一次函数小结与复习学习案
初中数学教学课例《一次函数的图像与性质复习》课程思政核心素养教学设计及总结反思
知识,还要关注不确定知识。让学生经历真实的探究、 创造、协作与问题解决,发展学生的核心素养;在此过 程中,一切基础知识、基本技能均成为学生探究的对象 和使用的工具,其目的是产生学生自己的思想和理解。
思想
学生通过自主、探究、合作交流的学习方式,在复
习知识中感受到由抽象到具体在到一般的过程。在教学
中始终以数学学习的组织者、引导者和合作者的角色出
学生学习能 现在教学活动中,把课堂还给学生,以学生为主体,培
力分析 养他们的思维能力和表达能力。在练习的设计中,注意
习题的形式多样,难度适当,既巩固了本课所学知识,
题。
知识与技能:
1、理解并说出一次函数的概念
2、理解一次函数的图象及性质,能根据 k、b 的值
判断一次函数图象经过的象限,能根据图象经过的象限
判断 k、b 的符号
教学目标
3、会用待定系数法求解一次函数解析式
过程与方法:
1 学生通过自主、探究、合作交流的学习方式,在
复习知识中感受到由抽象到具体在到一般的过程;
又培养了学生的学习能力,进一步体现了数学来源于生
活,又应用于生活的教育理念。
引导学生从整体了解本章知识,进而了解本节课的
学习任务,明确学习目标、学生识记目标,并了解本节 教学策略选
在中考中的要求,激发学习的动力,鼓励学生多角度归 择与设计
纳,既有知识总结,又有方法的提炼,感悟点滴,从而
将知识系统化。
教学过程
一、多元导入、明确目标(让学生从一次函数的单
元知识树主干出发,逐条枝干阅读)进而了解本节课的 学习任务,明确学习目标、学生识记目标,并了解本节 在中考中的要求,激发学习的动力。
二、以题带知,构建网络 知识点 1:一次函数与正比例函数的概念: 1、下列函数(1)y=3πx;(2)y=8x-6;(3)y=; (4)y=-8x;(5)y=5-4x+1(6)y=kx+b 中,是一次函 数的有()个 A.4 个 B.3 个 C.2 个 D1 个 (让学生做题,相互讨论,重点强调第六个 k 不为 0) 引出知识点 1:一次函数与正比例函数的概念(课 件展示)紧跟巩固训练 2、已知,若函数 y=(m-1)xm2+3 是关于 x 的一次 函数,求 m 的值 教师强调这类题目主要考察对函数解析式的特征 的理解,突出两点:一指数为 1 二系数不为 0 知识点 2:一次函数的图象与性质 1、不画图像,仅从函数解析式能否分析出直线 y=3x、y=3x+4 与 y=3x-4 具有怎样的位置关系 2、一次函数 y=x 图象经过象限,若将函数图象向上 平移 1 个单位得到直线解析式为,y 随 x 的增大而此直
人教版八年级数学下册19.2.2一次函数的概念优秀教学案例
1.通过生活实例引入一次函数的概念,激发学生的学习兴趣。
2.引导学生通过观察、分析、归纳一次函数的性质,加深对一次函数的理解。
3.运用一次函数解决实际问题,提高学生的应用能力。
五、案例亮点
1.生活实例引入:通过生动的打车软件费用计算实例,将一次函数的概念与学生的生活实际紧密联系起来,增强了学生的学习兴趣,提高了学生的课堂参与度。
2.问题导向:本节课以问题为导向,引导学生主动探究一次函数的性质,激发了学生的求知欲和自主学习能力,培养了学生的批判性思维。
3.小组合作:通过小组合作讨论,学生不仅能够共享彼此的知识和经验,还能培养团队合作意识和沟通能力,提高了学习效果。
3.运用一次函数解决实际问题,提高学生的应用能力,培养学生的实践操作能力。
4.采用小组合作、讨论交流的形式,培养学生的团队合作意识和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发学生学习数学的兴趣,树立学生学习数学的自信心。
2.通过对一次函数的学习,使学生体会数学的严谨性、逻辑性,培养学生的求真精神。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论,探究一次函数的性质。
2.鼓励学生提出疑问,引导学生敢于挑战权威,培养学生的批判性思维。
3.教师巡回指导,及时解答学生在讨论过程中遇到的问题。
(四)总结归纳
1.让学生回顾本节课所学内容,总结一次函数的概念、性质和解法。
2.引导学生通过归纳总结,提高对一次函数的理解和记忆。
在教学过程中,我将注重启发式教学,引导学生主动探究,培养学生的动手操作能力和思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导,使他们在课堂上都能有所收获。课后,及时进行教学反思,不断调整教学策略,以提高教学效果。
第19章 一次函数(小结与复习)(教案 )-八年级数学下册同步精品课件(人教版)
考题分类:
解:(1)∵函数是正比例函数,∴m﹣3=0,且2m+1≠0, 解得m=3;
(2)∵函数的图象平行于直线y=3x﹣3,∴2m+1=3, 解得m=1;
4.等腰三角形的周长为10cm,将腰长x(cm)表示底边长y(cm)
的函数解析式为 y=10-2x
,其中x的范围为 2.5<x<5
.
5.若一次函数 y (m 3)x m2 9 是正比例函数,则m的值
为 -3
.
6.一次函数y=-3x+6的图象与x轴的交点坐标是(2,0) ,与y轴 的交点坐标是 (0,6) ,与坐标轴围成的三角形面积为 6 .
∴31≤x≤33.
x
33
x
31
∵x 是整数,x 可取 31,32,33,
∴可设计三种搭配方案:
①A 种园艺造型 31 个,B 种园艺造型 19 个;
②A 种园艺造型 32 个,B 种园艺造型 18 个;
③A 种园艺造型 33 个,B 种园艺造型 17 个.
考题分类:
(2)方法一: 方案①需成本:31×800+19×960=43040(元); 方案②需成本:32×800+18×960=42880(元); 方案③需成本:33×800+17×960=42720(元).
【答案】D
考题分类:
[考点二]: 一次函数的图象与性质
例2 已知函数y=(2m+1)x+m﹣3; (1)若该函数是正比例函数,求m的值; (2)若函数的图象平行直线y=3x﹣3,求m的值; (3)若这个函数是一次函数,且y随着x的增大而减小,求m的
【学习实践】一次函数小结与思考学案
一次函数小结与思考学案一、课堂目标、进一步感受生活中的常量与变量,领会变量之间的相互依存与制约;进一步明确函数表示法的灵活性与多样性,进一步领会一次函数的定义、图像、性质、应用以及它与正比例函数的关系;2、经历数学知识的应用过程,发展应用数学知识的意识和能力,进一步感知本章课本体现和渗透的重要数学思想方法。
3、进一步培养初步的数形结合的意识和能力,激发学习兴趣。
.二、教学过程环节一:生生互动——由问题引导自主回顾知识点。
、请举例说明什么是常量,什么是变量,什么是函数?2、我们可用怎样的方式表达变量之间的函数关系?3、什么样的函数是一次函数?它与正比例函数有什么关系?4、一次函数的图像是;5、在一次函数y=kx+b(k、b为常数,k≠0)的图象中,(1)当k>0时,y的值随x值的而;函数图象一定经过、象限。
当k<0时,y的值随x值的而;函数图象一定经过、象限。
(2)如果k>0、b>0,那么一次函数的图象经过、、象限;如果k>0、b<0,那么一次函数的图象过、、象限;如果k<0、b>0,那么一次函数的图象经过、、象限;如果k<0、b<0,那么一次函数的图象经过、、象限;6、直线y=kx+b是由直线y=kx沿y轴平移|个单位得到的;直线y=kx+b是由直线y=kx沿X轴平移个单位得到的。
环节二:师生互动——典型例题学习。
一、例题分析:例1、如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且oA=oB,求这两个函数的解析式.分析:确定一次函数解析式需要两个独立条件,本题的关键是确定点B的坐标.例2、一次函数的图像与x轴正半轴交于点A,与y轴负半轴交于点B,与正比例函数y=x的图像交于点c,若c点的横坐标为6,求:(1)一次函数的解析式;(2)△ABc的面积;(3)原点o到直线AB的距离。
一次函数复习教案
(4)图像平行于直线y=-4x+3(5)图像与y轴交点在x轴下方2.如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标(四)小结教师引导学生进行小结:1.看图应先看横轴和纵轴所表示的意义。
2.“数”用“形”表示,由“形”想到数,数与形结合,是我们数学学习中一种很重要的思想方法,这就是数形结合法。
3.函数图象不仅与函数解析式有关,还直接与自变量的取值范围有关(五)课下作业布置教材97-101页复习题学生认真听讲,并仔细体会学生课下独立完成课堂达标检测题如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标板书设计一次函数一、知识网络概念函数的表示方法函数图像函数概念一次函数的图像、性质一次函数解析式的确定一次函数与一元一次方程的关系与二元一次方程(组)的关系应用教学反思本节课设计思路:1.没有提示用1分钟时间回忆本章内容2.根据课本目录提示用1分钟时间回忆本章内容3.根据自己做的知识网络图复习本章内容4.直接看课本复习本章内容5.老师引领复习本章内容6.练习7.小结8.作业本节课优点:思路清晰,前五步是复习本章知识点,每一步都为下一步做准备,下一步又都在为上一步查漏补缺,经过一个这样的过程,学生就会知道自己对各部分知识的掌握程度,找到自己以后的努力方向。
在练习题的设置上,我用尽量少的题去涵盖尽量多的知识点,综合性较强,能够起到拔高的作用。
并且在出示题后,鼓励学生大胆去做,对一部分同学能起到克服恐惧数学的作用。
一次函数小结与复习(2)
即:y=26000-400x (0≤x≤20).
m2 -3
4、已知函数 y = -m - 2x 函数,求m的值 m=-2
+ m - 4 是一次
一次函数的图象特征
一次函数y=kx+b 的图象是过点(0,b)且平行直线y=kx 的一条直线。
0,3 ,且平行直 1、一次函数y=-2x+3的图象是过点(_____) y=-2x 的一条直线。 线______ 2、图象过点(0,-5)且平行直线y=3x的函数是 y=3x-5 。 3、直线y=-x+2与x轴交点( 2,0 ),与y轴交点( 0,2 )。 4 4、直线y=2x-4与x轴和y轴围成的三角形面积是_____. 5、直线y=6x向 下 平移 2 个单位,可得到直线y=6x-2 6、直线y=-2x+1向上平移3个单位后的直线为 y=-2x+4 。 7、若直线y=kx+6过点(-1,5),则k= 1 . 8、若直线y=-4x+b过点(2,-6),则b= 2 . 9、若直线y=kx+b过点(1,6),(-2,-3),则k= 3 ,b= 3 ,
复习与小结(2)
1、已知变量 x 与 y 有如下关系:y=x,y=|x|,
3 |y|=x,y=x2,y2=x,其中y是x的函数的有____
2、下列图形不能体现是的函数关系的是(
y x 0 A 0 B y y x
c
y
)
x
: (1)y = 2x+1 (2 ) y = x - 1 + 2 - x x 为任意实数 1≤ x ≤2 (3 )
初二数学教案《一次函数》(优秀10篇)
初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。
一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。
《一次函数》教案(共5则)
《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点、难点重点:理解一次函数和正比例函数的概念。
难点:能根据所给的条件写出简单的一次函数表达式。
二。
教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。
2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。
5厘米。
(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。
(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。
问:观察上述关系式的特点,总结规律。
(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。
特别地,当b=0时,称y是x的正比例函数。
(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。
(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。
(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。
分析:本题较为简单,由学生完成。
例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。
一次函数数学教案优秀5篇
一次函数数学教案优秀5篇推文网精心整理一次函数数学教案,希望这份一次函数数学教案优秀5篇能够帮助大家,给予大家在写作上的思路。
更多一次函数数学教案资料,在搜索框搜索一次函数数学教案(精选篇1)教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值.重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间_(单位:•分)变化的函数关系式,并画出函数图象.y=例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D•两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少?解:设总运费为y元,A城往运C乡的肥料量为_吨,则运往D乡的肥料量为(-_)吨.B城运往C、D乡的肥料量分别为(240-_)吨与(60+_)吨.y与_的关系式为:y=•20_+25(-_)+15(240-_)+24(60+_),即y=4_+10040(0≤_≤).由图象可看出:当_=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D•乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?二、随堂练习,巩固深化课本P119练习.三、课堂,发展潜能由学生自我本节课的表现.四、布置作业,专题突破课本P120习题14.2第9,10,11题.板书设计14.2.2一次函数(4)1、一次函数的应用例:练习:一次函数数学教案(精选篇2)一、课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
第十九章 一次函数 小结与复习-天津市2020年空中课堂人教版八年级数学下册课件(共30张PPT)
图象:一条直线
性质: k > 0,y 随 x 的增大而增大; k < 0,y 随 x 的增大而减小.
三、重要知识点的应用
应用1 正比例函数、一次函数的定义.
例1 下列变量之间关系中,一个变量是另一个变量的正比例函数 的是( B ).
(A)正方形的面积 S 随着边长 x 的变化而变化
S=x2
(B)正方形的周长 C 随着边长 x 的变化而变化
常量:100 和 10 ;变量:x 和 y ; 自变量:x ; 函数:y 是 x 的函数 .
问题3 函数有几种表示方法?各有哪些特点?画函数图象分几步?
(1) y = x2
解析式法
描述变量之间的对应关系
x
(2)
… -3 -2 -1 0
1
2
3
…
y=x2 … 9 4 1 0 1 4 9 …
列表法
直接给出 部分对应值
函数
字母系数取值 ( k>0)
y=kx+b (k ≠ 0)
b >0 b=0
b<0
图象
y Ox y
Ox y Ox
经过的象限 变化趋势
一、二、三 一、三
y 随x 的增大 而增大
一、三、四
问题7 一次函数图象的特征?一次函数的性质?
函数
字母系数取值 ( k<0)
b>0
y=kx+b (k ≠ 0) b = 0
一次函数的小结与复习 八年级 数学
学习目标:
1. 经历回顾与思考,整理本章学习内容. 2. 建立相关知识之间的联系,优化知识结构. 3. 理解一次函数在解决实际问题中的作用. 4. 进一步体会函数模型思想、数形结合思想及变化对应的思想.
二、本章主要知识点回顾
一次函数知识总结归纳
一次函数知识总结归纳一次函数知识总结归纳思想方法小结(1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识点1一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.例如:y=2x+3,y=-x+2,y=11x等都是一次函数,y=x,y=-x22都是正比例函数.【说明】(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k 必须是不为零的常数,b可为任意常数.(3)当b=0,k≠0时,y=kx仍是一次函数.(4)当b=0,k=0时,它不是一次函数.知识点2函数的图象把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点3一次函数的图象由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-b,0).但也不必一定选取这两个特殊点.画正比k例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点4一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②kO时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,bO时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当kO,b >0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当kO,bO时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点5正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k <0时,图象经过第二、四象限,y随x的增大而减小.知识点6点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点7确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点8待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.知识点9x=a和y=b的图象x=a的图象是经过点(a,0)且垂直于x轴的一条直线;y=b的图象是经过点(0,b)且垂直于y轴的一条直线。
《一次函数复习课》教学设计与反思
《一次函数复习课》教学设计与反思一、教学目标:1、知道一次函数与正比例函数的定义.2、理解掌握一次函数的图象的特征和相关的性质;体会数形结合思想。
3、弄清一次函数与正比例函数的区别与联系.4、掌握直线的平移法则简单应用.5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系,能应用本章的基础知识熟练地解决数学问题。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学设计简介:因为这是初一总复习节段的复习课,在这之前已经复习了变量、函数的定义、表示法及图象,而本节的教学任务是一次函数的基础知识及其简单的应用,没有涉及实际应用。
为了节约学生的时间,打造高效课堂,我开门见山,直接向学生展示教学目标,然后让学生根据本节课的复习目标进行联想回顾,变被动学习为主动学习。
例如,在“图象及其性质”环节中,老师让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充纠正。
这样,使无味的复习课变得活跃一些,增强学习气氛。
随后教师就用大屏幕展示出标准答案,然后教师组织学生以比赛的形式做一些针对性的练习。
为了巩固知识点,学生解决每一个问题时都要求其说出所运用的知识点。
四、教学过程:1、常量、变量、函数、一次函数与正比例函数的定义:问题1:(1)底边长为10的三角形的面积y与高x之间的关系式是 ___________(2)用周长为20米的铁丝围成一个长方形,则这个长方形的一边长x(米)与它的另一边长y(米)之间的关系是__________一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k 为正比例系数。
指出:从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
一次函数小结与复习(1)
画出下列函数的图象(1)y=2x-1
解:列表:
x y … … -2 -5 -1 -3
描点:
0 -1 1 1 2 3
连线:
3 5 … …
y 5 4 3 2 1
y=2x-1
一条直线 函数的图象是_______
图象从左到右呈 上升 趋势 增大 函数y随x的增大而_____
-4 -3 -2 -1O -1
1 2 3 4 5 x
归纳总结 比较两个函数的相同点与不同点:
y
4 2
y
y=-2x
y=2x
1 2 3 4
4 2
-4 -3 -2 -1 0 -2
x
-4 -3 -2 -1 0 -2
1 2 3 4
x
直线 。 1、两图象都是经过 (0,0) 的_____ 2、函数y=2x的图象从左向右 上升, 经过第 一、三 象限. 3、函数y=-2x的图象从左向右 下降 , 经过第 二、四 象限
归纳总结 一般地,正比例函数y=kx(k是常数,k≠0) 的图象是一条经过原点的直线,称为直线y=kx.
k的值 图象
y
经过 的象 限
增减性
y=kx
(k是常数, k ≠0)
k>0
O
x
一、 随着x的增大 y增大(上升) 三 二、 随着x的增大 四 y减小(下降)
y
k<0
O
x
(1)、函数y=(m2+1)x的图象经过 一、三 象限 (3)、若函数y=(m-1)x的图象经过二、四象限,则m 的取值范围是 m<1 ,
如何在坐标系中画出函数S=x2 (x>0) 的图像?
(1) 列表:
x S 0 0.5 1 1.5 2 2.5 … …
一次函数小结与复习(3)
104
y=218代入得, 400 450 200 O 104=200k1+b1 解之得, k1=0.57, 所以y=0.57x-10 218=400k1+b1 b1=-10 当400<x时,设解析式为y=k2x+b2 , 将x=400,y=218; x=450, y=261.5代入得, 218=400k2+b2 解之得, k2=0.87, 所以y=0.87x-130 b2=-130 261.5=450k2+b2
复习与小结(3)
1.一次函数与一元一次方程:
求ax+b=0(a,b是 常数,a≠0)的解.
从“数”的 角度看
x为何值时函数 y= ax+b的值为 0.
求直线y= ax+b 与 x 轴交点的 横坐标.
求ax+b=0(a, b是 常数,a≠0)的 解.
从“形”的 角度看
2.一次函数与一元一次不等式:
.
应从第45天开始进行人工灌溉.
2、塑料厂某车间生产甲、乙两种塑料的相关信息如下表,请
你解答下列问题: (1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为 y1 元和 y2 元,分别求 y1 和 y2 关于x的函数解析式(注:利润=总收入总支出); (2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若 某月要生产甲、乙两种塑料共700吨,该月生产甲、乙塑料各多少 吨,获得的总利润最大?最大利润是多少?
104
y=0.87x-130
y=0.57x-10 y=0.52x O
200 400 450来自x(3)若某用户7月用电300度,则应缴费多少元?若该 y 用户8月缴费479元,则该用户该月用了多少度电?
(3) 7月用电300度,超过 261.5 200度但没有超过400度, y=0.87x-130 218 所以将x=300代入 y=0.57x-10得y=161(元); y=0.57x-10
一次函数小结与思考学案
一次函数小结与思考学案引言一次函数是数学中最基本的函数之一,也是中学数学的重要内容。
本文将对一次函数的定义、性质、图像和应用进行小结,并分享一些思考题和学习指导,以帮助读者更好地掌握和应用一次函数的知识。
一、一次函数的定义和性质一次函数,也叫线性函数,是指只含有一次幂的函数。
其一般形式可以表示为:y=kx+b,其中k和b分别表示函数的斜率和截距。
以下是一次函数的一些性质:1.一次函数的图像是一条直线,斜率k决定了直线的倾斜程度,正值表示上升趋势,负值表示下降趋势。
2.当k=0时,直线水平,表示函数没有斜率,也就是平行于x轴的直线。
3.当b=0时,直线通过原点,函数的形式化简为y=kx。
4.一次函数的图像经过点(0,b),这个点就是函数的截距。
二、一次函数的图像了解一次函数的图像对于理解函数的特点和性质非常重要。
下面是一些常见的一次函数图像及其特点:1. 斜率为正的一次函数当斜率k>0时,函数图像从左下到右上,表现为递增的趋势。
斜率越大,直线越陡峭。
2. 斜率为负的一次函数当斜率k<0时,函数图像从左上到右下,表现为递减的趋势。
斜率越小,直线越平缓。
3. 水平直线当k=0时,函数图像为一条水平直线,与x轴平行。
直线的位置取决于截距b的值。
4. 垂直直线当斜率不存在时,函数图像为一条垂直于x轴的直线,与y轴平行。
这种情况下,截距b无意义。
三、一次函数的应用一次函数在实际生活中有广泛的应用。
以下列举一些常见的应用场景:1.距离和时间的关系。
例如,一辆汽车以恒定的速度行驶,速度就是斜率,行驶的时间就是自变量,行驶的距离就是因变量。
2.成本和产量的关系。
对于某项生产工程,成本和产量之间通常存在一次函数关系。
斜率表示单位产量的成本,截距表示固定成本。
3.工资和工作时长的关系。
有些工作按小时计费,工资与工作时长成一次函数关系。
四、思考题和学习指导为了帮助读者巩固和拓展对一次函数的理解,以下是一些思考题和学习指导:1.给定两个点(x1,y1)和(x2,y2),如何计算这两个点确定的一次函数的斜率k和截距b?2.画出以下一次函数的图像并计算斜率和截距:a.y=2x+3b.y=−0.5x+2c.y=4d.x=53.通过实际生活中的例子,找到更多一次函数的应用场景,并分析其斜率和截距的含义。
初二数学一次函数知识点小结
初二数学一次函数知识点小结第一篇:初二数学一次函数知识点小结第一次课一次函数知识点总结基本概念1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式s=vt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。
在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y 称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应1-12例题:下列函数(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函数的有()x(A)4个(B)3个(C)2个(D3、定义域:4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2(3)关系式含有二次根式时,被开放方数大于等于零;(4(5例题:下列函数中,自变量x的取值范围是x≥2的是()A...D.函数y=已知函数y=-x的取值范围是___________.1x+2,当-1<x≤1时,y 的取值范围是()253353535A.-<y≤B.<y<C.≤y<D.<y≤ 222222225、函数的图像6、函数解析式:7;各点)。
8列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
9、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)① k不为零② x指数为1 ③b取零当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x 的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.龙文教育数学讲义(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴例题:.正比例函数y=(3m+5)x,当m时,y随x的增大而增大.若y=x+2-3b是正比例函数,则b的值是()A.0B.223C.-D.- 332.函数y=(k-1)x,y随x增大而减小,则k的范围是()A.k<0B.k>1C.k≤1D.k<1东方超市鲜鸡蛋每个0.4元,那么所付款y元与买鲜鸡蛋个数x.平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是10、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b(k不为零)① k不为零②x 取任意实数一次函数y=kx+b的图象是经过(0,b)和(-b,0y=kx+b,它可以看作k由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k≠0)(2)必过点:(0,b)和(-b,0)k(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⎧k>0⎧k>0⇔⇔直线经过第一、三、四象限⎨⎨⎩b>0⎩b<0⎧k<0⎧k<0⇔⇔直线经过第二、三、四象限⎨⎨⎩b>0⎩b<0(4)增减性,yx的增大而增大;k<0,y随x增大而减小.(5)倾斜度y轴;|k|越小,图象越接近于x轴.(6当b>0时,将直线y=kx 的图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移b个单位.例题:若关于x的函数y=(n+1)xm-1是一次函数,则m,n.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线.若直线y=-x+a和直线y=x+b的交点坐标为(m,8),则a+b=____________.已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1B.3mC.mD.3m-111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),即横坐标或纵坐标为0的点..若m<0, nA.12时,向上平移;当13、直线(1(212(3)两直线重合:k1=k2且b1=b214、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.15、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.16、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.17、一次函数与二元一次方程组(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=-acx+的图象相同.bb⎧a1x+b1y=c1acac(2)二元一次方程组⎨的解可以看作是两个一次函数y=-1x+1和y=-2x+2的图象b2b2b1b1⎩a2x+b2y=c2 交点.第二篇:初二上册数学一次函数经典知识点总结1变量:在一个变化过程中可以取不同数值的量。
高一数学一次函数知识点小结
高一数学一次函数知识点小结高一数学一次函数知识点小结一、定义与定义式:自变量 x 和因变量 y 有以下关系:y=kx+b则此时称 y 是 x 的一次函数。
特别地,当 b=0 时, y 是 x 的正比率函数。
即: y=kx(k 为常数, k0)二、一次函数的性质:1.y 的变化值与对应的 x 的变化值成正比率,比值为 k 即:y=kx+b(k 为随意不为零的实数 b 取任何实数 )2.当 x=0 时, b 为函数在 y 轴上的截距。
三、一次函数的图像及性质:1.作法与图形:经过以下 3 个步骤(1)列表 ;(2)描点 ;(3)连线,能够作出一次函数的图像一条直线。
所以,作一次函数的图像只要知道 2 点,并连成直线即可。
( 往常找函数图像与 x 轴和y 轴的交点 )2. 性质: (1) 在一次函数上的随意一点P(x ,y) ,都知足等式:y=kx+b。
(2) 一次函数与 y 轴交点的坐标老是 (0 ,b) ,与 x 轴老是交于(-b/k ,0) 正比率函数的图像老是过原点。
3.k ,b 与函数图像所在象限:当 k0 时,直线必经过一、三象限, y 随 x 的增大而增大 ; 当k0 时,直线必经过二、四象限,y 随x 的增大而减小。
当b0 时,直线必经过一、二象限 ;当 b=0 时,直线经过原点当 b0 时,直线必经过三、四象限。
特别地,当 b=O时,直线经过原点 O(0,0) 表示的是正比率函数的图像。
这时,当 k0 时,直线只经过一、三象限 ; 当 k0 时,直线只经过二、四象限。
四、确立一次函数的表达式:已知点 A(x1,y1);B(x2 ,y2) ,请确立过点 A、B 的一次函数的表达式。
(1)设一次函数的表达式 ( 也叫分析式 ) 为 y=kx+b。
(2)由于在一次函数上的随意一点 P(x,y) ,都知足等式 y=kx+b。
所以能够列出 2 个方程: y1=kx1+b①和 y2=kx2+b②(3)解这个二元一次方程,获得 k,b 的` 值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、学习目标
1、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
2、会画一次函数图象,根据一次函数图象和解析表达式理解其性质。
3、能运用类比思想比较一次函数和正比例函数的异同,初步体会数形结合思想。
4、能根据一次函数的图象求一元一次方程的解。
5、能根据一次函数的图象求一元一次不等式的解集。
6、能根据一次函数的图象求二元一次方程组的近似解。
二、课时设计:两课时
三、知识梳理:
1、变量:。
常量:。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定
的值,y都有确定的值与其对应,那么我们就把x称为,y是x的。
(判断y是否为x的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应)
3、描点法画函数图形的一般步骤:(1) (2) (3)
4、函数的三种表示方法:(1) (2) (3)
5、一次函数与正比例函数概念
一次函数的概念:一般地,形如 (k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
1.设一次函数的一般形式y=kx+b(k≠0) ;
2.根据已知条件列出关于k , b 的二元一次方程组
3.解这个方程组,求出k, b ;
4.据求出的 k, b的值,写出所求的解析式.
8、一元一次方程与一次函数的关系
任何一元一次方程都可以转化为的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b,确定它与x轴的交点的。
9、一次函数与一元一次不等式的关系
任何一个一元一次不等式都可以转化为的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求的取值范围.
10、一次函数与二元一次方程(组)的关系
(1)任何一个二元一次方程都可以转化为的形式,所以每个二元一次方程都对应着一个一次函数,也就对应着一条直线.
(2)每个二元一次方程组都对应着两个一次函数,所以二元一次方程组的解可以看作是两个一次函数的图象的。
四、知识应用:
活动一、.确定函数解析式
1.已知一次函数的图象经过点(0,1),且图象与x轴、y轴所围成的三角形的面积为2,求一次函数的解析式.
活动二、.函数应用题
1.如图14—2所示,是某公司一电热淋浴器水箱的水量y(L)与供水时间x(min)的函数关系.
(1)求y与x的函数关系式;
(2)在(1)的条件下,求在30 min时水箱有多少L水?
活动三、.链接中考
1.一次函数的图象经过点(1,2),且y随x的增大而增大,则这个函数解析式是
__________(任写一个),
2.为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台价格、月处理污水量及年消耗费如下表:
经预算,该企业购买设备资金不高于105万元.
(1)请你为该企业设计,能有几种设计方案?
(2)若企业每月生产污水量为2 040吨,为了节约资金,应选用哪种购买方案?购买资金为多少?。