17.1.2函数自变量的取值范围.函数值同步训练(考点 分析 点评)

合集下载

初中数学《函数自变量的取值范围》练习题(含答案)

初中数学《函数自变量的取值范围》练习题(含答案)

函数自变量的取值范围一 、选择题(本大题共4小题)1.函数y =x 的取值范围是( )A .12x -≥B .12x ≥C .12x ≤-D .12x ≤2.在函数y 中,自变量x 的值取值范围是( )A.3x <-B.3x ≤-C.3x ≤D.3x >3.函数y =的自变量的取值范围是( ) A.22x -<≤ B.22x -≤≤ C.2x ≤且2x ≠ D.22x -<<4.以下说法正确的是( )A .平行四边形是轴对称图形B .函数y =的自变量取值范围2x ≥ C .相等的圆心角所对的弧相等 D .直线5y x =- 不经过第二象限二 、填空题(本大题共10小题)5.根据你的理解写出下列y 与x 的函数关系式,并写出自变量的取值范围(我们称为定义域).⑴ 某人骑车以6/m s 是速度匀速运动的路程y 与时间x ,解析式: ,定义域: ;⑵ 正方形的面积y 与边长x ,解析式: ,定义域: ;6.函数52x y x -=-自变量的取值范围是 . 7.函数214y x =-的自变量x 的取值范围是 . 8.函数2113y x =+的自变量x 的取值范围是 .9.函数y =x 的取值范围是 . 10.在函数 121y x =-中,自变量x 的取值范围是 .11.函数13y x =-中自变量x 的取值范围是__________ 12.函数y 的自变量x 的取值范围是 .13.函数25y x =-自变量的取值范围是 .14.函数y 的自变量x 的取值范围是 .三 、解答题(本大题共8小题)15.某礼堂共有25排座,第一排有20个座位,后面每排比前一排多1个座位.求每排座位数y 与这排的排数x 的函数关系,并写出自变量的取值范围.16.求下列各函数中自变量x 的取值范围;⑴y =y;⑶0y x =;⑷y =+17.如图,周长为24的凸五边形ABCDE 被对角线BE 分为等腰ABE ∆及矩形BCDE ,AE DE =,设AB 的长为x ,CD 的长为y ,求y 与x 之间的函数关系式,写出自变量的取值范围.18.等腰ABC ∆周长为10cm ,底边BC 长为cm y ,腰长为cm x 。

(新课标)华东师大版八年级数学下册同步跟踪训练:函数自变量的取值范围.函数值

(新课标)华东师大版八年级数学下册同步跟踪训练:函数自变量的取值范围.函数值

(新课标)2017-2018学年华东师大版八年级下册17.1.2函数自变量的取值范围.函数值一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A.x>2 B.x≥2 C.x<2 D.x≤22.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣13.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=14.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A.1 B.﹣2 C.D.35.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 烤制时间/分40 60 80 100 120140 160 180设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A.140 B.138 C.148 D.1607.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣48.在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>1二.填空题(共6小题)9.函数中,自变量x的取值范围是_________ .10.函数y=中,自变量x的取值范围是_________ .11.函数,当x=3时,y= _________ .12.函数的主要表示方法有_________ 、_________ 、_________ 三种.13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是_________ .输入数据 1 2 3 4 5 6 …输出数据…14.已知方程x﹣3y=12,用含x的代数式表示y是_________ .三.解答题(共6小题)15.求函数y=的自变量x的取值范围.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t 计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.17.1.2函数自变量的取值范围.函数值参考答案与试题解析一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A. x>2 B.x≥2 C.x<2 D.x≤2考点:函数自变量的取值范围.菁优网版权所有专题:函数思想.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.解答:解:根据题意,得x﹣2≥0,解得x≥2.故选:B.点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.函数y=中的自变量x的取值范围是()A. x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A.点评:本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.在函数y=中,自变量x的取值范围是()A. x>1 B.x<1 C.x≠1 D.x=1考点:函数自变量的取值范围.菁优网版权所有分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故选:C.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A. 1 B.﹣2 C.D. 3考点:函数值.菁优网版权所有专题:图表型.分析:先根据x的值确定出符合的函数解析式,然后进行计算即可得解.解答:解:x=﹣1时,y=x2=(﹣1)2=1.故选A.点评:本题考查了函数值的求解,根据自变量的取值范围准确确定出相应的函数解析式是解题的关键.5.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对考点:函数的表示方法.菁优网版权所有解答:解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.点评:本题考查了函数的三种表示方法:解析法、列表法和图象法.要熟练掌握.6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 烤制时间/分40 60 80 100 120140 160 180设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A. 140 B.138 C.148 D.160考点:函数的表示方法.菁优网版权所有分析:观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x=3.2千克代入即可求出烤制时间t.解答:解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.,解得所以t=40x+20.当x=3.2千克时,t=40×3.2+20=148.故选C.点评:本题考查了一次函数的运用.关键是根据题目的已知及图表条件得到相关的信息.7.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣4考点:函数值.菁优网版权所有专题:图表型.分析:根据流程,把输出的函数值分别代入函数解析式求出输入的x的值即可.解答:解:∵输出数值y为1,∴①当x≤1时,0.5x+5=1,解得x=﹣8,符合,解得x=8,符合,所以,输入数值x为﹣8或8.故选C.点评:本题考查了函数值求解,比较简单,注意分两种情况代入求解.8.在函数y=中,自变量x的取值范围是()A. x≤1 B.x≥1 C.x<1 D.x>1考点:函数自变量的取值范围.菁优网版权所有分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣1≥0,解得x≥1.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.二.填空题(共6小题)9.函数中,自变量x的取值范围是x≥﹣2且x≠1 .考点:函数自变量的取值范围.菁优网版权所有分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解解答:解:根据题意得:,解得:x≥﹣2且x≠1.故答案是:x≥﹣2且x≠1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.函数y=中,自变量x的取值范围是x≠2 .考点:函数自变量的取值范围;分式有意义的条件.菁优网版权所有专题:计算题.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.解答:解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.11.函数,当x=3时,y= ﹣3 .考点:函数值.菁优网版权所有分析:把自变量的值代入函数解析式进行计算即可求解.解答:解:当x=3时,y==﹣3.故答案为:﹣3.点评:本题考查了函数值的求解,把自变量的值代入函数解析式进行计算即可求解,是基础题,比较简单.12.函数的主要表示方法有列表法、图象法、解析式法三种.考点:函数的表示方法.菁优网版权所有专题:推理填空题.分析:根据函数的三种表示法解答即可.解答:解:函数表示两个变量的变化关系,有三种方式:列表法、图象法、解析式法.故答案为列表法、图象法、解析式法.点评:本题考查了函数的表示方法,不论何种形式,符合函数定义即可,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是.输入数据 1 2 3 4 5 6 …输出数据…考点:函数的表示方法.菁优网版权所有专题:计算题;规律型.分析:分析可得:各个式子分子是输入的数字,分母是其3倍减1,故当输入数据是正整数n时,即可求得输出的值.解答:解:∵各个式子分子是输入的数字,分母是其3倍减1,∴当输入数据是正整数n时,输出的数据是.点评:本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.14.已知方程x﹣3y=12,用含x的代数式表示y是y=x﹣4 .考点:函数的表示方法.菁优网版权所有分析:要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.解答:解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.点评:考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.三.解答题(共6小题)15.求函数y=的自变量x的取值范围.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.菁优网版权所有专题:计算题.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数>等于0,分母不等于0,就可以求解.解答:解:根据二次根式的意义,被开方数4+2x≥0,解得x≥﹣2;根据分式有意义的条件,x﹣1≠0,解得x≠1,因为x≥﹣2的数中包含1这个数,所以自变量的范围是x≥﹣2且x≠1.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.考点:函数自变量的取值范围.菁优网版权所有分析:(1)根据对任意实数,多项式都有意义,即可求解;(2)根据分母不等于0,即可求解;(3)根据任意数的平方都是非负数即可求解.解答:解:(1)x是任意实数;(2)根据题意得:x+4≠0,则x≠﹣4;(3)x是任意实数.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.考点:函数值.菁优网版权所有分析:(1)把x的值分别代入函数关系式计算即可得解;(2)把函数值代入函数关系式,解关于x的一元一次方程即可.解答:解:(1)x=﹣时,y=2×(﹣)﹣3=﹣1﹣3=﹣4,x=4时,y=2×4﹣3=8﹣3=5;(2)y=﹣5时,2x﹣3=﹣5,解得x=﹣1.点评:本题考查了函数值求解,已知函数值求自变量,是基础题,准确计算是解题的关键.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?考点:函数值.菁优网版权所有分析:根据函数值相等,自变量相等,可得方程组,根据解方程组,可得答案.解答:解:由题意得,解得,当x=﹣时,函数y=x+1与y=5x+17的值相等,这个函数值是﹣15.点评:本题考查了函数值,利用了函数值相等,自变量相等得出方程组是解题关键.19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?考点:函数的表示方法.菁优网版权所有专题:应用题.分析:(1)根据图表,反映的是距离地面的高度和温度两个量,所以温度和高度是两个变化的量,温度随高度的变化而变化;(2)根据表格数据,高度越大,时间越低,所以随着高度的h的增大,温度t 在减小;(3)求出当h=6时温度t的值即可.解答:解:(1)上表反映了温度和高度两个变量之间.高度是自变量,温度是因变量.(2)如果用h表示距离地面的高度,用t表示温度,那么随着高度h的增大,温度t逐渐减小(或降低).(3)距离地面6千米的高空温度是﹣16℃.点评:本题是对函数定义的考查和图表的识别,自变量、因变量的区分对初学函数的同学来说比较困难,需要在学习上多下功夫.20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t 计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.考点:函数值;常量与变量.菁优网版权所有专题:应用题.分析:(1)因为温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度,所以自变量是x,因变量是y.(2)令t=2,x=5,代入函数解析式,即可求解.解答:(1)解:自变量是地表以下的深度x,因变量是所达深度的温度y;(2)解:当t=2,x=5时,y=3.5×5+2=19.5;所以此时地壳的温度是19.5℃.点评:本题只需利用函数的概念即可解决问题.。

中考数学函数自变量取值范围真题与分析

中考数学函数自变量取值范围真题与分析

中考数学函数自变量取值范围真题与分析函数是初中数学中一个十分重要的内容,为保证函数式有意义,或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围。

函数自变量的取值范围是函数成立的先决条件,只有正确理解函数自变量的取值范围,我们才能正确地解决函数问题。

初中阶段确定函数自变量的取值范围大致可分为三种类型,从这三方面进行函数自变量取值范围(1)函数关系式中函数自变量的取值范围;(2)实际问题中函数自变量的取值范围;(3)几何问题中函数自变量的取值范围。

一、函数关系式中函数自变量的取值范围:初中阶段,在一般的函数关系中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系式为分式形式:分母≠0;(3)函数关系式含算术平方根:被开方数≥0;(4)函数关系式含0指数:底数≠0。

典型例题:例1:函数y=x1 的自变量x的取值范围在数轴上可表示为【】A.B.C.D.【答案】D。

【考点】函数自变量的取值范围,二次根式有意义的条件,在数轴上表示不等式的解集。

【分析】根据二次根式有意义的条件,计算出x 1-的取值范围,再在数轴上表示即可,不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。

根据二次根式被开方数必须是非负数的条件,要使x 1-在实数范围内有意义,必须x 10-≥x 1⇒≥。

故在数轴上表示为:。

故选D 。

例2:函数y=1x 2- 中自变量x 的取值范围是【 】A .x=2B .x≠2C .x >2D .x <2【答案】B 。

【考点】函数自变量的取值范围,分式有意义的条件。

【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x 2-在实数范围内有意义,必须x 20x 2-≠⇒≠。

故选B 。

例3:函数x+2x 的取值范围是【 】A .x >﹣2B .x≥2C .x≠﹣2D .x≥﹣2【答案】A 。

17.1.2变量与函数 2

17.1.2变量与函数 2

温故知新
2、 求下列函数中自变量x的取值范围:
(1) y 2 x 3 ( 2) y 3 x
2
(1)全体实数. (2)全体实数. (3)x≠1. (4)x≧2.
1 (3) y x 1 ( 4) y x 2
问题1、填写如图所示的加法表,然后把所 有填有10的格子涂黑,看看你能发现什么? 解 如图能发现涂黑的格子成一条直线.
17.1.2 变量与函数(2)
温故知新
1.写出下列各问题中的关系式,并指出其中的常量 与变量: (1)长方形的长是8,请写出周长y与宽x的关系式; (2)万州与余家相距65千米,汽车以50千米/时的 速度从万州出发,请写出它距离余家的路程s(千 米)和所用时间t(时)的关系式; (3)请写出n边形的内角和S与边数n的关系式.
如果把这些涂黑的 格子横向的加数用 x表示,纵向的加 数用y 表示,试写 出y 与x 的函数关 系式. y=10-x
(0<x<10 , x为整数)
图 17.1.2
y=10-x
探索
在上面问题中,当涂黑的格 子横向的加数为3时,纵向的 加数是多少?当纵向的加数 为6时,横向的加数是多少? 这里,当自变量x=3时,对应的函数y 的值y=10-3=7 ,就说7当是这个函数当 x=3时的函数值
强化练习
3.一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s(米)由下式给出: s=10t+2t2. 假如滑到坡底的时间为8秒, 试问坡长为多少?
课堂小结
1.求函数自变量取值范围的两个依据: (1)要使函数的解析式有意义. ①函数的解析式是整式时,自变量可取全体实数; ②函数的解析式分母中含有字母时,自变量的取值应 使分母≠0; ③函数的解析式是二次根式时,自变量的取值应使被 开方数≥0. (2)对于反映实际问题的函数关系,应使实际问题有 意义

自变量的取值范围及函数值同步练习题

自变量的取值范围及函数值同步练习题

自变量的取值范围及函数值同步练习题1.函数y =1x +2中,x 的取值范围是( ) A .x ≠0 B .x >-2 C .x <-2 D .x ≠-22.函数y =2x -4中自变量x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x ≠23.函数y =x -2x +3的自变量x 的取值范围是_______. 4.求下列函数中自变量x 的取值范围:(1)y =-13x +8; (2)y =42x -1; (3)y =1x -2+x ; (4)y =-11+x2.5.变量x 与y 之间的关系是y =12x 2-1,当自变量x =2时,因变量y 的值是( ) A .-2 B .-1 C .1 D .26.同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数关系是y =95x +32,如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____℉.7.如果每盒圆珠笔有12支,每盒售价18元,那么圆珠笔的总销售额y (元)与圆珠笔的销售支数x 之间的函数关系式是( )A .y =32xB .y =23xC .y =12xD .y =112x 8.已知两个变量x 和y ,它们之间的3组对应值如下表所示.则y 与x A .y =x B .y =2x +1 C .y =x 2+x +1 D .y =3x9.已知方程x -4y =11,用含x 的代数式表示y 是___________.10. 我们知道,海拔高度每上升1千米,温度就下降6 ℃.某时刻,某地地面温度为20 ℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式;(2)已知此地某山峰高出地面约500米,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过此地上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?11.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,则y 与x 之间的函数关系式和自变量取值范围分别是( )A .y =,x >0B .y =60-,x >0C .y =,0≤x ≤500D .y =60-,0≤x ≤50012.已知函数y =⎩⎪⎨⎪⎧2x +1(x≥0),4x (x <0),当x =2时,函数值y 为( ) A .5 B .6 C .7 D .813.等腰三角形的周长为20 cm ,腰长为x cm ,底边长为y cm ,则底边长与腰长之间的函数关系式为( )A .y =20-x (0<x <10)B .y =20-x (10<x <20)C .y =20-2x (10<x <20)D .y =20-2x (5<x <10)14.当x =2时,函数y =kx -2和y =2x +k 的值相等,则k =____.15.当x =2及x =-3时,分别求出下列函数的函数值:(1)y =(x +1)(x -2); (2)y =x +2x -1.16.弹簧挂上物体后会伸长,在弹性限度内测得一弹簧的长度y (cm )与所挂物体的质量x (kg )有如下关系:(1)请写出弹簧总长y (cm )与所挂物体质量x (kg )之间的函数关系式;(2)当挂重10千克时弹簧的总长是多少?(3)当弹簧总长为 cm 时,所挂物体重多少?17.根据如图所示的程序计算函数值:若输入的x 值为-1,则输出的函数值为____.18.(2016·黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?参考答案:1. D2. B3. x ≥24. (1) x 为任意实数 (2) x ≠12(3) x ≥0且x ≠2 (4) x 为任意实数5. C6. 777. A8. B9. y =14x -11410. (1) y =20-6x (x >0)(2) 由题意得y =20-6×=17,答:这时山顶的温度大约是17 ℃(3) 由题意得-34=20-6x ,解得x =9.答:飞机离地面的高度为9千米11. D12. A13. D14. 615. (1)当x =2时,y =(x +1)(x -2)=(2+1)(2-2)=0;当x =-3时,y =(x +1)(x -2)=(-3+1)(-3-2)=10 (2)当x =2时,y =x +2x -1=2+22-1=4;当x =-3时,y =x +2x -1=-3+2-3-1=1416. (1) y =+12(2) 当x =10时,代入y =+12,解得y =17,即弹簧总长为17 cm(3) 当y =时,代入y =+12,解得x =9,即所挂物体重为9 kg17. 118. (1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元. 根据题意得⎩⎪⎨⎪⎧12a +(24-12)b =42,12a +(20-12)b =32,解得⎩⎪⎨⎪⎧a =1,b =.答:每吨水的政府补贴优惠价为1元,市场调节价为元 (2)∵当0≤x ≤12时,y =x ;当x >12时,y =12+(x -12)×=-18,∴所求函数关系式为y =⎩⎪⎨⎪⎧x (0≤x≤12),-18(x >12) (3)∵x =26>12,∴把x =26代入y =-18,得y =×26-18=47(元).答:小黄家3月份应交水费47元。

函数自变量取值范围专题练习解析及答案

函数自变量取值范围专题练习解析及答案

初二数学《函数自变量的取值范围专练》1、函数中,自变量x的取值范围是()A、x≤6B、x≥6C、x≤﹣6D、x≥﹣62、要使有意义,则x应该满足()A、0≤x≤3B、0<x≤3且x≠1C、1<x≤3D、0≤x≤3且x≠13、已知函数,则自变量x的取值范围是()A、x≠2B、x>2C 、D 、且x≠24、下列函数中,自变量x的取值范围为x<1的是()A 、B 、C 、D 、5、函数的自变量x的取值范围在数轴上表示为()A 、B 、C 、D 、6、函数的自变量x的取值范围是()A、x>1B、x≤﹣1C、x≥﹣1D、x>﹣17、函数y=的自变量x的取值范围是()A、x≥﹣2且x≠2B、x≥﹣2且x≠±C、x=±2D、全体实数8、下列函数中,自变量x的取值范围是x>2的函数是()A 、B 、C、D、9、函数的自变量的取值范围在数轴上可表示为()A、B、C、D、10、函数的自变量x的取值范围为()A、x≥﹣2B、x>﹣2且x≠2C、x≥0且≠2D、x≥﹣2且x≠211、函数y=﹣中的自变量x的取值范围是()A、x≥0B、x<0且x≠1C、x<0D、x≥0且x≠112、在函数中,自变量x的取值范围是()A、x≥﹣3B、x≤﹣3C、x>3D、x>﹣313、函数y=中,自变量x的取值范围是()A、x≥﹣1B、﹣1≤x≤2C、﹣1≤x<2D、x<214、函数y=的自变量x的取值范围是()A、x≥﹣2B、x≥﹣2且x≠﹣1C、x≠﹣1D、x>﹣115、函数y=自变量的取值范围是()A、x>0B、x<0C、x≥0D、x≤016、函数y=中自变量x的取值范围是()A、x≥B、x>C、x≠﹣1D、x<17、函数y=的自变量x的取值范围是()A、x≥1且x≠2B、x≠2C、x>1且x≠2D、全体实数18、函数y=的自变量x的取值范围是()A、x≤﹣1B、x≥﹣1C、x≥﹣1且x≠OD、x≤﹣1且x≠019、下列函数中,自变量取值范围正确的是()A、y=3x﹣1中,B、y=x0中,x为全体实数C、中,x>﹣2D、中,x≠﹣120、函数y=中,自变量x的取值范围是()A、x≥﹣1B、x>﹣1且x≠2C、x≠2D、x≥﹣1且x≠221、函数y=中,自变量x的取值范围()A、x>﹣4B、x>1C、x≥﹣4D、x≥122、在函数中,自变量x的取值范围是()A、x≠3B、x≥3C、x>3D、可取任何实数23、下列函数中,自变量的取值范围选取错误的是()A、y=2x2中,x取全体实数B、y=中,x取x≠﹣1的实数C、y=中,x取x≥2的实数D、y=中,x取x>﹣3的实数24、函数的自变量x的取值范围为()A、x≥0B、x>0C、x=0D、x≠025、下列函数中,自变量x的取值范围是x≥2的是()A、y=B、y=C、y=D、y=•26、函数中,自变量x的取值范围是()A、x≠﹣1B、x≠1C、x≠2D、x≠1且x≠227、下列函数中,自变量x的取值范围x≥3的是()A、B、C、D、28、下列函数中自变量取值范围选取错误的是()A、y=x2中x取全体实数B、C、D、29、函数y=的自变量的取值范围是()A、x>0且x≠0B、x≥0且x≠C、x≥0D、x≠30、函数的自变量x的取值范围是()A、x≥3B、x≤3C、x=3 D、全体实数。

2023年中考数学----《函数基础知识--自变量的取值范围与函数值》专项练习题(含答案解析)

2023年中考数学----《函数基础知识--自变量的取值范围与函数值》专项练习题(含答案解析)

2023年中考数学复习----《函数基础知识--自变量的取值范围与函数值》知识总结与专项练习题(含答案解析)知识总结1. 函数的概念:设在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y 是x 的函数,x 是自变量。

2. 自变量的取值范围:(1)使函数表示有意义。

①分母不能为0。

②被开方数大于等于0。

③幂的底数和指数不能同时为0。

(2)满足实际问题的实际意义。

3. 函数值:函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值。

专项练习题1、(2022•黄石)函数y =113−++x x x 的自变量x 的取值范围是( ) A .x ≠﹣3且x ≠1 B .x >﹣3且x ≠1C .x >﹣3D .x ≥﹣3且x ≠1 【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:函数y =+的自变量x 的取值范围是:x +3>0,且x ﹣1≠0,解得:x >﹣3且x ≠1.故选:B .2、(2022•丹东)在函数y =x x 3+中,自变量x 的取值范围是( ) A .x ≥3 B .x ≥﹣3C .x ≥3且x ≠0D .x ≥﹣3且x ≠0 【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组得到答案.【解答】解:由题意得:x +3≥0且x ≠0,解得:x ≥﹣3且x ≠0,故选:D .3、(2022•牡丹江)函数y =2−x 中,自变量x 的取值范围是( )A .x ≤﹣2B .x ≥﹣2C .x ≤2D .x ≥2【分析】根据二次根式(a ≥0),可得x ﹣2≥0,然后进行计算即可解答.【解答】解:由题意得: x ﹣2≥0,∴x ≥2,故选:D .4、(2022•恩施州)函数y =31−+x x 的自变量x 的取值范围是( ) A .x ≠3 B .x ≥3C .x ≥﹣1且x ≠3D .x ≥﹣1 【分析】利用分式有意义的条件和二次根式有意义的条件得到不等式组,解不等式组即可得出结论.【解答】解:由题意得:,解得:x ≥﹣1且x ≠3.故选:C .5、(2022•连云港)函数y =1−x 中自变量x 的取值范围是( )A .x ≥1B .x ≥0C .x ≤0D .x ≤1【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:∵x ﹣1≥0,∴x ≥1.故选:A .6、(2022•黑龙江)函数31−−=x x y 自变量x 的取值范围是( ) A .x ≥1且x ≠3 B .x ≥1C .x ≠3D .x >1且x ≠3 【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,x ﹣1≥0且x ﹣3≠0,解得x ≥1且x ≠3.故选:A .7、(2022•无锡)函数y =x −4中自变量x 的取值范围是( )A .x >4B .x <4C .x ≥4D .x ≤4【分析】因为当函数用二次根式表达时,被开方数为非负数,所以4﹣x ≥0,可求x 的范围.【解答】解:4﹣x ≥0,解得x ≤4,故选:D .8、(2022•安顺)要使函数y =12−x 在实数范围内有意义,则x 的取值范围是 .【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:2x ﹣1≥0,解得:x ≥,故答案为:x ≥.9、(2022•哈尔滨)在函数y =35+x x 中,自变量x 的取值范围是 . 【分析】根据分母不能为0,可得5x +3≠0,然后进行计算即可解答.【解答】解:由题意得:5x +3≠0,∴x ≠﹣,故答案为:x ≠﹣.10、(2022•巴中)函数y =31−x 中自变量x 的取值范围是 . 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【解答】解:根据题意得:x ﹣3>0,解得:x >3.故答案为:x >3.x −4。

高中数学函数的自变量取值范围与函数值计算

高中数学函数的自变量取值范围与函数值计算

高中数学函数的自变量取值范围与函数值计算在高中数学中,函数是一个非常重要的概念。

函数的自变量是指函数中的输入值,而函数的值则是指函数对应的输出值。

在解题过程中,确定自变量的取值范围以及计算函数的值是必不可少的步骤。

本文将通过具体的例子,分析函数的自变量取值范围与函数值计算的考点,并给出解题技巧和指导。

一、自变量取值范围的确定在确定函数的自变量取值范围时,我们需要考虑两个方面的因素:函数定义域和实际问题的限制条件。

1. 函数定义域的确定函数的定义域是指自变量的取值范围,也就是使函数有意义的输入值的集合。

例如,对于函数y = √x,由于根号下不能为负数,所以定义域为x ≥ 0。

在解题时,我们需要根据函数的定义域确定自变量的取值范围。

2. 实际问题的限制条件有些函数在实际问题中存在一些限制条件,这些条件也会影响自变量的取值范围。

例如,如果一个函数表示一个物体的运动轨迹,那么自变量的取值范围可能会受到时间、空间等方面的限制。

在解题时,我们需要考虑这些限制条件,确定自变量的取值范围。

二、函数值的计算确定了自变量的取值范围之后,我们就可以计算函数的值了。

计算函数的值需要根据函数的表达式和自变量的取值进行运算。

下面通过几个例子来说明函数值的计算方法。

例1:计算函数y = 2x + 1在x = 3时的值。

解析:将x = 3代入函数表达式中,得到y = 2 × 3 + 1 = 7。

因此,函数y = 2x + 1在x = 3时的值为7。

这个例子中,我们只需要将给定的自变量的值代入函数表达式中进行计算即可得到函数的值。

例2:计算函数y = |x - 2|在x = 4时的值。

解析:将x = 4代入函数表达式中,得到y = |4 - 2| = 2。

因此,函数y = |x - 2|在x = 4时的值为2。

这个例子中,函数的表达式中含有绝对值符号,我们需要根据自变量的值的正负情况进行计算。

当x - 2 ≥ 0时,|x - 2| = x - 2;当x - 2 < 0时,|x - 2| = -(x - 2)。

华东师版八年级下册数学针对性练习:17.1.2 自变量的取值范围和函数值

华东师版八年级下册数学针对性练习:17.1.2 自变量的取值范围和函数值

17.1.2 自变量的取值范围及函数值知识针对练习:知识点 1 函数的关系式1.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了4小时到达乙地.当他按照原路返回时,汽车的速度v (千米/时)与时间t (时)之间的函数关系式是( )A .v =320tB .v =320tC .v =20tD .v =20t2.已知两个变量x 和y ,它们之间的3组对应值如下表所示.则y 与x 之间的函数关系式可能是( )A .y =xB .y =2x +1C .y =x 2+x +1 D .y =3x 知识点 2 自变量的取值范围3.中国标准动车组,在京沪高铁线上以350千米/时的平均速度行驶,它驶过的路程s (千米)是所用时间t (时)的函数,这个函数关系式可表示为________,自变量的取值范围是________.4.求下列函数中自变量x 的取值范围.(1)y =-13x +8; (2)y =42x -1;(3)y =x -2; (4)y =-11+x 2.知识点 3 函数值5.若y 与x 的关系式为y =30x -6,当x =13时,y 的值为( )A .-4B .4C .5D .106.生活用电每千瓦时0.545元,小明家7月份所用电费y (元)与这个月用电量x (千瓦时)之间的关系式是______________.通过查电表,知道x =100千瓦时,那么小明家应付电费________元.提升练习:7.若等腰三角形的周长为50 cm ,底边长为x cm ,腰长为y cm ,则y 与x 的函数关系式及自变量x 的取值范围是( )A .y =50-2x (0<x <50)B .y =50-2x (0<x <25)C .y =12(50-x )(0<x <50)D .y =12(50-x )(0<x <25)8.当x =2时,函数y =kx -2和y =2x +k 的值相等,则这个函数值是________. 9.已知一水池中有600 m 3的水,每小时抽掉50 m 3.(1)写出剩余水的体积Q (m 3)与抽水时间t (h)之间的函数关系式;(2)8 h 后,池中还有多少水?(3)多长时间后,池中还有100 m 3的水?10.如图,△ABC中边BC的长为10 cm,BC边上的高为AD,当点A沿AD所在直线向点D运动时,△ABC的面积发生了变化.(1)指出在这个变化过程中的常量和变量;(2)若△ABC的高为x(cm),△ABC的面积为y(cm2),写出y与x之间的关系式;(3)当高AD从8 cm变化到3 cm时,求△ABC的面积的变化范围.17.1.2 自变量的取值范围及函数值答案详解1.B 2.B3.s =350t t ≥04.解:(1)x 为任意实数.(2)x ≠12.(3)x ≥2.(4)x 为任意实数.5.B [解析] 当x =13时,y =30×13-6=4.故选B.6.y =0.545x (x ≥0) 54.57.D [解析] 根据题意,得x +2y =50,y =12(50-x ).因为2y >x ,所以50-x >x ,即x <25.所以自变量x 的取值范围为0<x <25.8.10 [解析] 由题意可知2k -2=4+k ,故k =6,那么这两个函数分别为y =6x -2和y =2x +6.将x =2代入任一个函数关系式中,可得y =10.9. [全品导学号:29894040](1)Q =600-50t (0≤t ≤12) (2)200 m 3(3)10 h10.解:(1)∵在变化过程中线段BC 的长度不变,∴根据常量的定义可知线段BC 的长是常量.∵点A 沿AD 所在直线向点D 运动,∴AD 的长度在逐渐变短,∴线段AD 的长是变化的量.∵高AD 变化,∴△ABC 的面积也在变化.故常量是线段BC 的长,变量为线段AD 的长和△ABC 的面积.(2)∵△ABC 的面积=BC ·x 2,∴y =10x 2=5x ,∴y 与x 之间的关系式为y =5x .(3)当x =8时,y =40;当x =3时,y =15.∴△ABC 的面积的变化范围为15 cm 2≤△ABC 的面积≤40 cm 2.。

中考数学专题训练(附详细解析):函数自变量取值范围

中考数学专题训练(附详细解析):函数自变量取值范围

中考数学专题训练(附详细解析)函数自变量取值范围1、(专题•资阳)在函数y=中,自变量x的取值范围是()2、(专题•泸州)函数自变量x的取值范围是()3、(专题•包头)函数y=中,自变量x的取值范围是()4、(专题•铁岭)函数y=有意义,则自变量x的取值范围是x≥1且x≠2.5、(专题•湘西州)函数y=的自变量x的取值范围是x.≥.6、(专题•郴州)函数y=中自变量x的取值范围是()7、(专题•常德)函数y=中自变量x的取值范围是()8、 (专题广东湛江)函数y =中,自变量x 的取值范围是( ).A 3x >- .B 3x ≥- .C 3x ≠- .D 3x ≤- 解析:函数中含二次根式的部分,要求其被开方数是非负数,即30,3x x +≥∴≥-,∴选B9、(专题•眉山)函数y=中,自变量x 的取值范围是 x ≠2 .10、(专题•恩施州)函数y=的自变量x 的取值范围是 x ≤3且x ≠﹣2 .11、(专题•绥化)函数y=中自变量x 的取值范围是 x >3 .12、(专题•巴中)函数y=中,自变量x 的取值范围是 x ≥3 .13、(专题•牡丹江)在函数y=中,自变量x 的取值范围是 x ≥ .≥14、(专题•内江)函数y=中自变量x 的取值范围是 x ≥﹣且x ≠1 .15、(专题哈尔滨)在函数3x y x =+中,自变量x 的取值范围是 .考点:分式意义的条件.分析:根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.解答:∵ 式子3x y x =+在实数范围内有意义, ∴ x +3≠≥0,解得x ≠-3.16、(专题安徽省4分、11)若x 31-在实数范围内有意义,则x 的取值范围17、(专题•常州)函数y=中自变量x 的取值范围是 x ≥3 ;若分式的值为0,则x= . x=x=;。

2019中考数学专题练习-函数自变量的取值范围(含解析)

2019中考数学专题练习-函数自变量的取值范围(含解析)

2019中考数学专题练习-函数自变量的取值范围(含解析)1.函数y=的自变量x的取值范围是B。

x≥﹣2且x≠0.2.下列函数中,自变量x的取值范围是x≥3的是C。

y=x-3.3.函数y=,自变量x的取值范围是A。

x>2.4.函数的自变量x的取值范围是B。

x>1且x≠3.5.在函数y=中,自变量x的取值范围是A。

x≠4.6.函数y=中x的取值范围为B。

x>﹣2且x≠0.7.在函数y=中,自变量x的取值范围是A。

x≤1.8.函数y=+1中,自变量x的取值范围是C。

x≥2.9.若函数y=有意义,则D。

x≠1.10.函数中自变量x的取值范围是C。

x>2且x≠3.11.在函数y=中,自变量x的取值范围是D。

x≤2且x≥1且x≠3.12.函数y=中自变量x的取值范围是B。

x≥1且x≠±2.13.在函数y=中,自变量x的取值范围是C。

x>1.二、填空题14.函数y=的自变量x的取值范围是全体实数。

15.函数中,自变量x的取值范围是x≠3.16.函数y=中,自变量x的取值范围是全体实数。

三、解答题17.①y=的自变量x的取值范围是全体实数。

②y=的自变量x的取值范围是x>1.18.y=的自变量x的取值范围是x>2.19.①y=的自变量x的取值范围是全体实数。

②y=的自变量x的取值范围是x>0.四、综合题20.1)y=3x﹣1的自变量x的取值范围是全体实数。

2)y=的自变量x的取值范围是x≠0.3)y=的自变量x的取值范围是x>1.21.1)y=x2﹣x+5的自变量x的取值范围是全体实数。

2)y=的自变量x的取值范围是x>1.3)y=的自变量x的取值范围是x≥﹣1.4)y=的自变量x的取值范围是x>1.5)y=的自变量x的取值范围是x>﹣1.6)y=的自变量x的取值范围是x>1.答案】1)解:x是任意实数;2)解:根据题意得。

解得:x≥1;3)解:根据题意得。

解得:x≥2;4)解:根据题意得。

解得:x≥1;5)解:根据题意得。

教学课件17.1 第2课时 求自变量的取值范围与函数值

教学课件17.1 第2课时 求自变量的取值范围与函数值

(2)池中共有300 m3水,每小时排水25 m3,故全
部排完只需 300÷25=12(h),故自变量 t的取值范 围是0≤t≤12.
(3)开始排水后的第5h末,游泳池中还有多少水?
(3)当t=5,代入上式得Q=-5×25+300=175(m3),
即第5h末池中还有水175 m3 (4)当游泳池中还剩150 m3水时,已经排水多长时 间? (4)当Q=150m3时,由150=-25 t +300,得t =6h,
试问坡长为多少?
的取值范围.
3.已知函数 y
4x 2 . x 1
(1)求当x=2,3,-3时,函数的值; (2)求当x取什么值时,函数的值为0.
课堂小结
自变量 的取值 范围 函数
符合实际意义
函数值
自变量对应的因 变量的值
x
由于等腰三角形的底角只能是锐角, 所以自变量的取值范围是0<x<90.
归纳总结
实际问题中自变量的取值范围.
在实际问题中确定自变量的取值范围,主要考 虑两个因素:
⑴自变量自身表示的意义.如时间、耗油量等
不能为负数; ⑵问题中的限制条件.此时多用不等式或不等 式组来确定自变量的取值范围.
二 求函数值
函数关系的三种表示方法:
解析法、列表法、图象法
思考:那么自变量能随意取值吗?
一 自变量的取值范围
问题:在以下两种情景中,要使函数有意义,自度h (m)与旋 转时间t(min) 之间的关系.
自变量t的取值范
围:__________ t≥0
情景二
罐头盒等圆柱形的物体常常如下图那样堆放.随 着层数的增加,物体的总数是如何变化的?
学练优八年级数学下(HS) 教学课件

函数自变量取值范围

函数自变量取值范围

函数自变量取值范围
我们学习数学时,经常会接触到函数。

函数是表示一种变化关系的数学工具。

简单来说,函数就是一个数值映射,将一个自变量映射成一个因变量。

这个数值映射的自变量取
值范围很重要。

下面我们来介绍一下函数自变量取值范围。

1. 实数范围
函数的自变量通常是实数,也就是可以表示所有可能的数值,包括正数,负数,和零。

通常情况下,函数的自变量取值范围是用实数集合来表示。

实数集合包含了所有有理数和
无理数,可以表示为:
R = {a | a 是一个实数}
这个范围是实数轴上的所有点,是一个无限范围。

所有的实数都可以作为函数的自变量。

有时,函数的自变量只能取自然数,通常是因为自变量表示了某种计数器,比如“第
几个人”、“第几项”等。

自然数包括了所有正整数,可以用如下符号表示:
N = {1, 2, 3, …}
通常,函数的自变量取自然数范围的时候,我们使用一个大写字母 N 来表示这个范围。

4. 区间范围
有些函数的自变量只能在一定的区间内取值,比如时间、长度等等。

这时候,我们使
用一个区间来表示自变量的取值范围。

区间包含了一段连续的数值,比如 [a, b] 表示的
是从 a 到 b 的所有数值,包括 a 和 b。

标记的方式有两种:
(1)闭区间:[a, b] 表示 a 和 b 都在这个区间内。

总之,函数自变量取值范围很重要,要根据实际问题来选定。

不同的自变量取值范围
有不同的意义和用途,应该根据具体问题选择合适的范围来进行计算和分析。

函数自变量的取值范围.函数值附答案

函数自变量的取值范围.函数值附答案

17.1.2函数自变量的取值范围.函数值一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A.x>2 B.x≥2 C.x<2 D.x≤22.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣13.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=14.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A.1 B.﹣2 C.D.35.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 3.5 烤制时间/分40 60 80 100 120 140 160 设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A.140 B.138 C.148 D.1607.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣48.在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>1二.填空题(共6小题)9.函数中,自变量x的取值范围是_________.10.函数y=中,自变量x的取值范围是_________.11.函数,当x=3时,y=_________.12.函数的主要表示方法有_________、_________、_________三种.13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是_________.输入数据 1 2 3 4 5 6 …输出数据…14.已知方程x﹣3y=12,用含x的代数式表示y是_________.三.解答题(共6小题)15.求函数y=的自变量x的取值范围.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.17.1.2函数自变量的取值范围.函数值参考答案与试题解析一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A.x>2 B.x≥2 C.x<2 D.x≤2考点:函数自变量的取值范围.专题:函数思想.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.解答:解:根据题意,得x﹣2≥0,解得x≥2.故选:B.点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1考点:函数自变量的取值范围.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A.点评:本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=1考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故选:C.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A. 1 B.﹣2 C.D. 3考点:函数值.专题:图表型.分析:先根据x的值确定出符合的函数解析式,然后进行计算即可得解.解答:解:x=﹣1时,y=x2=(﹣1)2=1.故选A.点评:本题考查了函数值的求解,根据自变量的取值范围准确确定出相应的函数解析式是解题的关键.5.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对考点:函数的表示方法.分析:表示函数的方法有三种:解析法、列表法和图象法.解答:解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.点评:本题考查了函数的三种表示方法:解析法、列表法和图象法.要熟练掌握.6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 3.5 烤制时间/分40 60 80 100 120 140 160 设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A.140 B.138 C.148 D.160考点:函数的表示方法.分析:观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x=3.2千克代入即可求出烤制时间t.解答:解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,,解得所以t=40x+20.当x=3.2千克时,t=40×3.2+20=148.故选C.点评:本题考查了一次函数的运用.关键是根据题目的已知及图表条件得到相关的信息.7.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣4考点:函数值.专题:图表型.分析:根据流程,把输出的函数值分别代入函数解析式求出输入的x的值即可.解答:解:∵输出数值y为1,∴①当x≤1时,0.5x+5=1,解得x=﹣8,符合,②当x>1时,﹣0.5x+5=1,解得x=8,符合,所以,输入数值x为﹣8或8.故选C.点评:本题考查了函数值求解,比较简单,注意分两种情况代入求解.8.在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>1考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣1≥0,解得x≥1.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.二.填空题(共6小题)9.函数中,自变量x的取值范围是x≥﹣2且x≠1.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解解答:解:根据题意得:,解得:x≥﹣2且x≠1.故答案是:x≥﹣2且x≠1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.函数y=中,自变量x的取值范围是x≠2.考点:函数自变量的取值范围;分式有意义的条件.专题:计算题.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.解答:解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.11.函数,当x=3时,y=﹣3.考点:函数值.分析:把自变量的值代入函数解析式进行计算即可求解.解答:解:当x=3时,y==﹣3.故答案为:﹣3.点评:本题考查了函数值的求解,把自变量的值代入函数解析式进行计算即可求解,是基础题,比较简单.12.函数的主要表示方法有列表法、图象法、解析式法三种.考点:函数的表示方法.专题:推理填空题.分析:根据函数的三种表示法解答即可.解答:解:函数表示两个变量的变化关系,有三种方式:列表法、图象法、解析式法.故答案为列表法、图象法、解析式法.点评:本题考查了函数的表示方法,不论何种形式,符合函数定义即可,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是.输入数据 1 2 3 4 5 6 …输出数据…考点:函数的表示方法.专题:计算题;规律型.分析:分析可得:各个式子分子是输入的数字,分母是其3倍减1,故当输入数据是正整数n时,即可求得输出的值.解答:解:∵各个式子分子是输入的数字,分母是其3倍减1,∴当输入数据是正整数n时,输出的数据是.点评:本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.14.已知方程x﹣3y=12,用含x的代数式表示y是y=x﹣4.考点:函数的表示方法.分析:要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.解答:解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.点评:考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.三.解答题(共6小题)15.求函数y=的自变量x的取值范围.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.专题:计算题.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数>等于0,分母不等于0,就可以求解.解答:解:根据二次根式的意义,被开方数4+2x≥0,解得x≥﹣2;根据分式有意义的条件,x﹣1≠0,解得x≠1,因为x≥﹣2的数中包含1这个数,所以自变量的范围是x≥﹣2且x≠1.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.考点:函数自变量的取值范围.分析:(1)根据对任意实数,多项式都有意义,即可求解;(2)根据分母不等于0,即可求解;(3)根据任意数的平方都是非负数即可求解.解答:解:(1)x是任意实数;(2)根据题意得:x+4≠0,则x≠﹣4;(3)x是任意实数.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.考点:函数值.分析:(1)把x的值分别代入函数关系式计算即可得解;(2)把函数值代入函数关系式,解关于x的一元一次方程即可.解答:解:(1)x=﹣时,y=2×(﹣)﹣3=﹣1﹣3=﹣4,x=4时,y=2×4﹣3=8﹣3=5;(2)y=﹣5时,2x﹣3=﹣5,解得x=﹣1.点评:本题考查了函数值求解,已知函数值求自变量,是基础题,准确计算是解题的关键.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?考点:函数值.分析:根据函数值相等,自变量相等,可得方程组,根据解方程组,可得答案.解答:解:由题意得,解得,当x=﹣时,函数y=x+1与y=5x+17的值相等,这个函数值是﹣15.点评:本题考查了函数值,利用了函数值相等,自变量相等得出方程组是解题关键.19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?考点:函数的表示方法.专题:应用题.分析:(1)根据图表,反映的是距离地面的高度和温度两个量,所以温度和高度是两个变化的量,温度随高度的变化而变化;(2)根据表格数据,高度越大,时间越低,所以随着高度的h的增大,温度t在减小;(3)求出当h=6时温度t的值即可.解答:解:(1)上表反映了温度和高度两个变量之间.高度是自变量,温度是因变量.(2)如果用h表示距离地面的高度,用t表示温度,那么随着高度h的增大,温度t逐渐减小(或降低).(3)距离地面6千米的高空温度是﹣16℃.点评:本题是对函数定义的考查和图表的识别,自变量、因变量的区分对初学函数的同学来说比较困难,需要在学习上多下功夫.20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.考点:函数值;常量与变量.专题:应用题.分析:(1)因为温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度,所以自变量是x,因变量是y.(2)令t=2,x=5,代入函数解析式,即可求解.解答:(1)解:自变量是地表以下的深度x,因变量是所达深度的温度y;(2)解:当t=2,x=5时,y=3.5×5+2=19.5;所以此时地壳的温度是19.5℃.点评:本题只需利用函数的概念即可解决问题.。

初中数学中考函数自变量取值范围的确定方法素材

初中数学中考函数自变量取值范围的确定方法素材

初中数学中考函数自变量取值范围的确定方法素材在初中数学中,函数是一个非常重要的概念。

而函数的自变量的取值范围的确定对于理解函数的性质和解题非常关键。

下面我将为你提供一些关于函数自变量取值范围确定方法的素材。

1.实际问题与函数自变量的关系很多实际问题可以通过函数来建模并求解。

在确定函数的自变量取值范围时,首先要分析实际问题中自变量的意义和限制条件。

例如,对于一个描述时间和距离之间关系的函数,自变量表示时间,通常限制为非负数,因为时间不能为负。

2.函数图像与自变量取值范围函数的图像可以提供很多关于函数自变量取值范围的信息。

通过观察函数图像,可以确定函数的自变量取值范围。

例如,对于一个定义在实数集上的线性函数,其图像是一条直线,我们可以观察直线的延伸方向,确定自变量取值范围是整个实数集。

3.函数的定义域函数的定义域是指函数可以取值的自变量的集合。

在确定函数的自变量取值范围时,通常可以参考函数的定义域。

例如,对于一个分式函数,自变量不能使分母为0,所以要求自变量取值不能使分母为0的范围。

4.函数的性质和条件函数的性质和条件也可以用来确定函数的自变量取值范围。

例如,对于一个定义在正整数集上的函数,我们可以利用正整数的性质来确定自变量取值范围为正整数集。

5.不等式的解集一些情况下,函数的自变量取值范围可以通过不等式的解集来确定。

例如,对于一个定义域为实数集的二次函数,我们可以通过求不等式ax^2+bx+c≥0的解集来确定自变量取值范围。

6.函数的可行性在实际问题中,函数的自变量通常有一定的物理或数学限制。

通过分析这些限制,可以确定函数的自变量取值范围。

例如,对于一个模拟水龙头放水的函数,自变量的取值范围应该是在水龙头可调节的范围内。

总结起来,确定函数的自变量取值范围的方法可以从实际问题、图像、定义域、性质和条件、不等式的解集以及可行性等方面考虑。

通过综合运用这些方法,可以有效地确定函数的自变量取值范围,有助于解决相关的数学问题。

人教版初中数学一次函数自变量的取值范围及函数值同步练习题(含答案)

人教版初中数学一次函数自变量的取值范围及函数值同步练习题(含答案)

17.1.2 自变量的取值范围及函数值同步练习题1.函数y =1x +2中,x 的取值范围是( )A .x ≠0B .x >-2C .x <-2D .x ≠-2 2.函数y =2x -4中自变量x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x ≠2 3.函数y =x -2x +3的自变量x 的取值范围是_______. 4.求下列函数中自变量x 的取值范围:(1)y =-13x +8; (2)y =42x -1; (3)y =1x -2+x ; (4)y =-11+x 2.5.变量x 与y 之间的关系是y =12x 2-1,当自变量x =2时,因变量y 的值是( )A .-2B .-1C .1D .26.同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数关系是y =95x +32,如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____℉.7.如果每盒圆珠笔有12支,每盒售价18元,那么圆珠笔的总销售额y (元)与圆珠笔的销售支数x 之间的函数关系式是( )A .y =32xB .y =23xC .y =12xD .y =112x8.已知两个变量x 和y ,它们之间的3组对应值如下表所示.则y 与x A .y =x B .y =2x +1 C .y =x 2+x +1 D .y =3x9.已知方程x -4y =11,用含x 的代数式表示y 是___________.10. 我们知道,海拔高度每上升1千米,温度就下降6 ℃.某时刻,某地地面温度为20 ℃,设高出地面x千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式;(2)已知此地某山峰高出地面约500米,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过此地上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?11.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,则y 与x 之间的函数关系式和自变量取值范围分别是( )A .y =0.12x ,x >0B .y =60-0.12x ,x >0C .y =0.12x ,0≤x ≤500D .y =60-0.12x ,0≤x ≤50012.已知函数y =⎩⎨⎧2x +1(x≥0),4x (x <0),当x =2时,函数值y 为( )A .5B .6C .7D .813.等腰三角形的周长为20 cm ,腰长为x cm ,底边长为y cm ,则底边长与腰长之间的函数关系式为( ) A .y =20-x (0<x <10) B .y =20-x (10<x <20) C .y =20-2x (10<x <20) D .y =20-2x (5<x <10) 14.当x =2时,函数y =kx -2和y =2x +k 的值相等,则k =____. 15.当x =2及x =-3时,分别求出下列函数的函数值: (1)y =(x +1)(x -2); (2)y =x +2x -1.16.弹簧挂上物体后会伸长,在弹性限度内测得一弹簧的长度y (cm )与所挂物体的质量x (kg )有如下关系:(1)请写出弹簧总长y (cm )与所挂物体质量x (kg )之间的函数关系式; (2)当挂重10千克时弹簧的总长是多少?(3)当弹簧总长为16.5 cm 时,所挂物体重多少?17.根据如图所示的程序计算函数值:若输入的x 值为-1,则输出的函数值为____.18.(2016·黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元?参考答案:1. D2. B3. x ≥24. (1) x 为任意实数 (2) x ≠12(3) x ≥0且x ≠2 (4) x 为任意实数 5. C 6. 77 7. A 8. B 9. y =14x -11410. (1) y =20-6x (x >0)(2) 由题意得y =20-6×0.5=17,答:这时山顶的温度大约是17 ℃ (3) 由题意得-34=20-6x ,解得x =9.答:飞机离地面的高度为9千米 11. D 12. A 13. D 14. 615. (1)当x =2时,y =(x +1)(x -2)=(2+1)(2-2)=0;当x =-3时,y =(x +1)(x -2)=(-3+1)(-3-2)=10 (2)当x =2时,y =x +2x -1=2+22-1=4;当x =-3时,y =x +2x -1=-3+2-3-1=1416. (1) y =0.5x +12(2) 当x =10时,代入y =0.5x +12,解得y =17,即弹簧总长为17 cm (3) 当y =16.5时,代入y =0.5x +12,解得x =9,即所挂物体重为9 kg 17. 118. (1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元. 根据题意得⎩⎨⎧12a +(24-12)b =42,12a +(20-12)b =32,解得⎩⎨⎧a =1,b =2.5.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元(2)∵当0≤x ≤12时,y =x ;当x >12时,y =12+(x -12)×2.5=2.5x -18,∴所求函数关系式为y =⎩⎨⎧x (0≤x ≤12),2.5x -18(x >12)(3)∵x =26>12,∴把x =26代入y =2.5x -18,得y =2.5×26-18=47(元).答:小黄家3月份应交水费47元。

自变量的取值范围专项练习

自变量的取值范围专项练习

自变量的取值范围专项练习1.在函数43+=x y 中,当1=x 时,函数值为( ),当x=( )时,函数值为102.函数x x y 2+=中,自变量x 的取值范围是____________。

3.函数323-=x x y 中,自变量x 的取值范围是____________。

4.若函数{)2(2)2(22≤+=x x x x y φ,则当函数值8=y 时,自变量x 的值为____________。

5.函数113-+=x x y 的自变量x 的取值范围是____________。

6.在函数x x y -++=431中,自变量x 的取值范围是____________。

7.在函数24-++=x x y 中,自变量x 的取值范围是____________。

8.函数2+=x x y 的自变量x 的取值范围是____________。

9.函数13-=x y 的自变量x 的取值范围是____________。

10.函数x x y 2112-+-=的自变量x 的取值范围是____________。

11.函数231-=x y 的自变量x 的取值范围是____________。

12.函数xx y =的自变量x 的取值范围是____________。

13.函数25x y =的自变量x 的取值范围是____________。

14.函数xx y 14+-=的自变量x 的取值范围是____________。

15.函数68-=x y 的自变量x 的取值范围是____________。

16.函数123353-+-=x x y 的自变量x 的取值范围是____________。

17.函数231233-+-=x x y 的自变量x 的取值范围是____________。

18.函数x x y -+-=2141的自变量x 的取值范围是____________。

19.函数12+=x y 的自变量x 的取值范围是____________。

初二函数取值范围练习题

初二函数取值范围练习题

初二函数取值范围练习题函数是数学中的一个重要概念,它描述了一个集合中的每个元素与另一个集合中元素之间的对应关系。

在初二阶段,我们学习了一些基础的函数概念,如定义域、值域和取值范围。

在本文中,我们将通过一些练习题来巩固和应用这些概念。

首先,我们需要了解什么是定义域、值域和取值范围。

定义域是指函数中所有输入值的集合,也就是可以作为函数输入的所有可能的值。

值域是指函数中所有输出值的集合,也就是函数可能得到的所有结果的集合。

取值范围是函数的值域中所有实际出现的值组成的集合。

接下来,让我们通过以下练习题来进一步理解和应用初二函数的取值范围。

练习题1:定义一个函数f(x),其中x是实数,函数f(x)的定义域是[-1, 3],并且当x为奇数时,f(x)的值为x^2,当x为偶数时,f(x)的值为(x-1)^2。

解析1:根据题意,我们可以得到函数f(x)的定义域为[-1,3],也就是-1到3之间的所有实数。

我们需要根据x的奇偶性来确定f(x)的值。

当x为奇数时,f(x)=x^2,因此f(-1)=1,f(1)=1,f(3)=9。

当x为偶数时,f(x)=(x-1)^2,因此f(0)=1,f(2)=1。

练习题2:定义一个函数g(x),其中x是正整数,函数g(x)的定义域是[1,10],并且当x是质数时,g(x)的值为x^2,当x是合数时,g(x)的值为x/2。

解析2:根据题意,我们可以得到函数g(x)的定义域为[1,10],也就是1到10之间的所有正整数。

我们需要根据x是质数还是合数来确定g(x)的值。

当x是质数时,g(x)=x^2,因此g(2)=4,g(3)=9,g(5)=25,g(7)=49。

当x是合数时,g(x)=x/2,因此g(4)=2,g(6)=3,g(8)=4,g(9)=4.5,g(10)=5。

练习题3:定义一个函数h(x),其中x是自然数,函数h(x)的定义域是[1,5],并且当x是恒等于2的倍数时,h(x)的值为2,当x是恒等于3的倍数时,h(x)的值为3,当x是恒等于5的倍数时,h(x)的值为5。

人教部编版数学八年级下册《函数(函数自变量的取值范围)》同步测验(有答案word)

人教部编版数学八年级下册《函数(函数自变量的取值范围)》同步测验(有答案word)

《函数自变量的取值范围》同步测验一选择题1.函数y=√x2−1的自变量x有意义的取值范围是()A.x≥1B.−1≤x≤1C.x≥1或x≤−1D.x≥02.下列函数中,自变量x的取值范围是−2<x≤1的函数是()A.y=√x+2√1−xB.y=√x−2√1−xC.y=√x+2+√x+2D.y=√x+2+√1−x3.下列函数中,自变量x的取值范围是x>2的函数是()A.y=x−2B.y=x2−4C.y=1x−2D.y=√x−24.函数y=√2−xx+3中自变量x的取值范围是()A.x≤2B.x=3C.x≥2且x≠3D.x≤2且x≠−35.在函数y=√3−x+√2x−1中,自变量x的取值范围是()A.1 2<x≤3B.12≤x≤3C.x≤3且x≠12D.12<x<36.函数y=(1−x)2的自变量x的取值范围是()A.x≠1B.x>0C.x>1D.全体实数7.已知函数自变量的取值范围是13<x≤1,那么这个函数的解析式可能是()A.y=√3x−1B.y=√1−x3x−1C.y=√3x−11−xD.y=√1−x−√3x−18. 若使函数y=1x2−2bx+c2的自变量x的取值范围是一切实数,则下面的关系中一定满足要求的是( )A.b >c >0B.b >0>cC.c >0>bD.c >b >0 9.函数y =√2x+1x 2−4的自变量x 的取值范围是( ) A.x ≥−12B.x >12且x ≠±2C.x ≥−12且x ≠2D.x ≥12且x ≠2 10.已知函数y =|x|−4,当函数值y =−1时,自变量x 的取值是( )A.x =−3B.x =3C.x =−5或x =5D.x =−3或x =3二、 填空题11. 在函数y =√x−5x−4中,自变量x 的取值范围是________. 12. 函数y =x−2x+2的定义域是________.13. 某种储蓄的月利率是0.2%,存入10000元本金,取款时应缴纳所得利息20%的利息税,则实得本息之和y (元)与所存月数x 之间的函数关系为________,自变量x 的取值范围是________.14. 用总长为60m 的篱笆围成长方形场地.设长方形的一边长为L(m),面积为S(m 2),则S 关于L 的函数表达式为________,自变量的取值范围是________.15. 某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位数m 与这排的排数n 的函数关系式并写出自变量n 的取值范围.上题中,在其他条件不变的情况下,请探究下列问题:①当后面每一排都比前一排多2个座位时,则每排的座位数m 与这排的排数n 的函数关系式是________(1≤n ≤25,且n 是正整数)②当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m 与这排的排数n 的函数关系式分别是________,________(1≤n ≤25,且n 是正整数)③某礼堂共有P 排座位,第一排有a 个座位,后面每一排都比前一排多b 个座位,试写出每排的座位数m 与这排的排数n 的函数关系式,并写出自变量n 的取值范围.三、解答题16. 求下列函数中自变量x 的取值范围:(1)y =5x+72; (2)y =x 2−x −2;(3)y =34x+8; (4)y =√x +3.17. 用一段长为30米的篱笆围成一个一边靠墙(墙长为12米)的矩形菜园ABCD ,设AB 长为x 米,菜园的面积为y 平方米.(1)求y与x之间的函数关系式;(2)求x的取值范围.18. 水箱内原有水200升,7点30分打开水龙头,以2升/分的速度放水,设经t分钟时,水箱内存水y升.(1)求y关于t的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)几点几分水箱的内的水恰好放完?一、选择题1.C2.D3.D4.D5.A6.D7.B8.D9.C10.D二、填空题11.x≥512.x≠−213.y=10000+16x,x≥114.S=L2−30L,15<L<3015.m=2n+18,m=3n+17,m=4n+16三、解答题16.解:(1)在y=5x+7中,x取全体实数;2(2)在y=x2−x−2中,x取全体实数;中,4x+8≠0,x≠−2;(3)在y=34x+8(4)在y=√x+3中,x+3≥0,解得x≥−3.17.解:(1)∵AB边长为x米,而菜园ABCD是矩形菜园,∴BC=1(30−x),2∵菜园的面积=AB×BC=1(30−x)⋅x,2∴菜园的面积y与x的函数关系式为:y=−1x2+15x.2(2)∵篱笆一边靠墙且墙长为12米,∴x<12,∵x>0,∴0<x<12.18.解:(1)∵水箱内存有的水=原有水-放掉的水,∴y=200−2t,∵y≥0,∴200−2t≥0,解得:t≤100,∴0≤t≤100,所以y关于t的函数关系式为:y=200−2t(0≤t≤100);(2)∵7:55−7:30=25,∴当t=25时,y=200−2t=200−50=150(升),∴7:55时,水箱内还有水150升;(3)当y=0时,200−2t=0,解得:t=100分钟=1小时40分钟,7:30+1小时40分钟=9点10分,故9点10分水箱的内的水恰好放完.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1.2函数自变量的取值范围.函数值农安县合隆中学徐亚惠一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A.x>2 B.x≥2 C.x<2 D.x≤22.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣13.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=14.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A.1 B.﹣2 C.D.35.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 3.5 烤制时间/分40 60 80 100 120 140 160 设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A.140 B.138 C.148 D.1607.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣48.在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>1二.填空题(共6小题)9.函数中,自变量x的取值范围是_________.10.函数y=中,自变量x的取值范围是_________.11.函数,当x=3时,y=_________.12.函数的主要表示方法有_________、_________、_________三种.13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是_________.输入数据 1 2 3 4 5 6 …输出数据…14.已知方程x﹣3y=12,用含x的代数式表示y是_________.三.解答题(共6小题)15.求函数y=的自变量x的取值范围.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.17.1.2函数自变量的取值范围.函数值参考答案与试题解析一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A.x>2 B.x≥2 C.x<2 D.x≤2考点:函数自变量的取值范围.专题:函数思想.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.解答:解:根据题意,得x﹣2≥0,解得x≥2.故选:B.点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1考点:函数自变量的取值范围.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A.点评:本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=1考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故选:C.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A. 1 B.﹣2 C.D. 3考点:函数值.专题:图表型.分析:先根据x的值确定出符合的函数解析式,然后进行计算即可得解.解答:解:x=﹣1时,y=x2=(﹣1)2=1.故选A.点评:本题考查了函数值的求解,根据自变量的取值范围准确确定出相应的函数解析式是解题的关键.5.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对考点:函数的表示方法.分析:表示函数的方法有三种:解析法、列表法和图象法.解答:解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.点评:本题考查了函数的三种表示方法:解析法、列表法和图象法.要熟练掌握.6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 3.5 烤制时间/分40 60 80 100 120 140 160 设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A.140 B.138 C.148 D.160考点:函数的表示方法.分析:观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x=3.2千克代入即可求出烤制时间t.解答:解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,,解得所以t=40x+20.当x=3.2千克时,t=40×3.2+20=148.故选C.点评:本题考查了一次函数的运用.关键是根据题目的已知及图表条件得到相关的信息.7.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣4考点:函数值.专题:图表型.分析:根据流程,把输出的函数值分别代入函数解析式求出输入的x的值即可.解答:解:∵输出数值y为1,∴①当x≤1时,0.5x+5=1,解得x=﹣8,符合,②当x>1时,﹣0.5x+5=1,解得x=8,符合,所以,输入数值x为﹣8或8.故选C.点评:本题考查了函数值求解,比较简单,注意分两种情况代入求解.8.在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>1考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣1≥0,解得x≥1.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.二.填空题(共6小题)9.函数中,自变量x的取值范围是x≥﹣2且x≠1.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解解答:解:根据题意得:,解得:x≥﹣2且x≠1.故答案是:x≥﹣2且x≠1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.函数y=中,自变量x的取值范围是x≠2.考点:函数自变量的取值范围;分式有意义的条件.专题:计算题.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.解答:解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.11.函数,当x=3时,y=﹣3.考点:函数值.分析:把自变量的值代入函数解析式进行计算即可求解.解答:解:当x=3时,y==﹣3.故答案为:﹣3.点评:本题考查了函数值的求解,把自变量的值代入函数解析式进行计算即可求解,是基础题,比较简单.12.函数的主要表示方法有列表法、图象法、解析式法三种.考点:函数的表示方法.专题:推理填空题.分析:根据函数的三种表示法解答即可.解答:解:函数表示两个变量的变化关系,有三种方式:列表法、图象法、解析式法.故答案为列表法、图象法、解析式法.点评:本题考查了函数的表示方法,不论何种形式,符合函数定义即可,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是.输入数据 1 2 3 4 5 6 …输出数据…考点:函数的表示方法.专题:计算题;规律型.分析:分析可得:各个式子分子是输入的数字,分母是其3倍减1,故当输入数据是正整数n时,即可求得输出的值.解答:解:∵各个式子分子是输入的数字,分母是其3倍减1,∴当输入数据是正整数n时,输出的数据是.点评:本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.14.已知方程x﹣3y=12,用含x的代数式表示y是y=x﹣4.考点:函数的表示方法.分析:要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.解答:解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.点评:考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.三.解答题(共6小题)15.求函数y=的自变量x的取值范围.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.专题:计算题.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数>等于0,分母不等于0,就可以求解.解答:解:根据二次根式的意义,被开方数4+2x≥0,解得x≥﹣2;根据分式有意义的条件,x﹣1≠0,解得x≠1,因为x≥﹣2的数中包含1这个数,所以自变量的范围是x≥﹣2且x≠1.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.考点:函数自变量的取值范围.分析:(1)根据对任意实数,多项式都有意义,即可求解;(2)根据分母不等于0,即可求解;(3)根据任意数的平方都是非负数即可求解.解答:解:(1)x是任意实数;(2)根据题意得:x+4≠0,则x≠﹣4;(3)x是任意实数.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.考点:函数值.分析:(1)把x的值分别代入函数关系式计算即可得解;(2)把函数值代入函数关系式,解关于x的一元一次方程即可.解答:解:(1)x=﹣时,y=2×(﹣)﹣3=﹣1﹣3=﹣4,x=4时,y=2×4﹣3=8﹣3=5;(2)y=﹣5时,2x﹣3=﹣5,解得x=﹣1.点评:本题考查了函数值求解,已知函数值求自变量,是基础题,准确计算是解题的关键.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?考点:函数值.分析:根据函数值相等,自变量相等,可得方程组,根据解方程组,可得答案.解答:解:由题意得,解得,当x=﹣时,函数y=x+1与y=5x+17的值相等,这个函数值是﹣15.点评:本题考查了函数值,利用了函数值相等,自变量相等得出方程组是解题关键.19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?考点:函数的表示方法.专题:应用题.分析:(1)根据图表,反映的是距离地面的高度和温度两个量,所以温度和高度是两个变化的量,温度随高度的变化而变化;(2)根据表格数据,高度越大,时间越低,所以随着高度的h的增大,温度t在减小;(3)求出当h=6时温度t的值即可.解答:解:(1)上表反映了温度和高度两个变量之间.高度是自变量,温度是因变量.(2)如果用h表示距离地面的高度,用t表示温度,那么随着高度h的增大,温度t逐渐减小(或降低).(3)距离地面6千米的高空温度是﹣16℃.点评:本题是对函数定义的考查和图表的识别,自变量、因变量的区分对初学函数的同学来说比较困难,需要在学习上多下功夫.20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.考点:函数值;常量与变量.专题:应用题.分析:(1)因为温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度,所以自变量是x,因变量是y.(2)令t=2,x=5,代入函数解析式,即可求解.解答:(1)解:自变量是地表以下的深度x,因变量是所达深度的温度y;(2)解:当t=2,x=5时,y=3.5×5+2=19.5;所以此时地壳的温度是19.5℃.点评:本题只需利用函数的概念即可解决问题.。

相关文档
最新文档