【解析版】中考数学常考易错点:2.3《方程组》(原创)

合集下载

易错点03 函数-中考数学考试易错题(解析版)

易错点03 函数-中考数学考试易错题(解析版)

易错点03 函数1.平面直角坐标系与函数2.一次函数的图像与性质3.一次函数的应用4.反比例函数5.二次函数的图像性质与性质6.二次函数的应用01各个待定系数表示的意义。

1.一次函数y=﹣3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】解答:解:∵一次函数y=﹣3x﹣4,k=﹣3,b=﹣4,∵该函数经过第二、三、四象限,不经过第一象限,故选:A.1.已知反比例函数y=bx的图象如图所示,则一次函数y=cx+a和二次函数y=ax2﹣bx+c在同一直角坐标系中的图象可能是()A.B.C.D.【答案】D【解析】∵反比例函数的图象在一、三象限,∵0b>,A.∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,a>,∵0b>不相符,故A错误;∵0b<,与0B. ∵二次函数的开口向下,对称轴在y轴右侧,∵a、b异号,∵0a<,b->,∵0与已知b>0矛盾故B错误;C.∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,∵0a<,b>,∵0∵二次函数图象与y轴交于负半轴,c<,∵0∵一次函数y=cx+a的图象过二、三、四象限,故C错误;D. ∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,a>,c<0∵0b-<,则b>0,∵0所以一次函数图象经过第一、二、四象限故D 正确;故选D .20(1)k -有意义,则一次函数(1)1y k x k =-+-的图象可能是( ) A . B .C .D .【答案】A【解析】解:∵0(1)k -有意义,∵10,10k k -≥-≠,∵k -1>0,∵一次函数(1)1y k x k =-+-的图象可能是A ,故选:A .3.已知抛物线2(1)y m x x =++的开口向上,则m 的取值范围是( ).A .1m >B .1m <C .1m >-D .1m <-【答案】C【解析】解:根据题意,∵抛物线2(1)y m x x =++的开口向上,∵10m +>,∵1m >-;故选:C .02 各种函数解析式的求法以及函数与几何图形的关系应用。

初三数学:解分式方程的三大易混淆、易错点

初三数学:解分式方程的三大易混淆、易错点

解分式方程时易混易错点分析
易混易错点一、解分式方程忘记验根
例1(四川宜宾中考):分式方程
31329122+=---x x x 的解为()A.x=3 B.x=-3 C.无解 D.x=3或x=-3
解析:方程两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:把x=3代入
解得:1
,321-==x x 检验:当3=x 时,()03=-x x ;当1-=x 时,()0
3≠-x x ∴原分式方程的解是1
-=x 错因分析:在去分母化分式方程为整式方程时,容易出现“3-x=1”这种错误
易混易错点三、混淆分式方程无解和有增根
例3:若关于x 的方程011
1=--+x ax 无解,求a 的值.分析:先把分式方程化为整式方程,再分情况讨论
解:方程两边同乘(x-1),去分母得:()0
11=--+x ax 整理得:()0
21=+-x a 当a -1=0,即a=1时,分式方程无解
当a -1≠0时,∵方程有增根x =1,把x =1代入(a -1)x +2=0中,解得a =-1综上所述,a=1或a =-1
错因分析:本题容易出现只把增根代入求出a =-1,漏掉a=1整式方程无解的情况.。

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析◆题型一:直线定点和代数式的值和某字母无关一次函数y=mx+m-1过定点【解析】一次函数过定点问题和整式中和某字母取值无关是同一类题:一次函数过定点实质上指的是和m的取值无关。

按照这种思路过可以解决很多的定点问题。

把一次函数解析式变形:y=m(x+1)-1,我们把(x+1)看作m的系数,若和m的取值无关,则系数(x+1)=0,即x=1,此时y=-1.因此,此一次函数过定点(-1,-1)。

1. 2022·江苏泰州·三模)小明经探究发现:不论字母系数m 取何值,函数()224365y x m x m =−+++的图像恒过一定点P ,则P 点坐标为______. 【答案】3,142⎛⎫− ⎪⎝⎭【分析】根据不论字母系数m 取何值图像恒过一定点P ,取值与m 无关,则字母m 的系数为0,进而可得答案.【详解】解:()224365y x m x m =−+++()224635y x x m x =+−++当46=0x +,即32x =−时,14y =, 所以无论字母系数m 取何值时,图像恒过一定点P 3,142⎛⎫− ⎪⎝⎭. 【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m 的系数为0时,才与m 的取值无关.2. 整式(ax 2+bx -1)-(4x 2+3x )的最后结果与x 的取值无关,求a ,b 的值。

解:由(1)(ax 2+bx-1)-(4x 2+3x )化简的结果是(a-4)x 2+(b-3)x-1,得a=4,b=3.1.(2022·重庆八中二模)对于五个整式,A :2x 2;B :x +1;C :﹣2x ;D :y 2;E :2x-y 有以下几个结论:①若y 为正整数,则多项式B ⋅C +A +B +E 的值一定是正数;②存在实数x ,y ,使得A+D+2E 的值为-2;③若关于x 的多项式M =3(A −B)+m ⋅B ⋅C (m 为常数)不含x 的一次项,则该多项式M 的值一定大于-3.上述结论中,正确的个数是( )A .0B .1C .2D .3 【答案】B【分析】根据整式的四则运算法则逐个运算即可判断.【详解】解:对于①:B ⋅C +A +B +E =(x +1)(−2x)+2x 2+x +1+2x −y =x −y +1,显然当x =−100,y =1时代入化简后的式子中结果为负数,故①错误;对于②:A +D +2E =2x 2+y 2+2(2x −y)=2x 2+y 2+4x −2y =−2时,整理得到:2(x +1)2+(y −1)2−1=0,显然当x =−1,y =2时代入化简后式子中满足,故②正确;对于③:M =3(A −B)+m ⋅B ⋅C =3(2x 2−x −1)+m(x +1)(−2x)=(6−2m)x 2−(3+2m)x −3, ∵不含x 的一次项,∴320m +=,解出m =−32,此时M =9x 2−3≥−3,即M 的值一定大于等于-3,故③错误;故选:B .【点睛】本题考查了整式的四则运算,属于基础题,熟练掌握整式的四则运算法则是解题的关键. 2.(2022·重庆市育才中学二模)已知多项式A =x 2+2y +m 和B =y 2−2x +n (m ,n 为常数),以下结论中正确的是( )①当2x =且m +n =1时,无论y 取何值,都有A +B ≥0;②当m =n =0时,A ×B 所得的结果中不含一次项;③当x y =时,一定有A ≥B ;④若m +n =2且A +B =0,则x y =;⑤若m =n ,A −B =−1且x ,y 为整数,则|x +y |=1.A .①②④B .①②⑤C .①④⑤D .③④⑤ 【答案】B【分析】主要是运用整式的运算法则及因式分解等知识对各项进行一一判断即可.【详解】①当2x =且m +n =1时,A+B=4+2y +m +y 2−4+n =y 2+2y +1=(y +1)2,∵无论y 取何值,总有(y +1)2≥0,∴无论y 取何值,都有A +B ≥0,故①正确;②当m =n =0时,A ×B =(x 2+2y )(y 2−2x )=x 2y 2−2x 3+2y 3−4xy ,∴A ×B 所得的结果中不含一次项;故②正确;③当x y =时,A −B =x 2+2y +m −(y 2−2x +n )=x 2+2x +m −x 2+2x −n =4x +m −n , 其结果与0无法比较大小,故③错误;④若m+n=2且A+B=0,则A+B=x2+2y+m+y2−2x+n=x2+y2+2y−2x+2=0,变形得:(x−1)2+(y+1)2=0,∴x=1,y=-1,∴x=-y,故④错误;⑤若m=n,A−B=−1且x,y为整数,则A−B=x2+2y+m−(y2−2x+n)=x2+2y−y2+2x=−1x2−y2+2x+2y+1=0变形得:(x+1)2−(y−1)2=−1,因式分解得:(x+y)(x−y+2)=−1,∵x,y为整数,则必有|x+y|=1.故⑤正确;故选:B【点睛】本题主要考查的是整式运算及因式分解的应用,解决本题的关键是熟练掌握运用乘法公式进行计算及因式分解.3.(2022·江苏泰州·三模)小明经探究发现:不论字母系数m取何值,函数y=2x2+(4m−3)x+6m+5的图像恒过一定点P,则P点坐标为______.,14)【答案】(−32【分析】根据不论字母系数m取何值图像恒过一定点P,取值与m无关,则字母m的系数为0,进而可得答案.【详解】解:y=2x2+(4m−3)x+6m+5y=2x2+(4x+6)m−3x+5时,y=14,当4x+6=0,即x=−32,14).所以无论字母系数m取何值时,图像恒过一定点P(−32【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m的系数为0时,才与m的取值无关.4.(2021·河北唐山·一模)老师写出一个整式(ax2+bx-1)-(4x2+3x)(其中a、b为常数,且表示为系数),然后让同学给a 、b 赋予不同的数值进行计算,(1)甲同学给出了一组数据,最后计算的结果为2x 2-3x -1,则甲同学给出a 、b 的值分别是a =_______,b =_______;(2)乙同学给出了a =5,b =-1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x 的取值无关,请直接写出丙同学的计算结果. 【答案】(1)6、0(2)241x x −−(3)丙同学的计算结果是-1.【分析】(1)将所求式子化简,然后根据计算的结果为2x2-3x-1,即可得到a 、b 的值;(2)将a 、b 的值代入(1)中化简后的结果,即可解答本题;(3)根据(1)中化简后的结果和题意,可以写出丙同学的计算结果.【详解】(1)解:(ax2+bx-1)-(4x2+3x )=ax2+bx-1-4x2-3x=(a-4)x2+(b-3)x-1,∵甲同学给出了一组数据,最后计算的结果为2x2-3x-1,∴a-4=2,b-3=-3,解得a=6,b=0,故答案为:6,0;(2)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∴当a=5,b=-1时,原式=(5-4)x2+(-1-3)x-1=x2-4x-1,即按照乙同学给出的数值化简整式结果是x2-4x-1;(3)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∵丙同学给出一组数,计算的最后结果与x 的取值无关,∴原式=-1,即丙同学的计算结果是-1.【点睛】本题考查整式的加减,解答本题的关键是明确题意,计算出相应的结果.5.(2021·河北唐山·一模)定义:若A−B=m,则称A与B是关于m的关联数.例如:若A−B=2,则称A与B是关于2的关联数;(1)若3与a是关于2a的关联数,则a=__________.(2)若(x−1)2与x+1是关于-2的关联数,求x的值.(3)若M与N是关于m的关联数,M=2mn−n+3,N的值与m无关,求N的值.【答案】(1)1(2)x1=1,x2=2(3)2.5【分析】(1)直接利用关联数列出方程进行计算即可;(2)直接利用关联数列出方程进行计算即可;(3)直接利用关联数列出M-N=m的方程,将M=3mn+n+3代入,用m、n的式子表示出N,再利用N的值与m无关进行计算即可.(1)解:∵3与a是关于2a的关联数,∴3-a=2a,∴a=1,故答案为:1(2)解:(x−1)2−(x+1)=−2,整理得x2−3x+2=0则(x−2)(x−1)=0解得:x1=1,x2=2.∴x的值为1或2;(3)解:(2mn−n+3)−N=m,N=2mn−m−n+3=m(2n−1)−n+3,∵N的值与m无关,∴2n−1=0,∴n=0.5,∴N=2.5.【点睛】本题考查了新型定义题型,解一元一次方程、解一元二次方程,整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.6.(2021·浙江·杭州育才中学二模)已知多项式M=(2x2+3xy+2y)−2(x2+x+yx+1).(1)当|x−1|+(y−2)2=0,求M的值;(2)若多项式M与字母x的取值无关,求y的值.【答案】(1)M=2(2)y=2【分析】(1)先化简M,进而根据非负数的性质求得x,y的值,进而代入求解即可;(2)根据(1)中M的化简结果变形,令含x项的系数为0,进而求得y的值【详解】(1)解:M=(2x2+3xy+2y)−2(x2+x+yx+1)=2x2+3xy+2y−2x2−2x−2yx−2=xy+2y−2x−2|x−1|+(y−2)2=0∴x=1,y=2原式=1×2+2×2−2×1−2=2(2)∵M=xy+2y−2x−2=(y−2)x+2y−2与字母x的取值无关,∴y−2=0解得y=2【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.◆题型二:特殊代数式求值①若m,n是方程2x2−4x−7=0的两个根,则2m2−3m+n的值为【解析】一次代入无法求得结果,出现这种情况,我们可以从先代高次再代低次!把2m2=4m+7代入,原式=m+n+7,然后用韦达定理即可求值。

中考易错题系列数学篇如何解决代数方程题中的常见错误

中考易错题系列数学篇如何解决代数方程题中的常见错误

中考易错题系列数学篇如何解决代数方程题中的常见错误代数方程题是中考数学中的一个重要内容,也是学生容易出错的地方之一。

解决代数方程题中的常见错误,需要我们对代数方程的基本概念和解题方法有深入的理解和掌握。

本文将介绍一些常见错误,并提供相应的解决方法,帮助同学们在中考中顺利解决代数方程题。

一、常见错误分析与解决方法1.错误1:忽略负数解有些同学在解方程时,容易忽略方程中存在负数解的情况,导致答案的缺失或计算错误。

解决方法:在解方程时,我们需要注意方程中可能存在负数解的情况。

如果解得的答案是负数,要仔细检查计算过程中是否有错误,或者将负数解带入方程进行验证。

只有验证过程正确且满足原方程的要求,才能确定负数解是正确的。

2.错误2:合并同类项时出错有些同学在将代数方程化简时,容易在合并同类项时出错,导致后续的计算步骤出现错误。

解决方法:在合并同类项时,我们需要仔细核对各个项的系数和字母部分是否一致。

特别是代数方程中经常出现的正负号问题,要注意将符号正确地包括在合并同类项的结果中。

此外,在进行合并同类项时,可以写出详细的计算过程,避免出现疏漏或错误的情况。

3.错误3:错误使用求解步骤有些同学对于代数方程的求解步骤掌握不牢固,常常忘记或混淆各个步骤的执行顺序,从而导致最终答案有误。

解决方法:在解决代数方程时,我们需要熟练掌握求解的基本步骤,并清楚各个步骤的执行顺序。

例如,当遇到含有分数的方程时,应先进行分母的通分再进行求解;当遇到含有绝对值的方程时,需要对不同情况进行分类讨论等。

在解题过程中,可以在草稿纸上列出每个步骤,并在旁边写明执行顺序,以保证解题的准确性。

4.错误4:计算错误代数方程题中常常需要进行繁琐的计算,而有些同学在计算过程中容易出现疏漏或错误,导致最终答案的不准确。

解决方法:为了避免计算错误,我们可以采取以下措施。

首先,将代数方程中的计算步骤列出来,以确保每个步骤的准确性。

其次,可以使用计算器辅助计算,但要注意计算器的使用方法,并且在最后将计算结果带回原方程中进行验证。

总结解方程时常见的易错点

总结解方程时常见的易错点

总结解方程时常见的易错点解方程是数学中一个重要的环节,也是数学学习中的难点之一。

在解方程的过程中,常常会出现一些易错点,导致答案错误或者出现偏差。

为了帮助大家更好地解方程,本文将总结解方程时常见的易错点,并提供解决方法,希望能帮助读者顺利解决解方程的问题。

1. 未合理化方程:在解方程的过程中,有时我们会遇到含有分式、开方等复杂形式的方程,这时需要进行合理化处理。

例如,对于含有分式的方程,我们可以通过通分的方式来消去分母,对含有开方的方程,可以通过两边平方的方式来消除根号。

如果未进行合理化处理就直接进行计算,往往会导致错误的答案。

解决方法:在解方程之前,经常需要对方程进行合理化处理,消去分式或者平方根,将方程转化为简单的形式。

这样能够避免因为未合理化而导致的错误结果。

2. 忽略定义域:在解方程的过程中,有时候会忽略方程的定义域,从而得到的答案超出了方程的解集。

例如,对于含有分式的方程,分母不能为零,忽略了这个条件就直接进行计算,得到的结果可能是错误的。

解决方法:在解方程的过程中,要注意方程的定义域,尤其是含有分式、开方等特殊形式的方程。

对于分式方程,需要排除分母为零的情况,并在解方程的过程中加以限制,确保得到的解在定义域范围内。

3. 忽略等式两侧的等价变形:解方程的过程中,往往需要对等式两侧进行等价变形,以便简化方程。

有时候,我们会忽略其中一侧的等式变形,导致解出来的方程与原方程不等价,进而得到错误的答案。

解决方法:在解方程的过程中,要注意等式两侧的等价变形,确保每一步的操作都符合等价性质,并对方程进行简化。

如果忽略了其中一侧的等式变形,可以回过头来检查是否有遗漏的等式变换。

4. 代入错误:解方程的一种常见方法是代入法,即将已知解代入原方程验证是否成立。

但有时候,在代入过程中可能会出现计算错误,导致验证不通过,进而误认为已得到的解是错误的。

解决方法:在代入过程中,要仔细进行计算,确保代入的值符合原方程。

中考数学一元二次方程组(大题培优易错难题)及答案解析

中考数学一元二次方程组(大题培优易错难题)及答案解析

中考数学一元二次方程组(大题培优大题培优 易错易错 难题)及答案解析及答案解析一、一元二次方程1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同) 【答案】详见解析 【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得: 10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2, 答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y 万辆,根据题意得: 2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y , ∴(14.4×90%+y )×90%+y≤15.464, ∴y≤2.答:每年新增汽车数量最多不超过2万辆. 考点:一元二次方程—增长率的问题2.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数). (1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0时,该函数的零点为6和6-. (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点Bʹ,连接ABʹ,求出点Bʹ的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’,则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-,∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.3.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当P A ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P (﹣2﹣1,2);②P (﹣32,154)【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标; ②ΔOBC ΔAPD ABCP C =PDO SS S S++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c ba++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵P A ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得x=21-(舍去)或x=21--,∴点P (21--,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+=2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.4.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%3a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30. 【解析】 【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可.【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥, 解这个不等式,得56x ≤, 答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件, 根据题意,得()()()12260001%561%90001%701%6000569000701%2323a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=, 解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =, 即a 的值是30. 【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.5.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:;(3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.6.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.7.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β. (1)求m 的取值范围; (2)若111αβ+=-,则m 的值为多少?【答案】(1)14m ≥;(2)m 的值为3. 【解析】【分析】(1)根据△≥0即可求解, (2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可.【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0, 解得:m≥m≥--34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2, ∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0解得:m 1=﹣1,m 1=3,由(1)知m≥m≥--34, ∴m 1=﹣1应舍去, ∴m 的值为3.【点睛】本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.8.解方程:(x+1)(x-1)=22x.【答案】x1=2+3,x2=2-3.【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可. 试题解析:(x+1)(x-1)=22xx2-22x-1=0∵a=1,b=-22,c=-1∴△=b2-4ac=8+4=12>0∴x=242b b caa-±-=2±3∴x 1=2+3,x2=2-3.9.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x, (2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-=-10x+780,(40≤x≤60),10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10<0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.10.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根. (1)求实数m 的取值范围;(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.【答案】(1)m>2; (2)17 【解析】试题分析:(1)由根的判别式即可得;(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2; (2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形; 故三角形的周长为17.点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.11.关于x 的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m 的最小值. 【答案】(1)证明见解析;(2)-1. 【解析】 【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根. (2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗 的最小值. 【详解】 (1)证明:依题意,得.,∴.∴方程总有两个实数根.由. 可化为:得 , ∵方程的两个实数根都是正整数, ∴.∴ .∴ 的最小值为.【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键12.若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数,求此时方程的解.【答案】(1)a≤174;(2)x=1或x=2【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于a的不等式,即可求出a的取值范围;(2)根据(1)确定出a的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤174;(2)由(1)可知a≤174,∴a的最大整数值为4,此时方程为x2﹣3x+2=0,解得x=1或x=2.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可 【详解】解:(1)设每次降价的百分率为 x . 40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+=解得:1y =1.5,2y =2.5, ∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元. 【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.14.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同. (1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元. 【解析】 【分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x , 根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.15.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为42cm ?(3)△PBQ的面积能否为10 cm2若能,求出时间;若不能,请说明理由.【答案】(1) 2或4秒;(2) 42 cm;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为42cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8 cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12 (6-t)× 2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8 cm2;(2)设x秒后,PQ=42 cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为42 cm;(3)设经过y秒,△PBQ的面积等于10 cm 2,S△PBQ=12×(6-y)× 2y=10,即y2-6y+10=0,∵Δ=b 2-4ac=36-4× 10=-4< 0,∴△PBQ的面积不会等于10 cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.。

中考数学易错题解析解方程的常见错误及纠正方法

中考数学易错题解析解方程的常见错误及纠正方法

中考数学易错题解析解方程的常见错误及纠正方法解方程是中学数学中的重要内容,也是容易出错的一个知识点。

在中考数学中,解方程题经常会出现,并且常常成为学生们易错的地方。

本文将从解方程的常见错误入手,探讨解方程题的正确解法和纠正方法,帮助同学们在中考数学中避免这些错误。

一、常见错误1. 忽略分配律:在解方程问题中,常常会有分配律的运算。

例如:2(x + 1) = 3(x - 2)。

有些同学会漏掉分配律,直接将2乘以x和1,3乘以x和2,导致最后得到的方程错误。

2. 步骤混乱:解方程是一个需要有条不紊进行的过程,但有些同学容易在解题过程中步骤混乱。

例如:直接代入计算,没有按照顺序进行合并同类项、消元等步骤,导致最后答案错误。

3. 求解范围错误:解方程的过程中,有时会得到可行解和不可行解。

但有些同学没有注意到这一点,将不可行解作为最后的解答,造成错误。

二、纠正方法1. 仔细阅读题目:解方程题在中考中常常伴随着实际问题。

在解答问题之前,要仔细阅读题目,理解问题的要求和条件。

只有明确了方程的意义和所求的未知数,才能正确解题。

2. 列方程时注重细节:在列方程时,要注意各项系数的符号、操作的顺序等细节。

特别是运用分配律时,要确保每项都正确进行了乘法运算。

3. 使用合适的解法:解方程可以采用多种方法,如消元法、配方法、因式分解等。

不同方程适用不同的方法,需要根据具体情况灵活选择。

在解题过程中,同学们可以多进行练习,熟悉各种解法的应用场景。

4. 检验答案的可行性:在解得方程的根之后,需要进行合理性检验。

将解代入原方程,看是否符合题目条件和要求。

如果不符合,则需要回顾解题过程,找出可能出错的地方。

5. 多进行归纳总结:经常遇到的错误,需要进行归纳总结,并进行自我纠正。

同学们可以将错题整理出来,反复分析错误的原因,并总结出解题的经验和技巧。

三、解方程题的练习方法为了提高解方程的能力,同学们可以进行以下练习:1. 多做基础题:基础题目是掌握解方程的关键。

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

中考二元一次方程组易错题50题-含答案解析

中考二元一次方程组易错题50题-含答案解析

中考二元一次方程组易错题50题含答案解析一、单选题1.方程组632x y x y +=⎧⎨-=-⎩的解是( ).A .51x y =⎧⎨=⎩B .42x y =-⎧⎨=-⎩C .51x y =-⎧⎨=-⎩D .42x y =⎧⎨=⎩2.在用代入消元法解二元一次方程组32346x y x y +=-⎧⎨-=⎩时,消去未知数x 后,得到的方程为( )A .()32346y y ---=B .()32346y y --+=C .()32346y y -+-=D .()32346y y -++=3.六十载春华秋实,一甲子桃李芬芳.2023年10月,重庆外国语学校即将迎来六十华诞,学校决定面向全校学生征集60周年校庆标识、吉祥物设计方案.初一年级某班准备了若干盒巧克力奖励给本班投稿的同学,若每3位同学奖励一盒巧克力,则少2盒;若每4位同学奖励一盒巧克力,则又多了2盒,设该班投稿的同学有x 人,巧克力有y 盒,依题意得方程组( )A .3242x y x y =+⎧⎨=-⎩B .332442x y x y =+⨯⎧⎨=-⨯⎩C .332442x y x y =-⨯⎧⎨=+⨯⎩D .3242x y x y =-⎧⎨=+⎩4.把一根长为7m 的钢管截断,从中得到两种不同规格的钢管,已知两种规格的钢管长分别为2m 和1m ,为了不造成浪费,不同的截法有( ) A .1种B .2种C .3种D .4种5.若258m x y -+=是关于x 、y 的二元一次方程,则m 的值是( ) A .3B .2C .1D .06.将231x y -=变形,用含x 的代数式表示y ,正确的是( ) A .132yx +=B .132yx -=C .123xy -=D .213x y -=7.成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米,设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是()A.207717066x yx y+=⎧⎪⎨+=⎪⎩B.207717066x yx y-=⎧⎪⎨+=⎪⎩C.207717066x yx y-=⎧⎪⎨-=⎪⎩D.7717066772066x yx y⎧+=⎪⎪⎨⎪-=⎪⎩8.国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5B.6C.7D.89.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.1510.尹老师准备将100元钱全部用于购买A,B两种款式的笔记本作为奖品(两种款式的都要买).已知一个A款笔记本10元,一个B款笔记本15元,尹老师的购买方案共有()A.1种B.2种C.3种D.4种11.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是()A.B.C.D.12.下列等式中,是二元一次方程的是()A.xy=1B.y=3x﹣1C.1xy+=D.x2+x﹣3=013.已知方程组233x yx y n-=⎧⎨+=⎩中的x,y互为相反数,则n的值为()A.2B.﹣2C.0D.414.已知237351x yx y-=-⎧⎨+=-⎩的解21xy=-⎧⎨=⎩,则2(2)3(-1)73(2)5(-1)1x yx y+-=-⎧⎨++=-⎩的解为()A.-42xy=⎧⎨=⎩B.5xy=-⎧⎨=⎩C.5xy=⎧⎨=⎩D.41xy=-⎧⎨=⎩15.已知关于x,y的方程组35225x y ax y a-=⎧⎨-=-⎩,则下列结论中正确的是()①当a=5时,方程组的解是1020xy=⎧⎨=⎩;①当x,y的值互为相反数时,a=20;①当22x y⋅=16时,a=18;①不存在一个实数a使得x=y.A.①①①B.①①①C.①①①D.①①16.二元一次方程组1,3x yx y-=⎧⎨+=⎩的解是()A.2,1xy=⎧⎨=⎩B.1,2xy=-⎧⎨=-⎩C.3,2xy=⎧⎨=⎩D.1,2xy=⎧⎨=⎩17.解方程组278ax bycx y+=⎧⎨-=⎩时,一学生把c看错而得22xy=-⎧⎨=⎩,而正确的解是32xy=⎧⎨=-⎩,那么a、b、c的值是()A.a=4,b=-2,c=5B.a=4,b=5,c=-2C.a=-2,b=4,c=5D.a=5,b=4,c=-218.长方形ABCD可以分割成如图所示的七个正方形.若10AB=,则AD等于()A.252B.353C.14011D.1501119.方程2x+3y=7的正整数解有( ) A .0个B .1个C .2个D .无数个二、填空题20.小亮解方程组2?212x y x y +=⎧⎨-=⎩的解为5?x y =⎧⎨=⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和?,请你帮他找回?=________,●=________. 21.已知26x y -=,用x 的代数式表示y ,则y = _________ . 22.已知方程210x y --=,用含x 的代数式表示y ,得y =_______. 23.已知()57623m mn ab ab a b +÷-=-,求n m =_______.24.已知方程425x y +=,用关于x 的代数式表示y ,则y =__________.25.某水果店销售50千克香蕉,第一、二、三天的售价分别为9元/千克、6元/千克、3元/千克,三天全部售完,销售额共计270元.则第三天比第一天多销售香蕉__________千克.26.若不等式组00x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组521ax y x by +=⎧⎨-=⎩的解为_______.27.方程4320x y +=的所有正整数解为______.28.若有理数a ,b 满足()22640a b a b -+++=,则a +b 的值为______.29.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形(如图甲);小红看见了,说:“我也来试一试,”结果小红七拼八凑,拼成了如图乙那样的正方形,中间还留下了一个洞,恰好是边长为3mm 的小正方形,则每个小长方形的面积为_______2mm .30.已知关于x 、y 的方程组54522x y ax by +=⎧⎨+=-⎩与2180x y ax by -=⎧⎨--=⎩有相同的解,则(a +b )2020的值为___.31.我图古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数.物价几何?”意思是:现在有几个人共同出钱去买物品如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,问有多少人,物品的价格是多少?设有x 人.物品的价格为y 元,可列方程组为________.32.解方程组1226310x y z x y z x y z ++=⎧⎪+-=⎨⎪-+=⎩时,消去字母z ,得到含有未知数x ,y 的二元一次方程组是___.33.点()5,4A -和点()43,2B a b a b +-关于y 轴对称,则a b -的值是______.34.若关于x ,y 的二元一次方程组20x y A +=⎧⎨=⎩的解为13x y =-⎧⎨=⎩,则含x ,y 的多项式A 可以是___(写出一个即可).35.将方程52x y +=写成用含x 的代数式表示y ,则y =_______________.36.若关于x 、y 的二元一次方程组213x y m x y +=+⎧⎨-=⎩的解满足2x+3y >0,则m 满足的亲件是_____.37.已知|2x+y+1|+(x+2y ﹣7)2=0,则(x+y )2=________.38.在等式2y ax bx c =++中,当x 1=-时,y 0=;当x 5=时,y 60=;当x 2=时,y 3.=则a b c ++= ______ .39.若关于x 、y 的二元一次方程组33211x my x ny -=-⎧⎨+=⎩的解是13x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()()()()33211a b m a b a b n a b ⎧+--=-⎪⎨++-=⎪⎩的解是______.三、解答题40.计算:(1)解方程组:m n2522m 3n 4⎧-=⎪⎨⎪+=⎩; (2)解不等式:()()11x 73x 132--≥+41.阅读下列解方程组的部分过程,回答下列问题解方程组25323x y x y -=⎧⎨-=⎩①② 现有两位同学的解法如下:解法一;由①,得x =2y+5,① 把①代入①,得3(2y+5)﹣2y =3.…… 解法二:①﹣①,得﹣2x =2.……(1)解法一使用的具体方法是________,解法二使用的具体方法是______,以上两种方法的共同点是________.(2)请你任选一种解法,把完整的解题过程写出来42.某一天,文具经营户花360元从文具批发市场批发了自动铅笔和钢笔共80支,到文具店去卖,自动铅笔和钢笔当天的批发价与零售价如下表所示:问:他卖完这些自动铅笔和钢笔可赚多少钱? 43.计算: (1|2+(13-)﹣1(2)解方程组:11233240x y x y +⎧-=⎪⎨⎪+=⎩. 44.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,求b a -的平方根.45.对于x 、y 我们定义一种新运算“※”:x y ax by =+※,其中a 、b 类为常数,等式的右边是通常的加法和乘法运算.已知:527=※、()3412-=※,求43※的值. 46.在近期“抗疫”期间,某药店销售A 、B 两种型号的口罩,已知销售800只A 型和450只B 型的利润为210元,销售400只A 型和600只B 型的利润为180元. (1)求每只A 型口罩和B 型口罩的销售利润;(2)在销售时,该药店开始时将B 型口罩提价100%,当收回成本后,为了让利给消费者,把B 型口罩的售价调整为进价的15%,求B 型口罩降价的百分率. 47.解方程组(1)25 342 x yx y-=⎧⎨+=⎩(2)2320 235297m nm nn--=⎧⎪-+⎨+=⎪⎩48.某超市每天能出售甲、乙两种肉类集装箱共21箱,且甲集装箱3天的销售量与乙集装箱4天的销售量相同.(1)求甲、乙两种肉类集装箱每天分别能出售多少箱?(2)若甲种肉类集装箱的进价为每箱200元,乙种肉类集装箱的进价为每箱180元,现超市打算购买甲、乙两种肉类集装箱共100箱,且手头资金不到18 080元,则该超市有几种购买方案?(3)若甲种肉类集装箱的售价为每箱260元,乙种肉类集装箱的售价为每箱230元,在(2)的情况下,哪种方案获利最多?49.已知方程组2468416x yx y+=-⎧⎨-=⎩和1113ax bybx ay-=⎧⎨-=⎩的解相同,求()3-a b的值.参考答案:1.D【分析】采用加减消元法解方程组即可.【详解】632x y x y +=⎧⎨-=-⎩①② ①-①得:48y = ①2y =将2y =代入①得:26x += ①4x =①方程组的解为42x y =⎧⎨=⎩故选D .【点睛】本题考查解二元一次方程组,熟练掌握消元法是解题的关键. 2.A【分析】将方程①整理后可得23x y =--,再利用代入消元法代入①中求出解即可.【详解】32346x y x y +=-⎧⎨-=⎩①②,由①得23x y =--①, 把①代入①得:()32346y y ---=.故选:A .【点睛】此题考查了解二元一次方程组,利用了消元的思想,本题运用的是代入消元法. 3.B【分析】设该班投稿的同学有x 人,巧克力有y 盒,若每3位同学奖励一盒巧克力,则人数是巧克力的3倍,故有332x y =+⨯,若每4位同学奖励一盒巧克力,则人数是巧克力的4倍,故有442x y =-⨯,列方程组即可.【详解】解:设该班投稿的同学有x 人,巧克力有y 盒, 依题意得:332442x y x y =+⨯⎧⎨=-⨯⎩故选:B .【点睛】本题考查了二元一次方程组的实际应用;解题的关键是依据等量关系正确列方程. 4.C【分析】设可以截成x 根2m 长的钢管和y 根1m 长的钢管,根据题意列出方程,然后找到方程的整数解即可.【详解】解:设可以截成x 根2m 长的钢管和y 根1m 长的钢管, 依题意,得:2x +y =7, ①y =7﹣2x . ①x ,y 均为正整数,①当x =1时,y =5;当x =2时,y =3;当x =3时,y =1,①共有3种不同的截法,截法1:截成1根2m 长的钢管和5根1m 长的钢管;截法2:截成2根2m 长的钢管和3根1m 长的钢管;截法3:截成3根2m 长的钢管和1根1m 长的钢管, 故选:C .【点睛】本题主要考查二元一次方程,掌握二元一次方程的解是关键. 5.A【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1列出关于m 的方程,解之可得答案.【详解】①258m x y -+=是关于x 、y 的二元一次方程, ①251m -=, 解得3m =, 故选:A .【点睛】本题主要考查了二元一次方程的定义,二元一次方程需满足三个条件:①首先是整式方程.①方程中共含有两个未知数.①所有未知项的次数都是一次. 6.D【分析】先移项得312y x -=-,再化简得系数化为1即可. 【详解】解:①231x y -=, ①312y x -=-,①213xy-=,故选:D.【点睛】本题考查了解二元一次方程,熟练掌握等式的基本性质,理由等式的性质对方程进行变形处理是解题的关键.7.D【分析】根据等量关系:相遇时两车走的路程之和为170千米,相遇时,小汽车比客车多行驶20千米,可得出方程组.【详解】设小汽车和客车的平均速度为x千米/小时,y千米/小时由题意得:7717066772066x yx y⎧+=⎪⎪⎨⎪-=⎪⎩,故选D【点睛】本题考查由实际问题抽象二元一次方程组的知识,解题的关键是仔细审题,根据等量关系建立方程.8.A【分析】设设购买毛笔x支,围棋y副,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出购买方案的数量.【详解】解:设购买毛笔x支,围棋y副,根据题意得,15x+20y=360,即3x+4y=72,①y=18-34 x.又①x,y均为正整数,①415xy=⎧⎨=⎩或812xy=⎧⎨=⎩或129xy=⎧⎨=⎩或166xy=⎧⎨=⎩或203xy=⎧⎨=⎩,①班长有5种购买方案.故选:A.【点睛】本题考查了二元一次方程的应用,找准等量关系“共花费360元”,列出二元一次方程是解题的关键.9.B【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x y、的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【详解】设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个,根据题意得:316320x y x y +=⎧⎨+=⎩①②, 方程(①+①)÷2,得:2x+2y=18.故选:B .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.C【分析】设购买x 个A 款笔记本,y 个B 款笔记本,根据总价=单价×数量,列出x ,y 的二元一次方程,结合x ,y 均为正整数,求出正整数解即可.【详解】解:设购买x 个A 款笔记本,y 个B 款笔记本,依题意,得:10x +15y =100, 解得3102x y =- ①x ,y 均为正整数,①y 是2的倍数,72x y =⎧∴⎨=⎩,44x y =⎧⎨=⎩,16x y =⎧⎨=⎩①共有3种购买方案.故选:C .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.11.A【详解】试题分析:此题中的等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;①乙先跑2秒,则甲跑4秒就可追上乙.列出方程组即可.根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x ﹣5y=10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y .从而得出方程组.考点:由实际问题抽象出二元一次方程组12.B【分析】根据二元一次方程的定义逐一判断即可.【详解】解:A 中1xy =的项数是2次,故选项不符合题意;B 中31y x =-是二元一次方程,故选项符合题意;C 中10x y+=是分式方程,故选项不符合题意; D 中230x x +-=最高次数为2且只含一个未知数,是一元二次方程,故选项不符合题意;故选:B .【点睛】本题考查了二元一次方程的定义.解题的关键在于熟练掌握二元一次方程的定义:方程两边都是整式;含有两个未知数;并且含有未知数的项的最高次数都是一次的方程叫做二元一次方程.13.B【分析】根据题意由x ,y 互为相反数,得到x+y =0,与方程组第一个方程联立求出x 与y 的值,代入第二个方程求出n 的值即可.【详解】解:由题意得:x+y =0,即y =﹣x ,代入2x ﹣y =3得:2x+x =3,解得:x =1,即y =﹣1,代入得x+3y =n 得:n =1+3×(﹣1)=﹣2,故选:B .【点睛】本题考查二元一次方程组的解以及解二元一次方程组,熟练掌握相关的运算法则是解答本题的关键.14.A【分析】将x+2与y-1看做一个整体,根据已知方程组的解求出x 与y 的值即可.【详解】根据题意得:2=21=1x y +-⎧⎨-⎩ , 解得:=4=2x y -⎧⎨⎩. 故选:A .【点睛】此题考查二元一次方程的解,解题关键在于掌握方程的解即为能使方程左右两边相等的未知数的值.【分析】①把a=5代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a的值,即可做出判断;③当22x y⋅=16时,得到x+y=4,即y=4﹣x,代入方程组求出a的值,即可做出判断;④假如x=y,得到a无解,本选项正确;.【详解】解:①把a=5代入方程组得:351020x yx y-=⎧⎨-=⎩,解得:2010xy=⎧⎨=⎩,本选项错误;②由x与y互为相反数,得到x+y=0,即y=﹣x,代入方程组得:35225x x ax x a+=⎧⎨+=-⎩,解得:a=20,本选项正确;③当22x y⋅=16时,得到x+y=4,即y=4﹣x代入方程组得:35202285x x ax x a+-=⎧⎨+-=-⎩,解得:a=18,本选项正确;④若x=y,则有225x ax a-=⎧⎨-=-⎩,可得a=a﹣5,矛盾,故不存在一个实数a使得x=y,本选项正确;故选:C.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.A【分析】根据加减消元法,可得方程组的解.【详解】13x yx y-=⎧⎨+=⎩①②,①+①,得2x=4,解得x=2,把x=2代入①,得2-y=1,所以原方程组的解为21x y =⎧⎨=⎩. 故选A .【点睛】本题考查了解二元一次方程组,掌握加减消元法是解题的关键.本题还可以根据二元一次方程组的解的定义,将四个选项中每一组未知数的值代入原方程组进行检验. 17.B【分析】首先根据题意可得,3c -7×(-2)=8,解得,c =-2;再根据题意可得方程组322222a b a b -=⎧⎨-+=⎩,解此二元一次方程组可得a 、b 的值. 【详解】根据题意可得,3c -7×(-2)=8,解得,c =-2;由题意可得,22x y =-⎧⎨=⎩和32x y =⎧⎨=-⎩是方程2ax by +=的解, ①322222a b a b -=⎧⎨-+=⎩,解得4,5a b =⎧⎨=⎩ 故a =4,b =5,c =-2,故选B【点睛】此题主要考查了二元一次方程组的解,掌握解二元一次方程组的方法是解决问题的关键.18.D【分析】根据题意,设DE=x ,EF=y ,然后由边长的数量关系列出方程组,解方程组求出x 、y ,即可得到答案.【详解】解:如图:设DE=x ,EF=y ,根据题意,则32()10y x y x y =⎧⎨++=⎩, 解得:10113011x y ⎧=⎪⎪⎨⎪=⎪⎩, ①103015010111111AD =++=; 故选:D . 【点睛】本题考查了二元一次方程组的应用,解二元一次方程组,解题的关键是熟练掌握题意,正确列出方程组进行解题.19.B【分析】求出x=732y - ,根据x 、y 为正整数得出732y ->0,y >0,求出y 的范围,求出y 的值,求出x 的值,选出符合条件的解即可.【详解】解:①2x+3y=7,①x=732y -, ①x 、y 为正整数,①732y ->0,y >0 解得,0<y <73 , ①y 只能取1,2,当y=1时,x=2,当y=2时,x=12 (舍去),即方程2x+3y=7的正整数解有1个,故选B .【点睛】本题考查了二元一次方程的解,关键是求出其中一个未知数的取值范围. 20. -2 8【分析】把x=5代入方程组第二个方程求出y 的值,将x 与y 的值代入第一个方程左边即可得到结果.【详解】解:把x=5代入2x-y=12中,得:y=-2,当x=5,y=-2时,2x+y=10-2=8,故答案为:-2;8.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.2x -6##-6+2x【分析】利用移项解题即可.【详解】解:①26x y -=,①26y x =-.故答案为:26y x =-【点睛】本题考查解二元一次方程,能够熟练运用移项是解题关键.22.2x -1##-1+2x【分析】将x 看作已知数,移项即可求出y 即可.【详解】解:2x -y -1=0,解得y =2x -1.故答案为:2x -1.【点睛】此题考查解二元一次方程,解题的关键是将x 看作已知数求出y .23.9【分析】先根据单项式除以单项式运算法则化简等式左边,再由各字母指数相等列出关于m 、n 的方程组,然后解方程组求出m 、n ,代入求解即可.【详解】解:①()5476233m m n m m n a b ab a b a b ++-÷-=-=-,①471m m n +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩, ①239n m ==,故答案为:9.【点睛】本题考查了单项式除以单项式运算、解二元一次方程组、代数式求值、有理数的乘方,掌握单项式除以单顶式运算法则,正确列出m 、n 的方程组是解答的关键. 24.y =2.5-2x .【分析】要用关于x 的代数式表示y ,就要把方程中含有x 的项和常数项移到等号的右边得到:2y=5-4x ,再把y 的系数变为1.得到:y =2.5-2x .【详解】解:移项得:2y =5-4x ,系数化1得:y =2.5-2x .故答案为y =2.5-2x .【点睛】本题主要考查了解二元一次方程,解本题关键是通过移项和合并同类项,化y的系数为1,把方程变形为等号左边是y,等号右边是含有x的代数式.25.10【分析】设第一天销售x千克香蕉,第三天销售y千克香蕉,则第二题销售(50-x-y)千克香蕉,根据题意列出方程即可求出结论.【详解】解:设第一天销售x千克香蕉,第三天销售y千克香蕉,则第二题销售(50-x-y)千克香蕉根据题意可得:9x+6(50-x-y)+3y=270解得:y-x=10即第三天比第一天多销售香蕉10千克故答案为10.【点睛】此题考查的是二元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.26.43xy=-⎧⎨=-⎩##34yx=-⎧⎨=-⎩【分析】先根据不等式组的解集是2<x<3求出a,b的值,然后解二元一次方程组即可.【详解】解不等式组x bx a-⎧⎨+⎩<>得a x b-<<,因为不等式组的解集是2<x<3,所以-a=2,b=3,则a=-2,b=3.方程组为25 231x yx y-+=⎧⎨-=⎩①②,①+①,解得y=-3,将y=-3代入①,得x=-4.所以方程组得解是43xy=-⎧⎨=-⎩.故答案为:43xy=-⎧⎨=-⎩.【点睛】本题主要考查了不等式组的解集,加减法解二元一次方程组,根据不等式组的解集求出字母的值是解题的关键.27.24x y =⎧⎨=⎩【分析】先用x 将y 表示出来,然后根据x 、y 均为正整数运用列举法即可求解.【详解】解:由4320x y +=可得y =2043x - , ①x 、y 均为正整数, ①2043x ->0,即x <5 当x =2时,y =4,①方程4x +3y =20的正整数解为24x y =⎧⎨=⎩. 故答案为24x y =⎧⎨=⎩. 【点睛】本题主要考查一元二次方程的特殊解,用一个未知数表示成另一个未知数是解答本题题的关键.28.-2 【分析】根据()22640a b a b -+++=,可知260-+=a b ,40a b +=,故可求出a +b .【详解】解:①()22640a b a b -+++=, ①2=640a b a b --⎧⎨+=⎩①②,令①+①可得:336a b +=-, ①2a b +=-,故答案为:−2【点睛】本题对于绝对值和平方的非负性及求二元一次方程组的解的考查,理解两个非负数的和等于零时每一个非负数必为零的特点是解题的关键.29.135【分析】设每个小长方形的长为x mm ,宽为 y mm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个宽-一个长=3,于是得方程组,解出即可.【详解】解:设每个长方形的长为x mm ,宽为y mm ,由题意,得3523x y y x =⎧⎨-=⎩, 解得159x y =⎧⎨=⎩. 9×15=135(mm 2).故答案为:135.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.30.1【分析】先求出方程组521x y x y +=⎧⎨-=⎩的解,把23x y =⎧⎨=⎩代入方程组452280ax by ax by +=-⎧⎨--=⎩,再求出a 、b 的值,最后求出答案即可.【详解】解:解方程组521x y x y +=⎧⎨-=⎩得:23x y =⎧⎨=⎩, 把23x y =⎧⎨=⎩代入方程组452280ax by ax by +=-⎧⎨--=⎩得:815222380a b a b +=-⎧⎨--=⎩, 解得:1a =,2b =-,所以20202020()(12)1a b +=-=,故答案为:1.【点睛】本题考查了解二元一次方程组和二元一次方程组的解,理解二元一次方程组的解的定义是解此题的关键.31.8374x y x y -=⎧⎨+=⎩【分析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程组,本题得以解决.【详解】解:由题意可得8374x y x y -=⎧⎨+=⎩故答案为:8374x y x y-=⎧⎨+=⎩. 【点睛】此题考查的是二元一次方程组的应用,掌握实际问题中的等量关系是解决此题的关键.32.2318 416x yx y+=⎧⎨+=⎩【分析】①+①得出2x+3y=18,①+①得出4x+y=16,再得出答案即可.【详解】解:1226310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩①②③,①+①得出2x+3y=18①,①+①得出4x+y=16①,由①和①组成方程组2318 416x yx y+=⎧⎨+=⎩,故答案为:2318 416x yx y+=⎧⎨+=⎩.【点睛】本题考查了解三元一次方程组,能选择适当的方法消元是解此题的关键.33.3【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【详解】解:①点A和点B关于y轴对称,①可得方程组543042a ba b-++=⎧⎨=-⎩,解得:21 ab=⎧⎨=-⎩,①a-b=3,故答案为:3.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a,b是解题关键.34.3x y+【分析】根据13xy=-⎧⎨=⎩,添加系数,使得结果为0即可.【详解】解:①关于x,y的二元一次方程组2x yA+=⎧⎨=⎩的解为13xy=-⎧⎨=⎩,而-1×3+3=0,①多项式A可以是3x y+,故答案为:3x y+.【点睛】本题考查了二元一次方程组的解,本题是开放题,注意方程组的解的定义.35.25x-【详解】分析:把y移到等号的左边,其它的项移到等号的右边.详解:5x+y=2,移项得,y=2-5x.故答案为2-5x.点睛:本题考查了移项,移项时要注意移动的项必须改变符号.36.m>﹣1 5【分析】求解方程组,用含m的代数式分别表示出x、y.把x、y的值代入2x+3y,根据2x+3y>0,确定m的取值范围.【详解】213x y mx y+=+⎧⎨-=⎩①②①+①,得2x=2m+4①﹣①,得2y=2m﹣2即3y=3m﹣3①2x+3y=2m+4+3m﹣3=5m+1①2x+3y>0,①5m+1>0①m>﹣15故答案是:m>﹣1 5 .【点睛】考查了二元一次方程组的解法、一元一次不等式的解法.用含m的代数式表示x、y是解决本题的关键.37.4【详解】①|2x+y+1|+(x+2y﹣7)2=0,①210270x yx y++=⎧⎨+-=⎩,①3x+3y=6,即x+y=2,①(x+y)2=22=4.点睛:(1)一个代数式的绝对值和平方都是非负数;(2)两个非负数的和为0,则这两个非负数都为0.38.-4【详解】分析:将已知三对值代入等式得到关于a,b,c的方程组,求出方程组的解得到a,b,c的值即可.详解:①﹣①得:24a+6b=60,4a+b=10①,①﹣①得:3a+3b=3,a+b=1①,由①和①组成方程组,解方程组得:,把a、b的值代入①得:c=﹣5,所以a+b+c=﹣4.故答案为﹣4.点睛:本题考查了三元一次方程组的解法,把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,消元的方法有:加减消元法与代入消元法.39.21 ab=⎧⎨=-⎩【分析】根据已知得出关于a,b的方程组进而得出答案.【详解】解:①关于x、y的二元一次方程组33211x myx ny-=-⎧⎨+=⎩,的解是13xy=⎧⎨=⎩,①方程组()()()()33211a b m a ba b n a b⎧+--=-⎪⎨++-=⎪⎩中13a ba b+=⎧⎨-=⎩,解得:21 ab=⎧⎨=-⎩.故答案为:21 ab=⎧⎨=-⎩.【点睛】本题主要考查二元一次方程组的解法,关键是根据整体思想及方程组的解法进行求解.40.(1)m5n2=⎧⎨=-⎩;(2)x1≤【分析】(1)整理后用加减消元法即可求解.(2)不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集【详解】解:(1)原方程组整理得2520234m nm n-=⎧⎨+=⎩①②,①-①,得8n= -16,解得n= -2,将n= -2代入①,得2m-5×(-2)=20,解得m=5,①原方程组的解为52mn=⎧⎨=-⎩;(2)去分母得,-2(x-7)≥3(3x+1),去括号得,-2x+14≥9x+3,移项得,-2x-9x≥3-14,合并同类项得,-11x≥-11,化系数为1得,x≤1,故此不等式的解集为:x≤1.故答案为(1)52mn=⎧⎨=-⎩;(2)x≤1.【点睛】本题考查解二元一次方程组,解一元一次不等式,熟知解方程组的方法和解不等式的原则是解题的关键.在解答(2)时要注意,当不等式的两边同时除以一个负数时不等号的方向要改变.41.(1)代入消元法;加减消元法;基本思路都是消元;(2)13 xy=-⎧⎨=-⎩.【分析】(1)分析两种解法的具体方法,找出两种方法的共同点即可;(2)将两种方法补充完整即可.【详解】解:(1)解法一使用的具体方法是代入消元法,解法二使用的具体方法是加减消元法,以上两种方法的共同点是基本思路都是消元(或都设法消去了一个未知数,使二元问题转化为了一元问题);故答案为代入消元法,加减消元法,基本思路都是消元(或都设法消去了一个未知数,使二元问题转化为了一元问题);(2)方法一:由①得:x=2y+5①,把①代入①得:3(2y+5)﹣2y=3,整理得:4y=﹣12,解得:y=﹣3,把y=﹣3代入①,得x=﹣1,则方程组的解为13xy=-⎧⎨=-⎩;方法二:①﹣①,得﹣2x=2,解得:x=﹣1,把x=﹣1代入①,得﹣1﹣2y=5,解得:y=﹣3,则方程组的解为13xy=-⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.42.168元【详解】试题分析:(1)先列出两个等量关系:自动铅笔数量+钢笔数量=80,购自动铅笔钱数+购买钢笔B型灯钱数=360,解方程组求出自动铅笔和钢笔的单价,所以利用获利=自动铅笔利润+钢笔利润求出即可.试题解析:设自动铅笔买了x支,钢笔买了y支.则有解得这次赚得钱:7.2×50+5.6×30-360=168元答:他卖完这些笔可赚168元.考点:二元一次方程组的应用.43.(1)4-(2)88x y =⎧⎨=⎩【分析】(1)根据二次根式的性质、负指数的意义和二次根式的运算法则计算即可; (2)按照解二元一次方程组的方法解方程组即可.【详解】解:(1|2+(13-)﹣1=523--=4-(2)解方程组:11233240x y x y +⎧-=⎪⎨⎪+=⎩,化简得,3283240x y x y -=⎧⎨+=⎩①② ①+①得,648x =,解得,8x =,把8x =代入①得,2428y -=,解得,8y =,所以,原方程组的解为88x y =⎧⎨=⎩. 【点睛】本题考查了二次根式运算和解二元一次方程组,解题关键是熟练运用二次根式运算法则和熟练掌握二元一次方程组的解法.44.1±【分析】将x 和y 的值代入原方程,得到关于a 和b 的方程组,求出a 和b 的值即可.【详解】解:把21x y =⎧⎨=⎩代入二元一次方程组71ax by ax by +=⎧⎨-=⎩, 得:2721a b a b +=⎧⎨-=⎩,解得:23a b =⎧⎨=⎩. ①1b a -=,①b a -的平方根为1±.【点睛】本题考查了二元一次方程组的解以及平方根,解题的关键是求出a 和b 的值. 45.3.5【分析】根据已知条件得出方程组,求出a 、b 的值,根据题意得出3434232=⨯-⨯※,再求出答案即可.【详解】解:①527=※、()3412-=※,①5273412a b a b +=⎧⎨-=⎩①②, 2⨯+①②,得1326a =,解得:2a =,把2a =代入①,得1027b +=, 解得:32b =-, 所以343423 3.52=⨯-⨯=※. 【点睛】本题考查了解二元一次方程组和有理数的混合运算,能把二元一次方程组转化成一元一次方程是解此题的关键.46.(1)每只A 型口罩的销售利润为0.15元,每只B 型口罩的销售利润为0.2元(2)B 型口罩降价的百分率为92.5%【分析】(1)假设每只A 型口罩的销售利润为x 元,每只B 型口罩的销售利润为y 元,根据条件列二元一次方程组,求解即可;(2)设B 型口罩降价的百分率为m ,依题意列一元一次方程,求解即可.(1)解:设每只A 型口罩的销售利润为x 元,每只B 型口罩的销售利润为y 元,依题意,得:800450210400600180x y x y +=⎧⎨+=⎩, 解得:0.150.2x y =⎧⎨=⎩. ①每只A 型口罩的销售利润为0.15元,每只B 型口罩的销售利润为0.2元.。

【解析版】中考数学常考易错点:2.2《分式方程》(原创)

【解析版】中考数学常考易错点:2.2《分式方程》(原创)

分式方程易错清单1. 解分式方程时为什么容易出错?【例1】(2018·新疆)解分式方程:+=1.【解析】先将分式方程转换为整式方程,再求出整式方程的解,最后检验后判定分式方程解的情况.【答案】方程两边都乘以(x+3)(x-3),得3+x(x+3)=x2-9,去括号,得3+x2+3x=x2-9,解得x=-4.检验:把x=-4代入(x+3)(x-3)≠0,∴x=-4是原分式方程的解.【误区纠错】最简公分母找错,加重计算负担,导致出错;在计算中,注意常数项要乘以最简公分母,不要漏乘. 【例2】(2018·内蒙古呼和浩特)解方程:-=0.【解析】先去分母,化为整式方程求解即可.本题最简公分母是x(x+2)(x-2).【答案】去分母,得3x-6-x-2=0,解得x=4,经检验,x=4是原方程的根,故x=4是原方程的解.【误区纠错】解分式方程产生增根,忘记验根.【例3】(2018·贵州黔西南州)解方程:=.【解析】将分式方程转化为整式方程时易产生增根,所以要检验,检验时只要代入最简公分母中即可.【答案】方程两边都乘以(x+2)(x-2),得x+2=4,解得x=2,经检验,x=2不是分式方程的解,故原分式方程无解.【误区纠错】增根不是分式方程的根,本题学生常犯错误是,漏写最后一句话:“原分式方程无解”.2. 运用分式方程解决实际问题时,关键是找出等量关系.【例4】(2018·云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【解析】设第一批盒装花的进价是x元/盒,则第一批进的数量是,第二批进的数量是,再根据等量关系:第二批进的数量=第一批进的数量×2,可得方程.【答案】设第一批盒装花的进价是x元/盒,由题意,得2×=,解得x=30.经检验,x=30是原方程的根.故第一批盒装花每盒的进价是30元.【误区纠错】题目中的相等关系不明显,倍数关系易出错,学生找不到相等关系而无法得到对应的分式方程.运用分式方程解决实际问题的关键是确定问题中的相等关系.名师点拨1. 会利用分式方程的定义判断分式方程.2. 能利用最简公分母将分式方程化为整式方程,会利用换元思想解分式方程.3. 会利用检验思想判断分式是否存在增根.4. 会利用分式方程解决实际问题,并且注意求出的方程的解是否存在实际意义.提分策略1. 分式方程的解法.解分式方程常见的误区:(1)忘记验根;(2)去分母时漏乘整式的项;(3)去分母时,没有注意符号的变化.【例1】解方程:+=1.【解析】根据解分式方程的一般步骤,将分式方程化为整式方程求解,最后再验根即可.【答案】方程两边都乘以(x+2)(x-2),得2+x(x+2)=x2-4,去括号,得2+x2+2x=x2-4,解得x=-3.检验:把x=-3代入(x+2)(x-2)≠0,∴x=-3是原分式方程的解.2. 利用分式方程解决实际问题.列分式方程解决实际问题,是近几年中考的热点问题.在列方程之前,应先弄清问题中的已知数与未知数,以及它们之间的数量关系,用含未知数的式子表示相关量,然后再用题中的主要相等关系列出方程.求出解后,必须进行检验,既要检验是否为所列方程的解,又要检验是否符号题意.【例2】几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.【解析】设票价为x元,根据图中所给的信息可得小伙伴的人数为,根据小伙伴的人数不变,列方程求解. 【答案】设票价为x元,由题意,得=+2,解得x=60,经检验,x=60是原方程的根,则小伙伴的人数为=8.故小伙伴们的人数为8人.专项训练一、选择题1. (2018·四川简阳模拟)全民健身活动中,组委会组织了长跑队和自行车队进行宣传,全程共10千米,自行车队的速度是长跑队速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车队晚到了2小时,如果设长跑队跑步的速度为x千米/时,那么根据题意可列方程为( ).A. +2=+0.5B. -=2-0.5C. -=2-0.5D. -=2+0.52. (2018·广西钦州四模)将分式方程1-=去分母,整理后得( ).A. 8x+1=0B. 8x-3=0C. x2-7x+2=0D. x2-7x-2=0二、填空题3. (2018·四川峨眉山二模)已知某项工程由甲、乙两队合做12天可以完成,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天.甲、乙两队单独完成这项工程分别需要多少天?设甲队单独完成需x天,根据题意列出的方程是.4. (2018·北京平谷区模拟)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,则A型机器人每小时搬运千克化工原料.5. (2018·甘肃天水模拟)已知分式值为0,那么x的值为.6. (2018·广东珠海一模)方程=的解是.7. (2018·浙江锦绣·育才教育集团一模)已知关于x的方程=5的解是正数,则m的取值范围为.三、解答题8. (2018·宁夏银川外国语学校模拟)解方程:-1=.9. (2018·安徽安庆一模)甲、乙两个工程队都有能力承包一项筑路工程,乙队单独完成的时间比甲队单独完成多5天,若先由甲、乙两队合作4天后,余下的工程再由乙队单独完成,一共所用时间和甲队单独完成的时间恰好相等.则甲、乙两队单独完成此项任务各需要多少天?10. (2018·江苏南京二模)某学校准备组织部分学生到少年宫参加活动,刘老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?11. (2018·浙江湖州模拟)解方程:+=2.12. (2018·上海长宁区二模)解方程:-=.13. (2018·广东惠州惠城区模拟)小红家星期六到惠东巽寮湾游玩,从家到目的地全程80km,由于周末车流量较大,实际行驶速度是原计划的,结果实际比原计划多用了15分钟,求原计划的行驶速度是多少.14. (2018·安徽芜湖一模)2019年3月25日央视《每周质量播报》报道“毒胶囊”的事件后,全国各大药店的销售都受到不同程度的影响,4月初某种药品的价格大幅度下调,下调后每盒价格是原价格的,原来用60元买到的药品下调后可多买2盒.4月中旬,各部门加大了对胶囊生产监管力度,因此,药品价格4月底开始回升,经过两个月后,药品上调为每盒14.4元.(1)问该药品的原价格是多少,下调后的价格是多少?(2)问5,6月份药品价格的月平均增长率是多少?参考答案与解析1. C [解析]自行车队的时间减去长跑队的时间=(2-0.5)小时.2. D [解析]去分母,得x(x+1)-(5x+2)=3x,去括号,得x2+x-5x-2=3x,整理,得x2-7x-2=0.3. += [解析]若甲队单独完成需x天,则乙队单独完成需(2x-10)天,根据两人合作的工作效率等于,可列出方程.4. 100 [解析]设 A型机器人每小时搬运化工原料x千克,则B型机器人每小时搬运(x-20)千克.依题意,得=,解得 x=100.经检验,x=100是方程的解且符合实际意义.5. -1 [解析]根据题意,得x2+3x+2=0,解得x1=-1,x2=-2(使分母等于零,所以舍去).6. x= [解析]化为整式方程,得5(2-x)=3(x+2),解得x=. 经检验,x=是原方程的根.7. m>-10且m≠-4 [解析]原方程化为整式方程,得2x+m=5x-10,解得x=(10+m),因为解为正数,所以(10+m)>0,解得m>-10. 同时要保证分母不为零,所以m≠-4.8. 去分母,得x(x+2)-(x-1)(x+2)=2x(x-1),整理,得2x2-3x-2=0,解得x1=-,x2=2.检验:把x1=-,x2=2代入(x-1)(x+2)≠0,∴原方程的根是x1=-,x2=2.9. (1)设甲队单独完成此项任务需要x天,则乙队单独完成此项任务需要(x+5)天.根据题意,得4+=1,去分母,得4(x+5)+4x+x(x-4)=x(x+5).解得x=20.经检验,x=20是原方程的解,则x+5=25(天).所以甲队单独完成此项任务需要20天,乙队单独完成此项任务需要25天.10. 设原来报名参加的学生有x人,依题意,得-=4.解得x=20.经检验,x=20是原方程的解且符合题意.故原来报名参加的学生有20人.11. 去分母,得x-1=2(x-3),去括号,得x-1=2x-6,解得x=5.经检验,x=5是原方程的根.12. 去分母,得3(x+1)-(x-1)=x(x+5),整理,得 x2+3x-4=0,解得x1=1,x2=-4.经检验,x1=1是原方程的增根,x2=-4是原方程的根,∴x=-4是原方程的根.13. 设原计划的行驶速度为x千米/小时.根据题意,得-=.解得x=80.经检验,x=80是原方程的解.故原计划的行驶速度为80千米/小时.14. (1)设该药品的原价格是x元/盒,则下调后每盒价格是x元/盒. 根据题意,得=+2,解得x=15.经检验,x=15是原方程的解.∴x=15,x=10.故该药品的原价格是15元/盒,则下调后每盒价格是10元/盒. (2)设5,6月份药品价格的月平均增长率是a.根据题意,得10(1+a)2=14.4,解得a1=0.2=20%,a2=-2.2(不合题意,舍去).故5,6月份药品价格的月平均增长率是20%.。

中考数学常见易错知识点汇总(方程组与不等式组)

中考数学常见易错知识点汇总(方程组与不等式组)

中考数学常见易错知识点汇总(方程组与不
等式组)
方程(组)与不等式(组)
易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0 的情况,还要关注解方程与方程组的基本思想。

(消元降次)主要陷阱是消除了一个带X 公因式要回头检验!
易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。

易错点6:解分式方程时首要步骤去分母,分数相相当于括
号,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解。

【解析版】中考数学常考易错点:2.4《一元一次不等式(组)》

【解析版】中考数学常考易错点:2.4《一元一次不等式(组)》

一元一次不等式(组)易错清单1.对不等式的性质理解有误.【例1】(2014·山东滨州)已知a,b都是实数,且a<b,则下列不等式的变形正确的是().A. a+x>b+xB. -a+1<-b+1C. 3a<3bD. >【解析】根据不等式的性质1,可判断A,根据不等式的性质3,1可判断B,根据不等式的性质2,可判断C,D.不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确,D错误.【答案】 C【误区纠错】注意在不等式的两边同时乘以或除以同一个负数不等号的方向改变.2.在判断不等式成立或由不等式变形求某字母的范围时,要认真观察不等式的形状与不等号的方向.【例2】(2014·山东潍坊)若不等式组无解,则实数a的取值范围是().A. a≥-1B. a<-1C. a≤1D. a≤-1【解析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出a的取值范围.由①得,x≥-a,由②得,x<1,∵不等式组无解,∴-a≥1,解得a≤-1.【答案】 D【误区纠错】学生在考虑有解无解题目时,弄不清什么时候该带等号什么时候不该带等号导致出错.3.用一元一次不等式(组)解决实际问题时不能正确确定问题中的不等关系.【例3】(2014·四川绵阳)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足().A. n≤mB. n≤C. n≤D. n≤【解析】根据最大的降价率即是保证售价大于等于成本价相等,进而得出不等式即可.设进价为a元,由题意,得a(1+m%)(1-n%)-a≥0,即(1+m%)(1-n%)-1≥0,整理,得100n+mn≤100m,故n≤.【答案】 B【误区纠错】解决问题的关键是读懂题意,找到关键描述语,根据题目中的数量关系,得出正确的不等关系是解题关键.名师点拨1.掌握不等式性质.2.能够说明一元一次不等式组解集的含义.3.能利用类比思想,对照一元一次方程求解思想解一元一次不等式(组).4.能根据题意中的不等语句(如不低于最少、至多等)列不等式组解决实际问题.提分策略1.与不等式(组)的解集有关的问题.已知不等式组的解集求字母(或有关字母代数式)的值,一般先求出已知不等式(组)的解集,再结合给定的解集,得出等量关系或者不等关系.【例1】关于x的不等式组有四个整数解,则a的取值范围是().A. -<a≤-B. -≤a<-C. -≤a≤-D. -<a<-【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.设由①得x>8;由②得x<2-4a,故不等式组的解集为8<x<2-4a.因为不等式组有四个整数解,为9,10,11,12,所以解得-≤a<-.【答案】 B2.一元一次不等式(组)的应用.(1)一元一次不等式(组)与方程(组)相结合解决实际问题.近几年,中考注重对学生“知识联系实际”的考查比较多,实际问题中往往蕴含着方程与不等式,分析问题中的等量关系和不等关系,建立方程(组)模型和不等式(组)模型,从而把实际问题转化为数学模型,然后运用数学知识来解决.【例2】某商场用3600元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品.购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?【答案】(1)设商场购进甲种商品x件,乙种商品y件,根据题意,得解得故该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z-100)+2×200×(138-120)≥8160,解得z≥108.故乙种商品最低售价为每件108元.(2)运用一元一次不等式(组)进行方案设计.利用一元一次不等式(组)解决方案的问题实质就是一个由列不等式(组)——求解——由实际问题取值的过程,由于一元一次不等式(组)的解一般情况下是无穷多个,但由于实际问题的限制,可能只有其中的某个或某些满足实际问题,这样也就随之产生了一种或几种设计方案.【例3】某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?【答案】(1)设该店订购甲款运动服x套,则订购乙款运动服(30-x)套,由题意,得解得≤x≤.∵x为整数,∴x取11,12,13.∴30-x取19,18,17.该店订购这两款运动服,共有3种方案:方案一:甲款11套,乙款19套;方案二:甲款12套,乙款18套;方案三:甲款13套,乙款17套.(2)解法一:设该店全部出售甲、乙两款运动服后获利y元,则y=(400-350)x+(300-200)(30-x)=50x+3000-100x=-50x+3000.∵-50<0,∴y随x的增大而减小.∴当x=11时,y最大.∴方案一,即甲款11套,乙款19套时,获利最大.解法二:三种方案分别获利为:方案一:(400-350)×11+(300-200)×19=2450(元);方案二:(400-350)×12+(300-200)×18=2400(元);方案三:(400-350)×13+(300-200)×17=2350(元).∵2450>2400>2350,∴方案一,即甲款11套,乙款19套,获利最大.专项训练一、选择题1.(2014·湖北黄冈模拟)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午他又买了20斤,价格为每斤y元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是().A. x<yB. x>yC. x≤yD. x≥y2. (2014·湖北黄石九中模拟)若不等式组无解,则a的取值范围是().A. a≤3B. a<3C. a≥3D. a>33.(2014·安徽安庆二模)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若=5,则x的取值可以是().A. 51B. 45C. 40D. 564. (2014·广西玉林模拟)把不等式组的解集表示在数轴上,正确的是().A BC D5. (2013·河北三模)若不等式组有解,则a的取值范围是().A. a>-1B. a≥-1C. a≤1D. a<1二、填空题6. (2014·湖北襄阳模拟)不等式组的整数解是.7. (2014·浙江杭州模拟)如果不等式组的解集是x<2,那么m的取值范围是.8. (2013·江苏南京高淳区模拟)不等式组的解集是.三、解答题9. (2014·四川成都七中模拟)已知关于x,y的方程组的解都不大于1,求m的取值范围.10. (2014·浙江宁波北仓区模拟)从2012年7月起,浙江省执行居民阶梯电价新规定,新规定中将原先的按月抄见电量实行阶梯式累进加价改为按年抄见电量实行阶梯式累进加价,原方案如下:新方案如下:(1)按原方案计算,;若小华家每月的用电量不变,则按新方案计算,小华家平均每月电费支出是增加还是减少了,增加或减少了多少元?(2)为了节省开支,小华计划2014年的电费不超过2214元,则小华家2014年最多能用电多少千瓦时?11. (2013·上海模拟)试确定实数a的取值范围,使不等式组恰有两个整数解.12. (2013·浙江湖州模拟)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表(注:获利=售价-进价):(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.13.(2013·广东深圳育才二中一模)某校为开展好阳光体育活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x个,购买两种球的总费用为y元,请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?参考答案与解析1. B[解析]由题意,得-=>0,∴x>y.2. A[解析]解1+x>a,得x>a-1;解2x-4≤0,得x≤2,因为不等式组无解,所以a-1≤2,即a≤3.3. A[解析]=[5.5]=5.4. C[解析]原不等式组的解集是-1<x≤1.5. D[解析]由第一个不等式,得x≥a;由第二个不等式,得x<1,因为原不等式组有解,所以a<1.6.-2,-1,0[解析]原不等式组的解集是-3<x<1,所以整数解是-2,-1,0.7.m≥2[解析]由第一个不等式,得x<2,因为原不等式组的解集是x<2,所以m≥2.8. 0≤x<2[解析]由第二个不等式,得x<2.故原不等式组的解集为0≤x<2.9.解方程组得∵∴解得-3≤m≤5.10. (1)因为50×0.538=26.9<83.7,而50×0.538+(200-50)×(0.538+0.03)=112.1>83.7,所以小华家该月的用电量属于第二档.设小华家该月的用电量为x千瓦时,由题意,得50×0.538+(x-50)×(0.538+0.03)=83.7,解得x=150.所以小华家该月的用电量为150千瓦时.按新方案计算:因为150×12=1800<2760,所以用电量属于第一档,150×0.538=80.7(元),83.7-80.7=3(元).所以小华家平均每月电费支出减少了3元.(2)因为2760×0.538=1484.88<2214,而2760×0.538+(4800-2760)×(0.538+0.05)=2684.4>2214,所以小华家2014用电量属于第二档.设小华家2014用电量为y千瓦时,由题意,得2760×0.538+(y-2760)×(0.538+0.05)≤2214,解得y≤4000,所以小华家2014最多能用电4000千瓦时.11.由+>0,得x>-;由x+>(x+1)+a,得x<2a.∴原不等式组的解集是-<x<2a.又原不等式组恰有2个整数解,∴x=0,1.∴1<2a≤2,解得<a≤1.12. (1)设甲种商品应购进x件,乙种商品应购进y件.根据题意,得解得故甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160-a)件.根据题意,得解得 65<a<68.∵a为非负整数,∴a取66,67.∴160-a相应取94,93.故有两种购货方案:方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.13. (1)y=20x+80(100-x)=8000-60x.(2)设购买排球x个,则篮球的个数是(100-x),根据题意,得解得23≤x≤25.∵x为整数,∴x取23,24,25.∴有3种购买方案:方案一:当买排球23个时,篮球的个数是77个;方案二:当买排球24个时,篮球的个数是76个;方案三:当买排球25个时,篮球的个数是75个.(3)∵y=8000-60x中,k=-60<0,∴y随x的增大而减小.又23≤x≤25,∴采用方案三(买排球25个,篮球75个方案)更合算.。

2022年中考数学方程(组)与不等式(组)(解析版)

2022年中考数学方程(组)与不等式(组)(解析版)

热点02 方程(组)与不等式(组)方程(组)与不等式(组)的考点,在中考数学中出题类型比较广泛,选择题、填空题、解答题都有可能出现,并且对应难度也多为中等难度,是属于占分较多的一类考点。

但是同一张试卷,方程类问题只会出现一种,不会重复考察。

涉及本考点的知识点重点有:由实际问题抽象出一次方程(组)或分式方程,解方程(包含一次方程、二次方程、分式方程),一元二次方程的定义、解法及跟的判别式、根与系数的关系、实际应用等。

不等式中常考不等式的基本性质,解一元一次不等式(组)及不等式(组)的应用题等。

这就要求考生在复习该部分考点时,熟记各方程(组)和不等式(组)的相关概念、性质、解法及应用。

1.一次方程(组):熟记定义,熟悉解法步骤,注重基础计算格式及其准确性,实际应用找准等量关系;一次方程(组)如果考定义或者实际应用时,多以选择、填空题形式出现,这就从问题本身降低了难度,但是也要求必须对这部分的定义或实际应用的等量关系较为熟悉才能更快更准确的拿分。

而对一次方程(组)解法的考察,多在于其解法步骤上,所以基本各类方程的解法步骤必须熟悉。

2.不等式(组):熟记解法步骤,注意是否变号,画解集—>向右,<向左,实际应用找准不等量关系;不等式(组)解法的考察多以解答题的形式出现,还会要求在数轴上画出解集,这类问题一是不能漏画解集,二是实心、空心,向左、向右不要搞反了。

不等式(组)的实际应用问题,也基本都是以解答题形式出现,并且常和二元一次方程组结合考察,分值较高,复习时需要不留“死角”。

3.分式方程及其应用:解分式方程勿忘验根;分式方程的考察不管是单独的解分式方程,还是分式方程的应用题,在解完方程之后,都需要加上“验根”这一步,这步缺失是要扣分的。

其他注意事项同一次方程(组)。

4.一元二次方程:考定义要注意“2次”与“系数≠0”要同时成立;考解的情况想“b2-4ac”;考两根关系想“根与系数的关系”;中考中对一元二次方程的考察是多方面的,每个考点都有不同的考察方向,而且,一元二次方程还可以结合二次函数同时考察,有些考点的变形就更多.中考复习时,需要对一元二次方程的各个知识重点都加以重视,遇到问题随机应变。

中考数学常考易错点:2.3《方程组》

中考数学常考易错点:2.3《方程组》

中考数学方程组易错清单1.解方程组时,一定要先观察方程的特点,再选择适当的方法.【例1】(2014·宁夏模拟)如果关于x,y的二元一次方程组的解满足x+y>1,那么k的取值范围是.【解析】本题可以把k当成已知数,解关于x,y的二元一次方程组,再代入x+y>1,求出k 的取值范围.但更简便的方法是直接将两个方程相加,得3x+3y=3k-3,即x+y=k-1.所以k-1>1,解得k>2.【答案】k>2【误区纠错】一般地解二元一次方程组时,先观察两个二元一次方程同一未知数的系数,若同一未知数的系数相同或相反时,则用加减消元法解;若同一未知数的系数不同并且有一方程的未知数的系数为1时,则用代入法解.2.根据条件找不全反应题意的等量关系建立方程(组).【例2】(2014·内蒙古呼和浩特)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?【解析】设基本电价为x元/千瓦时,提高电价为y元/千瓦时,根据2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元,列方程组求解.【答案】设基本电价为x元/千瓦时,提高电价为y元/千瓦时,由题意,得解得则四月份电费为160×0.6=96(元),五月份电费为180×0.6+230×0.7=108+161=269(元).故这位居民四月份的电费为96元,五月份的电费为269元.【误区纠错】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.名师点拨1.能判断二元一次方程(组).2.会利用代入法、加减法进行消元.3.能区分一次函数与二元一次方程组的联系与区别.4.会根据题中等量关系列二元一次方程组并解决实际问题.提分策略用二元一次方程组解决实际问题.(1)列二元一次方程组解决古代数学问题列方程组解应用题的关键是找出实际问题中的等量关系,解题时要仔细分析,找出其中蕴含的等量关系,设出未知数,列出方程.【例1】《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的;若从树上飞下去一只,则树上、树下的鸽子有一样多了.”你知道树上、树下各有多少只鸽子吗?【答案】设树上有x只鸽子,树下有y只鸽子,由题意,得解得故树上有7只鸽子,树下有5只鸽子.(2)列二元一次方程组解几何图形的计算问题对于图形问题的求解,要会通过对图形的观察、比较、分析,发现隐含在图形中的数量关系,这是解决有关图形问题的关键.图形中隐含的数量关系有边长间的关系、面积间的关系等.【例2】小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含x,y的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m2,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?【答案】(1)地面总面积为(6x+2y+18)m2.(2)由题意,得解得∴地面总面积为6x+2y+18=6×4+2×+18=45(m2).∵铺1m2地砖的平均费用为80元,∴铺地砖的总费用为45×80=3600(元).专项训练一、选择题1. (2014·广西百色模拟)已知是二元一次方程组的解,则a-b的值为().A. 1B. -1C. 2D. 32.(2014·北京顺义区模拟)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格(单位:元)为().(第2题)A. 19B. 18C. 16D. 153. (2013·山东德州特长展示)已知(x+2)2+|3x+y+m|=0中,y为负数,则m的取值范围为().A. m>6B. m<6C. m>-6D. m<-6二、填空题4.(2014·安徽安庆外国语学校模拟)若方程组的解为则被遮盖的两个数分别为.5. (2013·广东珠海一模)如果实数x,y满足方程组那么x2-y2= .三、解答题6.(2014·江苏苏州高新区一模)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂0.2克,B饮料每瓶需加该添加剂0.3克,已知54克该添加剂恰好生产了A,B两种饮料共200瓶,问A,B两种饮料各生产了多少瓶?7.(2013·江西饶鹰联考)根据国家发改委实施“阶梯电价”的有关文件要求,江西省上饶市决定从2012年7月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:(1)若上饶市一户居民8月份用电300千瓦时,应缴电费186元,9月份用电400千瓦时,应缴电费263.5元.求a,b的值;(2)实行“阶梯电价”收费以后,该户居民用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元?参考答案与解析1. B[解析]将方程组转化为关于a,b的二元一次方程组,求出a,b即可.2. C[解析]设笑脸和爱心两种气球的价格分别为x,y元,由题意,得解得∴2x+2y=16.3. A[解析]由题意,得所以y=-m+6.因为y为负数,所以-m+6<0,解得m>6.4. 7,3[解析]将x=2代入3x-y=3,得y=3,所以2x+y=2×2+3=7.5. 2[解析]由题意,得x+y=4,x-y=,∴x2-y2=(x+y)(x-y)=×4=2.6.设A种饮料生产了x瓶,B种饮料生产了y瓶,由题意,得解得故A种饮料生产了60瓶,B种饮料生产了140瓶,7. (1)根据题意,得解得(2)设该户居民用电x千瓦时,月平均电价每千瓦时不超过0.62元.由题意,得180×0.6+0.65(x-180)≤0.62x,解得x≤300.所以该户居民用电量不超过300千瓦时,月平均电价每千瓦时不超过0.62元.。

中考数学复习:专题2-4 方程应用的误区

中考数学复习:专题2-4 方程应用的误区

专题04 方程的应用误区分析【专题综述】一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。

在提高学生的能力,培养他们对数学的兴趣 以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

【方法解读】一、 审题不清楚,等量关系找不准 例1 一车间人数比二车间人数的54少30人,如从二车间调10人到一车间去,那么一车间人数就是二车间人数的,43求两车间的原有人数.【解读】造成错误的原因是题意分析不清,把二车间调出去10人,没有给一车间人数加上去.【举一反三】 2012年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队战胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张? 【来源】宁夏回族自治区银川六中2017-2018学年第一学期七年级上册数学期末试卷 解:设每张300元的门票买了x 张,则每张400元的门票买了(8-x)张, 由题意,得300x+400(8-x)=2700, 解得:x=5,所以买400元每张的门票张数为:8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张. 二、 列方程时,方程各项的单位名称不统一例2 一队学生到校外进行军事野营训练,他们以5km/h 的速度行走,走了18min 的时候,学校要把一个紧急通知传给队长,通讯员从学校出发,骑自行车以14km/h 的速度按原路追上去,通讯员要用多少时间才能追上学生队伍?解: 设xh 后通讯员追上学生队伍,根据题意,得 5×6018+5x=14x. 解这个方程得x=.61 答:61h, 通讯员可以追上学生队伍.学@科%网 【解读】:本题告诉学生队伍的速度是5km/h,通讯员的速度是14km/h,而学生队伍先走的时间却用分表示,所以要解此题,先必须把单位化统一,即18min=.6018h 【举一反三】妈妈用2万元为小明存了一个6年期的教育储蓄,6年后,共能得23456元,则这种教育储蓄的年利率为?【来源】浙江省嘉兴市秀洲区高照实验学校2017-2018学年七年级12月月考数学试题 解:设这种教育储蓄的年利率为x ,则有: 20000+6×20000x=23456 解得x=0.0288=2.88%,三、 当求得的是负数时,认为是不符合题意,原方程无解.例3 父亲今年38对,女儿今年14岁,哪一年父亲的年龄是女儿年龄的7倍?【解读】其实在类似的题中出现负值并不是无意义,这里的负数其实指的是10年前,也就是说只有在10年前,父亲的年龄才是女儿年龄的7倍.【举一反三】 .幼儿园智慧树班某次能力测验有人参加,这次测验共有五道题,并且每人至少做对了一道题每道题至少有一人做对,只做对一道题的有8人,五道题全做对的有27人,只做对两道题的人数是只做三道题的人数的2倍.(1)答对四道题的有n 人,那么只做对三道题的人数可以用含m 与n 的代数式表示为____________; (2)(1)中的m=42,那么n 可以是多少?请说明理由; (3)统计了每道题做错的人数如下表: 题 号12345做错的人数 5 8 14 23 45若m=73,请根据上表求n.【来源】湖北省襄阳市襄城区2016-2017学年度上学期期末考试七年级数学试卷∴n 只能取1或4. (3)由题意得:()27335733548325814234533n n n ----⨯+⨯+⨯+=++++. 解得23n =.答:当73m =时, 23n =.四、 间接设元时,到了最后不去求所要求的量,只要求出未知数的值,就认为万事大吉了例4 甲、乙两站的路程是708km ,一辆慢车从甲站开往乙站,慢车走了一个半小时之后,另有一辆快车从乙站开往甲站,已知慢车每小时走92 km ,快车每小时走136 km ,问两车各走几小时后相遇? 解: 设两车相遇时快车走了x km.根据题意列方程,得136922392708x x =⎪⎭⎫⎝⎛+⨯- 解这个方程得x=340快车所用时间为212136340=(h). 慢车所用时间为).(4211212h =+答:快车走了4h 后,快车走了h 212,两车相遇.【解读】本题要求计算两车相遇时各走的时间,而在解时却应用了间接设元的方法,所以求得x=340只是快车走过的路程,并不是快车所走的时间,要求时间还必须用路程÷速度.【举一反三】 将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.这个班共有多少名小朋友?这堆糖果有多少颗?【来源】山东省滨州市无棣县2017-2018学年七年级(上)期中数学试卷 解:设共有x 位小朋友, 由题意得: 28312x x +=-, 解得: 20x =.220848⨯+=答:这个班共有20名小朋友,这堆糖果有48颗.学..科0.0网【强化训练】1. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【来源】江苏省丹阳市第三中学2017-2018学年七年级12月月考数学试题 【答案】打开丙管后3013小时可注满水池. 【解析】设打开丙管后x 小时可注满水池.等量关系为:甲注水量+乙注水量-丙排水量=1. 据此列出方程并解答.2. 课外阅读课上.老师将一批书分给各小组.若每小组8本.则还剩余3本:若每小组9本.则还缺2本.问有几个小组.(根据题意设未知数,只列出方程即可)【来源】河北省唐山市路北区2017-2018学年七年级(上)期末复习数学试卷 【答案】8x+3=9x ﹣2.【解析】试题分析:设有x 个小组,则课外书的本数为83x +,或表示为92x -,由此联立得出方程即可. 试题解析:设有x 个小组,根据题意可得:8392x x +=-.3.用白铁皮做罐头盒,每张铁皮可制盒身15个,或盒底40个,一个盒身与两个盒底配成一套罐头盒.现有280张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?(列方程计算) 【来源】山东省莒县第四协作区2017-2018学年度上学期第二次月考七年级数学试题 【答案】用160张制盒身,120张制盒底.试题解析:解:设用x 张制盒身,则用(280﹣x )张制盒底,由题意得: 2×15x=40(280﹣x ), 解得:x=160, 280﹣x=120.答:用160张制盒身,120张制盒底.4. 某班一次数学竞赛共出了20道题,现抽出了4份试卷进行分析如下表: (1)问答对一题得多少分,不答或答错一题扣多少分? (2)一位同学说他得了65分,请问可能吗?请说明理由。

总结初中代数中的易错知识点梳理

总结初中代数中的易错知识点梳理

总结初中代数中的易错知识点梳理初中代数是数学学科的重要组成部分,也是学生们容易犯错的一个领域。

本文将总结初中代数中的易错知识点,希望能够帮助学生们加深对这些知识点的理解和记忆,提高代数学习的效果。

一、一元一次方程与二元一次方程1.1 一元一次方程的解法在解一元一次方程时,学生们经常会忽略其中的细节,导致答案出错。

在进行各种运算的过程中,要特别注意符号的变化和计算的准确性。

此外,学生们还需注意在解方程时的每一步都要写明理由,不能漏掉任何步骤。

1.2 二元一次方程的解法二元一次方程的解法较为复杂,在进行消元、代入等操作时容易出错。

学生们在解题时应该逐步进行,每一步要有逻辑性,并且要充分利用方程之间的关系进行求解。

二、整式的加减乘除2.1 小括号的运算顺序由于乘法比加法优先计算,学生们在运算整式时容易忽略小括号,导致答案错误。

在计算整式时,要牢记小括号内的运算要先进行。

2.2 符号的运算规则学生们在整数的正负号运算、符号的分配律等方面存在较多错误。

要特别注意符号的运算规则,按照规定进行运算,避免因符号错误导致答案出错。

三、函数与方程3.1 函数的概念理解学生们对函数的概念理解不深,容易将函数与方程混淆。

要准确理解函数的定义与性质,并能够正确运用函数进行问题的分析与求解。

3.2 方程的图像与根的关系学生们在绘制方程的图像及求方程的根时容易出错。

要掌握方程与图像、方程与根的对应关系,正确理解方程图像与根的意义,从而准确解决相关问题。

四、四则运算与代数式的化简4.1 运算符的优先级学生们在进行四则运算时,经常会忽视运算符的优先级顺序,导致计算错误。

在进行运算时,要根据运算规则,按照优先级进行计算,保证计算结果的准确性。

4.2 代数式的化简化简代数式是代数学习中的重要环节,学生们在应用运算法则和化简公式时易出现错误。

要善于灵活运用各种法则和公式,合理利用运算律进行代数式的化简,从而减少计算错误的可能性。

五、分式与分式方程5.1 分式的四则运算在分式的加减乘除运算中,学生们往往丢失分数的化简环节,导致答案出错。

中考数学易错题专题复习方程组与不等式组20

中考数学易错题专题复习方程组与不等式组20

方程(组)与不等式(组)易错点1:运用等式性质2时,注意除数不能为零;解方程(组)的基本思想:消元降次.易错题1:已知方程组2326x yx y+=⎧⎨+=⎩①②,则x+y的值为…………………………………()A.-3B.0C.2D.3错解:C正解:D赏析:本题错误的原因是在解方程组的过程中出现了错误,且没有检验就计算x+y.一般做法是:先用代入法或加减法求得方程组的解,如用代入法:由①得,y=3-2x③,把③代入②,得x+2(3-2x)=6,解得x=0,把x=0代入③,得y=3,∴3xy=⎧⎨=⎩,再求x+y的值.若将两个方程相加:①+②,得3x+3y=9,再方程两边同除以3,得x+y=3,这样可直接求得结果,计算简便且不易出错.易错点2:解一元二次方程的有关问题时忽略二次项系数不为零的条件,在用韦达定理时忽略△≥0的条件,从而出错.易错题2:若关于x的一元二次方程ax2+2(a+2)x+a=0有两个实数根,则实数a的取值范围是___________________.错解:a≥﹣1正解:a≥﹣1且a≠0赏析:错误的原因是忽略了二次项系数a≠0的条件.首先计算判别式△=[2(a+2)]2-4a2=8a+8,接下来由方程有两个实数根,得△≥0,∴8a+8≥0,解这个不等式,得a ≥﹣1,又∵二次项系数a≠0,∴实数a的取值范围是a≥﹣1且a≠0.注意,计算判别式△时要仔细,否则也易出错.易错点3:解分式方程时,第一步去分母时易出错;忘记检验.易错题3:解分式方程3422xx x+=--,去分母后,得………………………………()A.3-x=4(x-2)B.3+x=(x-2)C.3(2-x)+x(x-2)=4D.3-x=4错解:D正解:A赏析:错误的原因是去分母时,没有父母的项没有乘以最简公分母x-2.解分式方程的第一步去分母时有两点易出错,一是分数线既有括号又有除号的作用,二是没有分母的项漏乘最简公分母;第二步去括号时,注意括号前面是“﹣”号时,去掉括号和它前面的“﹣”号,括号里的每一项都要改变符号;第三步移项时,不论是从左边移到右边,还是从右边移到左边,移动的项都要改变符号;第四步合并同类项,按合并同类项法则进行;第五步系数化为1时,注意符号的处理,粗心易出错.最后别忘了检验,代入最简公分母检验即可,若是增根,应舍去.易错点4:运用不等式性质3时,容易忘记改变不等号的方向.易错题4:解不等式:2143x x -+≥.错解:去分母,得3(2-x)≥4(1+x), 去括号,得6-3x≥4+4x,移项,得﹣3x-4x≥4-6,合并同类项,得﹣7x≥﹣2,系数化为1,得x≥27.正解:去分母,得3(2-x)≥4(1+x), 去括号,得6-3x≥4+4x,移项,得﹣3x-4x≥4-6,合并同类项,得﹣7x≥﹣2,系数化为1,得x≤27.赏析:造成出错的原因在最后一步系数化为1时,不等号方向没有改变.运用不等式的性质解不等式时,和解一元一次方程的步骤相同,但原理是用不等式的基本性质,在第一步去分母和最后一步系数化为1时会用到不等式性质3,特别是最后一步,一定要改变不等号的方向.易错点5:求不等式(组)有解无解时忽略相等的情况.易错题5:若关于x的一元一次不等式组20xx a-⎧⎨-⎩<①>②无解,则a的取值范围是……()A.a≥2B.a>2C.a≤﹣2D.a<﹣2错解:B正解:A赏析:错误的原因是没有考虑界点值a=1的情况.由给定的解(解集)确定系数的取值范围是解不等式(组)的易错点,一般方法是先解出每个不等式,如本题,解不等式①,得x<2,解不等式②,得x>a,再根据不等式组无解的情况——“大大小小无处找”,结合解集在数轴上的表示确定字母系数的大致范围a>2,然后再验证各界点值是否符合条件,如本题验证a是否可以等于2,经验证a可以等于2,故正确答案是A.易错点6:在数轴上表示不等式(组)的解集时,空心圈与实心点及方向的表示易出错.易错题6:把不等式组2130xx+⎧⎨-⎩>①≥②的解集表示在数轴上,正确的是………………()3 ABCD错解:A正解:D赏析:本题主要出错是解集的表示方法,在数轴上表示不等式(组)的解集要注意两点:一是方向:解集中不等号为大于或大于等于的,其表示方向向右,解集中不等号为小于或小于等于的其方向向左;二是空心圈与实心点:解集中不等号含等于的应用实心点表示,不含等于的应用空心圈表示.本题中,先求得不等式组的解集:解不等式①,得x>﹣1,解不等式②,得x≤3,再根据“大小小大中间找”的方法得出不等式组的解集为﹣1<x≤3,∴把这个解集在数轴上表示正确的是D.易错点7:利用函数图象求不等式(组)和方程(组)的解(解集)时找不准关键点.易错题7:如图,已知一次函数y=2x+b与函数y=kx-3的图象交于点P,则不等式2x+b>kx-3的解集是____________.错解:x<4正解:x>4赏析:出错的原因是不知道怎样在坐标系中由图象的位置关系来确定不等式的解集.通常以交点为界,分左右两侧观察,图象位于上方所对应的函数值较大.本题中,两个图象交于点P(4,﹣6),∴当x=4时,两函数值相等,即2x+b=kx-3,当x>4时,即交点右侧,y=2x+b的图象位于y=kx-3的图象的上方,∴2x+b>kx-3,当x<4时,即交点左侧,y=2x+b的图象位于y=kx-3的图象的下方,∴2x+b<kx-3,故答案为x>4.易错点8:熟练掌握各种方程(组)与不等式(组)的解法及其应用.易错题8:解方程组:2()134123()2(2)3x y x yx y x y -+⎧-=-⎪⎨⎪+--=⎩①②.错解:将原方程组化简整理,得55153x y x y -=-⎧⎨-+=⎩③④,③+④,得4x =2,∴x =12,把x =12代入④,得y =710,∴12710x y ⎧=⎪⎪⎨⎪=⎪⎩. 正解:将原方程组化简整理,得511153x y x y -=-⎧⎨-+=⎩③④,由④,得x =3-5y ⑤,把⑤代入③,得5(3-5y )-11y =﹣1,解得y =1,把y =1代入⑤,得x =2,∴21x y =⎧⎨=⎩.赏析:本题错解的原因是化简方程①时出现了错误,但没有认真检验也是造成错解的原因. 解复杂的方程组第一步是将原方程组化简整理成一般形式111222a xb xc a x b x c +=⎧⎨+=⎩,然后再考虑用代入法或加减法来解,若有未知数的系数为1或﹣1时,可用代入法来解,若有相同未知数的系数相同或互为相反数时,可用加减法来解.易错题9:2014年12月26日,西南真正意义上的第一条高铁——贵阳至广州的高铁将开始试运行.从贵阳到广州,乘特快列车的行程约为1800km ,高铁开通后,高铁列车的行程约为860km ,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.错解:设特快列车的平均速度为x km/h ,由题意,得1800860162.5x x=+, 解得x ≈86.答:特快列车的平均速度约为86km/h. 正解:设特快列车的平均速度为x km/h ,由题意,得, 解得x =91.经检验,x =91是原分式方程的解且符合题意. 答:特快列车的平均速度为91km/h.赏析:本题在解分式方程时出现了错误,且没有检验.列分式方程解应用题时,首先解方程要仔细,在去分母或化简时极易出错,同时既要检验求得的解是否是所列分式方程的解,又要检验是否符合题意.易错练1.三角形的两边长分别为3和7,第三边长是一元二次方程x2-10x+24=0的根,则第三边长为……………………………………………………………………………………………()A.4或6B.4C.6D.无法确定2.若不等式组1360x mx-⎧⎨-⎩>≤有解,则m的取值范围是……………………………………()A.m>1B.m≥1C.m<1D.m≤13.已知12xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=-⎩的解,则2n-m的平方根是______.4.已知关于x的分式方程2111ax x+=--的解是非负数,则a的取值范围是_________.5.小华带10元钱去买中性圆珠笔和橡皮(两种文具都买),中性圆珠笔每支2元,橡皮每块1元,则他最多能买____________支中性圆珠笔.6.解不等式:2171136x x+--≥,并把解集在数轴上表示出来.7.解方程组:231341x yx y+=⎧⎨-=-⎩①②.8.随着市民环保意识的增强,烟花爆竹销量逐年下降.我市2012年销售烟花爆竹10万箱,到2014年烟花爆竹的销量下降为3.6万箱.求我市2012年到2014年烟花爆竹销量的平均下降率.参考答案3.±2 解析:把12xy=⎧⎨=⎩代入方程组,得2821m nn m+=⎧⎨-=-⎩,解得23mn=⎧⎨=⎩±2.4.a≥1且a≠2 解析:解方程,得x=a-1,∵x≥0,∴a-1≥0,∴a≥1,又∵原方程可化为211ax-=-,由a-2≠0,得a≠2,∴a≥1且a≠2.5.4 解析:设中性圆珠笔买x支,∵两种文具都要买,∴2x<10,∴x<5,∵x取最大整数,∴x=4,此时2×4+1×2=10,∴中性圆珠笔最多能买4支.6.解:去分母,得2(2 x+1)-(7x-1)≥6,去括号,得4x+2-7x+1≥6,移项,得4x-7x≥6-1-2,合并同类项,得﹣3x≥3,系数化为1,得x≤﹣1.把这个解集在数轴上表示如图:7.解:①×4+②×3,得17x=1,∴x=117.①×3-②×2,得17y=5,∴y=117.∴117517xy⎧=⎪⎪⎨⎪=⎪⎩.又解:①+②,得5x-y=0,∴y=5x③,把③代入①,得x=117.把x=117代入③,得。

中考数学方程与方程组考点解析

中考数学方程与方程组考点解析

中考数学方程与方程组考点解析2019中考数学方程与方程组考点解析20192019中考与高考不同,20192019中考试题量有一定控制,许多考生特别是优秀考生,在答完全卷后,完全有时间再检查一遍。

什么叫做“检查一遍”?大家知道20192019中考数学方程与方程组考点吗?下面我们就给大家详细介绍一下吧!我们积累了一些经验,在此拿出来与大家分享下,请大家互相指正。

20192019中考数学知识点总结:方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△相信大家已经了解20192019中考数学方程与方程组考点了吧!感谢大家对我们网站的支持!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程组
易错清单
1.解方程组时,一定要先观察方程的特点,再选择适当的方法.
【例1】(2014·宁夏模拟)如果关于x,y的二元一次方程组的解满足x+y>1,那么k的取值范围是.
【解析】本题可以把k当成已知数,解关于x,y的二元一次方程组,再代入x+y>1,求出k 的取值范围.但更简便的方法是直接将两个方程相加,得3x+3y=3k-3,即x+y=k-1.所以k-1>1,解得k>2.
【答案】k>2
【误区纠错】一般地解二元一次方程组时,先观察两个二元一次方程同一未知数的系数,若同一未知数的系数相同或相反时,则用加减消元法解;若同一未知数的系数不同并且有一方程的未知数的系数为1时,则用代入法解.
2.根据条件找不全反应题意的等量关系建立方程(组).
【例2】(2014·内蒙古呼和浩特)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?
【解析】设基本电价为x元/千瓦时,提高电价为y元/千瓦时,根据2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元,列方程组求解.
【答案】设基本电价为x元/千瓦时,提高电价为y元/千瓦时,
由题意,得
解得
则四月份电费为160×0.6=96(元),五月份电费为180×0.6+230×0.7=108+161=269(元).
故这位居民四月份的电费为96元,五月份的电费为269元.
【误区纠错】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,
找出合适的等量关系,列方程组求解.
名师点拨
1.能判断二元一次方程(组).
2.会利用代入法、加减法进行消元.
3.能区分一次函数与二元一次方程组的联系与区别.
4.会根据题中等量关系列二元一次方程组并解决实际问题.
提分策略
用二元一次方程组解决实际问题.
(1)列二元一次方程组解决古代数学问题
列方程组解应用题的关键是找出实际问题中的等量关系,解题时要仔细分析,找出其中蕴含的等量关系,设出未知数,列出方程.
【例1】《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的;若从树上飞下去一只,则树上、树下的鸽子有一样多了.”你知道树上、树下各有多少只鸽子吗?
【答案】设树上有x只鸽子,树下有y只鸽子,
由题意,得
解得
故树上有7只鸽子,树下有5只鸽子.
(2)列二元一次方程组解几何图形的计算问题
对于图形问题的求解,要会通过对图形的观察、比较、分析,发现隐含在图形中的数量关系,这是解决有关图形问题的关键.图形中隐含的数量关系有边长间的关系、面积间的关系等.【例2】小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:
(1)写出用含x,y的代数式表示的地面总面积;
(2)已知客厅面积比卫生间面积多21m2,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?
【答案】(1)地面总面积为(6x+2y+18)m2.
(2)由题意,得
解得
∴地面总面积为6x+2y+18=6×4+2×+18=45(m2).
∵铺1m2地砖的平均费用为80元,
∴铺地砖的总费用为45×80=3600(元).
专项训练
一、选择题
1. (2014·广西百色模拟)已知是二元一次方程组的解,则a-b的值为().
A. 1
B. -1
C. 2
D. 3
2.(2014·北京顺义区模拟)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格(单位:元)为().
(第2题)
A. 19
B. 18
C. 16
D. 15
3. (2013·山东德州特长展示)已知(x+2)2+|3x+y+m|=0中,y为负数,则m的取值范围为().
A. m>6
B. m<6
C. m>-6
D. m<-6
二、填空题
4.(2014·安徽安庆外国语学校模拟)若方程组的解为则被遮盖的两个数分别为.
5. (2013·广东珠海一模)如果实数x,y满足方程组那么x2-y2= .
三、解答题
6.(2014·江苏苏州高新区一模)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂0.2克,B饮料每瓶需加该添加剂0.3克,已知54克该添加剂恰好生产了A,B两种饮料共200瓶,问A,B两种饮料各生产了多少瓶?
7.(2013·江西饶鹰联考)根据国家发改委实施“阶梯电价”的有关文件要求,江西省上饶市决定从2012年7月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:
(1)若上饶市一户居民8月份用电300千瓦时,应缴电费186元,9月份用电400千瓦时,应缴电费263.5元.求a,b的值;
(2)实行“阶梯电价”收费以后,该户居民用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元?
参考答案与解析
1. B[解析]将方程组转化为关于a,b的二元一次方程组,求出a,b即可.
2. C[解析]设笑脸和爱心两种气球的价格分别为x,y元,
由题意,得解得
∴2x+2y=16.
3. A[解析]由题意,得所以y=-m+6.因为y为负数,所以-m+6<0,解得m>6.
4. 7,3[解析]将x=2代入3x-y=3,得y=3,所以2x+y=2×2+3=7.
5. 2[解析]由题意,得x+y=4,x-y=,
∴x2-y2=(x+y)(x-y)=×4=2.
6.设A种饮料生产了x瓶,B种饮料生产了y瓶,
由题意,得解得
故A种饮料生产了60瓶,B种饮料生产了140瓶,
7. (1)根据题意,得
解得
(2)设该户居民用电x千瓦时,月平均电价每千瓦时不超过0.62元.
由题意,得180×0.6+0.65(x-180)≤0.62x,
解得x≤300.
所以该户居民用电量不超过300千瓦时,月平均电价每千瓦时不超过0.62元.。

相关文档
最新文档