66. 3【解析】由三视图可知,该几何体为上面一个三棱柱,下方一个四棱柱.故V上=12×1×1×2=1,V下=2×1×1=2,所以V=1+2=3.67. 3【解析】由三视图可以看出,该几何体是由一个四棱锥和一个圆柱组成.体积为13×(2√2)2×√5+π×22x=12π+8√53,所以x=3.68. 9π【解析】由三视图可知,该几何体的侧面积为2π×1×3=6π,下底面面积为π×12=π,顶部为半个球的表面积12×4π×12=2π,所以该几何体的表面积为9π.69. 7π【解析】由三视图可知该几何体是由一个圆柱和半个球组成,所以表面积为π×12+2π×1×2+12×4π×12=7π.70. 33π【解析】上半部分为半个球,表面积为12×4πr2=18π.下半部分为圆锥,侧面积为12×2πr×母线=15π.所以表面积为33π.71. 18+9π【解析】由三视图可知,该几何体为两个相切的球上方加了一个长方体组成的组合体,所以其体积为V=3×6×1+2×43π×(32)3=18+9π(m3).72. 36π.73. 11274. 1375. 43π【解析】由俯视图可知,直角三角形的斜边中线等于斜边的一半,根据射影定理,球心为斜边中点,半径为1,所以球的体积为43πr3=43π.76. (18+2√3)cm2.77. 77π【解析】提示:依题意得20=13×12×5×6×ℎ,解出ℎ=4.可算出外接球半径为√772,所以外接球表面积为77π.78. 83π【解析】由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1m,圆锥的高均为1m,圆柱的高为2m.因此该几何体的体积为V=2×13π×12×1+π×12×2=83πm3.79. 16π9+2√33【解析】由三视图可知,该几何体由23个圆锥和一个三棱锥组成,所以体积为23×13π×22×2+13×12×2√3×1×2=16π9+2√33.80. √63【解析】提示:设这个棱长为1的正四面体的四个顶点分别为A、B、C、D,可求得其高为ℎ=√63,设每个面面积为S,则V A−BCD =V P−ABC +V P−ACD +V P−ABD +V P−BCD ,所以13ℎS =13d 1S +13d 2S +13d 3S +13d 4S, 得 d 1+d 2+d 3+d 4=ℎ=√63. 第三部分81. (1) 交线围成的正方形 EHGF 如图.(2) 作 EM ⊥AB ,垂足为 M ,则 AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形 EHGF 为正方形,所以 EH =EF =BC =10. 于是 MH =√EH 2−EM 2=6,AH =10,HB =6.故 S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72. 因为长方体被平面 α 分为两个高为 10 的直棱柱,所以其体积的比值为 97(79 也正确). 82. ∵ D ,E 分别是 AB ,AC 中点, ∴ S △ADE =14S △ABC ,∴ V 三棱锥S−ADE =14V 三棱锥S−ABC ,∴ V 四棱锥S−BCED =V 三棱锥S−ABC −V 三棱锥S−ADE =34V 三棱锥S−ABC .∵ 三棱锥 S −ABC 的三条侧棱两两垂直,∴ V 三棱锥S−ABC =16⋅SA ⋅SB ⋅SC =16×5×4×3=10,∴ V 四棱锥S−BCED =34V 三棱锥S−ABC =34×10=152.83. (1) 因为点 E ,F 分别是棱 BC ,CD 的中点,所以AF ⊥DE又AF ⊥DD 1DE ∩DD 1=D}⇒AF ⊥面EDD 1⇒AF ⊥D 1E 又C 1D ∥B 1A C 1D ⊥面BCD 1}⇒D 1E ⊥B 1AB 1A ∩AF =A }}⇒D 1E ⊥面AB 1F.(2) V E−AB 1F =V B 1−AEF =13⋅1⋅38=18.(3) 由⑴可知:D 1E ⊥ 平面 AB 1F ,直线 B 1E ,B 1D 1 与平面 AB 1F 所成的角分别为 α,β,即 α+β=∠EB 1D 1,所以cos(α+β)=cos∠EB1D1=54+2−(14+1+1)2×√52×√2=√1010.84. (1)因为AB=5cm,BC=3cm,AC=4cm,所以∠ACB=90∘⇒AB为底面圆的直径⇒S侧=12⋅10⋅π⋅5=25π.圆锥的侧面展开图是一个扇形,设此扇形的中心角为θ,弧长为l,则l=10θ,所以2π×52=10θ,所以θ=π2.(2)沿着圆锥的侧棱SA展开,在展开图△ABS中,∠ASB=45∘,SA=SB=10,⇒AB2= SA2+SB2−2SA⋅SB⋅cos∠ASB⇒AB=10√2−√2.85. (1)在AC上取一点Q,使得AQQC=4,连接MQ,QN,则AMMD =AQQC=PNNC,所以QN∥AP,MQ∥CD,又CD∥AB,所以MQ∥AB.又因为AB⊂平面PAB,PA⊂平面PAB,MQ⊂平面MNQ,NQ⊂平面MNQ,所以平面PAB∥平面MNQ,又因为MN⊂平面MNQ,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AB=3,BC=5,AC=4,所以AB⊥AC.过C作CH⊥AD,垂足为H,则CH=3×45=125,因为PA⊥平面ABCD,CH⊂平面ABCD,所以PA⊥CH,又CH⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,所以CH⊥平面PAD,因为PC=√PA2+AC2=√41,PNNC=4,所以N到平面PAD的距离ℎ=45CH=4825,所以V P−AMN=V N−PAM=13S△PAM⋅ℎ=13×12×5×4×4825=325.86. (1)在△BAD中,因为AB=2AD=2,∠BAD=60∘,所以由余弦定理可得BD=√3.AB2=AD2+BD2,所以AD⊥BD.又在直平行六面体中,GD⊥平面ABCD,BD⊂平面ABCD,所以GD⊥BD.又AD∩GD=D,所以BD⊥平面ADG.(2)由已知可得AG∥EF,AE∥GF,四边形AEFG是平行四边形.GD=AD=1,所以EF=AG=√2.EB=AB=2,所以GF=AE=2√2.过G作GM∥DC交CF于H,得FH=2,所以FC=3.过G作GM∥DB交BE于M,得GM=DB=√3,ME=1,所以GE=2.cos∠GAE=2×2√2×√2=34,所以sin∠GAE=√74.S AEFG=2×12×√2×2√2×√74=√7.该几何体的全面积S=√7+2×12×1×√3+12×1×1+12×2×2+12×(1+3)×2+12×(2+3)×1=√7+√3+9.87. (1)如果按方案一,仓库的底面直径变成16m,则仓库的体积V1=13Sℎ=13×π×(162)2×4=2563π(m3),如果按方案二,仓库的高变成8m,则仓库的体积V2=13Sℎ=13×π×(122)2×8=2883π(m3).(2)如果按方案一,仓库的底面直径变成16m,半径为8m.棱锥的母线长为l=√82+42=4√5,则仓库的表面积S1=π×8×4√5=32√5π(m2),如果按方案二,仓库的高变成8m.棱锥的母线长为l=√82+62=10,则仓库的表面积S2=π×6×10=60π(m2).(3)∵V2>V1,S2<S1,∴方案二比方案一更加经济.88. (1)因为EA=ED且EEʹ⊥平面ABCD,所以EʹD=EʹA,所以点Eʹ在线段AD的垂直平分线上,同理点Fʹ在线段BC的垂直平分线上.又ABCD是正方形,所以线段BC的垂直平分线也就是线段AD的垂直平分线即点EʹFʹ都居线段AD的垂直平分线上,所以直线E′F′垂直平分线段AD.(2)连接EB,EC,设AD中点为M,由题意知,AB=2,∠EAD=∠EAB=60∘,EF=2,所以ME=√3,BE=FC=2,则多面体ABCDEF可分割成正四棱锥E−ABCD和正四面体E−BCF两部分,在Rt△MEEʹ中,由于MEʹ=1,ME=√3,所以EEʹ=√2,所以V E−ABCD=13S正方形ABCD⋅EEʹ=13×4×√2=4√23.V E−BCF=V C−BEF=V C−BEA=V E−ABC=13S△ABC⋅EEʹ=13×12×4×√2=23√2,所以多面体ABCDEF的体积为V E−BCF+V E−ABCD=2√2.89. (1)在三棱锥A−BCD中,∵AB⊥平面BCD,又∵CD⊂平面BCD,∴AB⊥CD.又∵BD⊥CD,且BD∩AB=B,∴CD⊥平面ABD.(2)法一:由AB⊥平面BCD,得AB⊥BD,∵AB=BD=1,∴S△ABD=12.∵M是AD中点,∴S△ABM=12S△ABD=14.由(1)知,CD⊥平面ABD,∴三棱锥C−ABM的高ℎ=CD=1,因此三棱锥A−MBC的体积为V A−MBC=V C−ABM=13S△ABM⋅ℎ=112.法二:由AB⊥平面BCD知,平面ABD⊥平面BCD,又平面ABD∩平面BCD=BD,如图,过点M作MN⊥BD交BD于点N,则MN⊥平面BCD,且MN=12AB=12,又CD⊥BD,BD=CD=1,所以S△BCD=1 2 ,∴三棱锥A−MBC的体积V A−MBC=V A−BCD −V M−BCD =13AB ⋅S △BCD −13MN ⋅S △BCD=112.90. (1) 如图,因 ABCD 为菱形,O 为菱形中心,连接 OB ,则 AO ⊥OB ,因为 ∠BAD =π3,故OB =AB ⋅sin∠OAB =2sinπ6=1. 又因为 BM =12,且 ∠OBM =π3,在 △OBM 中OM 2=OB 2+BM 2−2OB ⋅BM ⋅cos∠OBM=12+(12)2−2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故 OM ⊥BM .又 PO ⊥ 底面 ABCD ,所以 PO ⊥BC ,从而 BC 与平面 POM 内两条相交直线 OM ,PO 都垂直, 所以 BC ⊥ 平面 POM .(2)由(1)可知,OA =AB ⋅cos∠OAB =2⋅cosπ6=√3, 设 PO =a ,由 PO ⊥ 底面 ABCD 知,△POA 为直角三角形,故PA 2=PO 2+OA 2=a 2+3,由 △POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34,连接 AM ,在 △ABM 中,AM 2=AB 2+BM 2−2AB ⋅BM ⋅cos∠ABM=22+(12)2−2⋅2⋅12⋅cos 2π3=214,由已知MP⊥AP,故△APM为直角三角形,则PA2+PM2=AM2,即a2+3+a2+34=214,得a=√32,a=−√32(舍去),即PO=√32,此时S ABMO=S△AOB+S△OMB=12⋅AO⋅OB+12⋅BM⋅OM=12⋅√3⋅1+12⋅12⋅√32=5√3 8,所以四棱锥P−ABMO的体积V P−ABMO=13⋅S ABMO⋅PO=13⋅5√38⋅√32=5 16.91. (1)在△ABD中,因为AB=2,AD=4,∠DAB=60∘,所以BD=√AB2+AD2−2AB⋅ADcos∠DAB=2√3.所以AB2+BD2=AD2,所以AB⊥BD.又因为平面EBD⊥平面ABD.平面EBD∩平面ABD=BD,AB⊂平面ABD,所以AB⊥平面EBD.结合DE⊂平面EBD,可得AB⊥DE.(2)由(1)知AB⊥BD,因为CD∥AB,所以CD⊥BD,从而DE⊥BD.在Rt△DBE中,因为DB=2√3,DE=DC=AB=2,所以S△DBE=12DB⋅DE=2√3.又AB⊥平面EBD,BE⊂平面EBD,所以AB⊥BE.因为BE=BC=AD=4,所以S△ABE=12AB⋅BE=4.又DE⊥BD,平面EBD⊥平面ABD,故得到ED⊥平面ABD.而AD⊂平面ABD,所以ED⊥AD,因此S△ADE=12AD⋅DE=4.综上,三棱锥E−ABD的侧面积S=8+2√3.92. (1)如果按方案一,仓库的底面直径变成16m,则仓库的体积V1=13S⋅ℎ=13×π×(162)2×4=2563π(m3)如果按方案二,仓库的高变成8m,则仓库的体积V2=13S⋅ℎ=13×π×(122)2×8=2883π(m3)(2)如果按方案一,仓库的底面直径变成16m,半径为8m.圆锥的母线长为l1=√82+42=4√5(m),则仓库的侧面积S1=π×8×4√5=32√5π(m2);如果按方案二,仓库的高变成8m,圆锥的母线长为l2=√82+62=10(m),则仓库的侧面积S2=π×6×10=60π(m2).(3)因为V2>V1,S2<S1.所以方案二比方案一更加经济.93. (1)取AB的中点M,连接A1M.因为AF=14AB,所以F为AM的中点.。

高中数学例题:简单几何体的表面积

高中数学例题:简单几何体的表面积

高中数学例题:简单几何体的表面积例1.如右图,有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为345(0)a a a a >、、.用它们拼成一个三棱柱或四棱柱,则a 的取值范围是 .【答案】03a <<. 【解析】底面积为26a ,侧面面积分别为6、8、10,拼成三棱柱时,有三种情况:221262(1086)1248s a a =⨯+++=+, 222242(108)2436,s a a =++=+ 223242(106)2432,s a a =++=+拼成四棱柱时只有一种情况: 表面积为22(86)2462428a a +⨯+⨯=+,由题意得2224281248a a +<+,解得0a <<【总结升华】(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.举一反三:【变式1】 一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( )A .4S πB .2S πC .S πD S 【答案】A【解析】由圆柱的底面面积是S ,求出圆柱的半径为r =,进一步求出侧面积为4S π.例2.在底面半径为R ,高为h 的圆锥内有一内接圆柱,求内接圆柱的侧面积最大时圆柱的高,并求此时侧面积的最大值.【思路点拨】一般要画出其轴截面来分析,利用相似三角形求解。

【答案】高为2h侧面积的最大值为12Rh π【解析】如右图,设圆柱的高为x ,其底面半径为r ,则r h xR h-=, ∴()R h x r h-=. 圆柱的侧面积2222()()R R S rx x h x x hx h hπππ==⋅-=--侧 22222[()]()2422R h h R h hR x x h h πππ=---=--+, 当2h x =时,2hRS π=侧最大值.即内接圆柱的侧面积最大时圆柱的高为2h ,此时侧面积的最大值为12Rh π.【总结升华】与旋转体有关的问题,常作轴截面,利用相似比得出变量之间的关系,进一步转化成代数问题解决.举一反三:【变式1】 圆锥的高和底面半径相等,它的一个内接圆柱的高和底面半径也相等,求圆柱的表面积和圆锥的表面积之比.1【解析】如右图为其轴截面图,设圆柱、圆锥的底面半径分别是r 、R ,圆锥的母线长为l .则有r R rR R -=,即12r R =, ∴R=2r ,l =∴2221S S =====圆柱表圆锥表 【总结升华】这是一个圆锥和圆柱的组合体.旋转体一般要画出其轴截面来分析,利用相似三角形求各元素之间的关系,再利用相应表面积公式计算.例3.粉碎机的下料斗是正四棱台形,如图,它的两底面边长分别是80 mm 和440 mm ,高是220 mm .计算制造这一下料斗所需铁板的面积.【思路点拨】问题的实质是求正四棱台的侧面积,欲求侧面积,需先求出斜高.可在有关的直角梯形中求出斜高.【答案】2.8×105【解析】如图所示,O 、O 1是两底面的中心,则OO 1是正棱台的高.设EE 1是斜高,过E 1作E 1F ∥OO 1交OE 于F ,则E 1F ⊥OE ,在直角梯形OO 1E 1E 中,1EE ==269(mm)=≈. ∵边数n=4,两底面边长a=440 mm ,a '=80 mm ,斜高h '≈269 mm , ∴11(')'(')'22S c c h n a a h =+⋅=+⋅正棱台侧5214(80440)269 2.810(mm )2=⨯⨯+⨯≈⨯. 答:制造这一下料斗约需铁板2.8×105 mm 2.【总结升华】 (1)解决与正棱台有关的计算问题,关键是利用有关直角梯形,即上图中的梯形OEE 1O 1、梯形OAA 1O 1、梯形AEE 1A 1.(2)求棱台的侧面积,只需利用公式求解即可,这就需要求出上、下底面半径以及母线长.举一反三:【变式1】圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开扇环的圆心角是180°,那么圆台的表面积是多少?(结果中保留π)【答案】1100π【变式2】 邻边长为a ,b 的平行四边形,且a >b ,分别以a ,b 两边所在直线为轴旋转这个平行四边形,所得几何体的表面积分别为S 1,S 2,则有( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1≥S 2 【答案】A。

高中数学11双曲线的简单几何性质新人教A版选修2-1

高中数学11双曲线的简单几何性质新人教A版选修2-1

课时分层作业(十一) 双曲线的简单几何性质(建议用时:40分钟)[基础达标练]一、选择题1.已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( )A .31414B .324C .32D .43C [由题意知a 2+5=9,解得a =2,故e =32.]2.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则共有l ( )A .4条B .3条C .2条D .1条B [因为双曲线方程为x 2-y 24=1,所以P (1,0)是双曲线的右顶点,所以过P (1,0)并且和x 轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外还有两条就是过点P (1,0)分别和两条渐近线平行的直线,所以符合要求的共有3条,故选B .]3.双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则双曲线C 的焦距等于( )A .2B .2 2C .4D .4 2C [由已知得e =c a =2,所以a =12c ,故b =c 2-a 2=32c ,从而双曲线的渐近线方程为y =±ba x =±3x ,由焦点到渐近线的距离为3,得32c =3,解得c =2,故2c =4,故选C .]4.若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( )【导学号:46342101】A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等D [若0<k <5,则5-k >0,16-k >0,故方程x 216-y 25-k =1表示焦点在x 轴上的双曲线,且实半轴的长为4,虚半轴的长为5-k ,焦距2c =221-k ,离心率e =21-k4;同理方程x 216-k -y 25=1也表示焦点在x 轴上的双曲线,实半轴的长为16-k ,虚半轴的长为5,焦距2c =221-k ,离心率e =21-k16-k.可知两曲线的焦距相等,故选D .] 5.设双曲线x 2a 2-y 2b2=1(b >a >0)的半焦距为c ,且直线l 过(a,0)和(0,b )两点,已知原点到直线l 的距离为3c4,则双曲线的离心率为( ) A .233B . 2C . 3D .2D [直线l 的方程为x a +yb=1,即bx +ay -ab =0,原点到直线l 的距离d =ab a 2+b 2=abc=34c 即ab =34c 2,所以a 2(c 2-a 2)=316c 4. 整理得3e 4-16e 2+16=0,解得e 2=4或e 2=43又b >a >0,所以e 2=1+b 2a2>2,故e =2.]二、填空题6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x+y =0垂直,则双曲线方程为________.x 24-y 2=1 [由题意可得⎩⎪⎨⎪⎧b a =12a 2+b 2=5,解得⎩⎪⎨⎪⎧a 2=4b 2=1,故所求双曲线方程为x 24-y 2=1.]7.若a >1,则双曲线x 2a2-y 2=1的离心率的取值范围是________.【导学号:46342102】(1,2) [e 2=1+1a2,由a >1得1<e 2<2.所以1<e < 2.]8.若直线x =2与双曲线x 2-y 2b2=1(b >0)的两条渐近线分别交于点A ,B ,且△AOB 的面积为8,则焦距为________.25 [双曲线的渐近线方程为y =±bx ,则A (2,2b ),B (2,-2b ),|AB |=4b ,从而S △AOB=12×4b ×2=8. 解得b =2,所以c 2=5,从而焦距为2 5.] 三、解答题9.双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线为y =x ,求双曲线的标准方程和离心率.[解] 由椭圆x 216+y 264=1,知c 2=64-16=48,且焦点在y 轴上,∵双曲线的一条渐近线为y =x ,∴设双曲线方程为y 2a 2-x 2a2=1.又c 2=2a 2=48,∴a 2=24. ∴所求双曲线的方程为y 224-x 224=1.由a 2=24,c 2=48,得e 2=c 2a2=2,又e >0,∴e = 2.10.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2,其中O 为原点,求k 的取值范围.【导学号:46342103】[解] (1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0),由已知得a =3,c =2.又因为a 2+b 2=c 2,所以b 2=1, 故双曲线C 的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1中,得(1-3k 2)x 2-62kx -9=0,由直线l 与双曲线交于不同的两点得:⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)>0,即k 2≠13且k 2<1. ①设A (x A ,y A ),B (x B ,y B ), 则x A +x B =62k 1-3k 2,x A x B =-91-3k 2,由OA →·OB →>2得x A x B +y A y B >2,而x A x B +y A y B =x A x B +(kx A +2)(kx B +2) =(k 2+1)x A x B +2k (x A +x B )+2=(k 2+1)·-91-3k 2+2k ·62k 1-3k 2+2=3k 2+73k 2-1, 于是3k 2+73k 2-1>2,解此不等式得13<k 2<3. ②由①②得13<k 2<1.故k 的取值范围是⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1. [能力提升练]1.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均与曲线C :x 2+y 2-6x +5=0相切,则该双曲线的离心率等于( )A .355B .62C .32D .55A [曲线C 的标准方程为(x -3)2+y 2=4,所以圆心坐标为C (3,0),半径r =2,双曲线的渐近线为y =±ba x ,不妨取y =b ax ,即bx -ay =0,因为渐近线与圆相切,所以圆心到直线的距离d =|3b |a 2+b2=2,即9b 2=4(a 2+b 2),所以5b 2=4a 2,b 2=45a 2=c 2-a 2,即95a 2=c 2,所以e 2=95,e =355,选A .]2.设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A .3x ±4y =0B .3x +5y =0C .5x ±4y =0D .4x ±3y =0D [由题意可知|PF 2|=|F 1F 2|=2c ,所以△PF 1F 2为等腰三角形,所以由F 2向直线PF 1作的垂线也是中线,因为F 2到直线PF 1的距离等于双曲线的实轴长2a ,所以|PF 1|=24c 2-4a2=4b ,又|PF 1|-|PF 2|=2a ,所以4b -2c =2a ,所以2b -a =c ,两边平方可得4b 2-4ab +a2=c 2=a 2+b 2,所以3b 2=4ab ,所以4a =3b ,从而b a =43,所以该双曲线的渐近线方程为4x ±3y=0,故选D .]3.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过点F 作x轴的垂线与双曲线交于B ,C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为________.±1 [不妨设点B 在第一象限,则A 1(-a,0),B ⎝ ⎛⎭⎪⎫c ,b 2a ,A 2(a,0),C ⎝ ⎛⎭⎪⎫c ,-b 2a ,所以A 1B →=⎝ ⎛⎭⎪⎫a +c ,b 2a ,A 2C →=⎝ ⎛⎭⎪⎫c -a ,-b 2a .因为A 1B ⊥A 2C ,所以A 1B →·A 2C →=0,所以c 2-a 2-b 4a 2=0,整理得,b 2a 2=1,即ba=1,所以渐近线的斜率为±1.]4.已知直线l :x -y +m =0与双曲线x 2-y 22=1交于不同的两点A ,B ,若线段AB 的中点在圆x 2+y 2=5上,则实数m 的值是________.【导学号:46342104】±1 [由⎩⎪⎨⎪⎧x -y +m =0x 2-y 22=1,消去y 得x 2-2mx -m 2-2=0.则Δ=4m 2+4m 2+8=8m 2+8>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2m ,y 1+y 2=x 1+x 2+2m =4m ,所以线段AB 的中点坐标为(m,2m ).又点(m,2m )在圆x 2+y 2=5上,所以m 2+(2m )2=5,得m =±1.]5.直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点. (1)求线段AB 的长;(2)当a 为何值时,以AB 为直径的圆经过坐标原点?[解] 由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1,得(3-a 2)x 2-2ax -2=0.由题意可得3-a 2≠0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2a 3-a 2,x 1x 2=-23-a 2.(1)|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+a 2)[(x 1+x 2)2-4x 1x 2]=(1+a 2)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2a 3-a 22+83-a 2=2(1+a 2)(6-a 2)|3-a 2|. (2)由题意知,OA ⊥OB ,则OA →·OB →=0,即x1x2+y1y2=0,∴x1x2+(ax1+1)(ax2+1)=0.即(1+a2)x1x2+a(x1+x2)+1=0,∴(1+a2)·-23-a2+a·2a3-a2+1=0,解得a=±1.经检验a=±1时,以AB为直径的圆经过坐标原点.。

高中数学 3.1.2椭圆的简单几何性质 课后练习、课时练习

高中数学  3.1.2椭圆的简单几何性质 课后练习、课时练习

一、单选题1. 若椭圆的离心率,则实数的值为A.B.C.或D.或2. 已知分别是椭圆的左,右焦点,点M是椭圆C上的一点,且的面积为1,则椭圆C的短轴长为()A.1 B.2 C.D.43. 在直角坐标系中,一个长方形的四个顶点都在椭圆:上,当该长方形的面积最大时,将其绕轴旋转,得到一个圆柱体,则该圆柱体的体积为()A.B.C.D.4. 从椭圆上一点向轴作垂线,垂足恰为椭圆的左焦点,点,分别为椭圆的右顶点和上顶点.若(为坐标原点),则该椭圆的离心率为()A.B.C.D.5. 椭圆的焦点坐标为()A.B.C.D.6. 已知椭圆经过点,则的取值范围是()A.B.C.D.二、多选题7. 椭圆C的方程为,焦点为,,则下列说法正确的是()A.椭圆C的焦距为B.椭圆C的长轴长为6C.椭圆C的离心率为D.椭圆C上存在点P,使得为直角8. 已知Р是椭圆:上的一动点,离心率为e,椭圆与x轴的交点分别为A、B,左、右焦点分别为、.下列关于椭圆的四个结论中正确的是()A.若PA、PB的斜率存在且分别为、,则为一定值B.根据光学现象知道:从发出的光线经过椭圆反射后一定会经过.若一束光线从出发经椭圆反射,当光线第n次到达时,光线通过的总路程为4naC.若的面积最大时,,则D.若椭圆C上存在点M使,则三、填空题9. 已知椭圆+=1(a>b>0)的左顶点为A,左焦点为F,若该椭圆的上顶点到焦点的距离为2,离心率e=,则椭圆的标准方程是________.10. 如图,椭圆,顶点分别为A1,A2,B1,B2,左右焦点分别为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则此椭圆的离心率的取值范围为____.11. 已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是___________.12. 椭圆的左、右焦点分别为,上顶点为A,直线与椭圆C交于另一点B,若,则椭圆C的离心率为___________.四、解答题13. 已知椭圆经过,两点.(1)求椭圆上的动点T到的最短距离;(2)直线AB与x轴交于点,过点M作不垂直于坐标轴且与AB不重合的直线l与椭圆交于C,D两点,直线AC,BD分别交直线于P,Q两点.求证:为定值.14. 已知椭圆的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)在圆上取一动点P作椭圆C的两条切线,切点分别记为M,N,PM与PN的斜率均存在,分别记为,.(i)求证:;(ii)求面积的取值范围.15. 已知椭圆的长轴长为4,A,B是其左、右顶点,M是椭圆上异于A,B的动点,且.(1)求椭圆C的方程;(2)若P为直线上一点,PA,PB分别与椭圆交于C,D两点.①证明:直线CD过椭圆右焦点;②椭圆的左焦点为,求的内切圆的最大面积.16. 已知椭圆的左、右顶点分别为,右焦点为F(1,0),且椭圆C的离心率为,M,N为椭圆C上任意两点,点P的坐标为(4,t)(t≠0),且满足.(1)求椭圆C的方程;(2)证明:M,F,N三点共线.。

高中数学必修二 8 简单几何体的表面积与体积(精练)(含答案)

高中数学必修二   8  简单几何体的表面积与体积(精练)(含答案)

8.3 简单几何体的表面积与体积(精练)【题组一 旋转体的体积】1.(2021·吉林·延边二中高一期中)阿基米德(Archimedes ,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径.若该球的体积为36π,则圆柱的体积为 ( )A .36πB .45πC .54πD .63π【答案】C 【解析】因为该球的体积为36π,设球的半径为R ,则34363R ππ=,解得3R =。

所以圆柱的体积为:23654V ππ=⨯⨯=,故选:C.2.(2021·河北·保定市第二十八中学高一月考)唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度)如图2所示,设酒杯上部分(圆柱)的体积为1V ,下部分(半球)的体积为2V ,若122V V =,则半球的半径与圆柱的高之比为( )A .4:3B .3:4C .1:2D .5:3【答案】B 【解析】设圆柱的高为h ,半径为r ,则圆柱的体积为21=V r h π.而半球的体积为332412==323V r r ππ⨯. 因为122V V =,所以324=3r r h ππ,所以3=4r h . 故选:B3(2021·全国·高一课时练习)如图所示,半径为R 的半圆内(其中∠BAC =30°)的阴影部分以直径AB 所在直线为轴,旋转一周得到一个几何体,则该几何体的表面积为_____,体积为_____.2R 356R π 【解析】如图所示,过C 作CO 1⊥AB 于O 1,在半圆中可得∠BCA =90°,又∠BAC =30°,AB =2R ,∴AC ,BC =R ,CO 1,∴1AO S 圆锥侧=π=32πR 2,1BO S 圆锥侧=π×R R 2,∴S 几何体表=S 球+11AO BO S S +=圆锥侧圆锥侧R 2,πR 2. 又V 球=43πR 3,∴V 几何体=V 球-(11AO BO V V +圆锥圆锥)=43πR 3-13×AB ×π×C 2143O =πR 3-22536R π⎫⨯=⎪⎪⎝⎭πR 3.2R ;356R π4.(2021·全国·高一课时练习)若圆锥的侧面展开图为一个半径为2的半圆,则圆锥的体积是__________.【解析】设圆锥的底面半径为r ,则22ππ=r ,所以1r =,圆锥的高h = 所以圆锥的体积213V r h π=5.(2021·全国·高一课时练习)若一个圆锥的底面直径和高都与一个球的直径相等,那么这个圆锥的体积与球的体积之比为________. 【答案】12【解析】解析:设球体的半径为R 2312=2=33R V R R ππ⋅圆锥,343V R π球=,33213==423R V R V ππ圆锥球. 故答案为:12【题组二 旋转体的表面积】 1.(2021·全国·高一课时练习)如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=AD=2,则四边形ABCD 绕AD 所在直线旋转一周所成几何体的表面积为( )A .(60+πB .(60+)π C .(56+πD .(56+)π【答案】A 【解析】四边形ABCD 绕AD 所在直线旋转一周所成的几何体为一个圆台挖去一个圆锥,如图所示:因为25r AB ==,所以圆台下底面面积125S π=,又因为CD =,135ACD ∠=,所以12ED r ==,25l ==,所以圆台的侧面积()()212225535S r r l πππ=+=+⨯=.圆锥的侧面积3111122222S r l ππ=⨯⨯=⨯⨯⨯.所以几何体的表面积为(123253560S S S S πππ=++=++=+.故选:A2.(2021·山东邹城·高一期中)如图是底面半径为3的圆锥,将其放倒在一平面上,使圆锥在此平面内绕圆锥顶点S 滚动,当这个圆锥在平面内转回原位置时,圆锥本身恰好滚动了3周,则( )A .圆锥的母线长为18B .圆锥的表面积为27πC .圆锥的侧面展开图扇形圆心角为60°D .圆锥的体积为【答案】D【解析】设圆锥的母线长为l ,以S 为圆心,SA 为半径的圆的面积为2S l π=,又圆锥的侧面积3S rl l ππ==圆锥侧,因为圆锥在平面内转到原位置时,圆锥本身滚动了3周,所以233l l ππ=⨯,解得9l =,所以圆锥的母线长为9,故选项A 错误;圆锥的表面积239336S S S πππ=+=⨯⨯+⨯=圆锥侧底,故选项B 错误;因为圆锥的底面周长为236ππ⨯=,设圆锥的侧面展开图扇形圆心角为α,则69πα=⋅,解得23πα=, 所以圆锥的侧面展开图扇形圆心角为120°,故选项C 错误;圆锥的高h =所以圆锥的体积为2133V π=⨯⨯⨯=,故选项D 正确. 故选:D .3.(2021·重庆·垫江第五中学校高一月考)如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为则此圆锥的表面积为__________【答案】5π【解析】将圆锥侧面沿母线AB 剪开,其侧面展开图为扇形,如图,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,最短距离即为线段BM 长,则有BM = 而M 是线段AB '中点,又母线长为4,于是得22220AM AB BM +==,即2BAB π'∠=,设圆锥底面圆半径为r ,从而有:242r ππ=⋅,解得1r =,所以圆锥的表面积为25S r r AB πππ=+⋅=.故答案为:5π4(2021·全国·高一课时练习)已知一块正方形薄铁片的边长为8cm ,以它的一个顶点为圆心,一边长为半径画弧,沿弧剪下一个扇形(如图),若用这块扇形铁片围成一个无底的圆锥,则这个无底的圆锥的表面积为多少平方厘米?【答案】()216cm π 【解析】由已知,可得这个无底的圆锥的母线长为8cm ,设圆锥的底面半径为cm r ,则282r ππ=⨯,所以2cm r =,所以圆锥的表面积即侧面积()22816cm S rl πππ==⨯=侧. 【题组三 多面体的体积】1.(2021·上海外国语大学闵行外国语中学高二期中)在三棱锥P ABC -中,已知5PA BC PB AC PC AB ======,则该三棱锥的体积为___________.【答案】8【解析】如图,设长方体的三条棱长为,,a b c ,由题得22220a b +==;2213a c +=;222525b c +==, 解之得2224,16,9a b c ===.所以2,4,3a b c ===. 所以该三棱锥的体积为112344243=832⨯⨯-⨯⨯⨯⨯⨯.故答案为:82(2021·全国·高一课时练习)已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空间几何体的体积V =________cm 3.【答案】【解析】依题意,原几何体是由一个正方体上面接一个正四棱锥组成,其中正方体的棱长为1cm ,正方体的体积为1cm 3,正四棱锥的底面边长和侧棱长均为1cm ,体积为2113⨯=3),所以该空间几何体的体积为(1V =cm 3.故答案为:3.(2021·全国·高一课时练习)球O 的球心为点O ,球O 3的圆锥,三棱锥V ABC -内接于球O ,已知,OA OB AC BC ⊥⊥,则三棱锥V ABC -的体积的最大值为_______.【解析】=O 的半径为r=,解得1r =, ,1OA OB OA OB ⊥==,AB ∴=AC BC ⊥,∴C 在以AB 为直径的圆上,∴平面OAB ⊥平面ABC ,∴O 到平面ABC 2,故V 到平面ABC 1+,又C 到AB∴三棱锥V ABC -的体积的最大值为,111)32⨯4.(2021·全国·高一课时练习)如图所示,△ABC 和△A ′B ′C ′的对应顶点的连线AA ′,BB ′,CC ′交于同一点O ,且12AO BO CO A O B O C O =''==',则O ABC O A B C V V --'''=___________. 【答案】18【解析】如题干图,12AO BO CO A O B O C O =''==', 可证AB //A ′B ′,AC //A ′C ′,BC //B ′C ′.所以平面//ABC 平面A B C '''三棱锥O ABC -和三棱锥O A B C '''-高之比也为12,由等角定理得∠CAB =∠C ′A ′B ′,∠ACB =∠A ′C ′B ′,所以△ABC ∽△A ′B ′C ′, 由12AO BO CO A O B O C O =''==', 可得211()24ABC A B C S S '''==, 所以O ABC O A B C V V --'''==111428⨯=. 故答案为:185.(2021·山东·日照神州天立高级中学有限责任公司高一月考)如图是边长为1的正方体,H 、G 、F 分别是棱AB 、AD 、1AA 的中点,现在沿三角形GFH 所在平面锯掉正方体的一个角,问锯掉的这块的体积是原正方体的______.【答案】148【解析】1111113222248A FGH V -=⨯⨯⨯⨯=,所以148A FGH V V -=正方体, 故答案为:148. 6.(2021·黑龙江·哈师大附中高一期中)如图,在四面体ABCD 中作截面PQR ,其中14AR AD =,13AP AC =,12AQ AB =,则:A PQR D BCPQ V V --=______.【答案】1:20【解析】作RG ⊥平面ABC ,作DH ⊥平面ABC ,则GH 共线,由14AR AD =,则14RG DH =, 由12AQ AB =,13AP AC =,则16APQ ABC S S =, 所以15APQBCPQ S S =, 所以11113:154203APQ R APQA PQR D BCPQ D BCPQ BCPQ S RG V V V V S DH ----⋅===⨯=⋅,故答案为:1:20【题组四 多面体的表面积】1.(2021·上海市控江中学高二期中)若正四棱台的上底边长为2,下底边长为8,高为4,则它的侧面积为___________.【答案】100【解析】因正四棱台的上底边长为2,下底边长为8,高为4,则该正四棱台上底、下底面边心距分别为1,4,而正四棱台的高、斜高、两底面对应边心距构成直角梯形,于是得斜高5h '=, 因此,侧面积28451002S +=⨯⨯=, 所以所求的侧面积为100.故答案为:1002(2021·上海外国语大学闵行外国语中学高二期中)已知正三棱锥O ABC -的底面边长为4,高为2,则此三棱锥的侧面积为___________.【答案】【解析】由题意作出图形如图:因为三棱锥P ABC -是正三棱锥,顶点在底面上的射影D 是底面的中心,在三角PDF 中, 2PD =,DF =,PF ∴==则这个棱锥的侧面积为1342⨯⨯=故答案为:3.(2021·全国·高一课时练习)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,则该四棱台的表面积为________.【答案】80+【解析】如图,在四棱台1111ABCD A B C D -中,过点1B 作1B F BC ⊥,垂足为点F ,在1Rt B FB 中1(84)22BF =⨯-=,18B B =,故1B F =所以111(84)2BB C C S =⨯+⨯=梯形故四棱台的侧面积4S =⨯=侧,所以448880S =⨯+⨯=+表故答案为:80+4.(2021·全国·高一课时练习)已知正四棱台两底面边长分别为4cm,8cm ,侧棱长为8cm ,则它的侧面积为_______2cm .【答案】【解析】作出正四棱台的一个侧面如图,设,E F 分别为,AD BC 的中点,过D 作DG BC ⊥于点G .由题知4cm,8cm,8cm AD BC CD ===,得2cm,4cm DE FC ==,解得2cm GC =,在Rt DGC △中,DG =,即斜高为,所以所求侧面积为)21(1632)cm 2⨯+⨯=.答案:5.(2021·全国·高一课时练习)若五棱台11111ABCDE A B C D E -的表面积是30,侧面积是25,则两底面面积的和为______.【答案】5【解析】S S S =+表侧两底,则30255S S S =-=-=两底表侧.故答案为:5.6(2021·全国·高一课时练习)如图,已知正三棱锥S ABC -的侧面积是底面积的2倍,正三棱锥的高3SO =,则此正三棱锥的表面积为___________.【答案】【解析】如图,设正三棱锥的底面边长为a ,斜高为h ',侧面积、底面积分别为12,S S ,过点O 作OE AB ⊥,与AB 交于点E ,连接SE ,则,SE AB SE h '⊥=.由21 2S S =,即21322a h '⋅⋅=⨯,可得a '.由SO OE ⊥,则222SO OE SE +=,即2223h ⎫''+=⎪⎪⎝⎭.h '∴=6a =.222 6S ∴=== 1 S =∴表面积 1 2 S S S =+==故答案为:【题组五 有关球的计算】1.(2021·新疆·新和县实验中学高一期末)若三个球的表面积之比是1:2:3,则它们的体积之比是( )A .1:B .1:C .2:4:9D .【答案】A【解析】设三个球的半径分别为1R ,2R ,3R ,因为三个球的表面积之比为1:2:3,所以2221234π:4π:4π1:2:3R R R =,所以123::R R R =所以它们的体积之比为3333331231234π4π4π::::1:333R R R R R R == 故选:A.2.(2021·山东邹城·高一期中)已知长方体1111ABCD A B C D -的长、宽、高分别为2、1、1,且其顶点都在球面上,则该球的体积是( )AB .6πC .36πD .【答案】A【解析】长方体1111ABCD A B C D -=长方体1111ABCD A B C D -343π⨯=⎝⎭. 故选:A .3.(2021·全国·高一课时练习)两个半径为1的实心铁球,熔化成一个大球,这个大球的半径是________.【解析】设大球的半径为R ,则有3334421,233R R ππ=⨯⨯=,所以R =4.(2021·全国·高一课时练习)一个底面直径是32cm 的圆柱形水桶装入一些水,将一个球放入桶内完全淹没,水面上升了9cm 且无溢出,则这个球的表面积是________.【答案】2576cm π【解析】由题意,上升的水的体积即为球的体积,若球的半径为R ,即23324923R ππ⎛⎫⨯= ⎪⎝⎭,解得12R =, 故这个球的表面积224412576S R πππ=⨯=⨯=.故答案为:2576cm π5.(2021·全国·高一课时练习)如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为3,则该半球的表面积为________.【答案】6π【解析】如图,连接AC ,BD 交点为O ,设球的半径为r ,由题意知:SO AO OC OD OB r =====.则AB =,四棱锥的体积为21)3V r =⨯⨯=r = ∴该半球的表面积为22214362S r r r ππππ=⨯+==.故答案为:6π6.(2021·全国·高一课时练习)在四棱锥S ABCD -中,底面ABCD 是边长为为【答案】48π【解析】因为四棱锥S ABCD -中,底面ABCD 是边长为 所以该四棱锥是正四棱锥,取正方形ABCD 的中心1O ,连接1SO ,AC ,则点1O 为AC 的中点,如图,则球心O 在1SO 上,因为正方形ABCD 边长为6AC ==,所以13AO =,因为SA =,所以1SO ==设四棱锥S ABCD -外接球的半径为r ,则11OO SO SO r =-,在1Rt AOO 中,22211AO AO OO =+,即)2223r r =+,解得:r =所以该四棱锥外接球的表面积为(224π4π48πr =⨯=.【题组六 综合运用】1(2021·全国·高一课时练习)如图,已知一个圆锥的底面半径与高均为2,且在这个圆锥中有一个高为x 的圆柱.(1)求出此圆锥的侧面积;(2)用x 表示此圆柱的侧面积表达式;(3)当此圆柱的侧面积最大时,求此圆柱的体积.【答案】(1);(2)224(02)S x x x ππ=-+<<圆柱侧;(3)π.【解析】(1)圆锥的底面半径R 与高H 均为2,则圆锥的母线长为L =2S RL ππ==⨯⨯=圆锥侧.(2)设圆柱的半径为r , 则222r x -=,解得2r x =-,且02x <<; 所以圆柱的侧面积为222(2)24(02)S rx x x x x x ππππ==-=-+<<圆柱侧.(3)22242(1)1S x x x πππ⎡⎤=-+=--+⎣⎦圆柱侧,02x <<;当1x =时,S 圆柱侧取得最大值为2π,此时1r =,圆柱的体积为2211V r x πππ==⋅⋅=圆柱.2.(2021·贵州·高一月考)在长方体1111ABCD A B C D -中,AB =6,BC =8,16AA =.(1)求三棱锥1D ABC -的体积;(2)在三棱柱111ABC A B C -内放一个体积为V 的球,求V 的最大值.【答案】(1)48;(2)323π. 【解析】(1)由长方体的几何特征知,1D 到平面ABC 的距离为116DD AA ==, 又1242ABC S AB BC =⋅=,所以11112464833D ABC ABC V S DD -=⋅=⨯⨯=; (2)设球的半径为R ,若该球与三棱柱111ABC A B C -的三个侧面均相切,则R 为ABC 的内切圆的半径,则()1242R AB AC BC ++=, 又=6+10+8=24AB AC BC ++,此时2R =;若该球与三棱柱111ABC A B C -的上下底面均相切,此时126R AA ==,3R =;所以在三棱柱111ABC A B C -内放一个体积为V 的球,该球半径最大为2,3max 4=2=3323V ππ⨯.3.(2021·浙江路桥·高一月考)如图所示,在平面五边形ABCDE 中,2AB AE CD ===,1BC =,DE =90ABC ∠=︒,90AED ∠=︒,分别沿AC ,AD 将ABC 与ADE 折起使得B ,E 重合于点P .试求:(1)三棱锥A PCD -的体积;(2)三棱锥A PCD -的外接球的表面积.【答案】(2)8π.【解析】(1)PD =1PC =,2CD =,则222 PC PD CD PC PD +=⇒⊥,又AP PD ⊥,AP PC ⊥,PC PD D ⋂=,AP ⊥平面PCD .所以111111233232A PCD PCD V S AP PC PD PA -=⋅=⨯⋅⋅⋅=⨯⨯=△ (2)将三棱锥补成长方体知三棱锥A PCD -的外接球的直径即为长方体的体对角线长,即2R R ==,所以球的表面积为24π8πR =. 4.(2021·河北定州·高一期中)定州市某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160000cm 3(1)求正方体石块的棱长;(2)为争创全国文明城市,现将表面脏污,棱角轻微磨损的多面形石凳(图(1))打磨成一个球形的石凳,并用一种环保底漆全面粉刷.已知这种底漆一瓶的净含量为235克,可粉刷21.5m 左右,求此球形石凳最大时,一瓶环保底漆大约可以粉刷几个球形石凳?(精确到1)(π按3.14算)【答案】(1)40cm ;(2)3个.【解析】(1)设正方体石块的棱长为a , 则每个截去的四面体的体积为3113222248a a a a ⨯⨯⨯⨯=. 由题意可得331600008483a a ⨯+=, 解得40a =.故正方体石块的棱长为40cm ;(2)当球形石凳的面与正方体的各个面都相切时球形石凳的表面积最大.此时正方体的棱长正好是球的直径,∴球形石凳的表面积224041600cm 2S ππ⎛⎫=⨯= ⎪⎝⎭. 41.51031600π⨯≈, 所以一瓶环保底漆大约可以粉刷3个球形石凳.5.(2021·湖北孝感·高一期中)如下图1,一个正三棱柱形容器中盛有水,底面三角形ABC 的边长为2cm ,侧棱14cm AA =,若侧面11AA B B 水平放置时(如下图2),水面恰好过AC ,BC ,11A C ,11B C 的中点.(1)求容器中水的体积;(2)当容器底面ABC 水平放置时(如图1),求容器内水面的高度.【答案】(1))3cm ;(2)3cm .【解析】(1)在图2中,水所占部分为四棱柱.四棱柱底面积为)222112sin 601sin 6022S cm =⨯⨯︒-⨯⨯︒=,又高为4cm所以水的体积为)34V cm ==,(2)设图1中水高度为cm h ,则212sin 602V h =⨯⨯︒⨯=3h =. 所以当容器底面ABC 水平放置时,容器内水面的高度为3cm .6.(2021·福建宁德·高一期中)如图所示是在圆锥内部挖去一正四棱柱所形成的几何体,该正四棱柱上底面的四顶点在圆锥侧面上,下底面落在圆锥底面内,已知圆锥侧面积为15π,底面半径为3r =.(Ⅰ)若正四棱柱的底面边长为a =(Ⅱ)求该几何体内正四棱柱侧面积的最大值.【答案】(Ⅰ)16123π-;(Ⅱ)【解析】设圆锥母线长为l ,高为h ,正四棱柱的高为1h(Ⅰ)由S rl π=圆锥侧,有315l ππ=,故5l =,由222h r l +=,故4h =,所以圆锥体积为2211341233V r h πππ==⨯⨯=圆锥由a =2, 由图可得11h r h r -=,所以11318433r h h r --==⨯=, 故正四棱柱的体积为21816233V a h ==⨯=正四棱柱 所以该几何体的体积为16123V V π-=-圆锥正四棱柱 (Ⅱ)由图可得12r h h r =,即13243h =,即1312h +=由13h +≥,当且仅当136h ==时左式等号成立,有112h a ⇒≤12h =,a =故正四棱柱侧面积14S h a =≤侧12h =,a =所以该几何体内正四棱柱侧面积的最大值为7.(2021·福建福州·高一期中)如图所示的圆锥,顶点为O ,底面半径是5cm ,用一与底面平行的平面截得一圆台,圆台的上底半径为2.5cm ,这个平面与母线OA 交于点B ,线段AB 的长为10cm .(提示:本题的数据有长度单位)(1)求圆台的体积和圆台的侧面积;(2)把一根绳从线段AB 的中点M 开始到点A ,沿着侧面卷绕.使它成为最短时候,求这根绳的长度;【答案】cm 3,75πcm 2;(2)25cm. 【解析】(1)作出圆锥的轴截面和沿OA 剪开的侧面展开图,如下图由下底面半径是5cm ,上底半径为2.5cm ,AB 的长为10 cm ,可得:10OB =cm ,因此圆台的体积为:223115 2.5(33cm )V ππ=⨯⨯⨯=, 侧面积为:2520 2.510)75cm (S πππ=⨯⨯-⨯⨯=.(2)由圆锥的底面周长可得侧面展开图的弧长为10π, 所以,侧面展开图的圆心角为2π,在直角三角形MOA '中15OM =,可得25(cm)MA '=,所以最短时候,绳长为25cm。

高中数学 4简单几何体、组合体课后习题(带答案)

高中数学 4简单几何体、组合体课后习题(带答案)

课后习题1.圆柱的侧面展开图是长为12cm ,宽为8cm 的矩形,则这个圆柱的体积为 ( )A.288πcm 3B.192πcm 3C.288πcm 3或192πcm 3D.192π cm32.把直径分别为6cm ,8cm ,10cm 的三个铜球先熔成一个大球,再将其削成一个最大的正方体,则这一正方体的体积为 .3.轴截面是正方形的圆柱有一内接正四棱柱,已知圆柱的轴截面对角线长为22cm ,则四棱柱的体积为( )A.4cm 3B.8 cm 3C.2πcm 3D.4πcm34.棱长为a 的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( )A.33aB.34aC.36aD.312a5.已知一个直棱柱底面是菱形,面积为S ,两对角面的面积分别为m ,n ,求直棱柱的体积.6.如图,一个三棱柱形容器中盛有水,且侧棱18AA =.若侧面11AA B B 水平放置时,液面恰好过AC 、BC 、11A C 、11B C 的中点,当底面ABC 水平放置时,液面高为多少?7.(全国1理16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为__________。

8.一个容器形如倒置的等边圆锥,如图所示,当所盛水深是容器高的一半时,将容器倒转,那么水深是容器高的( )A.1+1-19.在全面积为2a π的圆锥中,当底面半径为何值时圆锥体积最大,最大体积是多少?10.半径为r 的球放置于倒置的等边圆锥容器内,再将水注入容器内到水与球面相切为止,取出球后水面的高度是 .11.直三棱柱111ABC A B C -的体积为V ,已知点P ,Q 分别为1AA ,1CC 上的点,而且满足1AP C Q =,则四棱锥B APQC -的体积是( )A.12VB.13VC.14VD.23V 12.一个正三棱锥的底面边长为a ,且三条侧棱两两垂直,求棱锥的体积.13.四面体ABCD 中,5AB CD ==,BC AD ==,BD AC ==.14.正三棱锥S ABC -的侧面是边长为a 的正三角形,D 、E 分别是SA 、BC 的中点,求SDE ∆绕直线SE 旋转一周所得到的旋转体的体积.15.若棱锥的顶点为P ,P 在底面上的射影为O ,PO a =,现用平行于底面的平面去截这个棱锥,截面交PO 于点M ,并使截得的两部分侧面积相等,设OM b =,则a 、b 的关系是( )A.1)b a =-B. 1)b a =+C. 12b a = D. 12b a =16.三棱台111ABC A B C -中,11:1:2AB A B =,则三棱锥1A ABC -,11B A B C -,111C A B C -的体积之比( )A.1:1:1B. 1:1:2C. 1:2:4D. 1:4:417.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个半径为1的圆和圆心,那么这个几何体的体积为( )3233π D.3π 18.圆台上、下底面面积分别是π,4π,侧面积是6π,则这个圆台的体积是( )233π B.3π736π733π19.降水量是值水平地面上单位面积所降雨水的深度,用上口直径为38cm ,底面直径为24cm ,深度为35cm 的圆台形容器(轴截面如图)来测量降水量,如果在一次降水中,此桶盛得的雨水正好是桶深的17,则本次降雨的降水量是多少?20.三棱台111ABC A B C -中,11:1:2A B AB =,D 是1C C 的中点,求截面1A BD 把棱台分成上、下两部分的体积比.21.有一块扇形铁皮OAB ,60AOB ∠=︒,72OA cm =,要剪下来一个圆环ABCD ,作圆台形容器的侧面,并且余下的扇形OCD 内剪下一块与其相切的圆形使它恰好作为圆台形容器的下底面(大底面).试求: (1)AD 应去多长?(2)容器的容积.22.已知高与直径之比为2:1的圆柱内接于球,且圆柱的体积为500π,则球的体积为( )A.5003π B.25003π25003 D. 125003π23.(06北京卷)已知,,A B C 三点在球心为O ,半径为R 的球面上,AC BC ⊥,且AB R =那么,A B 两点的球面距离为__________,球心到平面ABC 的距离为_________. 24.已知过球面上三点A 、B 、C 的截面到球心的距离等于球半径的一半,且6AC BC ==,4AB =,求球面面积与球的体积.25.在棱长为1的正方体内,有两球相外切,并且又分别与正方体相内切. (1)求两球半径之和;(2)球的半径是多少是,两球体积之和最小.答案简单几何体的相关计算1.【答案】C【解析】分两种情况:①12为底面周长,则2366288212,,()8()r r V cm πππππ=∴==⨯=②8为底面周长,则234419228,,()12(r r V cm πππππ=∴==⨯=)2.【答案】【解析】大球的体积3333444434563333V ππππ=⨯+⨯+⨯=⨯,则大球半径为6,因此当正方体内接于球时,其体积最大,由球半径为6,则正方体的棱长a应满足2R =,则a =33cm ).V ==正方体(3.【答案】D【解析】由已知,圆柱的高为2,底面半径为1;正四棱柱的高为2,地卖弄对角线为2,,3V 24cm ∴=四棱柱 4.【答案】C【解析】此八面体可以分成上、下两个全等的正四棱柱,下底边长为,高为2a ,所以23112)326a V a=⨯⨯⨯= 5.【答案与解析】设直棱柱的底面对角线长为x 和y ,高为h,则有:12xy sxh m h yh n⎧=⎪⎪=∴=⎨⎪=⎪⎩;V sh s ==柱6.【答案与解析】解:设原三棱柱111ABC A B C -的底面积为S ,高为h21,()4CDE ABCS CE DE AB SAC ∴==, 14CDESS ∴=.∴当侧面11AA BB 水平放置时,无水的空间即111CDE C D E -为一小三棱柱. 此时水的体积为1344V Sh S h Sh =-⋅=水.当底面ABC 水平放置时。

高中数学 2.2.2 双曲线的简单几何性质(1)(含解析)新人教A版高二选修1-1数学试题

高中数学 2.2.2 双曲线的简单几何性质(1)(含解析)新人教A版高二选修1-1数学试题

课时作业16 双曲线的简单几何性质(1)知识点一由双曲线的标准方程研究几何性质1.若直线x =a 与双曲线x 24-y 2=1有两个交点,则a 的值可以是( )A.4B.2C.1D.-2答案 A解析 ∵双曲线x 24-y 2=1中,x ≥2或x ≤-2,∴若x =a 与双曲线有两个交点,则a >2或a <-2,故只有A 选项符合题意. 2.双曲线x 24-y 212=1的焦点到渐近线的距离为( )A.2 3B.2C. 3D.1答案 A解析 不妨取焦点(4,0)和渐近线y =3x ,则所求距离d =|43-0|3+1=2 3.故选A.3.求双曲线4x 2-y 2=4的顶点坐标、焦点坐标、实半轴长、虚半轴长、离心率和渐近线方程.解 把方程化为标准形式为x 212-y 222=1,由此可知,实半轴长a =1,虚半轴长b =2. 顶点坐标是(-1,0),(1,0).c =a 2+b 2=12+22=5,∴焦点坐标是(-5,0),(5,0). 离心率e =c a=5,渐近线方程为x 1±y2=0,即y =±2x .知识点二求双曲线的离心率 4.下列方程表示的曲线中离心率为62的是( ) A.x 22-y 24=1 B.x 24-y 22=1 C.x 24-y 26=1 D.x 24-y 210=1 答案 B解析 ∵e =c a,c 2=a 2+b 2,∴e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=⎝ ⎛⎭⎪⎫622=32.故b 2a 2=12,观察各曲线方程得B 项系数符合,应选B. 5.已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.解 设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,∴y =±b 2a.由|PF 2|=|QF 2|,∠PF 2Q =90°, 知|PF 1|=|F 1F 2|,∴b 2a=2c .∴b 2=2ac . ∴c 2-2ac -a 2=0. ∴⎝ ⎛⎭⎪⎫c a 2-2·c a-1=0. 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). 所以所求双曲线的离心率为1+ 2. 知识点三由双曲线的几何性质求标准方程6.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( )A.x 24-y 25=1 B.x 24-y 25=1 C.x 22-y 25=1 D.x 22-y 25=1 答案 B解析 由右焦点为F (3,0)可知c =3,又因为离心率等于32,所以c a =32,所以a =2.由c2=a 2+b 2知b 2=5,故双曲线C 的方程为x 24-y 25=1,故选B.7.已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1答案 D解析 根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y=±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,选D.一、选择题1.双曲线2x 2-y 2=8的实轴长是( ) A.2 B.2 2 C.4 D.4 2答案 C解析 双曲线方程可变形为x 24-y 28=1,所以a 2=4,a =2,从而2a =4,故选C.2.若双曲线的实轴长、虚轴长、焦距成等差数列,则它的离心率为( ) A.43 B.53 C.2 D.3 答案 B解析 不妨设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则2·2b =2a +2c ,即b =a +c2.又b 2=c 2-a 2,则⎝ ⎛⎭⎪⎫a +c 22=c 2-a 2,所以3c 2-2ac -5a 2=0,即3e 2-2e -5=0,注意到e >1,得e =53. 故选B.3.若中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A.y =±54xB.y =±45xC.y =±43xD.y =±34x答案 D解析 设双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0).因为c a =53,所以a 2+b 2a 2=259,所以b a =43.所以双曲线的渐近线方程为y =±a b x ,即双曲线的渐近线方程为y =±34x ,故选D. 4.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 2B. 3C.2D.3答案 B解析 设双曲线C 的方程为x 2a 2-y 2b 2=1,焦点F (-c,0),将x =-c 代入x 2a 2-y 2b 2=1可得y2=b 4a 2,所以|AB |=2·b 2a=2·2a . ∴b 2=2a 2,c 2=a 2+b 2=3a 2,∴e =ca= 3.5.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值X 围为( )A.[3-23,+∞)B.[3+23,+∞)C.⎣⎢⎡⎭⎪⎫-74,+∞ D.⎣⎢⎡⎭⎪⎫74,+∞答案 B解析 因为F (-2,0)是已知双曲线的左焦点,所以a 2+1=4,即a 2=3,所以双曲线方程为x 23-y 2=1.设点P (x 0,y 0)(x 0≥3),则x 203-y 20=1(x 0≥3),可得y 20=x 203-1(x 0≥3),易知FP →=(x 0+2,y 0),OP →=(x 0,y 0),所以OP →·FP →=x 0(x 0+2)+y 2=x 0(x 0+2)+x 203-1=4x 23+2x 0-1,此二次函数对应的图象的对称轴为x 0=-34.因为x 0≥3,所以当x 0=3时,OP →·FP →取得最小值43×3+23-1=3+23,故OP →·FP →的取值X 围是[3+23,+∞).二、填空题6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________;b =________.答案 1 2解析 由题意知,渐近线方程为y =-2x ,由双曲线的标准方程以及性质可知b a=2,由c =5,c 2=a 2+b 2,可得b =2,a =1.7.中心在原点,实轴在x 轴上,一个焦点为直线3x -4y +12=0与坐标轴的交点的等轴双曲线方程是________.答案 x 2-y 2=8解析 由双曲线的实轴在x 轴上知其焦点在x 轴上,直线3x -4y +12=0与x 轴的交点坐标为(-4,0),故双曲线的一个焦点为(-4,0),即c =4.设等轴双曲线方程为x 2-y 2=a 2,则c 2=2a 2=16,解得a 2=8,所以双曲线方程为x 2-y 2=8.8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2+y 2-4x +2=0有公共点,则该双曲线离心率的取值X 围是________.答案 (1,2]解析 将圆的方程配方,得(x -2)2+y 2=2.双曲线的渐近线方程为bx ±ay =0.由于双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与圆x 2+y 2-4x +2=0有公共点,所以|2b ±0|a 2+b 2≤ 2.又c 2=a 2+b 2,所以c 2≤2a 2,即e ≤2,所以离心率的取值X 围为(1,2].三、解答题9.根据下列条件,求双曲线的标准方程: (1)一个顶点是(0,6),且离心率是1.5;(2)与双曲线x 29-y 216=1有共同渐近线,且过点(-3,23).解 (1)∵顶点为(0,6),设所求双曲线方程为y 2a 2-x 2b2=1,∴a =6.又∵e =1.5,∴c =a ×e =6×1.5=9,b 2=c 2-a 2=45. 故所求的双曲线方程为y 236-x 245=1.(2)解法一:双曲线x 29-y 216=1的渐近线为y =±43x ,令x =-3,y =±4,因23<4,故点(-3,23)在射线y =-43x (x ≤0)及x 轴负半轴之间,∴双曲线焦点在x 轴上.设双曲线方程为x 2a 2-y 2b2=1,(a >0,b >0),则⎩⎪⎨⎪⎧b a =43,-32a 2-232b 2=1,解之得⎩⎪⎨⎪⎧a 2=94,b 2=4.∴双曲线方程为x 294-y 24=1.解法二:设双曲线方程为x 29-y 216=λ(λ≠0),∴-329-23216=λ.∴λ=14,∴双曲线方程为x 294-y24=1.10.中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的半长轴长与双曲线半实轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求△F 1PF 2的面积.解 (1)设椭圆方程为x 2a 2+y 2b 2=1,双曲线方程为x 2m 2-y 2n 2=1(a ,b ,m ,n >0,且a >b ),则⎩⎪⎨⎪⎧a -m =4,7×13a =3×13m ,解得a =7,m =3,所以b =6,n =2,所以椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1,F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,所以|PF 1|=10,|PF 2|=4,所以cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=45,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin∠F 1PF 2=12×10×4×35=12.。

3.1.2 椭圆的简单几何性质-【新教材】人教A版(2019)高中数学选择性必修第一册同步练习

3.1.2 椭圆的简单几何性质-【新教材】人教A版(2019)高中数学选择性必修第一册同步练习

椭圆的简单几何性质同步练习一、选择题1.已知有相同两焦点F1、F2的椭圆x2m +y2=1(m>1)和双曲线x2n−y2=1(n>0),P是它们的一个交点,则△F1PF2的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 随m,n变化而变化2.已知椭圆:x24+y22=1,过点M(1,1)的直线与椭圆相交于A,B两点,且弦AB被点M平分,则直线AB的方程为()A. x+2y−3=0B. 2x+y−3=0C. x+y−2=0D. 2x−y+1=03.若过椭圆x216+y24=1内一点P(3,1)的弦被该点平分,则该弦所在的直线方程为()A. 3x+4y−13=0B. 3x−4y−5=0C. 4x+3y−15=0D. 4x−3y−9=04.已知椭圆x2a2+y2b2=1(a>b>0)的一个焦点是圆x2+y2−6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为()A. (−3,0)B. (−4,0)C. (−10,0)D. (−5,0)5.我们把由半椭圆x2a2+y2b2=1(x≥0)与半椭圆y2b2+x2c2=1(x<0)合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0).如图,设点F0,F1,F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是边长为1的等边三角形,则a,b的值分别为()A. 5,4B. √3,1C. 5,3D. √72,16. 如图,F 1F 2分别为椭圆x 2a 2+y 2b 2=1的左右焦点,点P 在椭圆上,△POF 2的面积为√3的正三角形,则b 2的值为( )A. √3B. 2√3C. 3√3D. 4√37. 已知F 1,F 2分别是椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅(OF 1⃗⃗⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ )=0(O为坐标原点),若|PF 1⃗⃗⃗⃗⃗⃗⃗ |=√2|PF 2⃗⃗⃗⃗⃗⃗⃗ |,则椭圆的离心率为( )A. √6−√3B. √6−√32C. √6−√5D. √6−√528. 已知F 1,F 2是椭圆的两个焦点,满足MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A. (0,1)B. (0,12]C. (0,√22) D. [√22,1)9. 已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则1e1e 2的最大值为( )A. 3B. 2C. 4√33D. 2√3310. 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为√32,短轴长为2,过右焦点F 且斜率为k(k >0)的直线与椭圆C 相交于A 、B 两点.若AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则k=( )A. 1B. √2C. √3D. 211. 已知F 1(−1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB|=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=112. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F(3,0),过点F 的直线交椭圆E 于A ,B 两点,若AB 的中点坐标为(1,−1),则弦长|AB|=( )A. 5√2B. 2√5C. 5√22D. √1013. 若椭圆C :x 28+y 24=1的右焦点为F ,且与直线l :x −√3y +2=0交于P ,Q 两点,则△PQF 的周长为( )A. 6√2B. 8√2C. 6D. 814. 椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆上的点M满足:∠F 1MF 2=60°,且MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =2,则b =( )A. 1B. √2C. √3D. 2二、填空题15. 已知抛物线C :x 2=−2py(p >0)的焦点F 与y 28+x 24=1的一个焦点重合,过焦点F 的直线与C 交于A ,B 两不同点,抛物线C 在A ,B 两点处的切线相交于点M ,且M 的横坐标为2,则弦长|AB|=________. 16. 设M 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,以M 为圆心的圆与x 轴相切,切点为椭圆的焦点F ,圆M 与y 轴相交于不同的两点P ,Q ,若△PMQ 为等边三角形,则椭圆C 的离心率为________. 17. 若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⃗⃗⃗⃗⃗ ⋅FP⃗⃗⃗⃗⃗ 的最大值为_________. 18. 设F 1,F 2分别为椭圆x 23+y 2=1的左、右焦点,点A ,B 在椭圆上,若F 1A ⃗⃗⃗⃗⃗⃗⃗ =5F 2B ⃗⃗⃗⃗⃗⃗⃗ ,则点A 的坐标是_________.三、解答题(本大题共4小题,共48.0分)19. 已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)四个顶点中的三个是边长为2√3的等边三角形的顶点.(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线y =kx +m 与圆O:x 2+y 2=2b 23相切且交椭圆E 于两点M,N ,求线段|MN|的最大值.20.已知椭圆C:x 2a2+y2b2=1(a>b>0)的两个顶点分别为A(−a,0),B(a,0),点P为椭圆上异于A,B的点,设直线PA的斜率为k1,直线PB的斜率为k2,且.(1)求椭圆C的离心率;(2)若b=1,设直线l与x轴交于点D(−1,0),与椭圆交于M,N两点,求△OMN面积的最大值.21.已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),且椭圆上的点到点F的最大距离为3,O为坐标原点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过右焦点F倾斜角为60°的直线与椭圆C交于M、N两点,求△OMN的面积.22.已知椭圆C:x2a2+y23=1(a>√3)的焦距为2,A,B分别为椭圆C的左、右顶点,M,N为椭圆C上的两点(异于A,B),连结AM,BN,MN,且BN斜率是AM斜率的3倍.(1)求椭圆C的方程;(2)证明:直线MN恒过定点.答案和解析1.【答案】B【解答】解:由题意,不妨设P 是双曲线右支上的一点,|PF 1|=x ,|PF 2|=y ,则x +y =2√m ,x −y =2√n , ∴x 2+y 2=2(m +n), ∵两曲线有相同的焦点, ∴m −1=n +1, ∴m =n +2, ∴x 2+y 2=4(n +1), 即|PF 1|2+|PF 2|2=|F 1F 2|2, ∴△F 1PF 2是直角三角形, 故选B .2.【答案】A【解答】解:设A(x 1,y 1)、B(x 2,y 2), 则x 124+y 122=1,①,x 224+y 222=1,②①−②,得(x 1−x 2)(x 1+x 2)4+(y 1−y 2)(y 1+y 2)2=0.∴y 1−y2x 1−x 2=−12⋅x 1+x2y 1+y 2.又∵M 为AB 中点,∴x 1+x 2=2,y 1+y 2=2. ∴直线AB 的斜率为y 1−y 2x1−x 2=−12.∴直线AB 的方程为y −1=−12(x −1),即2y +x −3=0. 故选:A .3.【答案】A【解答】解:设弦的两端点为A(x 1,y 1), B(x 2,y 2), P 为AB 中点得{x 1+x 2=6y 1+y 2=2,由A , B 在椭圆上有{x 1216+y 124=1x 2216+y 224=1,两式相减得x12−x2216+y12−y224=0,即(x1+x2)(x1−x2)16+(y1+y2)(y1−y2)4=0,即3(x1−x2)8+y1−y22=0,即y1−y2x1−x2=−34,则斜率k=−34,且过点P(3,1),有y−1=−34(x−3),整理得3x+4y−13=0.故选A.4.【答案】D【解答】解:∵圆的标准方程为(x−3)2+y2=1,∴圆心坐标是(3,0),∴c=3.又b=4,∴a=√b2+c2=5.∵椭圆的焦点在x轴上,椭圆的左顶点为(−5,0).故选D.5.【答案】D【解析】解:由题意可得|OF2|=√b2−c2=12,|OF0|=c=√3|OF2|=√32,解得b=1,又a2=b2+c2=1+34=74,得a=√72,即a=√72,b=1.6.【答案】B 【解答】解:∵△POF2的面积为√3的正三角形,S=12×c×√32c=√34c2∴√34c2=√3,解得c=2.∴P(1,√3)代入椭圆方程可得:1a2+3b2=1,与a2=b2+4联立解得:b2=2√3.故选B.7.【答案】A【解答】解:设焦点坐标F 1(−c,0),F 2(c,0),|F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ |=2c , |PF 1⃗⃗⃗⃗⃗⃗⃗ |=√2|PF 2⃗⃗⃗⃗⃗⃗⃗ |,|PF 1⃗⃗⃗⃗⃗⃗⃗ |+|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2a , 所以|PF 1⃗⃗⃗⃗⃗⃗⃗ |=2√2a(√2−1),|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2a(√2−1),由PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅(OF 1⃗⃗⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ )=0,设线段PF 1的中点为M ,则OM ⊥PF 1, 则|PO ⃗⃗⃗⃗⃗ |=|OF 1⃗⃗⃗⃗⃗⃗⃗ |=|OF 2⃗⃗⃗⃗⃗⃗⃗ |, ∴PF 1⊥PF 2,则|PF 1⃗⃗⃗⃗⃗⃗⃗ |2+|PF 2⃗⃗⃗⃗⃗⃗⃗ |2=|F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ |2,∴(2√2a(√2−1))2+(2a(√2−1))2=4c 2, 可得c 2=(9−6√2)a 2,解得e 2=9−6√2, 则椭圆的离心率为√6−√3. 故选A .8.【答案】C【解答】 解:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,椭圆上任一点P(x,y),由MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0的点M 总在椭圆内,则PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ >0,得x 2+y 2>c 2恒成立,代入椭圆方程化简得y 2<b 4a 2−b 2,又−b <y <b ,所以b 2<b 4a 2−b 2,化简得a 2<2b 2=2a 2−2c 2,得a 2>2c 2,可得e =ca<√22, 又0<e <1,∴0<e <√22, 故选C .9.【答案】D【解答】解:不妨设F 1,F 2分别为左、右焦点,P 为第一象限的点,如图: 设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义知|PF 1|+|PF 2|=2a 1,|PF 1|−|PF 2|=2a 2, ∴|PF 1|=a 1+a 2,|PF 2|=a 1−a 2. 设|F 1F 2|=2c ,在△PF 1F 2中,∠F 1PF 2=π3,由余弦定理得,4c 2=(a 1+a 2)2+(a 1−a 2)2−2(a 1+a 2)(a 1−a 2)cos π3,化简得a 12+3a 22=4c 2,即1e 12+3e 22=4,∴1e 12+3e 22=4≥2√3e 12e 22,∴1e1e 2≤2√33, 当且仅当e 1=√22,e 2=√62时,等号成立,则1e1e 2的最大值为2√33, 故选D .10.【答案】B【解答】 解:椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,短轴长为2, 可得:b =1,ca =√32,解得:a =2,c =√3,b =1, 椭圆方程为x 24+y 2=1,过右焦点F 且斜率为k(k >0)的直线与椭圆C 相交于A ,B 两点, 设A(x 1,y 1),B(x 2,y 2), ∵AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,∴y 1=−3y 2, 设直线AB 方程为y =k(x −√3), 代入x 24+y 2=1,消去x ,可得(14k 2+1)y 2+√32k y −14=0, ∴y 1+y 2=−√32k 1+14k2=−2√3k1+4k 2,y 1y 2=−141+14k2=−k 24k 2+1,−2y 2=−2√3k 1+4k2,−3y 22=−k 24k 2+1,解得:k =√2. 故选:B .11.【答案】C【解答】解:F 1(−1,0),F 2(1,0)是椭圆C 的两个焦点,可得c =1, 过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB|=3, 令椭圆方程x 2a 2+y 2b 2=1中x =1,得y =±√b 2−b 2a 2,可得2√b 2−b 2a2=3, 化简得4a 4−17a 2+4=0, 解得a =2,则b =√3, 所求的椭圆方程为:x 24+y 23=1.故选:C .12.【答案】A【解答】解:设A(x 1,y 1),B(x 2,y 2), 代入椭圆方程得x 12a 2+y 12b 2=1①,x 22a 2+y 22b 2=1②,相减得x 12−x 22a 2+y 12−y 22b 2=0, ∴x 1+x 2a 2+y 1−y2x 1−x 2⋅y 1+y 2b 2=0.∵x 1+x 2=2,y 1+y 2=−2,k AB =−1−01−3=12.∴2a 2+12×−2b 2=0,化为a 2=2b 2,又c =3=√a 2−b 2,解得a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.AB 的斜率为12,且过(1,−1),∴直线AB 的方程为y +1=12(x −1),即y =12x −32,代入椭圆方程,得3x 2−6x −27=0. ∴x 1+x 2=2.x 1x 2=−9.∴|AB|=√1+14⋅√(x 1+x 2)2−4x 1x 2=5√2. 故选:A .13.【答案】B【解析】解:∵直线l 过椭圆C 的左焦点F′(−2,0), 直线l :x −√3y +2=0经过左焦点F′, ∴△PQF 的周长|PQ|+|PF|+|QF|=|PF′|+|PF|+|QF′|+|QF|=4a =8√2,14.【答案】C【解析】解:设|MF 1⃗⃗⃗⃗⃗⃗⃗⃗ |=m ,|MF 2⃗⃗⃗⃗⃗⃗⃗⃗ |=n ,因为MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =2,则mncos60°=2,⇒mn =4, 又m +n =2a ,(1),在△MF 1F 2中,由余弦定理可得:|F 1F 2|2=m 2+n 2−2mncos60°=4(a 2−b 2)(2), (1)式平方减去(2)式得:b 2=3,得:b =√3. 故选:C .设|MF 1|=m ,|MF 2|=n ,由数量积及∠F 1MF 2的大小可得mn =4,再由椭圆的定义可得m +n =2a ,在△MF 1F 2中,由余弦定理可得b 的值.本题考查椭圆的性质及数量积的运算性质,属于中档题.15.【答案】10【解答】解:由题意可得F(0,−2),则p =4,抛物线方程为x 2=−8y . 设直线AB 方程为y =kx −2,A(x 1,y 1),B(x 2,y 2),其中y 1=−x 128,y 2=−x 228.由y =−x28得y′=−x4,所以在点A处的切线方程为y−y1=−x14(x−x1),化简得y=−x14x+x128,①同理可得在点B处的切线方程为y=−x24x+x228.②联立①②得x M=x1+x22,又∵M的横坐标为2,∴x1+x2=4.将AB方程代入抛物线得x2+8kx−16=0,∴x1+x2=−8k=4,∴k=−12,∴y1+y2=k(x1+x2)−4=−12×4−4=−6,∴|AB|=p−y1−y2=10.故答案为10.16.【答案】√33【解答】解:如图,过M作MN⊥y轴于N,由△PMQ为等边三角形,可得|PQ|=2√33c,再由题意可得M(c,b2a ),则圆M为(x−c)2+(y−b2a)2=b4a2,取x=0,可得y1=b2a −√b4−a2c2a,y2=b2a+√b4−a2c2a,∴2√b4−a2c2a =2√33c,即3(e2)2−10e2+3=0,解得:e=√33.故答案为:√33.17.【答案】6【解答】解:由题意,F(−1,0),设点P(x0,y0),则有x024+y023=1,解得y02=3(1−x024),因为FP ⃗⃗⃗⃗⃗ =(x 0+1,y 0),OP ⃗⃗⃗⃗⃗ =(x 0,y 0),所以OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ =x 0(x 0+1)+3(1−x 024)=x 024+x 0+3=14(x 0+2)2+2, 此二次函数对应的抛物线的对称轴为x 0=−2,因为−2≤x 0≤2,所以当x 0=2时,OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ 取得最大值224+2+3=6, 故答案为6. 18.【答案】(0,1)或(0,−1)【解答】解:设A(m,n).由F 1A ⃗⃗⃗⃗⃗⃗⃗ =5F 2B ⃗⃗⃗⃗⃗⃗⃗ ,得B (m+6√25,n 5). 又A ,B 均在椭圆上,所以有{m 23+n 2=1,(m+6√25)23+(n 5)2=1,解得{m =0,n =1或{m =0,n =−1, 所以点A 的坐标为(0,1)或(0,−1).19.【答案】解:(Ⅰ)由题意,椭圆上下顶点与左右顶点其中的一个构成等边三角形, 所以a =√3b,b =√3,即a =3,所以椭圆E 的方程为x 29+y 23=1,(Ⅱ)圆O:x 2+y 2=2,因为直线y =kx +m 与圆O:x 2+y 2=2相切, 所以√1+k 2=√2,即m 2=2(1+k 2); 联立{x 29+y 23=1y =kx +m得(1+3k 2)x 2+6kmx +3(m 2−3)=0,Δ>0, 设M (x 1,y 1),N (x 2,y 2),所以x 1+x 2=−6km 1+3k 2,x 1·x 2=3(m 2−3)1+3k 2,由弦长公式得|MN|=√1+k 2·|x 1−x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=√1+k 2·√12(9k 2+3−m 2)1+3k 2, 将m 2=2(1+k 2)代入:|MN|=√6·√(2+2k 2)(7k 2+1)1+3k 2≤√6·(2+2k 2)+(7k 2+1)21+3k 2=3√62, 当且仅当2+2k 2=7k 2+1,即k 2=15时等号成立,故弦长|MN|最大值为3√62. 20.【答案】解:(1)设P(x 0,y 0)为椭圆上的点,则x 02a 2+y 02b 2=1,整理得:y 02=−b 2a 2(x 02−a 2), 又k 1=y 0x 0+a ,k 2=y 0x 0−a ,∴k 1k 2=y 02x 02−a 2=−12, 联立两个方程则k 1k 2=−b 2a 2=−12, 解得e =c a =√1−b2a 2=√22. (2)由(1)知a 2=2b 2,又b =1,∴椭圆C 的方程为x 22+y 2=1.由题意,设直线l 的方程为:x =my −1,代入椭圆的方程有:(m 2+2)y 2−2my −1=0,则Δ=(−2m )2+4(m 2+2)=8(m 2+1)>0,设M(x 1,y 1),N(x 2,y 2),则y 1+y 2=2m m 2+2,y 1y 2=−1m 2+2,则△OMN 的面积S =12|OD |·|y 1−y 2| =12√(y 1+y 2)2−4y 1y 2 =12×√8m 2+8m 2+2=√2·√m 2+1m 2+2, 令√m 2+1=t ,(t ≥1),则有m 2=t 2−1,代入上式有S =√2·√m 2+1m 2+2=√2t t 2+1=√2t+1t ≤√22, 当且仅当t =1,即m =0时等号成立,所以△OMN 面积的最大值为√22. 21.【答案】解:(Ⅰ)椭圆焦点坐标为(1,0),则c =1,由椭圆C 上的点到F 的最大距离为a +c =3,则a =2, b 2=a 2−c 2=3,∴椭圆的标准方程为x 24+y 23=1.(Ⅱ)设M(x 1,y 1),N(x 2,y 2),由已知可设直线MN 的方程为:y =√3(x −1),联立方程组{y =√3(x −1)3x 2+4y 2=12消去x 得:5y 2+2√3y −9=0. y 1+y 2=−2√35,y 1⋅y 2=−95,⇒(y 1−y 2)2=(−2√35)2−4×(−95)=19225. ∴△OMN 的面积S =12×OF ×|y 1−y 2|=12×1×8√35=4√35 22.【答案】解:(1)∵{2c =2a 2=c 2+3, ∴{a =2c =1, 所以b 2=a 2−c 2=3∴椭圆C 的方程为x 24+y 23=1;(2)连结BM ,设M(x 1,y 1),N(x 2,y 2),则k AM ⋅k BM =y 1x 1+2⋅y 1x 1−2=y 12x 12−4,∵点M(x 1,y 1)在椭圆上,∴k AM ⋅k BM =y 12x 12−4=3−34x 12x 12−4=−34,∵k BN =3k AM ,∴k BN ⋅k BM =−94,①当MN 斜率不存在时,设MN:x =m ,不妨设M 在x 轴上方, ∴M(m,√12−3m 24),N(m,−√12−3m 24), ∵k BN ⋅k BM =−94, ∴m =1;②当MN 斜率存在时,设MN:y =kx +t ,由{y =kx +t 3x 2+4y 2−12=0,整理,得(3+4k 2)x 2+8ktx +4t 2−12=0, ∴x 1+x 2=−8kt 3+4k 2,x 1⋅x 2=4t 2−123+4k 2, ∵k BN ⋅k BM =y 1x 1−2⋅y 2x 2−2=(kx 1+t)⋅(kx 1+t)x 1x 2−2(x 1+x 2)+4=−94,∴化简可得2k2+3kt+t2=0,即t=−k或t=−2k,当t=−k时,y=kx−k,恒过定点(1,0),当斜率不存在亦符合;当t=−2k,y=kx−2k,过点(2,0)与点B重合,舍去,∴直线恒过定点(1,0).。

高中数学必修二 《8 3 简单几何体的表面积与体积》课后课时精练名校名师课件

高中数学必修二  《8 3 简单几何体的表面积与体积》课后课时精练名校名师课件
答案 16π 解析 设球 O 的半径为 R,圆 M 的半径为 r,由题意得 r= 3,又球心 到圆 M 的距离为R2,由勾股定理,得 R2=r2+R22,R=2,则球的表面积为 16π.
答案
解析
8.已知两个正四棱锥有公共底面,且底面边长为 4,两棱锥的所有顶点 都在同一个球面上,若这两个正四棱锥的体积之比为 1∶2,则该球的表面积 为________.
答案 12π
答案
解析 球 O 的表面积最小时,球 O 的半径 R 最小.设正三棱柱的底面边 长为 a,高为 b,则正三棱柱的体积 V= 43a2b=3 3,所以 a2b=12.底面正三 角形所在截面圆的半径 r= 33a,则 R2=r2+b22=a32+b42=13×1b2+b42=4b+b42= 2b+2b+b42≥3 3 b2·2b·b42=3,当且仅当2b=b42,即 b=2 时,取等号.又因为 0<b<2R, 所以(R2)min=3.故球 O 的表面积的最小值为 12π.
解 如图所示,过点 C 作 CO1⊥AB 于点 O1,
由题意可得∠BCA=90°. 又∠BAC=30°,AB=2R, ∴AC= 3R,BC=R,CO1= 23R,AO1=32R,BO1=R2. ∴S 球=4πR2,
答案
S 圆锥 AO1 侧=π× 23R× 3R=32πR2,
S 圆锥 BO1 侧=π× 23R×R= 23πR2, ∴S 几何体表=S 球+S 圆锥 AO1 侧+S 圆锥 BO1 侧 =4πR2+32πR2+ 23πR2=11+2 3πR2,
解析
4.如图所示,扇形的中心角为π2,其所在圆的半径为 R,弦 AB 将扇形分 成两个部分,这两部分各以 AO 为轴旋转一周,若△ABO 旋转得到的几何体 体积为 V1,弓形 AB 旋转得到的几何体积为 V2,则 V1∶V2 的值为( )

高中数学立体几何习题

高中数学立体几何习题

1.如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几何体是(A) A.棱柱B.棱台C.棱柱与棱锥组合体D.无法确定1题图2题图2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能...为:①长方形;②正方形;③圆.其中正确的是(B)A.①②B.②③C.①③D.①②3.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是(D)4.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中(C)A.最长的是AB,最短的是AC B.最长的是AC,最短的是ABC.最长的是AB,最短的是AD D.最长的是AD,最短的是AC4题图5题图5.具有如图所示直观图的平面图形ABCD是(B)A.等腰梯形B.直角梯形C.任意四边形D.平行四边形6.如图是一个几何体的三视图,则在此几何体中,直角三角形的个数是(D)A.1 B.2 C.3 D.47.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(B)9题A.6 B.9 C.12 D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为(B)A.6πB.43πC.46πD.63π9.如图所示,则这个几何体的体积等于(A) A.4 B.6 C.8 D.1211.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为(C)A.120°B.150°C.180°D.240°12.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于(D)A.30°B.45°C.60°D.90°13.下列命题正确的是(C)A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行14.给定下列四个命题:题图9题图沿斜边BC上的高折成一个二面角,此时∠10题图11题图A1B1C1D1中,AB==2,AA1=1,则BC结果保留π);结果保留π).由三视图可知:该几何体的下半部分是棱长为2 m的正方体,上半部分是半径为×12+6×22-π×12=24+π三、解答题24.如图所示,长方体ABCD -A 1B 1C 1D 1中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?解 直线MN ∥平面A 1BC 1,M 为AB 的中点,证明如下:∵MD /∈平面A 1BC 1,ND /∈平面A 1BC 1. ∴MN ⊄平面A 1BC 1.如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵NO 1綊12D 1C 1,MB 綊12D 1C 1,∴NO 1綊MB .∴四边形NO 1BM 为平行四边形. ∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1.25.如图所示,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,底面边长为a ,E 是PC 的中点.(1)求证:P A ∥面BDE ; (2)求证:平面P AC ⊥平面BDE ;(3)若二面角E -BD -C 为30°,求四棱锥P -ABCD 的体积. (1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A. ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE .(2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD . 在正方形ABCD 中,BD ⊥AC , 又∵PO ∩AC =O , ∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF . ∵E 为PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO .又∵PO⊥面ABCD,∴EF⊥面ABCD.∵OF⊥BD,∴OE⊥BD.∴∠EOF为二面角E-BD-C的平面角,∴∠EOF=30°.在Rt△OEF中,OF=12OC=14AC=24a,∴EF=OF·tan 30°=612a,∴OP=2EF=6 6a.∴V P-ABCD=13×a2×66a=618a3.。

高中数学选择性必修一:3.3.2抛物线的简单几何性质精选考点提升训练

高中数学选择性必修一:3.3.2抛物线的简单几何性质精选考点提升训练

第三章 3.3.2抛物线的简单几何性质A 级——基础过关练1.我们把过抛物线的焦点且垂直于对称轴的弦做叫通径.抛物线x 2=-8y 的通径为线段AB ,则AB 长是( )A .2B .4C .8D .1【答案】C 【解析】由题意|AB |=2p =8.2.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |=( )A .6B .8C .9D .10【答案】B 【解析】由题意,p =2,故抛物线的准线方程是x =-1,因为过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,所以|AB |=x 1+x 2+2.又x 1+x 2=6,所以|AB |=x 1+x 2+2=8.3.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,点P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48【答案】C 【解析】不妨设抛物线的标准方程为y 2=2px (p >0),由于l 垂直于对称轴且过焦点,故直线l 的方程为x =p2.代入y 2=2px 得y =±p ,即|AB |=2p ,又|AB |=12,故p =6,所以抛物线的准线方程为x =-3,故S △ABP =12×6×12=36.4.已知过抛物线y 2=6x 焦点的弦长为12,则该弦所在直线的倾斜角是( ) A .π6或5π6B .π4或3π4C .π3或2π3D .π2【答案】B 【解析】抛物线的焦点为⎝⎛⎭⎫32,0.由题意知弦所在直线的斜率存在.设直线方程为y =k ⎝⎛⎭⎫x -32,与方程y 2=6x 联立得4k 2x 2-(12k 2+24)x +9k 2=0.设直线与抛物线的交点为A (x 1,y 1),B (x 2,y 2).所以x 1+x 2=3k 2+6k 2,所以x 1+x 2+3=3k 2+6k 2+3=12.所以k 2=1,所以k =±1.故弦所在直线的倾斜角是π4或3π4.5.(2021年安庆模拟)设抛物线y 2=2x 与过焦点的直线交于A ,B 两点,则OA →·OB →的值是( )A .34B .-34C .3D .-3【答案】B 【解析】设A (x 1,y 1),B (x 2,y 2),由题可知p =1,则OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=p 24-p 2=-34.6.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________. 【答案】22 【解析】双曲线x 2-y 2=1的左焦点为(-2,0),故抛物线y 2=2px 的准线为x =-2,所以p2=2,所以p =2 2.7.过抛物线x 2=2py (p >0)的焦点作斜率为1的直线与该抛物线交于A ,B 两点,A ,B 在x 轴上的正射影分别为D ,C .若梯形ABCD 的面积为122,则p =________.【答案】2 【解析】依题意,抛物线的焦点F 的坐标为⎝⎛⎭⎫0,p2,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y -p 2=x ,代入抛物线方程得y 2-3py +p 24=0,故y 1+y 2=3p ,|AB |=|AF |+|BF |=y 1+y 2+p =4p .直角梯形ABCD 有一个内角为45°.故|CD |=22|AB |=22×4p =22p ,梯形面积为12(|BC |+|AD |)×|CD |=12×3p ×22p =32p 2=122,解得p =2.8.已知过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,|AF |=2,则|BF |=________. 【答案】2 【解析】因为y 2=4x ,所以p =2,F (1,0).又因为|AF |=2,所以x A +p2=2,所以x A +1=2,所以x A =1.故AB ⊥x 轴,点F 为AB 的中点,所以|BF |=|AF |=2.9.求抛物线y =x 2上的点到直线x -y -2=0的最短距离.解:设抛物线y =x 2上一点P (x 0,y 0)到直线l :x -y -2=0的距离为d , 则d =|x 0-y 0-2|2=|x 20-x 0+2|2=12⎪⎪⎪⎪⎝⎛⎭⎫x 0-122+74.当x 0=12时,d min =728.10.抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的一个交点为A ⎝⎛⎭⎫32,6,求抛物线与双曲线的方程.解:由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为y 2=2px (p >0),将交点A ⎝⎛⎭⎫32,6代入得p =2, 故抛物线方程为y 2=4x .因为双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),所以双曲线的焦点坐标为F 1(-1,0)和F 2(1,0),且c =1. 又点A ⎝⎛⎭⎫32,6也在双曲线上, 因此由定义可得2a =|AF 1|-|AF 2|=⎝⎛⎭⎫32+12+62-⎝⎛⎭⎫32-12+62=72-52=1,所以a =12,b =12-⎝⎛⎭⎫122=32, 故双曲线的方程为4x 2-4y 23=1. B 级——能力提升练11.边长为1的等边三角形AOB ,O 为原点,AB ⊥x 轴,以O 为顶点,且过A ,B 的抛物线方程是( )A .y 2=36x B .y 2=-36x C .y 2=±36x D .y 2=±33x 【答案】C 【解析】由抛物线的对称性及AB ⊥x 轴知抛物线的焦点在x 轴上.设方程为y 2=nx (n ≠0).由题意,可令OA 的方程为y =33x ,且OA =1,得A ⎝⎛⎭⎫32,12或A ⎝⎛⎭⎫-32,-12,代入y 2=nx ,得n =±36,所以抛物线方程为y 2=±36x . 12.(多选)设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离可以是( ) A .2 B .3 C .4D .5【答案】BCD 【解析】因为抛物线的焦点到顶点的距离为3,所以p2=3,即p =6.又抛物线上的点到准线的距离的最小值为p2,所以抛物线上的点到准线的距离的取值范围为[3,+∞).13.已知点O 为坐标原点,点F 为抛物线y 2=4x 的焦点,点A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是________.【答案】(1,2)或(1,-2) 【解析】因为抛物线的焦点为F (1,0),设A ⎝⎛⎭⎫y 204,y 0,则OA →=⎝⎛⎭⎫y 204,y 0,AF →=⎝⎛⎭⎫1-y 204,-y 0,由OA →·AF →=-4,得y 0=±2,所以点A 的坐标是(1,2)或(1,-2).14.已知抛物线C 的顶点在坐标原点,焦点为F (1,0).直线l 与抛物线C 相交于A ,B 两点,若AB 的中点为(2,2),则直线l 的方程为____________.【答案】y =x 【解析】由题意知抛物线的方程为y 2=4x ,设直线l 与抛物线C 的交点A (x 1,y 1),B (x 2,y 2),则有x 1≠x 2,⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,得y 21-y 22=4(x 1-x 2),所以y 1-y 2x 1-x 2=4y 1+y 2=1,所以直线l 的方程为y -2=x -2,即y =x . 15.正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y 2=2px (p >0)上,求这个正三角形的边长.解:如图,设正三角形OAB 的顶点A ,B 在抛物线上,且坐标分别为A (x 1,y 1),B (x 2,y 2),则y 21=2px 1,y 22=2px 2.又OA =OB ,所以x 21+y 21=x 22+y 22, 即x 21-x 22+2px 1-2px 2=0,整理得(x 1-x 2)(x 1+x 2+2p )=0. 因为x 1>0,x 2>0,2p >0, 所以x 1=x 2,由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称. 由此得∠AOx =30°, 所以y 1=33x 1,与y 21=2px 1联立, 解得y 1=23p .所以|AB |=2y 1=43p ,即三角形的边长为43p .16.点M (m,4)(m >0)为抛物线x 2=2py (p >0)上一点,F 为其焦点,已知|FM |=5. (1)求m 与p 的值;(2)以M 点为切点作抛物线的切线,交y 轴于点N ,求△FMN 的面积. 解:(1)由抛物线定义知|FM |=p2+4=5,所以p =2.所以抛物线的方徎为x 2=4y . 又由M (m,4)在抛物线上,所以m =4. 故p =2,m =4.(2)设过M 点的切线方程为y -4=k (x -4), 代入抛物线方程消去y ,得x 2-4kx +16k -16=0, 其判别式Δ=16k 2-64(k -1)=0,所以k =2, 切线方程为y =2x -4,切线与y 轴的交点为N (0,-4),抛物线的焦点F (0,1), 所以S △FMN =12|FN |·m =12×5×4=10.C 级——探究创新练17.抛物线x 2=y 的焦点F 的坐标为________,若该抛物线上有一点P 满足|PF |=54,且P 在第一象限,则点P 的坐标为________.【答案】⎝⎛⎭⎫0,14 (1,1) 【解析】抛物线的焦点F 的坐标为⎝⎛⎭⎫0,14,其准线方程为y =-14,设P (x 0,y 0)(x 0>0,y 0>0),根据抛物线定义,得y 0+14=54,∴y 0=1,代入x 20=y 0,由于x 0>0,∴x 0=1.18.如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A ,点C 在抛物线E 上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N .(1)若点C 的纵坐标为2,求|MN |; (2)若|AF |2=|AM |·|AN |,求圆C 的半径.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2), 所以点C 到准线l 的距离d =2. 又|CO |=5,所以|MN |=2|CO |2-d 2=2×5-4=2.(2)设C ⎝⎛⎭⎫y 204,y 0,则圆C 的方程为⎝⎛⎭⎫x -y 2042+(y -y 0)2=y 4016+y 20,即x 2-y 22x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 202=0,设M (-1,y 1),N (-1,y 2),则⎩⎨⎧Δ=4y 20-4⎝⎛⎭⎫1+y 202=2y 20-4,y 1y 2=y22+1.由|AF |2=|AM |·|AN |,得|y 1y 2|=4, 所以y 202+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为⎝⎛⎭⎫32,6或⎝⎛⎭⎫32,-6, 从而|CO |2=334,|CO |=332,即圆C 的半径为332.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学之简单几何练习题一、单项选择题(本大题共20小题,每小题2.0分,共40分) 在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错选、多选或未选均无分。

1.双曲线x24-y29=1的离心率e =( )A.23B.32C.132D.1332.设双曲线的焦点在x 轴上,两条渐近线的方程为y =±12x ,则该双曲线的离心率为( ) A.52 B. 5 C.54D.5 3.过A (-2,m ),B (m ,4)的直线与2x +y +1=0垂直,则m =( ) A.-8 B.0 C.2 D.-24.已知双曲线方程为9x2-16y2=144,则双曲线的渐近线为( ) A.y =±34x B.y =±43xC.y =±169x D.y =±916x5.与已知圆x2+y2-2x +4y +1=0的圆心坐标相同,且半径为3的圆的方程是( )A.(x +1)2+(y -2)2=9B.(x -1)2+(y +2)2=9C.(x +1)2+(y -2)2=3D.(x -1)2+(y +2)2=3 6.顶点间距离是2,渐近线方程为y =±x 的双曲线是( ) A.x2-y2=1 B.x2-y2=2 C.x2-y2=±1 D.x2-y2=±27.两平行直线3x -4y +1=0与6x -8y +9=0之间的距离是( ) A.710 B.85 C.45 D.1 8.已知双曲线的标准方程为2x2-3y2=6,下列说法正确的是( ) A.焦点是(0,5)(0,-5) B.离心率是 3 C.渐近线方程是y =±63x D.实轴长是 39.已知椭圆210x m-+22y m -=1,焦点在x 轴上,若焦距为4,则m 等于( )A.4B.5C.7D.810.如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为( )C.32D.211.直线3x +4y +1=0与圆x2+y2-2x +2y -14=0的关系是( ) A.相切 B.相离 C.相交过圆心 D.相交不过圆心12.若把方程3x2-4x +1=0的根作为离心率,则可表示的圆锥曲线( ) A.一椭圆一双曲线B.一双曲线一抛物线C.一椭圆一抛物线D.两椭圆13.双曲线x29-y216=1上一点P 到右焦点的距离为7,则P 到左焦点的距离为( )A.1或13B.1C.13D.7 14.圆(x -1)2+y2=4上到直线3x +4y -8=0距离为1的点有( ) A.1个 B.2个 C.3个 D.4个15.直线x -y -5=0截圆(x -2)2+(y +2)2=2所得的弦长是( ) A. 6 B.522C.1D.216.已知点A (1,3),B (3,-5),则线段AB 垂直平分线的方程为( ) A.x +4y -6=0 B.x -4y +6=0 C.x -4y -6=0 D.x +4y +6=017.中心在原点,实轴在x 轴上,一个焦点在直线3x -4y +12=0上的等轴双曲线的方程是( )A.x2-y2=4B.x2-y2=8C.y2-x2=4D.y2-x2=818.已知双曲线与椭圆4x2+y2=1有相同的焦点,它的一条渐近线方程是y ,则这个双曲线的方程是( ) A.2x2-4y2=1 B.2x2-4y2=3 C.2y2-4x2=1 D.2y2-4x2=319.已知ax2+y2=1,当-1<a <0时,方程所表示的曲线为 .( ) A.焦点在y 轴上的椭圆 B.焦点在x 轴上的椭圆 C.焦点在x 轴上的双曲线 D.焦点在y 轴上的双曲线20.若直线过双曲线x26-y23=1的左焦点,且倾斜角为60°,则所截得的弦长为( )A.6B.4C.4 2D.865二、填空题(本大题共10小题,每小题4.0分,共40分)21.直线在x 轴上和y 轴上的截距分别为1和-2,则直线的斜率k= . 22.过双曲线x216-y29=1的焦点,且垂直于x 轴的直线交双曲线于A ,B 两点,则|AB |= .23.直线y=x+2关于x 轴对称的直线方程为 .24.若椭圆的焦距,短轴长,长轴长成等差数列,则离心率e 为 . 25.双曲线x2a2-y28=1的离心率e =3,则实半轴长a = .26.已知两条直线l1:y =2x +1,l2:y =2x -3,则该两条直线的位置关系是 .27.已知双曲线的实轴长与虚轴长之比为2∶1,且有一焦点为(215,0),则此双曲线的标准方程为 .28.直线4x -3y -12=0与两坐标轴所围成的三角形的面积是 .29.已知直线x +y +C =0与圆(x -2)2+(y +1)2=8相切,则实数C 的值为 .30.已知双曲线22169x y=1,被点Q (8,3)平分的弦所在直线的斜率为 .三、解答题(本大题共5小题,共40分。

) 解答题应写出文字说明及演算步骤31.求以椭圆x225+y29=1的长轴端点为焦点,且经过点P (42,3)的双曲线的标准方程.32.已知椭圆x29+y2m =1(9>m>0)与双曲线x29-y2n =1的离心率分别是9x2-18x +8=0的两根,求m ,n 的值.33.已知椭圆M :x28+y24=1与直线l :y=3x ,若双曲线N 的一条渐近线与直线l 平行,其焦点与椭圆M 的焦点相同,求双曲线N 的标准方程. 34.已知过点P (1,3)作直线l 交双曲线x28-y22=1于A ,B 两点,使点P为弦AB 的中点,求直线l 的方程.35.已知双曲线x2a2-y2b2=1的离心率为e =52,实轴长为4,直线l 过双曲线的左焦点F1且与双曲线交于A ,B 两点,|AB|=83.求:(1)双曲线的方程; (2)直线l 的方程.答案一、单项选择题2.A 【提示】∵y =±b a x =±12x ,∴a =2b ,c2=a2+b2=(2b )2+b2=5b2,则c =5b ,∴e =c a =5b 2b =52,∴选A.3.C4.A5.B 【提示】根据圆的标准方程,选B.6.C7.A 【解析】将3x -4y +1=0化为6x -8y +2=0,则两平行直线间距离为d =|2-9|62+(-8)2=710.8.C 9.A 10.C11.C 【提示】圆心坐标为(1,-1),直线3x +4y +1=0过圆心. 12.C 【提示】解方程3x2-4x +1=0得x1=1,x2=13,即e =1表示抛物线,e =13表示椭圆.13.C 14.C15.A 【提示】圆心为(2,-2),圆心到直线的距离d =|2-(-2)-5|2=22.又∵半径r =2,∴弦长l =2r2-d2== 6.17.B 【提示】焦点在x 轴上,直线与x 轴交点为(-4,0),即c =4.等轴双曲线a2=b2,∴a2=b2=8. 18.C19.D 【提示】当-1<a <0时,2x 的系数是负数,2y 系数为正数,根据解析式的特征,方程所表示的曲线为焦点在y 轴上的双曲线,故选D. 20.D 【提示】左焦点(-3,0),k =tan60°=3,∴直线方程为y =3(x +3).联立⎩⎪⎨⎪⎧y =3(x +3),x2-2y2=6,消去y 得5x2+36x +60=0,∴⎩⎪⎨⎪⎧x1+x2=-365,x1x2=12.∴弦长=1+3=865. 二、填空题21.2【提示】 过点(1,0),(0,-2),.22.92【提示】取右焦点F (5,0),直线方程为x =5,则⎩⎪⎨⎪⎧x216-y29=1,x =5,解得⎩⎪⎨⎪⎧x =5,y =94或⎩⎪⎨⎪⎧x =5,y =-94,即A 95,4⎛⎫ ⎪⎝⎭,B 95,4⎛⎫- ⎪⎝⎭,∴|AB |=92.23.x+y+2=0 【提示】 首先在直线y=x+2上找出两点坐标为(-2,0)和(1,3),这两点关于x 轴对称的点分别为(-2,0)和(1,-3),所求直线的斜率为0(3)121--=---,y -0=-(x+2)化简得x+y+2=0. 24.35212120201y y k x x ---===--25.2 【提示】 c2=a2+8,e2=c2a2=a2+8a2=3,解得a2=4,∴a =2.26.平行27.224812x y -=1 【解析】a ∶b =2∶1,即a =2b ,c =215,由a2+b2=c2得b2=12,a2=48,且焦点在x 轴上,∴双曲线的标准方程为224812x y -=1.28.6 29.3或-530.32 【解析】设弦的端点分别为A (x1,y1),B (x2,y2),则122x x +=8,122y y +=3,∴x1+x2=16,y1+y2=6.由2211222211691169x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩作差得116(x22-x21)=19(y22-y21),即116(x2+x1)(x2-x1)=19(y2+y1)(y2-y1),∴2121y y x x --=32,即k =32. 三、解答题31.解:∵椭圆x225+y29=1中a2=25,∴a =5,∴长轴的两个端点分别为A1(-5,0),A2(5,0),则双曲线的焦点为F1(-5,0),F2(5,0),可设双曲线的标准方程为x2a2-y2b2=1,且c =5,∴a2+b2=25.又∵双曲线过点P (42,3),∴32a2-9b2=1.联立⎩⎪⎨⎪⎧a2+b2=25,32a2-9b2=1,解得⎩⎪⎨⎪⎧a2=16,b2=9,∴所求双曲线的标准方程为x216-y29=1.32.解:由9x2-18x +8=0解得x1=23,x2=43,∴椭圆离心率23,双曲线离心率为43,即9-m 9=49,∴m =5,9+n 9=169,∴n =7.33.解:椭圆M 焦点为(±2,0), ∴双曲线N 的焦点为(±2,0), ∴c =2,且焦点在x 轴上.又∵渐近线与y =3x 平行,∴ba =3,即b =3a ,由a2+b2=c2得a2+3a2=4,∴a2=1,b2=3, ∴双曲线方程为x2-y23=1.34.解:显然直线l 的斜率存在,设直线l 的斜率为k ,A (x1,y1),B (x2,y2),则⎩⎪⎨⎪⎧x218-y212=1,x228-y222=1,两式相减得(x1+x2)(x1-x2)8-(y1+y2)(y1-y2)2=0,∵弦AB 的中点是P (1,3), ∴x1+x2=2,y1+y2=6, 代入得2(x1-x2)8=6(y1-y2)2,∴k =y2-y1x2-x1=112,故直线l 的方程为y -3=112(x -1),即x -12y +35=0. 35.解:(1)由题意得e =52=ca,2a =4, ∴c =5,则b2=c2-a2=5-4=1, ∴所求双曲线方程为x24-y2=1. (2)由(1)得双曲线左焦点的坐标为(-5,0),当直线l 的斜率不存在时,直线l 的方程为x =-5,这时可求得|AB|=1≠83,这种情况不可能,∴可设所求直线l 的斜率为k , 则直线l 的方程为y =k (x +5),联立方程得(2214y k x x y ⎧=⎪⎨⎪-=⎩①,②,①代入②,整理得(1-4k2)x2-85k2x -4-20k2=0,Δ=(-85k2)2-4×(1-4k2)(-4-20k2)=16(1+k2), ∴|AB|=Δ|a|1+k2=16(1+k2)|1-4k2|1+k2=83,化简得2|1-4k2|=3(1+k2),即2(1-4k2)=±3(1+k2).∵k2≥0,∴k2=1,即k=±1,∴直线方程为y=±(x+5),即x±y+5=0.11。

相关文档
最新文档