数学史答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、刘徽在数学上的贡献

刘徽在数学上的贡献,主要在其《九章算术注》一书。《隋书》卷16《律历上》载:“魏陈留王景元四年刘徽注《九章》”。是知《九章算术注》完成于景元四年(263年)。《隋书》卷34《经籍志三》有《九章算术》十卷、《九章重差图》一卷,均注明系刘徽撰。后《九章重差图》失传,唐人将《九章算术注》内有关数学用于测量的《重差》一卷取出,独成一书,因其中第一个问题系测量海岛,故改名为《海岛算经》。刘徽这两个著作是我国数学史上宝贵的文献,即在世界数学史上也有一定的地位。今述其主要贡献如下:

1.极限观念与割圆术极限意识在春秋战国时已出现,实际加以应用的是刘徽。刘徽已领悟到数列极限的要谛,故能有重要创获。刘徽的杰出贡献首推他在《九章算术注》中创立的割圆术,其所用方法包含初步的极限概念和直线曲线转化的思想。刘徽建立的割圆术,是在圆内接正六边形,然后使边数逐倍增多,他说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣”。这是因为,圆内接正多边形无限多时,其周长极限即为圆周长,面积即为圆面积。他算到正192边形时,求得圆周率为3.14的近似值。他又用几何方法把它化为。后人即将3.14或叫作“徽率”。

2.关于体积计算的刘徽定理一般地说,柱体或多面体的体积计算较比容易解决,而圆锥、圆台之类的体积就难以求得。刘徽经过苦心思索,终于找到了一条途径,他分别做圆锥的外切正方锥和圆台的外切正方台,结果发现:“求圆亭(圆台)之积,亦犹方幂中求圆幂,圆面积与其外切正方形的面积之比为π∶4,由此他推得:圆台(锥)的体积与其外切正方台(锥)的体积之比,也是π∶4。很显然,如果知道了正方台(锥)的体积,即可求得圆台(锥)的体积。刘徽这个成果,看似简单,实际起着继往开来的重要作用,故有的现代数学家称之为“刘徽定理”。

3.十进小数的应用在数学计算或实际应用中总不免出现奇零小数,刘徽建立了十进分数制。他以忽为最小单位,不足忽的数,统称之为微数,开平方不尽时,根是无限小数,这又是无限现象。他说:“微数无名者以为分子,其一退以十为分母,再退以百为母,退之弥下,其分弥细,则朱幂(已经开出去的正方形面积)虽有所弃之数(未能开出的部分),不定言之也”。

用现代方法写其方根近似值是忽。

4.改进了线性方程组的解法《九章算术》中有一章专讲线性方程组问题。用一种“直除法”求解,即解方程组时把多个未知数逐步减少到一个未知数,然后反过来求出所有未知数的值。

5.总结和发展了重差术. “重差”之名,古已有之,刘徽对之进行了深入而具体的研究,他解释重差的含义说:“凡望极高,测绝深,而兼知其远者,必用重差,勾股则必以重差为率,故曰:重差也”。二.更精确的计算圆周率是否有意义,谈谈你的看法

三.简述阿尔·花拉子米的数学贡献

阿尔·花拉子米是阿巴斯王朝(AD750-1258)“智慧宫”里的领头学者之一,上精天文,下通地理,是现代《代数学》创始人。其著作理应比较多,现已发现的仅18部,其中《算法》与《代数学》是相对有影响且多数内容保存完好的代表性著作。

《算法》是第一本用介绍印度数字和记数法的著作。1140年左右英国人Gerardo或Adelard Bat将其译成了拉丁文,取书名为《Algoritmi de nomero indorum》。Al-goritmi是阿尔·花拉子米,而这个词汇就是现代数学与信息学科中用到的算法一词的词源:算法/algorithm.后来几百年间,这本书介绍的记数制成为今天使用的“阿拉伯数字”。《算法》原文中描述“一”的部分文字大家可以读读:一包含在任何数中,即“一”是任何数的成分,…,一是任何数的根源,…,任何数由它来定义,…,在没有“一”的前提下,你说不出“二”或“三”。《代数学》是花拉子米最具代表性的著作。原著叫《还原与对消的科学》,还原/al-jabr后来演化成“代数学/algebra”.此书在求解一元二次线性方程时,已经非常厉害了。已知二次方程式有两个根,用二次曲线解三次方程式和四次方程式;研究了面积、体积和画出有规则的多边形,并把多边形与代数方程式联系起来,以求得未知数;他们掌握了球面三角形的基本原理,并在三角学中首先使用了正切、余切、正割、余割、正弦、余弦,还发现了其中的函数关系,使三角学成为一门独立学科。

四.简述莱布尼茨生活在哪个国家,哪个世纪,他在数学上有哪些成就

莱布尼茨(Gottfriend WilhelmLeibniz)是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才,和牛顿同为微积分的创建人。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。

始创微积分

微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼茨在1673~1676年间也发表了微积分思想的论著。

只有莱布尼茨和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。因此,微积分“是牛顿和莱布尼茨大体上完成的,但不是由他们发明的”。莱布尼茨1684年10月在《教师学报》上发表的论文《一种求极大极小的奇妙类型的计算》,是最早的微积分文献。这篇仅有六页的论文,内容并不丰富,说理也颇含糊,但却有着划时代的意义。莱布尼茨认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他所创设的微积分符号远远优于牛顿的符号,这对微积分的发展有极大影响。1713年,莱布尼茨发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。

高等数学上的众多成就

莱布尼茨在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。他的一系列重要数学理论的提出,为后来的数学理论奠定了基础。

莱布尼茨曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。在后来的研究中,莱布尼茨证明了自己结论是正确的。他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论,此外,莱布尼茨还创立了符号逻辑学的基本概念。

1673年莱布尼茨特地到巴黎去制造了一个能进行加、减、乘、除及开方运算的计算机。这是继帕斯卡加法机后,计算工具的又一进步。他还系统地阐述了二进制计数法,并把它和中国的八卦联系起来,为计算机的现代发展奠定了坚实的基础。

五.“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗,问上、中、下禾实一秉各几何.”

这里的“禾”是指庄稼,“秉”是捆,

相关文档
最新文档