数学史之微积分的发展1
微积分的创立、发展及意义【最新】
微积分的创立、发展及意义摘要该文主要论述了微积分的创立过程、微积分的发展历程,以及微积分的重要意义。
在微积分的创立过程中,主要说明了创立背景、微积分的两位创始人独立创立微积分的过程以及微积分的基本内容及基本方法;其次,以欧拉为主要代表介绍了微积分的发展历程;最后论述了微积分对科学、社会、工业、航空等方面的影响及其深远意义。
关键词:微积分数学史创立发展意义论文1、微积分的创立1.1 微积分的创立背景[1]克莱因(M.Klein)认为:微积分的创立,首先是处于17世纪主要两科学问题,即有四种主要类型的问题有待用微积分去解决。
第一类:已知物体移动的距离表示为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表示为时间的函数的公式,求速度和距离。
第二类:问题是求曲线的切线,这是一个几何问题,但对科学的应用有巨大的影响。
第三类:问题是求函数的极大极小值。
第四类:问题包括求曲线的长度,曲线围成的面积等等。
首先对微积分的创造作出贡献的是开普勒和伽利略。
用无数个无穷小之和计算面积和体积是开普勒的基本思想,而这一思想的精华是从阿基米德的著作中吸收的,伽利略则奠定了实验和理论协调的近代科学精神,这对于微积分的形成是至关重要的。
对于微积分的孕育有重要影响的是1635 年卡瓦列利(B.Cavalieri意大利)的《不可分连续量的几何学》的发表,他对前人的微积分结果作了初步系统的综合,并创立了一种简易形式的积分法——不可分量法,使卡瓦列利的不可分量更接近于定积分计算的,是法国的帕斯卡(B.Pascal)和英国的瓦里士(J.Wallis)。
瓦里士是牛顿、莱布尼茨之前把分析方法引入微积分的工作做得最多的人。
对微积分的孕育具有重要影响的人物是法国的费马(Fermat),最迟在1636年他已达到求积分方法上的算术化程度,微积分的另一个重要课题——求极值的方法也是费马创造的。
在17世纪,至少有10多位大数学家探索过微积分,而牛顿(Newton)、莱布尼茨(Laeibniz),则处于当时的顶峰。
微积分发展简介
微积分发展简介文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-对微积分理论的简要品论通常所说的微积分实际上包含了微分和积分两方面的内容。
微积分理论是建立在实数、函数、极限的基础上的,是由牛顿和莱布尼茨从不同的研究领域出发独立创立的。
经过后来众多的数学家加以完善和补充,成为了数学史上具有划时代意义的理论之一。
下面就为积分的理论发展史及其意义加以简要的品论。
早在牛顿和莱布尼茨创立微积分前,极限思想萌芽就已经诞生,如魏晋时期数学家刘徽创立的“割圆术”以及南北朝时期祖冲之祖恒父子继承刘徽思想估算圆周率;古希腊时期也有极限思想,如安提芬的“穷竭法”和阿基米德的“平衡法”。
这些都体现了近代积分法的基本思想,是定积分概念的雏形。
先前微分学研究的相对少一些,在此不予列举。
微积分的思想真正的迅速发展是在16世纪以后,在这一时期,以常量为研究对象的古典数学已经不能满足对运动与变化的研究需求,为了处理17世纪所面临的主要问题;由位移公式求速度和加速度,求曲线的切线,函数的极值,天文学问题;牛顿在接受前人的成果基础上,从研究实际物体的运动出发,创立了微积分理论;莱布尼茨通过对前人科学成的研究,从求曲线的切线问题出发,创立了微积分理论。
他们两人虽然独立创造了微积分理论,但都有其各自的不足,对微积分学的基础的解释都含混不清。
牛顿和莱布尼茨对创立微积分理论的贡献都是相当的,然而,局外人的争议却带来了严重的后果,造成了支持莱布尼茨的欧陆数学家和支持牛顿的英国数学家的两派的不和,两派的数学家在数学的发展道路上分道扬镳,停止了思想的交换,最终导致英国数学家的落后。
为了寻求牛顿和莱布尼茨提出的微积分理论不足之处的解决方案,后续数学家们又作出了大量的努力。
其中有罗尔提出的罗尔定理,罗比达法则的提出,泰勒定理的提出,以及麦克劳级数理论和微积分的另两位重要奠基人伯努利兄弟雅各布和约翰完善了微积分的部分内容。
微积分的发展
微积分的发展微积分的产生是数学上的伟大创造。
它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。
如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。
从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。
比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。
”这些都是朴素的、也是很典型的极限概念。
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。
归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。
第三类问题是求函数的最大值和最小值问题。
第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。
为微积分的创立做出了贡献。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
1605 年 5 月20 日,在牛顿手写的一面文件中开始有“流数术”的记载,微积分的诞生不妨以这一天为标志。
微积分的起源与发展
微积分的起源与发展主要内容:一、微积分为什么会产生二、中国古代数学对微积分创立的贡献三、对微积分理论有重要影响的重要科学家四、微积分的现代发展一、微积分为什么会产生微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。
比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。
”这些都是朴素的、也是很典型的极限概念。
到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。
归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。
困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化。
例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0,而0 / 0 是无意义的。
但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的。
第二类问题是求曲线的切线的问题。
这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。
困难在于:曲线的“切线”的定义本身就是一个没有解决的问题。
古希腊人把圆锥曲线的切线定义为“与曲线只接触于一点而且位于曲线的一边的直线”。
微积分的发展史
聊城大学本科生毕业论文题目:微积分的发展史专业代码: 070101作者姓名:学号:单位:指导教师:年月日目录前言 01.古代东西方微积分思想的萌芽 02.微积分的产生 (1)2.1微积分的诞生 (1)2.2柯西与魏尔斯特拉斯的贡献 (2)3.微积分的意义 (4)4.东西方微积分发展差异分析 (4)结论 (5)参考文献 (7)致谢 (8)摘要微积分作为数学的一个重要分支,是许多学科的重要工具.那么它是如何产生的,对于微积分的发展史我们从中能发现什么规律和启示呢?通过研究微积分的历史可以有助于我们的科研与生产,对于理解微积分也有很大的帮助.关键词:微积分;发展史;启示;意义AbstractCalculus as an important branch of mathematics, is an important tool in manydisciplines. So how it is produced, the development history of calculus from which we can find out what rules and Enlightenment Through the study of calculus of history can contribute to the scientific research and production of our calculus, for the understanding is also a great help.Key words:Calculus; development history; inspiration; law微积分的发展史前言微积分学是微分学与积分学的总称,微积分作为现代数学的一个分支,它的触角几乎遍布当今科学的各个角落,更是当今科学的重要基石.微积分堪称是人类智慧最伟大的成就之一.微积分的发展同时推动了天文学和物理学前进的步伐,摧毁了笼罩在天体上的神秘主义、迷信和神学.不仅如此,微积分在数学这一学科中同时又贯穿了多个分支体系,如极限、微分学、积分学、以及导数等.1.古代东西方微积分思想的萌芽微积分作为一门学科是在十七世纪产生的,标志是牛顿——莱布尼兹公式.然而正如牛顿所说:“如果说我比别人看的更远些,那是因为我站在了巨人的肩上”.作为一门学科,它的产生绝不是偶然,那是无数先人的努力与支持.公元前三世纪,古希腊的阿基米德在研究解决“抛物弓形的面积,球和球冠面积,螺旋下面积和旋转双曲体的体积”的问题中,就隐含着近代积分学的思想.再比如古希腊数学家安提丰的“穷竭法”,前四世纪由欧多克斯作了补充和完善,它们用来求平面的面积和立体的体积.而在东方,在中国,前四世纪的春秋战国时代者惠施称:“一尺之棰,日取其半,万世不竭”,引出收敛的数列2111,......222n⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭在这里安提丰的“穷竭法”和惠施的“一尺之棰”都是极限思想的滥觞.至公元三世纪,三国魏人刘徽作《九章算术》注,提出“割圆术”——割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣.他的数学表述是以圆的内接正()()6211,2...n n ⨯-=边形的面积n A 近似单位圆的面积()n A ππ≈,算的629174⨯=边形,得 3.14π≈,又进一步通过6×29=174边形,得到一个相当于3.14159的分数,即n 愈大,n A π-愈小;,0n n A π→∞-→.剩余面积可以被竭尽.在中国古代此方法用来求圆周率,在刘徽极限思想的影响下,后来者祖冲之进一步求得更精确的圆周率.南宋大数学家秦九韶于1274年撰写了划时代巨著《数书九章》十八卷,创举世闻名的“大衍求一术”——增乘开方法解任意次数字(高次)方程近似解,比西方早500多年.北宋大科学家沈括的《梦溪笔谈》独创了“隙积术”、“会圆术”和“棋局都数术”开创了对高阶等差级数求和的研究.在此可见在古代的东西方微积分的极限思想已普遍产生,并已经能够解决实际问题,并且在我国的一些文学或哲学文献中也有极限的思想.思想家荀子“尽小者大,积微者著”,“不积跬步,无以至千里;不积小流,无以成江海”.沈括在《梦溪笔谈》中也提到了“造微之术”当时沈括已经知道分割的单元愈小,所求得的体积,面积俞精确.尽管中国在古代已有微积分思想的萌芽,但微积分最终还是诞生在了西方.2.微积分的产生在十七世纪,随着人们思想的不断解放,科学研究的不断深入,不少科学问题都以解决,但同样还有新的问题出现,这些问题主要涉及物理学、天文学、军事等,总结起来就是求曲线围成的面积、体积.以及曲线上任意一点的斜率.解决这些迫切需要解决的问题,需要经过长时间的研究、讨论、酝酿,有关知识渐渐积累起来,一些最活跃的人理应称为微积分的先驱.2.1微积分的诞生在微积分被发现之前,求面积只能求规则图形的面积,一些在解析几何中出现的不规则的图形的面积,由于没有公式而无从下手.在十七世纪求不规则面积、体积、曲线长,始于开普勒.他怀疑酒商的酒桶体积,认为旋转体的体积是非常薄的圆盘体积之和,卡瓦列里求积提出不可分量法,认为面积是无数个等距平行线段构成的.线是由点构成的,就像链由珠子穿成一样;面是由直线构成,就像布是由线织成一样;立体是由平面构成,就像书是由页组成一样.卡瓦列里的理论来自“穷竭法”,而费马的方法更接近现代的积分,他用小矩形面积近似小曲边形的面积,最后用相当于和式极限的方法,得到正确的结果,求得一个幂函数曲线下的曲变形的面积.此后还有华里斯、罗贝瓦儿、这些人都已来到微积分的大门口.微积分的研究源于运动学,即对切线极值、运动速度的研究.对于切线,有笛卡尔的早期研究,开普勒用列表法确定了最大体积,他注意到体积接近最大值时,由尺寸的变化引起体积的变化越来越小,这正是()'0f x =的原始形式,当时人们已认识到y x∆∆的重要性. 最后的冲刺来自牛顿与莱布尼兹.牛顿总结了先辈思想和方法,1664-1666年提出流数理论,建立了一套导数方法,他称之为“流数术”,牛顿称连续变化的量为流动的量或流量(fluent ),用英文字母,,,v x y z 等表示,x 的无限小的增量x ∆为x 的瞬,即无限小时间间隔为瞬,用小写字母o 表示.流量的速度,即流量在无限小的时间间隔内的变化率,称为流数(fluxion of flutnt),用带点的字母表示.牛顿的“流数术”就是以流量和瞬为基本概念的微积分,牛顿用有限差分的最初比和最终比来描述“流数术”,如函数()n y x n =为正整数,流量x 从x 流到x o +,函数值的增量()n n x o x +-,瞬o 与增量之比(最初比),当o 消失时,最后比即1:(1)n nx -,相当于1n y nx x∆=-∆.牛顿不仅仅引入导数,还明确了导数是增量比极限的思想,在1669年写的《运用无限多项方程的分析学》不仅给出求一个变量对另一个变量的瞬时变化率的普遍方法,还证明了“面积可以由变化率的逆过程得到”即“如果[],o x 区间上曲线是1y ma xm =⨯-则它下面的曲边形面积为Z a xm =⨯或dy y dx=,这一结论称为牛顿-莱布尼兹定理,此外牛顿还引入分部积分法、变量代换法、方程求根切线法,曲线弧长计算方法.牛顿足迹几乎遍布每一个数学分支.莱布尼兹在同期也做出同样的贡献,因此微积分的根本定理是由牛顿与莱布尼兹共同命名.他们的贡献在于将微分、积分的知识联系起来,发现了更具有本质、更有普遍意义的内涵,给出了纯洁的概念,特别是建立了变化的概念,创立了有普遍意义的微积分方法等.初创的微积分尚有不少问题,其数学基础的建立有待后世数学家给其注入严密性.2.2柯西与魏尔斯特拉斯的贡献 微积分学创立以后,由于运算的完整性和应用的广泛性,使微积分学成为了研究自然科学的有力工具.但微积分学中的许多概念都没有精确严密的定义,特别是对微积分的基础—无穷小概念的解释不明确,在运算中时而为零,时而非零,出现了逻辑上的困境.多方面的批评和攻击没有使数学家们放弃微积分,相反却激起了数学家们为建立微积分的严格而努力.从而也掀起了微积分乃至整个分析的严格化运动.微积分的严格化工作经过近一个世纪的尝试,到19世纪初已开始显现成效.对分析的严密性真正有影响的先驱则是伟大的法国数学家柯西.柯西在数学上的最大贡献是在微积分中引进了极限概念,并以极限为基础建立了逻辑清晰的分析体系.这是微积分发展史上的精华,也是柯西对人类科学发展所做的巨大贡献.与此同时,柯西还在此基础上创建了复变函数的微积分理论.柯西对定积分作了最系统的开创性工作,他把定积分定义为和的“极限”.在定积分运算之前,强调必须确立积分的存在性.他利用中值定理首先严格证明了微积分基本定理.柯西关于分析基础的最具代表性的著作是他的《分析教程》(1821)、《无穷小计算教程》(1823)以及《微分计算教程》(1829),它们以分析的严格化为目标,对微积分的一系列基本概念给出了明确的定义,在此基础上,柯西严格地表述并证明了微积分基本定理、中值定理等一系列重要定理,定义了级数的收敛性,研究了级数收敛的条件等,他的许多定义和论述已经非常接近于微积分的现代形式.柯西的工作在一定程度上澄清了在微积分基础问题上长期存在的混乱,向分析的全面严格化迈出了关键的一步.另一位为微积分的严密性做出卓越贡献的是德国数学家魏尔斯特拉斯.魏尔斯特拉斯是一个有条理而又苦干的人,在中学教书的同时,他以惊人的毅力进行数学研究.魏尔斯特拉斯定量地给出了极限概念的定义,这就是今天极限论中的“ε-δ”方法.魏尔斯特拉斯用他创造的这一套语言重新定义了微积分中的一系列重要概念,特别地,他引进的一致收敛性概念消除了以往微积分中不断出现的各种异议和混乱.另外,魏尔斯特拉斯认为实数是全部分析的本源,要使分析严格化,就首先要使实数系本身严格化.而实数又可按照严密的推理归结为整数(有理数).因此,分析的所有概念便可由整数导出.这就是魏尔斯特拉斯所倡导的“分析算术化”纲领.基于魏尔斯特拉斯在分析严格化方面的贡献,在数学史上,他获得了“现代分析之父”的称号.通过柯西以及后来魏尔斯特拉斯的艰苦工作,数学分析的基本概念得到严格的论述.从而结束微积分二百年来思想上的混乱局面,把微积分及其推广从对几何概念,运动和直观了解的完全依赖中解放出来,并使微积分发展成为现代数学最基础最庞大的数学学科.3.微积分的意义众所周知,由古希腊继承下来的数学是常量的数学,是静态的数学.自从有了解析几何和微积分,就开辟了变量数学的时代,是动态的数学.数学开始描述变化、描述运动,改变了整个数学世界的面貌.数学也由几何的时代而进人分析的时代.微积分给数学注入了旺盛的生命力,使数学获得了极大的发展,取得了空前的繁荣.如微分方程、无穷级数、变分法等数学分支的建立,以及复变函数,微分几何的产生.严密的微积分的逻辑基础理论进一步显示了它在数学领域的普遍意义.微积分的建立是人类理性思维的结晶.他给出一整套科学的方法,开创了科学的新纪元,并因此加强了数学与其他学科的联系,加深了数学的应用.它极大的推动力天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展,并在这些学科中有越来越广泛的应用.特别是在物理学方面,有了微积分人们才能把握运动过程,万有引力被发现并导出了开普勒行星运动三定律,卫星、宇宙飞船、航天飞机不在是梦.与我们联系密切的现代工程技术,直接影响到人们的物质生产,而工程技术的基础是数学,都离不开微积分.如今微积分不但成了自然科学和工程技术的基础,而且还渗透到人们广泛的经济、金融活动中,也就是说微积分在人文社会科学领域中也有着其广泛的应用.一场空前巨大的,席卷近代世界的科学运动开始了,毫无疑问,微积分的发展是世界近代科学的开端.4.东西方微积分发展差异分析在13世纪40年代到14世纪初,各主要(数学)领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有着微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键.中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门.可惜中国元朝以后,八股取士制度造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学水平日渐衰落,在微积分创立的最关键一步落伍了.为什么微积分会产生在西方,而不是中国.东西方(东方特指中国)微积分的思想几乎同时产生,并且中国古代的数学成就也是相当辉煌.在东西方极限思想一般是用来计算平面面积和立体的体积,如上文中刘徽求圆的面积,欧多克斯用“穷竭法”求面积与体积等,这与古代的分田,交税等活动是分不开的,而在近代的西方,文艺复兴、启蒙运动极大地解放了人们的思想,随之而来的资产阶级革命更使西方在底层发生了改变,生产力大发展,人们对知识的渴望从未如此强烈,一批批各领域的大师纷纷登上历史的舞台,推动者科学的发展,当时间来到牛顿等人之时,微积分的大门被打开了.反观中国,小农经济,所谓男耕女织,一直都是不变的信条,国内没有发展自然科学的土壤,明朝更是大兴文字狱,人们的思想进一步被禁锢.在这里说明一下,中国的科技,大多是技术,比如:医学、农学、水利工程等.这与近代西方的科学有着本质的不同,近代西方科学是建立在近代科学方法论的基础之上,是通过实验、数学模型和数学推导演绎来研究的,是科学的,严谨的,中国则更像是经验的积累,这也是微积分没有产生在中国的原因.当然中国古代由几何问题引起极限,微积分等观念思想萌芽的出现,所用方法本质上是静态的,只有牛顿、莱布尼兹在他们先驱者所做工作的基础上才发展成动态分析的方法.结论微积分的发明不是一蹴而就的,而是人类集体智慧的结晶,是无数科学家长期奋斗的结果.数学来源于实践,没有当时大量实际问题的涌现,没有科学家深入实际,将大量实际问题转化为数学问题的研究,是不可能产生微积分理论的.东西方微积分发展差异在于:早期东西方都产生了微积分的极限思想,他们都用来解决一些实际问题,比如:求圆的面积、分田等,不同的是西方在后来有了更科学的研究体系,现有的数学知识不能解决当时的问题,如:牛顿求物体的位移。
微积分发展历程
微积分发展历程微积分的发展历程是数学史上一个充满辉煌成就的章节。
微积分为我们提供了一种强大的工具,用于理解和描述自然界的各种现象,从运动的轨迹到电磁场的行为,从物质的变化到概率的推断,微积分无处不在。
在下面的文章中,我们将探讨微积分的发展历程,包括其起源、关键人物和里程碑事件。
1. 古希腊时期:微积分的历史可以追溯到古希腊时期。
古希腊数学家阿基米德(Archimedes)被认为是微积分的奠基人之一。
他在计算曲线下的面积和体积时使用了无限小的方法,这可以看作微积分的初步尝试。
2. 牛顿和莱布尼兹:微积分的真正发展始于17世纪末。
英国科学家艾萨克·牛顿和德国数学家戈特弗里德·莱布尼兹独立地开发了微积分的基本原理。
牛顿的工作集中在运动和力学方面,而莱布尼兹则更侧重于符号表示法。
他们的成就为微积分的未来发展奠定了坚实的基础。
3. 分析学的建立:18世纪,微积分逐渐成为一门独立的学科,被称为"分析学"。
法国数学家奥古斯丁·路易·柯西(Augustin-Louis Cauchy)和卡尔·威尔斯特拉斯(Karl Weierstrass)等人在微积分中引入了极限概念,从而解决了一些问题的严格性。
4. 黎曼几何和复分析:19世纪中期,德国数学家伯纳尔·黎曼的工作将微积分与几何学相结合,创立了黎曼几何,为曲线和曲面的研究提供了新的工具。
复分析的发展也为微积分的应用领域提供了更多可能性。
5. 泛函分析和分布理论:20世纪,微积分领域进一步扩展,引入了泛函分析和分布理论等新的数学工具,用于研究函数空间和广义函数。
这些理论在数学、物理学、工程学和经济学等领域的应用中发挥了重要作用。
6. 现代微积分的应用:现代微积分广泛应用于科学、工程、计算机科学、经济学和社会科学等各个领域。
它不仅有助于解决实际问题,还推动了数学自身的发展。
微积分的方法和概念也在其他数学分支中找到了应用,如微分方程、积分方程和泛函分析。
《微积分的发展简史综述6300字》
微积分的发展简史综述目录1 引言 (1)2 微积分简介 (1)3 微积分产生背景 (2)4 微积分酝酿时期 (2)5 微积分的发展历程 (3)5.1 牛顿的微积分 (3)5.2 莱布尼茨的微积分 (3)5.3 柯西与魏尔斯特拉斯的贡献 (3)5.4 外国其他人的贡献 (4)5.5 中国数学家的思想 (5)6 微积分创建的历史意义 (6)结论 (6)参考文献 (7)1 引言微积分是研究数学分支的微分,积分及相关概念和应用的函数,微积分的基本概念是函数,极限,实数,导数,积分等,其中极限是基础。
它与自然科学,社会科学和天文学,力学,化学,生物学,工程学,经济学等其他科学领域有着非常密切的联系,其应用非常广泛。
在许多国家,中学数学教育对于研究微积分学的发展具有重要意义,以适应科学技术发展的趋势。
2 微积分简介微积分是微分科学和积分科学的总称。
这是一个数学思想,“无限细分”是微分,“无限求和”是积分。
导数是从曲线的切线和函数的最大值和最小值的问题得出的。
古希腊学者已经进行了切线曲线尝试,比如阿基米德《论螺线》,用于确定切线方法给定点处的螺旋线;《圆锥曲线论》中的阿波里纽论述了圆锥曲线的切线等等。
关于差别法的第一个引人注目的先驱作品起源于费马特1629年声明的概念,他提出了确定最大值和最小值的方法。
随后,英国剑桥大学三一学院教授巴罗提出了一种找到切线的方法,并进一步推广了差别理论的概念。
与差别理论相比,整体论的起源要早得多。
积分的概念是由寻找一些面积,体积和弧长造成的。
古希腊数学家阿基米德使用排气法以《抛物线求积法》找到弧形抛物线的区域。
他的数学思想包含微积分的思想,但缺乏极限概念,但他的思想本质延伸到17世纪的无限小分析领域,它告诉微积分的诞生。
在十七世纪下半叶,根据前几代人的工作,英国科学家牛顿和德国数学家莱布尼茨分别独立研究并完成了本国微积分的建立。
自那时以来,Cauchy和Weiersterasi微积分等得到了完善。
微积分发展史
微积分发展史微积分学是微分学和积分学的总称。
它是一种数学思想,…无限细分‟就是微分,…无限求和‟就是积分。
微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
我国的微积分思想萌芽公元前5世纪,战国时期名家的代表作《庄子•天下篇》中记载了惠施的一段话:“一尺之棰,日取其半,万世不竭”,是我国较早出现的极限思想。
西方的微积分思想萌芽安提芬的“穷竭法”。
他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。
之后,阿基米德借助穷竭法解决了一系列几何图形的面积、体积计算问题。
十七世纪微积分的酝酿第一类是,已知物体的移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度使瞬时变化率问题意大利数学家卡瓦列里在其著作《用新方法促进的连续不可分量的几何学》(1635)中发展了系统的不可分量方法。
卡瓦列里认为线是由无限多个点组成;面是由无限多条平行线段组成;立体则是由无限多个平行平面组成.他分别把这些元素叫做线、面和体的“不可分量”.卡瓦列里建立了一条关于这些不可分量的普遍原理,后以“卡瓦列里原理”著称笛卡儿的代数方法在推动微积分的早期发展方圆有很大的影响,牛顿就是以笛卡儿圆法为起跑点而踏上研究微积分的道路的。
德国天文学家、数学家开普勒的无限小元法。
17世纪上半叶一系列先驱性的工作,沿着不同的方向向微积分的大门逼近,但所有这些努力还不足以标志微积分作为一门独立科学的诞生。
微积分的创立牛顿的“流数术”牛顿对微积分问题的研究始于1664年秋,当时他反复阅读笛卡儿《几何学》,对笛卡儿求切线的“圆法”发生兴趣并试图寻找更好的方法。
微积分的发展史简述
微积分的发展史简述作者:周锐来源:《当代人(下半月)》2018年第04期摘要:微积分是数学的一个分支,在数学史上占有重要地位。
本文根据时间进程阐述了微积分的发展史及其简要应用。
关键词:微积分;发展史;牛顿;莱布尼兹微积分是数学中的基础学科,也是近现代数学中的重要基石和起点。
它在物理、化学、生物等自然学科中被普遍利用,在社会、经济、人文等范畴也是重要的研究工具之一。
本文将沿着微积分学的发展时间历程,简要论述微积分的发展史。
一、微积分的萌芽之初微积分学发展得最早的是积分学的思想,可以追溯到古希腊时期[1]。
其中做出重要贡献的有古希腊数学家芝诺提出的四大悖论。
古希腊哲学家德谟克利特斯的原子论则充分体现了近代积分的思想,他认为任意事物都是由原子构成。
古希腊诡辩家安提丰提出的“穷竭法”是极限理论最早的表现形式。
古希腊数学家欧多克斯进一步研究原子论和穷竭法,使这两个理论得以稳健前进。
古希腊著名数学家阿基米德所提出的“平衡法”实质上是一种较原始的“积分法”。
他在著作《抛物线求积法》一书中运用穷竭法求出了抛物线构成的弓形的面积。
二、微积分创立之前的酝酿由于种种影响,微积分的概念在15世纪之前一直处于萌芽阶段[2]。
推动欧洲崛起的新航路开辟和文艺复兴是15世纪的大事件。
从14世纪到16世纪的文艺复兴在意大利各城市兴起,之后推广到西欧各国,带来了一场关于科学与艺术的革命。
随着文艺复兴的兴起,生产的发展带动了科学的发展。
与此同时希腊的著作大量进入欧洲,随着活板印刷的发明,知识的传播更加迅速,自然学科开始活跃,自然学科中的数学得以有进一步发展的机会。
在时代背景下,数学成为唯一被公认的真理得以推广。
天文学、光学、力学等自然学科的发展被生产力的发展所推动,为数学带来了大量的研究问题[3],许多学者开始考虑研究微积分的思想[4]。
开普勒是德国杰出的天文学家、物理学家、数学家和哲学家。
他在《测量酒桶的新立体几何》一书中主要对如何求解旋转体体积的方法进行研究。
微积分发展史
微积分发展史微积分真正成为一门数学学科,是在十七世纪,然而在此这前微积分已经一步一步地跟随人类历史的脚步缓慢发展着。
着眼于微积分的整个发展历史,在此分为四个时期:1.早期萌芽时期。
2.建立成型时期。
3.成熟完善时期。
4.现代发展时期。
早期萌芽时期:1、古西方萌芽时期:公元前七世纪,泰勒斯对图形的面积、体积与的长度的研究就含有早期微积分的思想,尽管不是很明显。
公元前三世纪,伟大的全能科学家阿基米德利用穷竭法推算出了抛物线弓形、螺线、圆的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的公式,其穷竭法就类似于现在的微积分中的求极限。
此外,他还计算出Π的近似值,阿基米德对于微积分的发展起到了一定的引导作用。
2、古中国萌芽时期:三国后期的刘徽发明了著名的“割圆术”,即把圆周用内接或外切正多边形穷竭的一种求圆周长及面积的方法。
“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。
”不断地增加正多边形的边数,进而使多边形更加接近圆的面积,在我国数学史上算是伟大创举。
另外在南朝时期杰出的祖氏父子更将圆周率计算到小数点后七位数,他们的精神值得我们学习。
此外祖暅之提出了祖暅原理:“幂势即同,则积不容异”,即界于两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等,比欧洲的卡瓦列利原理早十个世纪。
祖暅之利用牟合方盖(牟合方盖与其内切球的体积比为4:Π)计算出了球的体积,纠正了刘徽的《九章算术注》中的错误的球体积公式。
建立成型时期:1.十七世纪上半叶:这一时期,几乎所有的科学大师都致力于解决速率、极值、切线、面积问题,特别是描述运动与变化的无限小算法,并且在相当短的时间内取得了极大的发展。
天文学家开普勒发现行星运动三大定律,并利用无穷小求和的思想,求得曲边形的面积及旋转体的体积。
意大利数学家卡瓦列利与同时期发现卡瓦列利原理(祖暅原理),利用不可分量方法幂函数定积分公式,此外,卡瓦列利还证明了吉尔丁定理(一个平面图形绕某一轴旋转所得立体图形体积等于该平面图形的重心所形成的圆的周长与平面图形面积的乘积。
浅谈微积分的发展历史
浅谈微积分的发展历史李飞姜攀牛晋徽微积分是数学史上一个伟大的发明。
微积分在两千多年前就开始萌芽,但真正开始发展是从16世纪开始的,并由牛顿和莱布尼兹在17世纪建立,然而为它打好逻辑基础的是19世纪柯西。
从此之后,微积分成了各学科中重要的数学工具。
1 引言在高等数学的教学中,微积分是教学难点之一,学生普遍反应微积分的许多概念和公式比较难以理解。
近几年国内外越来越多的大学在数学教材引入数学史的知识,通过“历史线索”和“历史原型”来组织高等数学的教学,使学生真正理解课本上抽象的概念和形式化的公式背后的实际内涵。
为便于将数学史引入高等数学的教学中,本文简单地介绍一下微积分的发展历史。
2 微积分的发展历史微积分从发端至今已有两千多年的历史,并且其发展并不是一帆风顺的,本文将其分为四个阶段:萌芽阶段;酝酿阶段;创立阶段;发展阶段。
2.1 萌芽阶段2000多年前东西方的数学家就开始对微积分思想的萌芽和探索。
这个阶段对后世最有影响的是古希腊的数学发展。
古希腊的数学并不是单独的一个分支 ,而是与天文 、哲学密不可分的,其研究对象以几何学为主。
这一阶段最重要的两个哲学思想是“穷竭法”和“原子论”。
公元前5世纪,古希腊诡辩学派的安提丰(Antiphon)为解决“化圆为方”的问题,提出如下方法:“先作一圆内接正方形,将边数加倍,得内接8边形;再加倍,得16边形。
如此作下去,最后正多边形穷竭了圆。
”该方法被阿基米德(Archimedes)发展为“穷竭法”。
同样在公元前5世纪,德谟克利特(Demokritos)提出了“原子论”,并用“原子论”解释数学概论,提出:“线段、面积和立体都是由一些不可再分的原子构成的 ,而计算面积 、体积就是将这些‘原子’累加起来”。
他根据这一思想来求解圆锥体的体积,发现“圆锥体积等于具有同底同高的圆柱体积的三分之一”。
但这一结论的证明是由攸多克萨斯(Eudoxus)完成的。
德谟克利特认为圆锥体是由一系列底面积不等的不可再分的圆形薄片构成,因此圆锥体的表面不光滑。
二组历史上的微积分的创立和发展
其中最著名的要数最速降线问题:即最快下降的曲线的问题。这个 曾经的难题用变分法的理论可以轻而易举的解决。
中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分 学的思想主要有两点:割圆术及求体积问题的设想。
微积分的产生
到了十七世纪,有许多科学问题需要解决,这些问题也 就成了促使微积分产生的因素。归结起来,大约有四种主要 类型的问题:
第一类是研究运动的时候直接出现的,也就是求即时速 度的问题;第二类问题是求曲线的切线的问题;第三类问题 是求函数的最大值和最小值问题;第四类问题是求曲线长、 曲线围成的面积、曲面围成的体积、物体的重心、一个体积 相当大的物体作用于另一物体上的引力。
让我们一起来了解微积分
› 微积分创立的历史过程 › 微积分创立的历史意义 › 微积分的发展及其价值
微积分的早期历史
从微积分成为一门学科来说,是在17世纪,但是积分的思想早在古代就已经产 生了。
公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等 问题的研究就含有微积分思想。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著 作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下 的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含 着近代积分的思想。
微积分创立历史中的“争斗”
› 前面已经提到,一门学科的创立并不是某一个人的业绩,而是经过多少人的 努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的, 微积分也是这样。
1.微积分发展历史
第一讲微积分思想的产生与发展历史在微积分产生之前,数学发展处于初等数学时期。
人类只能研究常量,而对于变量则束手无策。
在几何上只能讨论三角形和圆,而对于一般曲线则无能为力。
到了17世纪中叶,由于科学技术发展的需要,人们开始关注变量与一般曲线的研究。
在力学上,人们关心如何根据路程函数去确定质点的瞬时速度,或者根据瞬时速度去求质点走过的路程。
在几何上,人们希望找到求一般曲线的切线的方法,并计算一般曲线所围图形的面积。
令人惊讶的是,不同领域的问题却归结为相同模式的数学问题:求因变量在某一时刻对自变量的变化率;因变量在一定时间过程中所积累的变化。
前者导致了微分的概念;后者导致了积分的概念。
两者都包含了极限与无穷小的思想。
1.极限、无穷小、微分、积分的思想在中国古代早已有之公元前4世纪,中国古代思想家和哲学家庄子在《天下篇》中论述:“至大无外,谓之大一;至小无内,谓之小一。
”其中大一和小一就是无穷大和无穷小的概念。
而“一尺之棰,日取其半,万世不竭。
”更是道出了无限分割的极限思想。
公元3世纪,中国古代数学家刘徽首创的割圆术,即用无穷小分割求面积的方法,就是古代极限思想的深刻表现。
他用圆内接正多边形的边长来逼近圆周,得到了141024<π,.3<.3142704并深刻地指出:“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣。
”我国南北朝时期的数学家祖暅(中国古代数学家祖冲之之子)发展了刘徽的思想,在求出球的体积的同时,得到了一个重要的结论(后人称之为“祖暅原理”):“夫叠基成立积,缘幂势既同,则积不容异。
”用现在的话来讲,一个几何体(“立积”)是由一系列很薄的小片(“基”)叠成的;若两个几何体相应的小片的截面积(“幂势”)都相同,那它们的体积(“积”)必然相等。
2.十七世纪前微分学与积分学的发展历史公元前5世纪,古希腊数学家安提丰(Antiphon)在研究化圆为方问题时创立了“穷竭法”,认为圆内接正多边形当边数不断增加,最后多边形就与圆相合。
微积分的发展历程
微积分的发展历程微积分的创立,被誉为“人类精神的最高胜利”,在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。
在数学史上,18世纪可以说是分析研究的时代,也是向现代数学过渡的重要时期。
1)微积分的发展无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。
不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor)、麦克劳林(C.Maclaurin)、棣莫弗(A.de Moivre)、斯特林(J.Stirling)等。
泰勒(1685_1731)做过英国皇家学会秘书。
他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理其中v为独立变量z的增量,和为流数。
泰勒假定z随时间均匀变化,故为常数,从而上述公式相当于现代形式的“泰勒公式”:。
泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。
但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。
泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。
麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。
《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。
麦克劳林之后,英国数学陷入了长期停滞的状态。
微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 4、费马求极大值和极小值方法 按费马的方法。设函数f(x)在点a处取极 值,费弓用“a+e”代替原来的未知量a, 并使f(a+e)与f(a)逼近,即: f(a+e)~f(a) 这里所提到的“e”就 是后来微积分学当中的“ ”
• 5、巴罗的“微分三角形” 巴罗是牛 顿的老师。是英国剑桥大学第一任“卢 卡斯数学教授”,也是英国皇家学会的 首批 会。当巴罗发现和认识到牛顿的 杰出才能时,便于1669年辞去了卢卡斯 教授的职位,举荐自己的学生——当时 才27岁的牛顿来担任。巴罗让贤,已成 为科学史上的佳话。
• 1619年,开普勒公布了他的最后一条行星运 动定律。开普勒行星运动三大定律要意是: 1.行星运动的轨道是椭圆,太阳位于该椭圆 的一个焦点; 2.由太阳到行星的矢径在 相等的时间内扫过的面积相等; 3.行星绕 太阳公转周期的平方,与其椭圆轨道的半长 轴的立方成正比。 开普勒主要是通过 观测归纳出这三条定律从数学上推证开普勒 的经验定律,成为当时自然科学的中心课题 之一。
• 1638年,伽利略的《关于两门新科学的对话》 出版。伽利略建立了自由落体定律、动量定 律等,为动力学奠定了基础;他认识到弹道 的抛物线性质,并断言炮弹的最大射程应在 发射角为45度时达到,等等。伽利略本人竭 力倡导自然科学的数学化,他的著作激起了 人们对他所确立的动力学概念与定律作精确 的数学表述的巨大热情。 凡此一切,标 志着自文艺复兴以来在资本主义生产力刺激 下蓬勃发展的自然科学开始迈入综合与突破 的阶段,而这种综合与突破所面临的数学困 难,使微分学的基本问题空前地成为人们关 注的焦点。
• 6、沃利斯的“无穷算术” 沃利斯 另“一项重要的研究是计算四分之 一 单位圆的面积,并由此得到 的无穷乘 积表达式。并有以下猜想:
二、牛顿的“流数术”
• 牛顿于1661年入剑桥大学三一学院,受教于巴 罗,同时钻研伽利赂、开普勒、笛卡儿和沃利 斯等人的著作。三一学院至今还保存着牛顿的 读书笔记,从这些笔记可以看出,就数学思想 的形成而言,笛卡儿的《几何学》和沃利斯的 《无穷算术》对他影响最深,正是这两部著作 引导牛顿走上了创立微积分之路 • 1665年8月,剑桥大学因瘟疫流行而关闭,牛 顿离校返乡,随后在家乡躲避瘟疫的两年,竞 成为牛顿科学生涯中的黄金岁月。制定微积分, 发现万有引力和颜色理论,……,可以说牛顿 一生大多数科学创造的蓝图,都是在这两年描 绘的。
• 解析几何是代数与几何相结合的产物,它将 变量引进了数学,使运动与变化的定量表述 成为可能,从而为微积分的创立搭起了舞台。 微积分的思想萌芽,特别是积分学,部分可 以追潮到古代。我们已经知道,面积和体积 的计算自古以来一直是数学家们感兴趣的课 题,在古代希措、中国和印度数学家们的著 述中,不乏用无穷小过程计算特殊形状的面 积、体积和曲线长的例子。前面已经介绍过 阿基米德、刘微和祖冲之父子等人的方法, 他们的工作,确实是人们建立一般积分学的 漫长努力的先驱。
• 在17世纪上半叶,几乎所有的科学大师都致 力于寻求解决这些难题的新的数学工具,特 别是描述运动与变化的无限小算法,并且在 相当短的时期内,取得了迅速的进展。 代表性的工作有: 1、开普勒与旋转体体 积; 开普勒方法的要旨,是用无数个 同维无限小元素之和来确定曲边形的面积及 旋转体的体积。例如他认为球的体积是天数 个小圆锥的体积的和,这些圆锥的顶点在球 心,底面则是球面的一部分;他又把圆锥看 成是极薄的圆盘之和,并由此计算出它的体 积,然后进一步证明球的体积是半径乘以球 面面积的三分之一。
• 当时,人们主要集中的焦点有:非匀速运动 物体的速度与加速度使瞬时变化率问题的研 究成为当务之急;望远镜的光程设计需要确 定透镜曲面上任一点的法线,这又使求任意 曲线的切线问题变得不可回避;确定炮弹的 最大射程及寻求行星轨道的近日点与远日点 等涉及的函数极大值、极小值问题也亟待解 决。 与此同时,行星沿轨道运动的路程、 行星矢径扫过的面积以及物体重心与引力的 计算等又使积分学的基本问题——面积、体 积、曲线长、重心和引力计算的兴趣被重新 激发起来。
• 与积分学相比而言,微分学的起源则要晚得 多。刺激微分学发展的主要科学问题是求曲 线的切线、求瞬时变化率以及求函数的极大 极小值等问题。 古希腊学者曾进行过 作曲线切线的尝试,如阿基米德《论螺线》 中给出过确定螺线在给定点处的切线的方法; 阿波罗尼奥斯《圆锥曲线论》中讨论过圆锥 曲线的切线,等等。但所有这些都是基于静 态的观点
• 3、笛卡儿的“圆法” 笛卡儿的这种代 数方法在推动微积分的早期发展方面有很大 的影响,牛顿就是以笛卡儿圆法为起跑点而 踏上研究微积分的道路的。 笛卡儿圆 法在确定重根时会导致极繁复的代数计算, 1658年荷兰数学家胡德提出了一套构造曲线 切线的形式法则,称为“朗德法则”。朗德 法则为确定笛卡儿圆法所需的重根提供了机 械的算法,可以完成求任何代数曲线的切线 斜率时所要进行的计算。
一、微积分的酝酿
• 近代微积分的酝酿,主要是在17世纪上半叶 这半个世纪。 为了理解这一酝酿的背景, 我们首先来赂微回顾一下这一时期自然科学 的一般形势和天文、力学等领域发生的重大 事件。 首先是1608年,荷兰眼镜制造商里帕 席发明了望远镜,不久伽利略将他制成的第 一架天文望远镜对准星空而作出了令世人惊 奇不已的天文发现。望远镜的发明不仅引起 了天文学的新高涨,而且推动了光学的研究。
• 2、卡瓦列里不可分量原理 他在《用新 方法促进的连续不可分量的几何学》中发展 了系统的不可分量方法。认为线是由无限多 个点组成;面是由无限多条平行线段组成; 立体则是由无限多个平行平面组成。他分别 把这些元素叫做线、面和体的“不可分量”。 卡瓦列里利用这条原理计算出许多立体图形 的体积,他对积分学创立最重要的贡献还在 于在1639利用平固下的不可分量原理建立了 等价于下列积分式子:
• 古代与中世纪中国学者在天文历法研究中曾 涉及到天体运动的不均匀性及有关的极大、 极小值问题,如郭守敬《按时历》中求“月 离迟疾”(月亮运行的最快点和最慢点)、求月 亮白赤道交点与黄赤道交点距离的极值(郭守 敬甚至称之为“极数”)等问题,但东方学者 以惯用的数值手段(“招差术”,即有限差分 计算)来处理,从而回避了连续变化率。 总之,在17世纪以前,真正意义上的微分学 研究的例子可以说是很罕见的。