2014年秋季新版新人教版七年级数学上学期1.5.3、近似数学案3
人教版数学七年级上册1.5.3《近似数》教学设计1
人教版数学七年级上册1.5.3《近似数》教学设计1一. 教材分析《近似数》是人教版数学七年级上册1.5.3的内容,本节课主要介绍近似数的概念及其求法。
学生在学习本节课之前,已经掌握了有理数的概念和运算法则,因此,本节课是在已有知识基础上的拓展和应用。
通过本节课的学习,学生能够理解近似数的概念,掌握求近似数的方法,并能应用于实际问题中。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和运算法则有一定的了解。
但是,对于近似数这一概念,学生可能比较陌生,因此需要通过实例和操作来帮助学生理解和掌握。
此外,学生可能对于求近似数的方法和应用有一定的困难,需要通过大量的练习和实际问题来培养学生的应用能力。
三. 教学目标1.了解近似数的概念,能正确地求一个数的近似值。
2.能够将近似数的概念和方法应用于实际问题中。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.近似数的概念及其求法。
2.近似数在实际问题中的应用。
五. 教学方法1.采用实例教学法,通过具体的例子来帮助学生理解和掌握近似数的概念和方法。
2.采用问题驱动法,通过提出实际问题来引导学生思考和应用近似数的概念和方法。
3.采用分组讨论法,让学生在小组内进行讨论和交流,培养学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的实例和练习题,用于引导学生进行思考和练习。
2.准备一些实际问题,用于让学生进行应用和拓展。
3.准备多媒体教学设备,用于展示和讲解实例和问题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算法则,为新课的学习做好铺垫。
2.呈现(15分钟)通过实例引入近似数的概念,让学生直观地感受近似数的存在。
然后,讲解近似数的求法,引导学生理解并掌握。
3.操练(10分钟)让学生进行近似数的计算练习,巩固所学知识。
可以设置一些不同难度级别的练习题,让学生根据自己的实际情况选择练习。
4.巩固(10分钟)通过一些实际问题,让学生应用近似数的概念和方法进行解答。
人教版七年级数学上册:1.5.3《近似数》说课稿
人教版七年级数学上册:1.5.3《近似数》说课稿一. 教材分析《近似数》是人教版七年级数学上册第一章第五节的一部分,主要介绍了近似数的概念、求法以及应用。
这一节的内容是在学生掌握了实数、小数和分数的基础上进行的,为后续学习百分数、概率等知识打下了基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数、小数和分数的概念有了初步的了解。
但学生在求近似数方面可能还存在一些困难,例如不理解四舍五入的原理,对于近似数的应用也还不够清晰。
因此,在教学过程中,需要注重引导学生理解四舍五入的原理,并通过实际例子让学生感受近似数在生活中的应用。
三. 说教学目标1.知识与技能:让学生理解近似数的概念,掌握求近似数的方法,能运用近似数解决实际问题。
2.过程与方法:通过观察、实践、探究等活动,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探究、积极思考的科学精神。
四. 说教学重难点1.重点:近似数的概念、求法及应用。
2.难点:理解四舍五入的原理,以及如何运用近似数解决实际问题。
五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学。
六. 说教学过程1.导入新课:通过一个生活中的实际问题,引发学生对近似数的思考,从而导入新课。
2.知识讲解:讲解近似数的概念,并通过例题演示求近似数的方法。
3.实践操作:让学生动手操作,尝试自己求近似数,并解释四舍五入的原理。
4.应用拓展:通过实际例子,让学生感受近似数在生活中的应用。
5.总结反思:让学生总结本节课所学内容,反思自己在求近似数方面的不足。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
可以设计如下板书:•概念:与实际非常接近的数•求法:四舍五入•应用:解决实际问题八. 说教学评价教学评价可以从学生的学习态度、课堂参与度、作业完成情况、考试成绩等方面进行。
人教版七年级上册数学1.5.3《近似数》 教案
1.5.3 近似数教学目标知识与技能1、了解近似数和准确数的概念。
2、理解精确度和近似数的意义。
3、能准确的说出精确位及按要求进行四舍五入取近似数。
过程与方法:通过说出一个近似数的精确度和求一个数的近似数培养学生把握关键字词,准确理解概念的能力。
情感态度与价值观:通过创设情境问题,激发学生兴趣,通过对概念的传授,培养学生严谨的个性品质。
教学重、难点:重点:理解近似数的精确度和求近似数的方法.难点:正确把握带单位的近似数(如2.3万)和用科学记数法表示的近似数的精确度及较大的整数根据精确度求近似数的方法.教法:1、采用情景创设法,激发学生学习的兴趣。
2、引导点拨。
整堂课中教师只是个引导者,遇到学生小组内不能解决的问题及时点拨。
学法:1.学生自主学习,充分利用课本,从课本中获取新知。
2.合作探究:学习过程中遇到有困难的题都可由合作完成。
一、创设情境,导入新课我校举行礼仪培训,参加的学生人数有两个报道.一个报说:“参加礼培训的有1582人.”另一报道说:“约有1600人参加了今天的培训.”对比两个报道中的人数有什么不同?二、出示目标、明确任务学习目标:1、理解精确度和近似数的意义。
2、能准确的说出精确位及按要求进行四舍五入取近似数。
三、独立先学,自学检测自学指导:认真看课本45页~46页的内容,思考以下问题:1、明确什么是近似数?什么是精确度?重要的地方和不懂地方用红笔作上记号。
2、观察对圆周率取近似数时所对应的精确度,试着完成46页填空。
3、看例6时,重点看如何根据精确度取近似数?并试着回答右边云图中的问题.自学检测1、什么是准确数?什么是近似数?2、说出下列各数分别精确到了哪一位?(1)21. 35 (2)21.350 (3)30.0(4)0.0572 (5)2003 (6)五千3、用四舍五入法求下列各数的近似值(1)1.595 2(精确到0.01)≈_______(2)0.030 96(精确到千分位)≈________(3)61.235(精确到个位) ≈_______(4)0.00356(精确到万分位)≈_______(5)1.8935(精确到0.001 )≈_______(6)0.0571(精确到0. 1 )≈_______4、小明和小红分别测量了同一片树叶的长度,小明读出的数据为6.8cm,小红读出的数据为6.80cm,谁的测量结果会更精确些呢?请说明理由。
人教版七年级数学上册1.5.3近似数导学案
《1.5.3 近似数和有效数字》导学案一、学习目标1、了解近似数和有效数字的概念。
2、能按要求取近似数和保留有效数字。
3、体会近似数的意义及在生活中的应用。
二、探究学习1、(1)自学教材第45页“近似数”2、(2)自学中思考下列问题:1、什么叫准确数?2、什么叫近似数?3、什么是精确度?3、教师提出问题:生活中哪些地方用到近似数?学生纷纷举例:(1)2000年第一次人口普查表明,我国的人口总数为12.9533亿。
(2)某词典共1234页。
(3)我们年级有97人,买门票需要800元。
等上面的数据,哪些是精确的,哪些是近似的?举例说明生活中哪些数据是精确的,哪些数据是近似的。
三、探究新知1、关于近似数与精确度:按四舍五入法对圆周率 取近似数,即完成教科书55页的填空。
例1 求90.964285……的近似数例2: 1.396保留两位小数,它的近似数是多少?例3 按括号内的要求,用四舍五入法对下列各数取近似数(1)0.0158(精确到0.001); (2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到0.01)2、近似数的有效数字:通过填空,引出有效数字的概念,强调对于一个近似数,从左边第一个不是0的数字起,到末位数字为止,所有数字都叫这个数的有效数字,举例说明零“是”还是“不是”有效数字,让学生辩别。
3、难点讲解:带单位的数(如:万、亿)的精确度问题.(精确到哪一位) 2.4万1.60×510例4、观察: 近似数 0.025和1500,0.103各有多少个有效数字?四、课堂练习:1、比一比:看谁反应快2、做一做:教科书第46页练习,可请四位同学到黑板上板演,并由其他学生点评。
3、判断: 用四舍五入法,按括号内的要求对475301取近似数(保留两个有效数字),下面的解法对吗?解:475301 ≈ 484、补充例题:据中国统计信息网公布的2000年中国第五次人口普查资料表明,我国的人口总数为1295330000人,请按要求分别取这个数的近似数,并指出近似的有效数字。
七年级数学上册《1.5.3 近似数》导学案(新版)新人教版
问题7:下列由四舍五入法得到的近似数各精确到哪一位?各有几个有效数字。
①32②17.93③0.084④7.250⑤1.35× 104⑥0.45万⑦2.004⑧3.1416
问题8:23.0是由四舍五入得来的近似数,下列各数哪些不可能是其真值①23.04②23.06③22.99 22.85
第五次人口普查表明我国人口为1295330000人请按要求取近似数①精确到百万位②精确到亿位③保留2个有效数字。
指导学生看书,巡视学生的预习情况。
深入各组和同学们一起探讨 尤其要帮助学困生或组,辅助他们学。
看到学生的问题及时讲解纠正。
指导学生看书,巡视学生的预习情况。
学生先独立思考独立预习,再进行小组合作交流,讨论并得出答案。
复习
1)我班有名学生,名男生,女生。
2)我班教室约为平方米。
3)我的体重约为公斤,我的身高约为厘米4)中国大约有亿人口。
在这些数据中,哪些数是与实际相接近的?哪些数与实际完合符合的?
教师抽查
对子互考
预习
近似数
问 题1:举例说明生活中的准确数与近似数,并说说为什么要使用近似数。
问题2:近似数与准确数的接 近程度可以用精确度来表示阅读书上46页内容完成对∏取近似数的填空题。
1.5.3《近似数》
导学目标
1、知道近似数和有效数字的概念。
2、能按要求取近似数和保留有效数字。
3、体会近似数的意义及在生活中的作用。
教学重点
知道近似数和有效数字的概念。
教学难点
能按要求取近似数和保留有效数字。
教学过程
教学
环节
教学内容
教学任务
教师活动
学生活动
人教版数学七年级上册1.5.3《近似数》教学设计
人教版数学七年级上册1.5.3《近似数》教学设计一. 教材分析《近似数》是人教版数学七年级上册第1.5.3节的内容,主要介绍了近似数的概念、求法及其应用。
本节内容是学生学习数学的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
二. 学情分析七年级的学生已经掌握了实数、有理数等基础知识,具备了一定的逻辑思维能力。
但他们对近似数的概念和求法可能还比较陌生,需要通过实例和练习来理解和掌握。
三. 教学目标1.理解近似数的概念,掌握求近似数的方法。
2.能够运用近似数解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.近似数的概念和求法。
2.运用近似数解决实际问题。
五. 教学方法1.实例教学:通过具体的实例来引导学生理解和掌握近似数的概念和求法。
2.小组讨论:学生进行小组讨论,培养学生的团队合作能力和逻辑思维能力。
3.练习巩固:通过布置练习题,让学生在实践中运用所学知识,巩固所学内容。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和练习题。
2.练习题:准备一些相关的练习题,用于巩固所学内容。
七. 教学过程1.导入(5分钟)通过一个实际问题引入近似数的概念,如“一张地图上的两个城市之间的距离是300公里,请问这个距离是精确值还是近似值?”让学生思考和讨论,引出近似数的概念。
2.呈现(10分钟)介绍近似数的定义和求法,通过PPT展示实例和图示,让学生理解和掌握近似数的概念和求法。
3.操练(10分钟)布置练习题,让学生在课堂上进行练习,运用所学知识求近似数。
教师进行个别指导和讲解,帮助学生掌握求近似数的方法。
4.巩固(10分钟)让学生分组讨论,运用近似数解决实际问题。
教师进行巡回指导,给予学生反馈和指导。
5.拓展(10分钟)让学生思考和讨论近似数在实际生活中的应用,如购物、测量等。
分享自己的经验和体会,进一步加深对近似数概念的理解。
6.小结(5分钟)对本节课的内容进行小结,强调近似数的概念和求法,提醒学生注意近似数在实际问题中的应用。
人教版七年级上册数学1.5.3《近似数》 教案设计
人教版七年级上册《第一章》1.5.3近似数教案设计一、教材分析先用生活中实例,列出描述一些事物的数量时,有时用准确数表示,有时不一定要说出它们的准确数量,只要知道它们大概是多少就可以了,从而引出了准确数和近似数的概念,再通过按四舍五入对圆周率π≈3.14159265...... 取近似数,然后引出精确度的概念。
再通过例题学习加深对近似数和精确度的理解,最后由学生通过课堂练习来熟练掌握近似数、精确度的意义。
二、学情分析在小学四年级学过省略万位后面的尾数,写出近似数,学生有了对近似数和四舍五入的认识,进而学习近似数和精确度问题,就相对容易多了,但对于下面三种数,学生难以理解和接受,要注意讲透:(1)带数位的数,要将它们先还原,再看这个数最后一位数字所在的数位,就是精确到那一位;(2)用科学记数法表示的数,精确到的位数,先还原,再看这个数最后一位数字所在原数的数位,就是精确到那一位;(3)“五入”时需要连续进位的方法。
三、教学目标分析1、理解准确数、近似数、精确度的意义;2、能准确地说出精确位及按要求进行四舍五入取近似数。
理解近似数在实际生活中的应用,感受数学与生活的密切联系。
四、教学重点与难点重点:近似数和精确度的意义。
难点:给出带数位的近似数和用科学记数法表示的近似数,求其精确度;再按给定的精确度求其的近似数;“五入”时需要连续进位的方法。
五、教法及策略分析教师让学生从具体的生活情境入手,通过探究活动发现近似数的实际作用和特点,以及近似数与准确数的关系,理解近似数与准确数的概念。
还结合按四舍五入对圆周率π≈3.14159265...... 取近似数(这是理解四舍五入法的关键),然后引出精确度的概念。
通过例题讲解和巩固练习,最后概括出求近似数的方法:1、一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
2、求一个数的近似数要按四舍五入法,精确到哪一位,就要看那一位后面的数,如果大于或等于5,就向前一位进一;如果小于5,就直接舍去。
人教版七年级上数学:1.5.3近似数学案
数学:1.5.3《近似数》学案(人教版七年级上)【学习目标】:1.了解近似数和有效数字的概念,能按要求取近似数和保留有效数字;2.体会近似数的意义及在生活中的应用;【学习重点】:能按要求取近似数和有效数字;【学习难点】:有效数字概念的理解。
【导学指导】一、知识链接1.用科学记数法表示下列各数:(1)1250000000= ;(2)-130000= ;(3)-1025000= ;2.下列用科学记数法表示的数,把原数写在横线上:(1)=⨯-51003.2 ;(2)=⨯7108.5 ;二.自主学习1.(1)我们班有 名学生, 名男生, 名女生;(2)一天有 小时,一小时有 分,一分钟有 秒;(3)我的体重约为 千克,我的身高约为 厘米;(4)我国大约有 亿人口.在上题中,第 题中的数字是准确的,第 题中的数字是与实际接近的。
这种只是接近实际数字,但与实际数字还有差别的数被称为近似数。
2.你还能举出生活中的准确数与近似数吗?请将你举的例子写在下面的空白处。
3.近似数与准确数的接近程度,可以用精确度表示(也就是按四舍五入保留小数)。
按四舍五入对圆周率π取近似数时,有:3≈π(精确到个位),1.3≈π(精确到 0.1 ,或叫精确到十分位), 14.3≈π(精确到 ,或叫精确到 位), 142.3≈π(精确到 ,或叫精确到 位), 1416.3≈π(精确到 ,或叫精确到 位)。
……4.例6按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0158(精确到0.001); (2)304.35(精确到个位);(3)1.804(精确到0.1); (4)1.804(精确到0.01);解:(1) (2)(3)(4)思考:1.8,与1.80的精确度相同吗?在表示近似数时,能将小数点后的0随便去掉吗?从一个数的左边__________________, 到__________________止,所有的数字都是这个数的有效数字。
人教版数学七年级上册精品教学设计《1.5.3 近似数》
人教版数学七年级上册精品教学设计《1.5.3 近似数》一. 教材分析《1.5.3 近似数》这部分内容是在人教版数学七年级上册中首次引入近似数的概念。
在此之前,学生已经学习了有理数的概念和运算,这为学习近似数打下了一定的基础。
本节课的主要内容是让学生理解近似数的含义,掌握近似数的求法,以及了解近似数在实际生活中的应用。
教材通过实例引入近似数的概念,接着讲解近似数的求法,最后通过练习让学生巩固所学知识。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和运算有一定的了解。
但是,对于近似数这个概念,他们可能是第一次接触,因此需要通过具体的实例来帮助他们理解和接受。
此外,七年级的学生已经具备了分析问题和解决问题的能力,因此在学习近似数的时候,可以引导他们通过观察、思考、讨论等方式来探索近似数的求法及其应用。
三. 教学目标1.理解近似数的含义,掌握近似数的求法。
2.能够运用近似数解决实际生活中的问题。
3.培养学生的观察能力、思考能力和解决问题的能力。
四. 教学重难点1.近似数的含义及其求法。
2.近似数在实际生活中的应用。
五. 教学方法1.采用实例引入法,通过具体的例子让学生理解和接受近似数的概念。
2.采用问题驱动法,引导学生通过观察、思考、讨论等方式探索近似数的求法及其应用。
3.采用练习法,通过大量的练习让学生巩固所学知识。
六. 教学准备1.准备相关的实例,用于引入近似数的概念。
2.准备一些实际生活中的问题,用于讲解近似数的应用。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个具体的实例,如测量身高、体重等,引入近似数的概念。
让学生观察和思考,近似数是如何得到的,它与准确数有什么区别。
2.呈现(10分钟)讲解近似数的求法,如四舍五入法、进一法、去尾法等。
通过具体的例子,让学生理解和掌握这些方法。
3.操练(10分钟)让学生进行一些近似数的运算,如求近似数、改写近似数等。
七年级数学上册 1.5.3 近似数和有效数字教案 新人教版
课堂小结
通过今天的这堂课的学习,你得到了哪些收获
本课作业
1、必做题:第57页习题1.5 的第6题
2、选做题:用四舍五入法按要求取近似值:
(1)0.2045(保留两个有效数字)
(2)0.785(精确到百分位)
(3)75 436(精确到百位)
教学反思
本节课以学生课前收集的生活数据引,使学生获得了直观的体验,认识到数学来源于生活,认识到生活中存在着准确数和近似数,在了解近似数以后,启发学生“生活中还有什么地方用到近似数?”并通过教师自己设计的情境使学生认识到有时是因为客观条件无法或难以得到准确数据,有时是实际问题无需得到准确数据。
小组合作
分析问题
1、教师提出问题:生活中哪些地方用到近似数?
学生纷纷举例:
(1)2000年第一次人口普查表明,我国的人口总数为12.9533亿。
(2)某词典共1234页。
(3)我们年级有97人,买门票需要800元。
等
上面的数据,哪些是精确的,哪些是近似的?
举例说明生活中哪些数据是精确的,哪些数据是近似的。
使学生明白近似数的精确度
让学生实践按要求取近似数
巩固练习
1、师生共同完教科书第55页例6
并让学生思考:近似数1.8和1.80一样吗?为什么?可组织学生讨论。
2、讨论后反馈:(1)精确度不同;(2)有效数字不同。
3、做一做:教科书第56页练习,可请四位同学到黑板上板演,并由其他学生点评。
使学生明白:对于同一个数取近似值是,有数数字个数越多越精确。
1.5.3近似数和有效数字
教学目标
1、了解近似数和有效数字的概念;
2、能按要求取近似数和保留有效数字;
3、体会近似数的意义及在生活中的作用。
人教版数学七年级上册1.5.3《近似数》教案
人教版数学七年级上册1.5.3《近似数》教案一. 教材分析《近似数》是人教版数学七年级上册第1.5.3节的内容,主要介绍了近似数的概念、求法及其应用。
本节内容是学生学习实数部分的重要一环,对于培养学生的数感、逻辑思维能力以及实际应用能力具有重要意义。
通过学习本节内容,学生能够理解近似数的概念,掌握求近似数的方法,并能运用近似数解决实际问题。
二. 学情分析七年级的学生已经具备了一定的实数基础,对于数的运算、比较大小等有一定的了解。
但近似数的概念和求法对于他们来说是一个新的领域,需要通过实例和练习来逐步理解和掌握。
此外,学生对于实际应用问题的解决能力还有待提高,因此在教学过程中,需要注重培养学生的实际应用能力。
三. 教学目标1.了解近似数的概念,掌握求近似数的方法。
2.能够运用近似数解决实际问题,提高实际应用能力。
3.培养学生的数感、逻辑思维能力,提高学生的学习兴趣。
四. 教学重难点1.近似数的概念和求法。
2.运用近似数解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过实例和问题引导学生理解和掌握近似数的概念和求法。
2.利用多媒体辅助教学,通过动画和图像直观地展示近似数的概念和求法。
3.采用小组合作学习的方式,让学生在讨论和交流中共同解决问题,提高合作能力。
4.注重练习和实际应用,通过解决实际问题提高学生的实际应用能力。
六. 教学准备1.多媒体教学设备。
2.近似数的教学PPT。
3.实际应用问题相关的案例和数据。
4.练习题和测试题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些与近似数相关的实例,如天气预报中的温度、身高、体重等,引导学生思考:这些数据是如何得到的?它们与准确数有何区别?2.呈现(10分钟)介绍近似数的概念,讲解求近似数的方法,如四舍五入、进一法、去尾法等,并通过实例进行演示。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用所学的方法求近似数,并解释结果的意义。
人教版七年级数学上册:1.5.3 《近似数》教学设计
人教版七年级数学上册:1.5.3 《近似数》教学设计一. 教材分析人教版七年级数学上册1.5.3《近似数》是学生在学习了有理数、实数等基础知识后,对数的进一步理解。
本节内容主要介绍近似数的概念、求法及其应用,通过学习,使学生掌握求近似数的方法,能够准确地运用近似数进行计算和估算,为后续的学习和实际应用打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数、有理数等概念有了初步的了解。
但学生在求近似数方面可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解近似数的概念,以及如何准确地求出近似数。
三. 教学目标1.理解近似数的概念,掌握求近似数的方法。
2.能够准确地运用近似数进行计算和估算。
3.培养学生的数感,提高学生的数学思维能力。
四. 教学重难点1.近似数的概念及其求法。
2.运用近似数进行计算和估算。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过生活实例引入近似数的概念,引导学生主动探究求近似数的方法,并在小组合作中互相交流、讨论,从而达到理解掌握的目的。
六. 教学准备1.教学课件:制作课件,展示近似数的定义、求法及应用。
2.教学素材:准备一些生活实例,用于引入近似数的概念。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如购物时找零、测量身高等,引导学生思考:什么是近似数?为什么要用近似数?从而引出本节内容。
2.呈现(10分钟)介绍近似数的定义,通过课件展示,使学生对近似数有直观的认识。
接着讲解求近似数的方法,如四舍五入、进一法、去尾法等,并给出具体例子,让学生明白各种方法的适用场景。
3.操练(10分钟)学生在课堂上进行近似数的计算练习,教师巡回指导,解答学生疑问。
练习题可包括简单的生活实例和计算题,让学生在实际操作中掌握求近似数的方法。
4.巩固(10分钟)学生分组进行小组讨论,总结近似数的求法及其应用。
教师引导学生归纳总结,加深对知识点的理解。
七年级数学上册《1.5.3 近似数》教案 (新版)新人教版
1.5.3 近似数第四课时三维目标一、知识与技能(1)给了一个近似数,你能说出它精确到哪一位,有几个有效数字.(2)给了一个数,会按照精确到哪一位或保留几个有效数字的要求,•四舍五入取近似数.二、过程与方法从测量引入近似数,使学生体会近似数的意义和生活中的应用.三、情感态度与价值观培养学生认真细致的学习态度,合作交流的意识.教学重、难点与关键1.重点:近似数,精确度,有效数字概念.2.难点:由给出的近似数求其精确度及有效数字.3.关键:理解有效数字的概念和小数点末尾的零的意义.四、教学过程,课堂引入1.准确数和近似数.在日常生活和生产实际中,我们接触到很多这样的数.例如:对于参加同一个会议的人数,有两种报道,•一种报道说:“会议秘书处宣布,•参加今天会议的有513人”.这里数字513确切地反映了实际人数,它是一个准确数,另一种报道说: “约有500人参加了今天的会议”,500这个数只能接近实际人数,但与实际人数还有差别,它是一个近似数.例如,统计班上喜欢看球赛同学的人数是35,这个数是与实际完全符合的准确数,一个也不多,一个也不少,又如,初一(1)班有55个学生,某工厂有126台机床,•我有8本练习本,这些数都是与实际完全符合的准确数.如果量得语文课本的宽为13.5cm,由于所用尺的刻度有精确度限制,而且用眼观察时不可能非常细致,因此与实际宽度有一点偏差,这里的13.5cm只是一个与实际宽度非常接近的数,又如,宇宙现在的年龄约为200亿年,长江长约6300千米,•圆周率 约为3.14,这些数都是近似数.五、新授在许多情况下,很难取得准确数,或者不必使用准确数,而可以使用近似数.你还能举出一些日常遇到的近似数吗?2.关于精确度问题近似数与准确数的接近程度,可以用精确度表示,例如,前面的500是精确到百位的近似数,它与准确数513的误差为13.我们都知道圆周率π=3.141592…计算时我们需按照要求取近似数.如果要求按四舍五入精确到个位,那么≈3;如果要求按四舍五入精确到0.1(或精确到十分位),那么π≈3.1;如果要求按四舍五入精确到0.01(或精确到百分位),那么π≈3.14;如果要求按四舍五入精确到0.001(或精确到千分位),那么π≈_______;反过来,若π≈3.1416,那么精确到________,或叫精确到_______.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.3.近似数的有效数字.一个近似数,从左边第一个不是零的数字起,到末位数字止,•所有数字都是这个数的有效数字,一共包含的有效数字的个数,叫这个近似数的有效数字的个数.例如近似数0.025有两个有效数字:2,5;1500有4个有效数字:1,5,0,0;0.103•有有3个有效数字:1,0,3.对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字,例如近似数5.104×106有4个有效数字:5,1,0,4.规定有效数字的个数,也是对近似数精确程度的一种要求.一般说,对于同一个数取近似数时,有效数字个数越多,精确程度越高.如果四舍五入法对π取近似数时,若要求保留1个有效数字,则π≈3;若要求保留3个有效数字,•则π≈3.14.例7:下列是由四舍五入法得到的近似数,各精确到哪一位?保留几个有效数字?(1)132.4;(2)0.0572;(3)2.40万;(4)3000.解:(1)132.4是精确到0.1,保留4个有效数字.(2)0.0572是精确到0.0001,保留3个有效数字.(3)2.40万是精确到百位,保留3个有效数字.(4)3000是精确到个位,保留4个有效数字.六、巩固练习1.课本第46页练习.七、课堂小结正确理解和掌握近似数、准确数和有效数字的概念,给出一个近似数,能准确地确定它精确到哪一位,有哪几个有效数字,并能按要求求一个数的近似数.八、作业布置1.课本第47页至第48页习题1.5第6、7、11题.九、板书设计:1.5.3 近似数第四课时1.一个近似数,从左边第一个不是零的数字起,到末位数字止,•所有数字都是这个数的有效数字,一共包含的有效数字的个数,叫这个近似数的有效数字的个数.2、随堂练习。
人教版七年级上册数学1.5.3 近似数教案2(3)
1.5.3 近似数教学目标:1.理解精确度的意义.2.要准确地说出精确位及按要求进行四舍五入取近似数.教学重点:近似数、精确度的意义.教学难点:按给定的精确度求一个数的近似数.教学过程:一、近似数的定义我们常会遇到这样的问题:(1)七年级(4)班有42名同学;(2)每个三角形都有3个内角.这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:(3)我国的领土面积约为960万平方千米;(4)王强的体重是约49千克.我们把像960万、49这些与实际数很接近的数称为近似数.在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是求精确度的问题.二、精确度我们都知道:π=3.1415926……我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01).一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.像上面我们取3.142为π的近似数,它精确到千分位(即精确到0.001).三、例题【例1】按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001);(2)30 435(精确到万位);(3)1.804(精确到十分位);(4)1.804(精确到个位).【例2】下列由四舍五入法得到的近似数,各精确到哪一位?(1)132.4;(2)0.0572;(3)2.40万.四、课堂练习1.请你列举出生活中准确值和近似值的实例.2.下列各题中的数,哪些是精确数?哪些是近似数?(1)东北师大附中共有98个教学班;(2)我国有13亿人口.3.用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.65148(精确到千分位);(2)1.5673(精确到0.01);(3)0.03097(精确到千分位);(4)75460(精确到万位);(5)909900(精确到万位).4.下列由四舍五入法得到的近似数,各精确到哪一位?(1)54.8;(2)0.00204;(3)3.6万.。
人教版数学七年级上册学案:1.5.3 近似数
1.5.3 近似数一、学习目标:1、了解近似数和有效数字的概念;2、能按要求取近似数和保留有效数字;3、体会近似数的意义及在生活中的作用.二、自主预习:1.在一次体检中,测得甲的身高是1.82m,测得乙的身高大约是l.8m.(1)你能知道甲和乙的确切身高吗?(2)甲的身高是一个准确的数,乙的身高不是一个准确的数,那么你知道乙的身高是一个什么数吗?2.数字1.8精确到0.1,也可以说是精确到十分位;数字l.80精确到0.Ol,也可以说是精确到百分位;数字l.805精确到,也可以说是精确到.3.近似数2.045有四个有效数字,分别是2,0,4,5;近似数0.0302有三个有效数字,分别是3,0,2;近似数0.0018有个有效数字,分别是.4.用四舍五人的方法,把8.153 247精确到万分位是,把2.36精确到0.1是.注意:(1)对于有效数字,是指一个数按要求取近似值后,从左边第一个非0的数字到精确到的最后一个数字中间(包括两头)的所有数字;(2)精确度一般有两种形式:一是精确到哪一位,二是保留几个有效数字。
三、课堂同步互动:(一)近似数1、什么样的数是近似数?近似数与精确数有哪些区别?分别试举出几个例子。
2、有下列数据:○1参加今天会议的有513人;○2约有五百人参加了今天的会议;○3我国有13亿人口;○4教室里有66人在做数学作业;○5吐鲁番盆地海拔-155米,○6其中是准确数,是近似数。
3、近似数与准确数的接近程度,可以用表示。
按四舍五入法对圆周率π取近似数时,π3(精确到个位)有≈π 3.1(精确到0.1位,或叫做精确到十分位)≈π 3.14(精确到0.01位,或叫做精确到百分位)≈π 3.142(精确到位,或叫做精确到位)≈π 3.1416(精确到位,或叫做精确到位)≈例题1、按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0158(精确到0.001)(2)304.35(精确到个位)(3)1.804(精确到0.1)(4)1.804(精确到0.01)(二)有效数字1、从一个数的左边第一个数字起,到末尾数字止,所有的数字都是这个数的有效数字。
2014年秋七年级数学上册 1.5.3 近似数教案 (新版)新人教版
近似数
(6)爸爸身高180厘米,妈妈体重50千克,我家有3口人
这些数据在收集的过程中,有些是精确的,而有些由于客观条件无法或难以得到精确数据或无需要得到精确数据而取了近似数.
凭你生活的经验,你能判断一下,哪些是精确数?哪些是近似数吗?
与实际接近的数就是我们今天要学的近似数。
兴趣,并引入新课
探究新知一、学生活动:
1、用你的刻度尺测量一下数学课本的长和宽,可
以读出一些数据,它们是准确的还是近似的?
2、同桌的小明和小颖用最小单位不同的刻度尺测
量了同一片树叶的长度,如图所示:
(1)根据小明的测量方法,你能知道他用的刻度尺
最小刻度是什么吗?这片树叶的长度约为多少?根据
小颖的测量呢?
(2)谁的测量结果更精确一些?说说你的理由.
小明用的刻度尺最小单位是厘米,这片树叶的长度
约为,其中6是精确的,8是估计的,即是近似的;小
颖用的刻度尺最小单位是毫米,她测量的结果可以读
成,其6和7都是精确的,而8是估计的,即是近似的.
小颖测量的结果要比小明的更精确一些.
3、同桌的小明和小颖共收集了12片树叶,测得刚
使学生明白近似
数的精确度
让学生实践按要
求取近似数
有效数字要概念
重点是“0”辩别
使学生印象更深
刻。
秋七年级数学上册 1.5.3 近似数导学案 (新版)新人教版-(新版)新人教版初中七年级上册数学学案
近似数
1. 了解近似数的概念.
2. 能按要求取近似数.
3. 体会近似数的意义及在生活中的作用.
自学指导
看书学习第46、47页的内容,思考下列问题.
什么样的数是近似数?近似数与精确度有哪些区别?分别试举出几个例子.
知识探究
近似数与准确数的接近程度可以用精确度来表示,一般地,一个近似数,四舍五入到某一位,就说这个近似数精确到哪一位.
自学反馈
下列由四舍五入得到的近似数,各精确到哪一位?
(5)103×104 (7)10亿 (8)10
解:(1)千分位;(2)万分位;(3)十分位;(4)百分位;(5)万位;(6)百位;(7)亿位;(8)个位.
精确度的一般表示形式是精确到哪一位.
活动1:小组讨论
1.下列各数中,是准确数的是(C)
2.下列各数中,是近似数的是(C)
A.七(1)班共有65名同学
3.据统计,2007年义乌中国小商品城市场全年成交额约为348.4亿元,连续第17次蝉联全国批发市场榜首,近似数348.4亿元的精确位数是(C)
×103与6300这两个近似数,下列说法中,正确的是(C)
C.它们的大小相同,精确位数不相同
D.它们的大小不相同,精确位数相同
“鸟巢”×108帕.(精确到千万位)
活动2:活学活用
百分位.
2.用四舍五入法对60340取近似值(精确到千位)60340≈×104.
×103精确到十位.
.
×104精确到千位约是×104.
π…精确到百分位是.
1.准确数与近似数.
2.按要求取近似值.。
七年级数学上册《1.5.3 近似数》学案
七年级数学上册《1.5.3 近似数》学案以下是查字典数学网为您推荐的七年级数学上册《1.5.3 近似数》学案,希望本篇文章对您学习有所帮助。
七年级数学上册《1.5.3 近似数》学案学习目标: 理解精确度和有效数字的意义;准确地按要求求一个数的近似数。
学习重点:近似数、精确度和有效数字的意义,学习难点:由给出的近似数求其精确度及有效数字,按给定的精确或有效数一个数的近似数.学习过程:一、自主学习准确数与近似数:(1)初一(4)班有42名同学,数42是数;(2)每个三角形都有3个内角,数3是数;(3)我国的领土面积约为960万平方千米,数960万是数;(4)王强的体重是约49千克,数49是数.二、合作探究1、王强的身高为165cm,数165是一个数,表示王强的身高大于或等于 cm,而小于 cm。
2、长江长约6300千米,是一个数,表示长江长大于或等于千米,而小于千米。
3、按四舍五入法对圆周率取近似值:( )(精确到个位), (精确到0.1,或叫做精确到十分位),(精确到0.01,或叫做精确到分位),(精确到,或叫做精确到 ),(精确到,或叫做精确到 ),4、有效数字:从一个数起,到止,所有数字都是这个数的有效数字。
5、 3.256精确到位,有个有效数字是 ;5.08精确到位,有个有效数字是 ;6.3080精确到位,有个有效数字是 ;0.0802精确到位,有个有效数字是 ;3.02万精确到位,有个有效数字是 ;1.68105精确到位,有个有效数字是。
6、按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001) (2)30 435(保留3个有效数字)(3)1.804(保留2个有效数字) (4)1.804(保留3个有效数字)三、巩固提高1、完成课本练习。
2、用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.65148 (精确到千分位); 解:0.65148(2)1.5673 (精确到0.01);(3)0.03097 (保留三个有效数字);(4)75460 (保留三个有效数字);(5)90990 (保留二个有效数字);(6) 64.8 (精确到个位);(7) 0.0692 (保留2个有效数字);(8)399720 (保留3个有效数字)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5.3近似数学案
【学习目标】:1.了解近似数和有效数字的概念,能按要求取近似数和保留有效数字;
2.体会近似数的意义及在生活中的应用;
【学习重点】:能按要求取近似数和有效数字;
【学习难点】:有效数字概念的理解。
【导学指导】
一、知识链接
1.用科学记数法表示下列各数:
(1)1250000000= ;(2)-130000= ;
(3)-1025000= ;
2.下列用科学记数法表示的数,把原数写在横线上:
(1)=⨯-51003.2 ;(2)
=⨯7108.5 ;
二.自主学习
1.(1)我们班有 名学生, 名男生, 名女生;
(2)一天有 小时,一小时有 分,一分钟有 秒;
(3)我的体重约为 千克,我的身高约为 厘米;
(4)我国大约有 亿人口.
在上题中,第 题中的数字是准确的,第 题中的数字是与实际接近的。
这种只是接近实际数字,但与实际数字还有差别的数被称为近似数。
2.你还能举出生活中的准确数与近似数吗?请将你举的例子写在下面的空白处。
3.近似数与准确数的接近程度,可以用精确度表示(也就是按四舍五入保留小数)。
按四舍五入对圆周率π取近似数时,有:
3≈π(精确到个位),
1.3≈π(精确到 0.1 ,或叫精确到十分位),
14.3≈π(精确到 ,或叫精确到 位),
142.3≈π(精确到 ,或叫精确到 位),
1416.3≈π(精确到 ,或叫精确到 位)。
……
4.例6按括号内的要求,用四舍五入法对下列各数取近似数:
(1)0.0158(精确到0.001); (2)304.35(精确到个位);
(3)1.804(精确到0.1);(4)1.804(精确到0.01);
解:(1)(2)
(3)(4)
思考:1.8,与1.80的精确度相同吗?在表示近似数时,能将小数点后的0随便去掉吗?
从一个数的左边__________________, 到__________________止,所有的数字都是这个数的有效数字。
【课堂练习】
P46练习
用四舍五入法对它们取近似数,并写出各近似数数的有效数字
(1)0.00356(精确到万分位);(2)61.235(精确到个位);
(3)1.8935(精确到0.001);(4)0.0571(精确到0.1);
【要点归纳】:
【拓展训练】
1.按括号内要求,用四舍五入法对下列各数取近似数:
(1)0.00356(精确到0.0001);(2)566.1235(精确到个位);
(3)3.8963(精确到0.1);(4)0.0571(精确到千分位);
(5)0.2904(保留两个有效数字);(6)0.2904(保留3个有效数字);
2.(1)0.3649精确到位,有个有效数字,分别是;
(2)2.36万精确到位,有个有效数字,分别是;
(3)5.7×105精确到位,有个有效数字,分别是 __;
【总结反思】:。