一元回归

合集下载

第三章 一元线性回归模型

第三章  一元线性回归模型

第三章 一元线性回归模型一、预备知识(一)相关概念对于一个双变量总体,若由基础理论,变量和变量之间存在因果),(i i x y x y 关系,或的变异可用来解释的变异。

为检验两变量间因果关系是否存在、x y 度量自变量对因变量影响的强弱与显著性以及利用解释变量去预测因变量x y x ,引入一元回归分析这一工具。

y 将给定条件下的均值i x i yi i i x x y E 10)|(ββ+=(3.1)定义为总体回归函数(PopulationRegressionFunction,PRF )。

定义为误差项(errorterm ),记为,即,这样)|(i i i x y E y -i μ)|(i i i i x y E y -=μ,或i i i i x y E y μ+=)|(i i i x y μββ++=10(3.2)(3.2)式称为总体回归模型或者随机总体回归函数。

其中,称为解释变量x (explanatory variable )或自变量(independent variable );称为被解释y 变量(explained variable )或因变量(dependent variable );误差项解释μ了因变量的变动中不能完全被自变量所解释的部分。

误差项的构成包括以下四个部分:(1)未纳入模型变量的影响(2)数据的测量误差(3)基础理论方程具有与回归方程不同的函数形式,比如自变量与因变量之间可能是非线性关系(4)纯随机和不可预料的事件。

在总体回归模型(3.2)中参数是未知的,是不可观察的,统计计10,ββi μ量分析的目标之一就是估计模型的未知参数。

给定一组随机样本,对(3.1)式进行估计,若的估计量分别记n i y x i i ,,2,1),,( =10,),|(ββi i x y E 为,则定义3.3式为样本回归函数^1^0^,,ββi y ()i i x y ^1^0^ββ+=n i ,,2,1 =(3.3)注意,样本回归函数随着样本的不同而不同,也就是说是随机变量,^1^0,ββ它们的随机性是由于的随机性(同一个可能对应不同的)与的变异共i y i x i y x 同引起的。

一元回归系数的意义

一元回归系数的意义

一元回归系数表示自变量x每增加一个单位,因变量y会变化β个单位。

如果回归系数越大,那么y受到x的影响就越大。

例如,如果回归系数为0.5,那么当x增加1个单位时,y就会增加0.5个单位。

反之,如果回归系数为-0.2,那么当x增加1个单位时,y就会减少0.2个单位。

一元回归系数的意义在于它能够帮助我们了解自变量和因变量之间的关系强度和方向。

通过计算回归系数,我们可以确定哪些因素对因变量有显著影响,以及这些因素的影响程度如何。

此外,一元回归系数还可以用于预测未来的结果。

如果我们知道了自变量的值,并且已经计算出了回归系数,那么我们可以使用这个系数来预测因变量的值。

这种方法被称为“回归分析”。

一元线性回归模型(计量经济学)

一元线性回归模型(计量经济学)

总体回归函数说明被解释变量Y的平均状 态(总体条件期望)随解释变量X变化的 规律。至于具体的函数形式,则由所考 察的总体的特征和经济理论来决定。
在例2.1中,将居民消费支出看成是其可 支配收入的线性函数时,该总体回归函
数为: E (Y |X i)01 X i
它是一个线性函数。其中,0,1是未知
第二章 经典单方程计量经济学模型: 一元线性回归模型
§2.1 回归分析概述 §2.2 一元线性回归模型的基本假设 §2.3 一元线性回归模型的参数估计 §2.4 一元线性回归模型的统计检验 §2.5 一元线性回归模型的预测 §2.6 一元线性回归建模实例
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数 三、随机扰动项 四、样本回归函数
1430 1650 1870 2112
1485 1716 1947 2200
2002
2420 4950 11495 16445 19305 23870 25025 21450 21285 15510
一个抽样
由于调查的完备性,给定收入水平X的消费 支出Y的分布是确定的。即以X的给定值为条 件的Y的分布是已知的,如 P(Y=561 | X = 800) =1/4。 进而,给定某收入Xi,可得消费支出Y的条 件均值,如 E(Y | X = 800) =605。 这样,可依次求出所有不同可支配收入水平 下相应家庭消费支出的条件概率和条件均值 ,见表2.1.2.
相关分析主要研究随机变量间的相关形式 及相关程度。变量间的相关程度可通过计 算相关系数来考察。
具有相关关系的变量有时存在因果关系,
这时,我们可以通过回归分析来研究它们
之间的具体依存关系。
课堂思考题

第二章 一元线性回归

第二章 一元线性回归

n ei 0 i 1 n xe 0 i i i 1
经整理后,得正规方程组
n n ˆ ˆ n ( x ) 0 i 1 yi i 1 i 1 n n n ( x ) ˆ ( x 2 ) ˆ xy i 0 i 1 i i i 1 i 1 i 1
y ˆ i 0 1xi ˆi 之间残差的平方和最小。 使观测值 y i 和拟合值 y
ei y i y ˆi
n
称为yi的残差
ˆ , ˆ ) ˆ ˆ x )2 Q( ( y i 0 1i 0 1
i 1
min ( yi 0 1 xi ) 2
i
xi x
2 ( x x ) i i 1 n
yi
2 .3 最小二乘估计的性质
二、无偏性
ˆ ) E ( 1
i 1 n
n
xi x
2 ( x x ) j j 1 n
其中用到
E ( yi )
( x x) 0 (xi x) xi (xi x)2
二、用统计软件计算
1.例2.1 用Excel软件计算
什么是P 值?(P-value)
• P 值即显著性概率值 ,Significence Probability Value

是当原假设为真时所得到的样本观察结果或更极端情况 出现的概率。
P值与t值: P t t值 P值



它是用此样本拒绝原假设所犯弃真错误的真实概率,被 称为观察到的(或实测的)显著性水平。P值也可以理解为 在零假设正确的情况下,利用观测数据得到与零假设相 一致的结果的概率。
2 .1 一元线性回归模型

第15讲 一元线性回归分析

第15讲 一元线性回归分析

n
i 1
2
2 2 ˆ ˆ 2b yi y xi x b xi x i 1 i 1
i 1
n
i 1
n
ˆS /S ˆ b ˆ2 S S bS ˆ . b S yy 2bS xy xx xy xx yy xy
例2 求例1中误差方差的无偏估计。
采用最小二乘法估计参数a和b,并不需要事先知道Y与x之间 一定具有相关关系,即使是平面图上一堆完全杂乱无章的散 点,也可以用公式求出回归方程。因此μ(x)是否为x的线性函 数,一要根据专业知识和实践来判断,二要根据实际观察得 到的数据用假设检验方法来判断。
即要检验假设 H0 : b 0, H1 : b 0, 若原假设被拒绝,说明回归效果是显著的,否则, 若接受原假设,说明Y与x不是线性关系,回归方程 无意义。回归效果不显著的原因可能有以下几种:
将每对观察值( xi , yi )在直角坐标系中描出它相应的点 (称为散点图),可以粗略看出 ( x)的形式。
基本思想
(x, Y)
回归分析 回归方程
采集样本信息 ( xi, yi )
散点图
回归方程参数估计、显著性检验
对现实进行预测与控制
一元回归分析:只有一个自变量的回归分析 多元回归分析:多于一个自变量的回归分析

x1 x2 x3
xi
xn
整理得 na ( xi )b yi ,
( xi )a ( xi )b xi yi .——正规方程组
2 i 1 i 1 i 1
n
i 1
n
i 1
n
na ( xi )b yi ,
i 1 i 1
n
n

第三节 一元线性回

第三节 一元线性回
• (1)提出假设: H 0 : β1 = 0; H1 : β1 ≠ 0 • (2)确定显著性水平 α 。 • 根据自由度和给定的显著性水平,查t分布表的理 论临界值 tα / 2 (n − 2) 。 • (3)计算回归系数的t值。 • (4)决策。 • t ˆ > tα / 2 (n − 2) 则拒绝 H 0 ,接受 H1,
1
1、回归系数的显著性检验
• 估计量 S 2 来代替。 ˆ • 但样本为小样本时,回归系数估计量 β1 的标准 化变换值服从t分布,即:
σ 2 是未知的,要用其无偏 一般来说,总体方差
tβˆ =
1
ˆ β1 − β1 Sβˆ
1
~ t (n − 2)
• 式中n为样本容量,n-2为自由度。 •
回归系数显著性检验步骤:
(二)一元线性回归分析的特点 二 一元线性回归分析的特点
• 1、在两个变量之间,必须根据研究目的具体确定哪个 是自变量,哪个是因变量。相关分析不必确定两个变量中 哪个是自变量,哪个是因变量。 2、计算相关系数时,要求相关的两个变量都是随机的; 但是,在回归分析中因变量是随机的,而自变量不是随机 的变量。 3、在没有明显的因果关系的两个变量与y之间,可以 3 y 求得两个回归方程。 4、回归方程的主要作用在于:给出自变量的数值来估 计因变量的可能值。一个回归方程只能做出一种推算,推 算的结果表明变量之间的具体的变动关系。 5、直线回归方程中,自变量的系数称回归系数。回归 系数的符号为正,表示正相关;为负则表示负相关。
ˆ β1 =
n∑ xi yi − ∑ xi ∑ yi n∑ x − (∑ xi )
2 i 2
ˆ ˆ β 0 = yi − β1 xi
(一)参数 β 0 , β 1 的最小二乘估计

计量经济学第二篇一元线性回归模型

计量经济学第二篇一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。

其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。

所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

“线性”一词在这里有两重含义。

它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。

1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。

回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。

2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。

第四章 一元线性回归

第四章  一元线性回归
i 1
n
xi x
2 ( x x ) i i 1
n
( 0 1 xi ) 1
(4.28)
2 ˆ ( x x ) 0, ( x x ) x ( x x ) i i i 证得 1是 1 的无偏估计,其中用到 i ˆ 同理可证 是 0 的无偏估计。
2 (4.9) ˆ ˆ min ( y x ) ( y x ) ˆ ˆ i 0 1 i i 0 1 i Q( 0 , 1 ) ,
n
2
n
ˆ0 , ˆ1 就成为回归参数 0 , 1 的 • 依照(4.9)式求出的 最小二乘估计。称
xi x
i 1 i 1
其中 ( x
i 1
是 yi 的常数,所以 1 是 yi 的线性组合。同理可 以证明 0是 yi 的线性组合。 ˆ , ˆ 亦为 因为 y i 为随机变量,所以作为 yi 的线性组合, 0 1 随机变量,因此各自有其概率分布、均值、方差、标准差及两 者的协方差。
0
无偏估计的意义是。如果屡次变更数据,反复求 0 , 1 的 估计值,这两个估计值没有高估或低估的系统趋势,他们的 平均值将趋于 0 , 1 。 ˆ ˆ x ) x E y ˆi ) E ( E( y 0 1 i 0 1 i 进一步有, ,表明回归值 是 的无偏估计,也说明 与真实值 的平均值是相同的。
(4.2)
• 这里 E ( )表示 差。
的数学期望,var( )表示
的方
• 对(4.1)式两端求期望,得 E( y) 0 1 x (4.3) 称(4.3)式为回归方程。 • 一般情况下,我们所研究的某个实际 问题,获得的n组样本观测值

第三章 一元线性回归

第三章  一元线性回归

LOGO
三、一元线性回归模型中随机项的假定
( xi , yi ),i,j=1,2,3,…,n后,为了估计(3.1.5) 在给定样本观测值(样本值) 式的参数 0和 1 ,必须对随机项做出某些合理的假定。这些假定通常称 为古典假设。
假设1、解释变量X是确定性变量,不是随机变量; 假设2、随机误差项具有零均值、同方差和不序列相关性: E(i)=0 Var (i)=2 i=1,2, …,n i=1,2, …,n
ˆ i ) ( y i 0 1 xi ) 2 Q( 0,1) ( yi y
2 i 1 i 1 n n
(3.2.3)
ˆ , ˆ ,使式 所谓最小二乘法,就是寻找参数 0,,1 的估计值 0 1 ˆ , ˆ 满足: (3.2.3)定义的离差平方和最小,即寻找 0 1
y 1 x
2 y 0 2 x
LOGO
二是被解释变量x与参数 之间为线性关系,即参数 仅以一次方的 形式出现在模型之中。用数学语言表示为:
y 1 0
y 0 2 0
2
y x 1
2 y 0 2 1
在经济计量学中,我们更关心被解释变量y与参数
之间的线性关系。因
第三章 一元线性回归
3.1 一元线性回归模型 3.2 回归参数 0,1 的估计 3.3 最小二乘估计的性质 3.4 回归方程的显著性检验
3.5 预测和控制
LOGO
3.1 一元线性回归模型
一、回归模型的一般形式
1、变量间的关系 经济变量之间的关系,大体可分为两类:
(1)确定性关系或函数关系:变量之间有唯一确定性的函数关 系。其一般表现形式为:
对于总体回归模型,
y f ( x1, x2 ,, xk ) u

从统计学看线性回归(1)——一元线性回归

从统计学看线性回归(1)——一元线性回归

从统计学看线性回归(1)——⼀元线性回归⽬录1. ⼀元线性回归模型的数学形式2. 回归参数β0 , β1的估计3. 最⼩⼆乘估计的性质 线性性 ⽆偏性 最⼩⽅差性⼀、⼀元线性回归模型的数学形式 ⼀元线性回归是描述两个变量之间相关关系的最简单的回归模型。

⾃变量与因变量间的线性关系的数学结构通常⽤式(1)的形式:y = β0 + β1x + ε (1)其中两个变量y与x之间的关系⽤两部分描述。

⼀部分是由于x的变化引起y线性变化的部分,即β0+ β1x,另⼀部分是由其他⼀切随机因素引起的,记为ε。

该式确切的表达了变量x与y之间密切关系,但密切的程度⼜没有到x唯⼀确定y的这种特殊关系。

式(1)称为变量y对x的⼀元线性回归理论模型。

⼀般称y为被解释变量(因变量),x为解释变量(⾃变量),β0和β1是未知参数,成β0为回归常数,β1为回归系数。

ε表⽰其他随机因素的影响。

⼀般假定ε是不可观测的随机误差,它是⼀个随机变量,通常假定ε满⾜:(2)对式(1)两边求期望,得E(y) = β0 + β1x, (3)称式(3)为回归⽅程。

E(ε) = 0 可以理解为ε对 y 的总体影响期望为 0,也就是说在给定 x 下,由x确定的线性部分β0 + β1x 已经确定,现在只有ε对 y 产⽣影响,在 x = x0,ε = 0即除x以外其他⼀切因素对 y 的影响为0时,设 y = y0,经过多次采样,y 的值在 y0 上下波动(因为采样中ε不恒等于0),若 E(ε) = 0 则说明综合多次采样的结果,ε对 y 的综合影响为0,则可以很好的分析 x 对 y 的影响(因为其他⼀切因素的综合影响为0,但要保证样本量不能太少);若 E(ε) = c ≠ 0,即ε对 y 的综合影响是⼀个不为0的常数,则E(y) = β0 + β1x + E(ε),那么 E(ε) 这个常数可以直接被β0 捕获,从⽽变为公式(3);若 E(ε) = 变量,则说明ε在不同的 x 下对 y 的影响不同,那么说明存在其他变量也对 y 有显著作⽤。

一元线性回归

一元线性回归

⼀元线性回归1、概念⼀元线性回归是最简单的⼀种模型,但应⽤⼴泛,⽐如简单地预测商品价格、成本评估等,都可以⽤⼀元线性模型,本节主要讲解scikit-learn⼀元线性回归的使⽤以及作图说明。

y=f(x)叫做⼀元函数,回归的意思就是根据已知数据复原某些值,线性回归(regression)就是⽤线性的模型做回归复原。

那么⼀元线性回归就是:已知⼀批(x,y)值来复原另外未知的值。

⽐如:告诉你(1,1),(2,2),(3,3),那么问你(4,?)是多少,很容易复原出来(4,4),这就是⼀元线性回归问题的求解。

当然实际给你的数据可能不是严格线性,但依然让我们⽤⼀元线性回归来计算,那么就是找到⼀个最能代表已知数据的⼀元线性函数来做复原和求解。

2、scikit-learn的⼀元线性回归1import numpy as np2from sklearn.linear_model import LinearRegression3 x = [[1],[2],[3],[4],[5],[6]]4 y = [[1],[2.1],[2.9],[4.2],[5.1],[5.8]]5print x6print(y)7 model = LinearRegression()8 model.fit(x, y) #训练模型9 predicted = model.predict([13])[0]#预测输出10print predictedView Code结果:1 [[1], [2], [3], [4], [5], [6]]2 [[1], [2.1], [2.9], [4.2], [5.1], [5.8]]3 [ 12.82666667]这⾥⾯的model是⼀个estimator,它通过fit()⽅法来算出模型参数,并通过predict()⽅法来预测,LinearRegression的fit()⽅法就是学习这个⼀元线性回归模型:y = a + bx原数据的图像:1import matplotlib.pyplot as plt2from matplotlib.font_manager import FontProperties3 font = FontProperties()4 plt.figure()5 plt.title('this is title')6 plt.xlabel('x label')7 plt.ylabel('y label')8 plt.axis([0, 25, 0, 25])9 plt.grid(True)10 x = [[1],[2],[3],[4],[5],[6]]11 y = [[1],[2.1],[2.9],[4.2],[5.1],[5.8]]12 plt.plot(x, y, 'k.')13 plt.show()View Code结果:合在⼀起:1import numpy as np2from sklearn.linear_model import LinearRegression3import matplotlib.pyplot as plt4from matplotlib.font_manager import FontProperties56 x = [[1],[2],[3],[4],[5],[6]]7 y = [[1],[2.1],[2.9],[4.2],[5.1],[5.8]]8 model = LinearRegression()9 model.fit(x, y)10 x2 = [[0], [2.5], [5.3], [9.1]]11 y2 = model.predict(x2)1213 plt.figure()14 plt.title('linear sample')15 plt.xlabel('x')16 plt.ylabel('y')17 plt.axis([0, 10, 0, 10])18 plt.grid(True)19 plt.plot(x, y, 'k.')20 plt.plot(x2, y2, 'g-')21 plt.show()View Code其他相关⽤法⽅差计算:⽅差⽤来衡量样本的分散程度,⽅差公式是⽤numpy库已有的⽅法:1 np.var([1, 2, 3, 4, 5, 6], ddof=1)1 3.5得出⽅差是3.5。

第2章一元线性回归模型

第2章一元线性回归模型

布图上的点接近于一条曲线时,称为非线性相关。简单相关按
符号又可分为 正相关 (见图2.3.4 )、负相关 (见图2.3.8 )和零 相关 (见图2.3.6 )。两个变量趋于在同一个方向变化时,即同
增或同减,称为变量之间存在正相关;当两个变量趋于在相反
方向变化时,即当一个变量增加,另一个变量减少时,称为变 量之间存在负相关;当两个变量的变化相互没有关系时,称为
4、普通最小二乘法
为什么要使用OLS? (1)OLS的应用相对简便; (2)以最小化残差平方和为目标在理论很合理; (3)OLS估计量有很多有用的性质。 1)估计的回归线通过Y和X的均值。下列等式总是
ˆ ˆX 严格成立的:设下,可以证明,OLS是 “最优”的估计方法。
2.2.2 最小二乘估计量的性质
一个用于考察总体的估计量,可从如下几个方面考察其
优劣性: (1)线性。即它是否是另一个随机变量的线性函数;
(2)无偏性。即它的均值或期望是否等于总体的真实值;
(3)有效性。即它是否在所有的线性无偏估计量中具有 最小方差; (4)渐近无偏性。 即样本容量趋于无穷大时,它的均值 序列趋于总体的真值; (5)一致性。即样本容量趋于无穷大时,它是否依概率 收敛于总体的真值;
1.总变差的分解
ˆ b ˆX ˆ b Yt的估计值位于估计的回归线 Y t 0 1 t 上,Y围绕其均值的变异 (Y Y )可被分解为两部分:
ˆ Y ) (1) (Y t
ˆ) (2) (Yt Y t
样本回归函数:
3.相关系数检验
(1)变量相关的定义和分类
相关:指两个或两个以上变量间相互关系的程度或强度。
2 2 ˆ e ( Y Y ) i i OLS 最小化 i i 1 i 1

一元线性回归模型及其假设条件

一元线性回归模型及其假设条件

§4.2 一元线性回归模型及其假设条件1.理论模型y=a+bx+εX 是解释变量,又称为自变量,它是确定性变量,是可以控制的。

是已知的。

Y 是被解释变量,又称因变量,它是一个随机性变量。

是已知的。

A,b 是待定的参数。

是未知的。

2.实际中应用的模型x b a yˆˆˆ+= ,bˆ,x 是已知的,y ˆ是未知的。

回归预测方程:x b a y += a ,b 称为回归系数。

若已知自变量x 的值,则通过预测方程可以预测出因变量y 的值,并给出预测值的置信区间。

3.假设条件满足条件:(1)E (ε)=0;(2)D (εi )=σ2;(3)Cov (εi ,εj )=0,i ≠j ; (4) Cov (εi ,εj )=0 。

条件(1)表示平均干扰为0;条件(2)表示随机干扰项等方差;条件(3)表示随机干扰项不存在序列相关;条件(4)表示干扰项与解释变量无关。

在假定条件(4)成立的情况下,随机变量y ~N (a+bx ,σ2)。

一般情况下,ε~N (0,σ2)。

4.需要得到的结果a ˆ,b ˆ,σ2§4.3 模型参数的估计1.估计原理回归系数的精确求估方法有最小二乘法、最大似然法等多种,我们这里介绍最小二乘法。

估计误差或残差:y y e i i i -=,x b a y i +=,e e y y ii i i x b a ++=+= (5.3—1)误差e i 的大小,是衡量a 、b 好坏的重要标志,换句话讲,模型拟合是否成功,就看残差是否达到要求。

可以看出,同一组数据,对于不同的a 、b 有不同的e i ,所以,我们的问题是如何选取a 、b 使所有的e i 都尽可能地小,通常用总误差来衡量。

衡量总误差的准则有:最大绝对误差最小、绝对误差的总和最小、误差的平方和最小等。

我们的准则取:误差的平方和最小。

最小二乘法:令 ()()∑∑---∑======n i ni n i i x b a y y y e i i i i Q 112212 (5.3—2)使Q 达到最小以估计出a 、b的方法称为最小二乘法。

第二节一元线性回归分析

第二节一元线性回归分析

第二节一元线性回归分析本节主要内容:回归是分析变量之间关系类型的方法,按照变量之间的关系,回归分析分为:线性回归分析和非线性回归分析。

本节研究的是线性回归,即如何通过统计模型反映两个变量之间的线性依存关系.回归分析的主要内容:1.从样本数据出发,确定变量之间的数学关系式;2.估计回归模型参数;3.对确定的关系式进行各种统计检验,并从影响某一特定变量的诸多变量中找出影响显著的变量。

一、一元线性回归模型:一元线性模型是指两个变量x、y之间的直线因果关系。

理论回归模型:理论回归模型中的参数是未知的,但是在观察中我们通常用样本观察值估计参数值,通常用分别表示的估计值,即称回归估计模型:回归估计模型:二、模型参数估计:用最小二乘法估计:【例3】实测某地四周岁至十一岁女孩的七个年龄组的平均身高(单位:厘米)如下表所示某地女孩身高的实测数据建立身高与年龄的线性回归方程。

根据上面公式求出b0=80。

84,b1=4。

68。

三.回归系数的含义(2)回归方程中的两个回归系数,其中b0为回归直线的启动值,在相关图上变现为x=0时,纵轴上的一个点,称为y截距;b1是回归直线的斜率,它是自变量(x)每变动一个单位量时,因变量(y)的平均变化量。

(3)回归系数b1的取值有正负号。

如果b1为正值,则表示两个变量为正相关关系,如果b1为负值,则表示两个变量为负相关关系。

[例题·判断题]回归系数b的符号与相关系数r的符号,可以相同也可以不同.( )答案:错误解析:回归系数b的符号与相关系数r的符号是相同的=a+bx,b<0,则x与y之间的相关系数( )[例题·判断题]在回归直线yca。

r=0 b.r=1 c。

0<r〈1 d.—1<r〈0答案:d解析:b〈0,则x与y之间的相关系数为负即—1〈r〈0[例题·单选题]回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )a。

线性相关还是非线性相关 b.正相关还是负相关c。

8.2.1一元线性回归模型(共13张PPT)

8.2.1一元线性回归模型(共13张PPT)

2. 在一元线性回归模型(1)中,参数b的含义是什么?
Y = bx + a + e ,
(1)
E(e) = 0, D(e) = σ2.
解:在一元线性回归模型(1)中,参数b为斜率参 数,参数b的含义是父亲的身高每增加1cm,儿子的身高 平均增加bcm.
3. 将图中的点按父亲身 高的大小次序用折线连 起来,所得到的图像是 一个折线图,可以用这 条折线图表示儿子身高 和父亲身高之间的关系 吗?
(1)
E(e) = 0, D(e) = σ2.
我们称(1)式为Y关于x的一元线性回归模型.
其中,Y称为因变量或响应变量,x称为自变量或解释
变量;a和b为模型的未知参数,a称为截距参数,b称为斜
率参数;e是Y与bx+a之间的随机误差.
模型中的Y也是随机变量,其值虽然不能由变量x的值
确定,但是却能表示为bx+a与e的和(叠加),前一部分由 x
而对于父亲身高为 xi 的某一名男大学生,他的身高yi 并不一定为b xi +a,它仅是该子总体的一个观测值,这个 观测值与均值有一个误差项ei=yi -(bxi +a).
思考? 你能结合具体实例解释产生模型(1)中随机误 差项的原因吗?
在研究儿子身高与父亲身高的关系时,产生随机误差 e的原因有:
8.2一元线性回归模型及其应用
通过前面的学习我们已经了解到,根据成对样本数据 的散点图和样本相关系数,可以推断两个变量是否存在相 关关系、是正相关还是负相关,以及线性相关程度的强弱 等.
进一步地,如果能像建立函数模型刻画两个变量之间 的确定性关系那样,通过建立适当的统计模型刻画两个随 机变量的相关关系,那么我们就可以利用这个模型研究两 个变量之间的随机关系,并通过模型进行预测.

一元线性回归分析

一元线性回归分析

• 因此,给定收入X的值Xi,可得消费支出Y的条件 均值(conditional mean)或条件期望(conditional expectation):
E(Y | X X i )
该例中:E(Y | X=800)=650
2020/4/28
朱晋
13
• 从散点图发现:随着收入的增加,消费“平均
地说”也在增加,且Y的条件均值均落在一根正 斜率的直线上。这条直线称为总体回归线。
均值,即当解释变量取某个确定值时,与之统计相 关的被解释变量所有可能出现的对应值的平均值。
2020/4/28
朱晋
9
回归分析构成计量经济学的方法论基 础,其主要内容包括:
(1)根据样本观察值对计量经济模型参数进行 估计,求得回归方程;
(2)对回归方程、参数估计值进行检验; (3)利用回归方程进行分析、评价及预测。
随机变量间的关系。 • 统计依赖或相关关系:研究的是非确定现象随 机变量间的关系。
2020/4/28
朱晋
4
△对变量间统计依赖关系的考察主要是通过相关分析 (correlation analysis)或回归分析(regression analysis) 来完成的:
统计依赖关系
正相关 线性相关 不相关 相关系数:
yi 0 1xi ui
• 利用样本观察值找出参数0和 1的估计值,
得到样本回归模型:
yˆi ˆ0 ˆ1xi
• 检验估计值的性质,并利用样本回归模
型分析被解释变量的总体平均规律。
2020/4/28
朱晋
8
• 由于变量间关系的随机性,回归分析关心的是根据 解释变量的已知或给定值,考察被解释变量的总体
负相关 1 XY 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档