经典三角函数教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数诱导公式教案2

1 教材分析

1.1 教材的地位与作用

本节课教学内容“诱导公式(二)、(三)”是人教版《高中代数》上册第二章§2.6节内容.它既是学生已学习过的三角函数定义、诱导公式(一)等知识的延续和拓展,又是推导诱导公式(四)、(五)的理论依据.是本章“任意角的三角函数”一节及全章中起着承上启下作用的重要纽带.求三角函数值是三角函数中的重要内容.诱导公式是求三角函数值的基本方法.诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90”角的三角函数值问题,诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式.这对培养学生的创新意识、发展学生的思维能力、掌握数学的思想方法具有重大的意义

1.2 教学重点与难点

1.2.1 教学重点

诱导公式的推导及应用

1.2.2 教学难点

相关角终边的几何对称关系及诱导公式结构特征的认识.

2 目标分析

根据教学大纲的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,本节课的教学目标如下

2.1 知识目标

1)识记诱导公式.

2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.

2.2 能力目标

1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.

2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.

3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.

2.3 情感目标

1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.

2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.

3 过程分析

3.1 创设问题情境,引导学生观察、联想,导入课题

1)提问:三角函数定义、诱导公式(一)及其结构特征.

2)板书:诱导公式(一).

sin(k·360°+α)=sinα,cos(k·360°+α)=cosα.

tan(k·360°+α)=tanα,cot(k·360°+α)=cotα(k∈Z)

结构特征:①终边相同的角的同一三角函数值相等.

②把求任意角的三角函数值问题转化为求0°~360°角的三角函数值问题.

教学设想通过提问让学生温习、重视已有相关知识,为学生学习新知识作铺垫.

3)学生练习:试求下列三角函数值

sin1110°,sin1290°.

教学设想由已有知识导出新的问题,为学习新知识创设问题情境,以引起学生学习需要和学习兴趣,激发学生的求知欲,启迪学生思维的火花.

4)介绍单位圆概念后,引导学生观察演示(一)并思考下列问题:

①210°能否用(180°+α)的形式表达(0°<α<90°)?(210°=180°+30°)

②210°与30°角的终边位置关系如何?(互为反向延长线或关于原点对称)

③设210°,30°角的终边分别交单位圆于点P,P',则点P与P'的位置关系如何?(关于原点对称)

④设点P(x,y),则点P'的坐标怎样表示?[P'(-x,-y)]

⑤sin210°与sin30°的值的关系如何?

教学设想通过微机动态演示,引导学生发现210°与30°角的终边及其与单位圆交点关于原点对称关系,借助三角函数定义,寻找sin210°与sin30°值的关系,达到转化为求0°~90°角三角函数值的目的.

学生通过主动探索、发现解决问题的途径,体验和领会数形结合与归纳转化的数学思想方法.

5)导入课题

对于任意角α,sinα与sin(180°+α)的关系如何呢?试说出你的猜想.

3.2 运用迁移规律,引导学生联想、类比、归纳、推导公式

1)引导学生观察演示(二)并思考下列问题:

①α与(180°+α)角的终边关系如何?(互为反向延长线或关于原点对称)

②设α与(180°+α)角的终边分别交单位圆于点P,P',则点P与P'位置关系如何?(关于原点对称)

③设点P(x,y),那么点P'的坐标怎样表示?[P'(-x,-y)]

④sinα与sin(180°+α),cosα与cos(180°+α)关系如何?

⑤tanα与tan(180°+α),cotα与cot(180°+α)关系如何?

⑥经过探索,你能把上述结论归纳成公式吗?其公式特征如何?

2)板书诱导公式

sin(180°+α)=-sinα,cos(180°+α)=-cosα,

tan(180°+α)=tanα,cot(180°+α)=cotα.

结构特征:①函数名不变,符号看象限(把α看作锐角时).

②把求(180°+α)的三角函数值转化为求α的三角函数值.

教学设想激发学生做出猜想后,启发学生把特殊问题(求sin210°值)与一般问题进行类比,实现方法迁移,引导学生观察演示,发现角α与(180°+α)的终边及其与单位圆交点关于原点的对称关系,把求角(180°+α)的三角函数值转化为求α的三角函数值.对学生进行归纳思维训练,培养学生归纳思维能力.

微机的动态演示,使学生对“α为任意角”有准确的认识,初步体验从特殊到一般的归纳推理形式,领会数学的归纳转化思想和方法.

3)基础训练题组一

求下列各三角函数值(可查表):

②试求sin[180°+(-210°)]的值

分析:

对于问题②学生可能出现的情况为:

sin[180°+(-210°)]=-sin(-210°),

或sin[180°+(-210°)]=sin(-30°).

(至此,大多数学生已无法再运算)

教学设想在新的知识的基础上又导出新的未知,又一次创设问题情境,把学生的学习兴趣进一步推向高潮,激励学生要敢于迎接挑战、战胜困难、不断追求、陶冶情操、锻炼意志.

4)引导学生观察演示(三),并思考下列问题:

①30°与(-30°)角的终边位置关系如何?(关于x轴对称)

②设30°与(-30°)角的终边分别交单位圆于点P,P',则点P与P'的位置关系如何?(关于x轴对称)

③设点P(x,y),则点P'的坐标怎样表示?[P'(x,-y)]

④sin(-30°)与sin30°的值关系如何?

教学设想引导学生把求sin210°问题与sin(-30°)进行类比,实现方法迁移.通过微机动态演示,发现-30°与30°角的终边及其与单位圆交点关于x轴对称的关系.借助三角函数定义,寻找sin(-30°)与sin30°值的关系,达到转化为求0°~90°角三角函数的值的目的.

5)导入新问题:对于任意角α,sinα与sin(-α)的关系如何呢?试说出你的猜想?

6)引导学生观察演示(四)并思考下列问题:(设α为任意角)

①α与(-α)角的终边位置关系如何?(关于x轴对称)

相关文档
最新文档