线性代数PPT 南财
合集下载
线性代数课件PPT
线性代数课件
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
《线性代数讲义》课件
在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。
线性代数7PPT课件
向量空间的性质
零向量和负向量的存在
在向量空间中,存在一个特殊的向量,称为零向量,它与任何向量进行加法运算结果仍为 该向量本身。同时,对于每个非零向量,都存在一个与其相反的向量,称为该向量的负向 量。
向量的线性组合
对于任意标量和向量,以及任意数量的标量,都可以进行线性组合,得到一个新的向量。
向量的线性无关
二次型的性质
01
实定性
如果一个二次型在某个基下的矩 阵是对称的,那么这个二次型是 实定的。
正定性
02
03
半正定性
如果一个实定的二次型在某个基 下的矩阵是正定的,那么这个二 次型是正定的。
如果一个实定的二次型在某个基 下的矩阵是半正定的,那么这个 二次型是半正定的。
二次型与矩阵的相似性的关系
二次型与矩阵的相似性
07
二次型与矩阵的相似性
二次型的定义
二次型
一个n元二次型是一个n维向量空间上的多 线性函数,其一般形式为$f(x) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中$a_{ij}$是常数。
二次型的矩阵表示
对于一个二次型$f(x) = x^T A x$,其中 $A$是一个对称矩阵。
特征值和特征向量的性质还包括:如 果λ是A的特征值,那么kλ(k≠0)也 是A的特征值;如果x是A的对应于λ的 特征向量,那么kx也是A的对应于λ的 特征向量。
特征值与特征向量的应用
在物理和工程领域中,特征值和特征向量的应用非常广泛。例如,在振动分析中,系统的固有频率和 振型可以通过求解系统的质量矩阵和刚度矩阵的特征值和特征向量得到。
02
19世纪中叶,德国数学家克罗内克等人开始系统地 研究线性代数,并为其建立了基础。
线性代数 幻灯片PPT
• 定义8 设有两个n
• 如果向量组A中每一个向量都能由向量组B 线性表示,那么称向量组A能由向量组B线 性表示.
53
线性代数
• 定理6 设有两个n维向量组
•证
出版社 科技分社
54
线性代数
出版社 科技分社
• 因为A组可由B组线性表示,所以存在矩阵
• 使 A=KB.
• 推论 等价的线性无关向量组所含向量个数 相等.
• 2.7 方 阵 的 • 定义12 对n阶方阵A,如果存在一个n阶方
阵B,使AB=BA=E,那么称A是可逆阵,称B 为A的逆阵,记为B=A-1. • 性质1 如果A可逆,那么逆阵惟一. • 证明 设A有两个逆阵B,C
43
线性代数
出版社 科技分社
44
线性代数
出版社 科技分社
45
线性代数
出版社 科技分社
• 定义11 由单位阵经过一次初等变换得到的 方阵称为初等方阵.
• 3种初等变换对应了3类初等方阵.
• 第1类初等方阵:对调E
39
线性代数
出版社 科技分社
40
线性代数
出版社 科技分社
41
线性代数
出版社 科技分社
42
线性代数
出版社 科技分社
• 定理3 设A=(aij)m×n,对A施行初等行变换, 相当于对A左乘相应的m阶初等方阵,对A施 行初等列变换,相当于对A右乘相应的n阶 初等方阵.
出版社 科技分社
线性代数 课件
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
1
线性代数
出版社 科技分社
第1章 行列式
• 1.1 预 备 知 • 设有二元一次方程组
出版社 科技分社
• 如果向量组A中每一个向量都能由向量组B 线性表示,那么称向量组A能由向量组B线 性表示.
53
线性代数
• 定理6 设有两个n维向量组
•证
出版社 科技分社
54
线性代数
出版社 科技分社
• 因为A组可由B组线性表示,所以存在矩阵
• 使 A=KB.
• 推论 等价的线性无关向量组所含向量个数 相等.
• 2.7 方 阵 的 • 定义12 对n阶方阵A,如果存在一个n阶方
阵B,使AB=BA=E,那么称A是可逆阵,称B 为A的逆阵,记为B=A-1. • 性质1 如果A可逆,那么逆阵惟一. • 证明 设A有两个逆阵B,C
43
线性代数
出版社 科技分社
44
线性代数
出版社 科技分社
45
线性代数
出版社 科技分社
• 定义11 由单位阵经过一次初等变换得到的 方阵称为初等方阵.
• 3种初等变换对应了3类初等方阵.
• 第1类初等方阵:对调E
39
线性代数
出版社 科技分社
40
线性代数
出版社 科技分社
41
线性代数
出版社 科技分社
42
线性代数
出版社 科技分社
• 定理3 设A=(aij)m×n,对A施行初等行变换, 相当于对A左乘相应的m阶初等方阵,对A施 行初等列变换,相当于对A右乘相应的n阶 初等方阵.
出版社 科技分社
线性代数 课件
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
1
线性代数
出版社 科技分社
第1章 行列式
• 1.1 预 备 知 • 设有二元一次方程组
出版社 科技分社
线性代数第一章ppt
线性代数第一章
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。
西南财经大学高等代数(线性代数)PPT系列之三1.3
5
1
1
23
练习题 用降阶法计算行列式的值。(按行按列展开)
1 1 1 1 1 4 D 2 4 6 1 2 4
2 1 =57 1 2
24
例2
1 4 1 2 1 4 2 3 0
4
4 3 3 11 9 2
2 2
r1 4r2
7 0 17 8 2 1 0 0 3 0
c2 c3
问题:
一个n 阶行列式是否可以转化为若干个 n -1 阶行列式来计算?(降阶的思想)
a11 a21 a31
a12 a22 a32
a13 a23 a33
a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31,
8
a11 a22a33 a23a32 a12 a23a31 a21a33 a13 a21a32 a22a31
(1)i j aij Mij aij Aij
15
(3)
一般情形
a11 a12 a1n D ai 1 a1n ai 2 ain
a11
an1 an 2 ann a12
ai 1 0 0 0 ai 2 0 0 0 ain an1 an 2 ann
0 2 , 0 2
26
求第四行元素代数余子式之和
解:将行列式按第四行展开:
D4 a41 A41 a42 A42 a43 A43 a44 A44 a41 (1) M 41 a42 (1) M 42 a43 (1) M 43 a44 (1) M 44 a41 (M 41 ) a42 M 42 a43 (M 43 ) a44 M 44
《线性代数》说课ppt课件
1.教学内容 2.教学重、难 点 3.教学设计 4.学法设计
22
说课结束,欢迎大家批评指正,谢谢!
2011年5月
23
6
1.3课程目标
本着“基础理论以应用为目的,以必需够用
为度”的指导思想,一方面通过线性代数的教学,不
仅使学生掌握线性代数的相关的基础知识、基本理
课 论,有较熟练的运算技能一方面使学生获得该课程的
程
基本概念、基本理论和基本运算技能,为学习有关 专业课程和扩大数学知识面提供必要的数学基础,
目 另一方面通过各个教学环节,逐步培养学生的抽象
段学习成绩差,学习态度学不端法
正,有的甚至自暴自弃。
学习态度不端正 水平参差不齐
符合学生实际情况
教学方法
16
3.2制订大纲
学情分析
学法
必须
够用
实用
教学大纲
17
3.3教学手段
目前来说,线性代 数的教学方式还是以黑 板加粉笔为主,在今后 的教学中要逐步加入多 媒体教学、网上共享教 学资源或线上教学,这 是教学发展的一个趋势, 但是也要注意网络化教 学手段与传统教学的衔 接过度,以达到最佳教 学效果为依据进行改革 创新。
线上教学
教学资源上网
多媒体教学 黑板加粉笔
18
3.4教学过程实施
12
3
4
5
6
问
历
概例
课
归
布
题
史
念题
堂
纳
置
提
介
介讲
练
总
作
出
绍
绍解
习
结
业
19
3.4.6布置作业
作业是课堂教学中不可缺少的环节
线性代数总复习讲义PPT课件
在金融学中,线性代数用于描述资产价格和风险等经济量,以及计算收益 率和波动率等金融指标。
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。
线性代数ppt课件
VS
线性代数的特点
线性代数具有抽象性、实用性、广泛性等 特点,是数学中重要的分支之一。
线性代数的历史背景
线性代数的起源
线性代数起源于17世纪,主要目的 是为了解决线性方程组的问题。
线性代数的发展
随着数学的发展,线性代数逐渐成为 一门独立的数学分支,并在20世纪得 到了广泛的应用和发展。
线性代数的应用领域
转置矩阵
一个矩阵A的转置矩阵是满足$A^T_{ij}=A_{ ji}$的矩阵
行列式与高斯消元
03
法
行列式的定义及性质
总结词
行列式是线性代数中重要的工具之一,它具有特殊的性质和计算规则。
详细描述
行列式是由一组方阵中的元素按照一定规则组成的,它是一个方阵是否可逆的判断标准,同时也有一 些重要的性质和计算规则,如交换两行或两列、对角线上的元素相乘等。了解行列式的定义和性质是 学习线性代数的基础。
矩阵的运算规则
加法
两个相同大小的矩阵,对应位置的元素相加
数乘
用一个数乘以矩阵的每一个元素
减法
两个相同大小的矩阵,对应位置的元素相减
乘法
要求两个矩阵满足乘法运算的规则,即第一 个矩阵的列数等于第二个矩阵的行数
矩阵的逆与转置
逆矩阵
一个矩阵A的逆矩阵是满足$AA^{-1}=I$的矩阵,其中$I$是单位矩阵
高斯消元法的原理
总结词
高斯消元法是一种解线性方程组的直接方法 ,其原理是将方程组转化为阶梯形矩阵。
详细描述
高斯消元法的基本思想是通过一系列的行变 换将线性方程组转化为阶梯形矩阵,这样就 可以直接求解方程组。高斯消元法包括三种 基本的行变换:将两行互换、将一行乘以非 零常数、将一行加上另一行的若干倍。通过 这些行变换,我们可以将矩阵转化为阶梯形 矩阵,从而求解方程组。
院校资料线性代数.pptx
0 0 143 0
1 0 59 5 0 1 14 3 0 0 1 0
1 0 0 5
rr125194rr33 0
1
0
3
0 0 1 0
1 0 0 5 D 0 1 0 3
0 0 1 0
第16页/共102页
除仍具有行阶梯形矩阵的特点外,它比矩阵
C
更简单,我们称非零行的非零首元是1,并且它所在的列的其它元素都是零的行 阶梯形矩阵为行最简形矩阵。
第2页/共102页
x1 2x2 3x3 7
5x2 4x3 6
x2 3x3 14
1 2 3 7 0 5 4 6 0 1 3 14
(2)交换上面方程组中第二与第三个方程的位置,得
x1 2x2 3x3 7
x2 3x3 14
5x2 4x3 6
1 2 3 7 0 1 3 14 0 5 4 6
A (1,1)位置为非零元,然后利用矩阵的
初等行变换将它下方元素变成零,即
0 3 6 1
1 9 12 1
A 1 7
8
1
r1r3 1
7
8
1
1 9 12 1
0 3 6 1
第20页/共102页
1 9 12 1
r3r1 0
2
4 2 B
0
3
6
2
(2)以上述矩阵
B 的(2,2)位置为准利用矩阵的初等行
0 0 0
第25页/共102页
1
B
1
0
2 3 1
1 0 1
0
1
2
r2 r1
0
2
0
2 1 1
1 1 1
0
《线性代数》PPT课件幻灯片PPT
特别当矩阵A与对角阵=diag(1, 2,···, n )相似时,
那么
Am = PmP-1; (A)= P()P-1.
而对于对角阵, 有
1k
k =
k2
;
kn
()=
(1)
(2)
(n).
利用上述结论可以很方便地计算矩阵A的多项式
(A). 结论: 假设f( )为矩阵A的特征多项式, 那么矩阵
A的多项式 f(A)=O. 此结论的一般性证明较困难, 但当矩阵A与对角
因此, 当a = –1时矩阵A能对角化.
三、小 结
1. 相似矩阵 相似是矩阵之间的一种关系, 它具有很多良好的 性质, 除了课堂内介绍的以外, 还有: (1) 假设A与B相似, 那么det(A)=det(B); (2) 假设A与B相似, f(x)为多项式, 那么f(A)与f(B) 相似; (3) 假设A与B相似, 且A可逆, 那么B也可逆, 且A1与B2-1. 相相似似.变换与相似变换矩阵 相似变换是对方阵进展的一种运算, 它把A变成 P-1AP, 可逆矩阵P称为进展这一变换的相似变换矩阵.
-2
P1AP
1 1.
矩阵P的列向量和对角矩阵中特征值的位置要相
互对应.
例3:设A= 110
0 1 0
a10,当a为何值时, 矩阵A能对角化?
0 1 解: | A –E | = 1 1 a = –(–1)2(+1).
1 0
得矩阵A的特征值 1 = –1, 2 = 3 = 1. 对应单根1 = –1, 恰好可求得一个线性无关的特
阵 相似时很容易证明即.
f(A)=Pf()P=POP-1=O.
二、利用相似变换将方阵对角化
n阶方阵A是否与对角阵 =diag( 1, 2,···, n ) 相似, 那么我们需要解决如下两个问题:
线性代数及其应用PPT课件
金融数据的线性模型分析
线性回归模型
利用线性代数中的矩阵运算和线性方 程组求解方法,对金融数据进行回归 分析,预测未来趋势。
主成分分析
通过线性代数中的特征值和特征向量 计算,将金融数据降维,提取主要影 响因素,便于分析和决策。
图像处理中的矩阵运算
图像变换
利用矩阵运算对图像进行缩放、旋转 、平移等几何变换,实现图像的精确 控制。
征值和Байду номын сангаас征向量。
特征值计算 的算法
特征值计算是矩阵分析中的重要内容,可以用于解决 许多实际问题,如振动分析、控制论、经济学等。
数据降维与可视化
数据降维的必要性
数据降维的方法
可视化的意义
可视化的工具和技术
在处理高维数据时,数据的维 度可能非常高,导致数据难以 分析和处理。数据降维可以将 高维数据降为低维数据,便于 分析和可视化。
矩阵分解与特征值计算
矩阵分解是将一个复杂的矩阵分解为几个简单的、易 于处理的矩阵,以便进行计算和分析。
输入 矩阵标分题解的
方法
常见的矩阵分解方法包括LU分解、QR分解、SVD分 解等。这些方法可以将一个矩阵分解为一个下三角矩 阵、一个上三角矩阵和一个正交矩阵等。
矩阵分解的 定义
特征值计算 的应用
特征值计算的常用算法有QR算法、Jacobi方法、 Power方法等。这些算法可以用于计算给定矩阵的特
数值计算稳定性
数值计算稳定性
在进行数值计算时,由于计算机的舍入误差,可能会导致 计算结果的误差。线性代数中的一些算法和技巧可以帮助 提高数值计算的稳定性,减少误差。
数值稳定性的评估
评估数值稳定性的方法包括观察计算结果的收敛性和稳定 性,以及比较不同算法的误差和稳定性。
线性代数相关知识培训教程PPT课件( 93页)
那末 A称为对称阵.
例如A162
6 8
1 0
为对称. 阵
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相
等.
同型矩阵与矩阵相等
1)两个矩阵的行数相等,列数相等时,称为同型矩阵.
例如
1 5
2 6
与
14 8
3 4
为同型矩阵.
3 7 3 9
Aij (1)i j Mij, Aij叫做元素 aij的代数余子.式
A a i1 A i1 a i2 A i2 a iA n in ( i 1 ,2 , ,n ) A a i1 A j1 a i2 A j2 a iA n jn ( i j)
例1 3 1 1 2 5 1 3 4
p1p2pn
列取 . 和
N阶行列式是一个数,该数是n!项的代数和, 每项为取自表中不同行不同列n个元素的乘 积,符号由这n个元素列标排列的逆序数决定 (行标按自然顺序排列),奇排列带负号,偶排 列带正号.
2. 行列式的性质
1)行列式与它的转置行式列相等,即D DT. 2)互换行列式的两行 (列),行列式变号. 3)如果行列式有两行 (列)完全相同,则此行列式 等于零. 4)行列式的某一行(列)中所有的元素都乘以同 一数k,等于用数k 乘此行列式.
6)逆矩阵
伴随矩阵定义
行列式 A 的各个元素的代数余子式A ij 所
构成的如下矩阵
A11
A
A12
A1n
A21 An1 A22 An2 A2n Ann
称为矩阵 A 的伴随矩阵.
伴随矩阵性质
AA A AA E .
逆矩阵定义
例如A162
6 8
1 0
为对称. 阵
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相
等.
同型矩阵与矩阵相等
1)两个矩阵的行数相等,列数相等时,称为同型矩阵.
例如
1 5
2 6
与
14 8
3 4
为同型矩阵.
3 7 3 9
Aij (1)i j Mij, Aij叫做元素 aij的代数余子.式
A a i1 A i1 a i2 A i2 a iA n in ( i 1 ,2 , ,n ) A a i1 A j1 a i2 A j2 a iA n jn ( i j)
例1 3 1 1 2 5 1 3 4
p1p2pn
列取 . 和
N阶行列式是一个数,该数是n!项的代数和, 每项为取自表中不同行不同列n个元素的乘 积,符号由这n个元素列标排列的逆序数决定 (行标按自然顺序排列),奇排列带负号,偶排 列带正号.
2. 行列式的性质
1)行列式与它的转置行式列相等,即D DT. 2)互换行列式的两行 (列),行列式变号. 3)如果行列式有两行 (列)完全相同,则此行列式 等于零. 4)行列式的某一行(列)中所有的元素都乘以同 一数k,等于用数k 乘此行列式.
6)逆矩阵
伴随矩阵定义
行列式 A 的各个元素的代数余子式A ij 所
构成的如下矩阵
A11
A
A12
A1n
A21 An1 A22 An2 A2n Ann
称为矩阵 A 的伴随矩阵.
伴随矩阵性质
AA A AA E .
逆矩阵定义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数
第二章 §2.1 §2.2
16 16
1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
12 12
线性代数
10、标准形 称满足下列两个条件的矩阵为标准形: 1)左上角为单位阵; 2)其它元素均为0.
1 0 0 0 0 1 0 0 如 0 0 0 0
1 2 1 1 1 1 0 1 2 0 0 5
1 0 0 0
2 3 1 0 1 4 0 0 2 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0
1 0 0 1 0 2 3 2 0 0 1 3 0 0 0 4
8、行阶梯形矩阵
记作 A.
称满足下列两个条件的矩阵为行阶梯形矩阵: 1)若有零行(元素全为零的行),位于底部; 2)各非零行的首非零元位于前一行首非零元之右.
第二章 §2.1 §2.2
10 10
线性代数
如
0 1 2 1 0 0 0 5 0 0 0 0
2 0 0 0
线性代数
记作 E .
第二章 §2.1 §2.2
O 0 0
全为
8
6、三角矩阵 a11 a12 a22 形如 a11 a a22 21 形如 a n1 a n 2 记作 tria A .
a1n a2 n 的矩阵称为 上三角矩阵. ann 的矩阵称为 下三角矩阵. ann
第二章 §2.1 §2.2
3
§2.2
矩阵的概念
一.定义: 由数域 F 中的 m n 个数 a ij ( i 1,2,, m;
j 1,2, , n)排成的 m 行 n 列的矩形数表,称为数域
F 中的一个 m n 矩阵.
A 记作: ( aij )mn
Amn
(aij )
元素 行标 列标
13 13
1 0 0 0 0 0 0 0 0 0 0 0
线性代数
第二章 §2.1 §2.2
11、对称矩阵
定义 设 A 为 n 阶方阵,若 AT A,即 aij a ji ,
那么 A 称为对称矩阵. 如
1 0 1 1 0 1 3 1 1 3 2 2 1 1 2 0
新街口
马群
泰山新村
为了方便,常用下面的数表表示
发站
线性代数
其中√ 表示有航班. 为了便于计算,把表中 到站 仙林新街口马群泰山新村的√ 改成1,空白地方 0 1 0 0 11 0 填上0,就得到一个数表: 1 仙林 1 0 1 0 这个数表反映 0 0 1 新街口 1 了四城市间交 1 0 0 00 11 马群 1 通联接情况. 泰山新村 0 1 0 0 0 0 2 0
反对称矩阵的主要特点是: 主对角线上的元素为0,其余 的元素关于主对角线互为相 反数.
线性代数
第二章 §2.1 §2.2
15 15
思考题 矩阵与行列式的有何区别? 解答
矩阵与行列式有本质的区别,行列式是一个 算式,一个数字行列式经过计算可求得其值, 而矩阵仅仅是一个数表,它的行数和列数可以 不同.
a
线性代数
第二章 §2.1 §2.2
11 11
9、行最简形矩阵 称满足下列三个条件的矩阵为行最简形矩阵: 1)行阶梯形矩阵 2)各非零行的首非零元均为1. 3)首非零元所在列其它元素均为0. 如
0 1 2 0 0 0 0 1 0 0 0 0
第二章 §2.1 §2.2
第二章 §2.1 §2.2
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 3、线性方程组 am 1 x1 am 2 x2 amn xn bm
第二章 §2.1 §2.2
线性代数
4、单位矩阵 主对角线上的所有元素全为1的对角阵称为单位阵.
1 0 0 0 0 1 O 0 O 0 1
全为1
记作 E .
5、数量矩阵 主对角线上的所有元素全为 的对角阵称为数量阵. 0 0 0 O0
上三角矩阵与下三角矩阵统称为三角阵.
第二章 §2.1 §2.2
9
线性代数
7、负矩阵
a11 a1n a11 a1n ,则称 若 A a a amn m1 m 1 amn 为 A 的负矩阵.1.行矩阵列矩阵
线性代数
第二章 §2.1 §2.2
A1n [a1 , a2 ,, an ] b1 b 2 Bm1 b m
6
2、零矩阵 m n 个元素全为零的矩阵称为零矩阵. 记作 Omn 或 O .
注意:不同型的零矩阵是不相等的.
3、对角矩阵 主对角线以外的所有元素全为零的方阵称为对角阵. 1 0 0 O0 0 2 O 不全为0 0 0 n 记作 diag 1 , 2 , , n . 7
§2.1 、矩阵的引入 1、某班级同学早餐情况
姓名 馒头 包子 鸡蛋 稀饭
甲
乙 丙
4
0 4
2
0 9
2
0 8
1
0 6
为了方便,常用下面的数表表示
4 2 2 1 0 0 0 0 4 9 8 6
这个数表反映 了学生的早餐 情况.
1
线性代数
第二章 §2.1 §2.2
2、某航空公司在A,B,C, D四城市之间的航线图 仙林
第二章 §2.1 §2.2
线性代数
称两矩阵相等.
5
矩阵用A、B、C表示。
同型矩阵:行列数都相等.
矩阵相等 : 设A (aij )mn, B (b ij )mn, 若aij bij ,
i 1,, m, j 1,, n. 则称A与B相等, 记作A B.
二、几种特殊的矩阵
1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
E O O O
a11 a 21 A am 1
a12 a22 am 1
a1n a2 n amn
a ij 称为矩阵 A 的 ( i , j ) 元.
第二章 §2.1 §2.2
4
线性代数
注: 1、 元素是实数的矩阵称为实矩阵, 元素是复数的矩阵称为复矩阵.
系数 aij i , j 1,2,, n(m ) , 的解取决于 常数项 bi i 1,2, , m
线性代数
线性方程组的系数与常数项按原位置可排为 a11 a12 a1n b1 a 对线性方程组的 a22 a2 n b2 21 研究可转化为对 这张表的研究. am 1 am 2 amn bm
2、 只有一行的矩阵称为行矩阵,
只有一列的矩阵称为列矩阵. 3、 行数与列数相等的矩阵称为n阶方阵, 4、 A 称为方阵的行列式. 5、 若 A (aij )mn , B (bij ) st ,且 m s, n t , 称两矩阵同型. 6、 若 A (aij )mn , B (bij )mn ,且 aij bij ,
对称矩阵的特点是: 它的元素以主对角线 为对称轴对应相等.
线性代数
第二章 §2.1 §2.2
14 14
反对称矩阵 定义 设 A 为 n 阶方阵,若 AT A ,即 aij a ji ,
那么 A 称为反对称矩阵. 0 1 2 1 1 0 5 2 如 2 5 0 1 1 2 1 0