芝罘区数学二次函数最值练习题(带答案)

合集下载

中考数学《二次函数的最值》专项练习题及答案

中考数学《二次函数的最值》专项练习题及答案

中考数学《二次函数的最值》专项练习题及答案一、单选题1.定义:如果两个函数图象上至少存在一对点是关于原点对称的,我们则称这两个函数互为“守望函数”,这对点称为“守望点”.例如:点P(2,4)在函数y =x 2上,点 Q(−2,−4)在函数y =−2x −8上,点P 与点Q 关于原点对称,此时函数y =x 2和y =−2x −8互为“守望函数”,点P 与点Q 则为一对“守望点”.已知函数y =x 2+2x 和y =4x +n −2022互为“守望函数”,则n 的最大值为( ) A .2020B .2022C .2023D .40842.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值为( ) A .1或B .- 或C .D .13.已知二次函数y =ax 2+bx −1(a ,b 是常数,a ≠0)的图象经过A(2,1),B(4,3),C(4,−1)三个点中的其中两个点.平移该函数的图象,使其顶点始终在直线y =x −1上,则平移后所得抛物线与y 轴交点纵坐标的( ) A .最大值为-1B .最小值为-1C .最大值为−12D .最小值为−124.二次函数y=ax 2+bx+c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 y125﹣3﹣4﹣35121)二次函数y=ax 2+bx+c 有最小值,最小值为﹣3;2)当 −12<x <2 时,y <0;3)二次函数y=ax 2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( ) A .3B .2C .1D .05.已知二次函数 y =−(x −ℎ)2+4 (h 为常数),在自变量 x 的值满足 1≤x ≤4的情况下,与其对应的函数值 y 的最大值为0,则 h 的值为( ) A .和B . 和C .和D . 和6.经过点A (m ,n ),点B (m ﹣4,n )的抛物线y =x 2+2cx+c 与x 轴有两个公共点,与y 轴的交点在x 轴的上方,则当m >﹣12时,n 的取值范围是( )A .14<n <4B .12<n <2C .18<n <8D .14<n <27.二次函数y =x 2+2x -5有A .最大值-5B .最小值-5C .最大值-6D .最小值-68.①4的算术平方根是±2;②√2与-√8是同类二次根式;③点P (2,3)关于原点对称的点的坐标是(-2,-3); ④抛物线y=-12(x-3)2+1的顶点坐标是(3,1).其中正确的是( ) A .①②④B .①③C .②④D .②③④9.童装专卖店销售一种童装,已知这种童装每天所获得的利润y (元)与童装的销售单价x (元)之间满足关系式y=-x 2+50x+500,则要想每天获得最大利润,单价需为( ). A .25元B .20元C .30元D .40元10.已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的y 与x 的部分对应值如表:x ﹣5 ﹣4 ﹣2 0 2 y6﹣6﹣468,y 1),点(8,y 2)在二次函数图象上,则y 1<y 2;④方程ax 2+bx +c =﹣5有两个不相等的实数根.其中,正确结论的是( ) A .①②③B .①③④C .①②④D .②③④11.已知抛物线y=-2(x-3)2+5,则此抛物线( )A .开口向下,对称轴为直线x=-3B .顶点坐标为(-3,5)C .最小值为5D .当x >3时y 随x 的增大而减小12.如果抛物线 y =x 2−6x +c −2 的顶点到 x 轴的距离是3,那么 c 的值等于( )A .8B .14C .8或14D .-8或-14二、填空题13.二次函数y=2x 2﹣1,∵a= ,∴函数有最 值.14.公路上行驶的汽车急刹车时的行驶路程s (m )与时间t (s )的函数关系式为s=20t-5t 2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行 m 才能停下来.15.已知二次函数y = 12x ²+2若自变量x 的取值范围是-1≤x ≤2,则函数y 的取值范围是 .16.函数y =x 2−2x(0≤x ≤3)有最大值,也有最小值,则最小值是 . 17.若二次函数y =-x 2-4x +k 的最大值是9,则k = .18.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的范围是.三、综合题19.某农作物的生长率p与温度t ( C∘ )有如下关系:如图,当10≤t≤25 时可近似用函数p=150t−15刻画;当25≤t≤37 时可近似用函数p=−1160(t−ℎ)2+0.4刻画.(1)求ℎ的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p满足函数关系,部分数据如下:生长率p0.20.250.30.35提前上市的天数m(天)051015②请用含t的代数式表示m③天气寒冷,大棚加温可改变农作物生长速度.在大棚恒温20℃时每天的成本为100元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若加温到25<t≤37,由于要采用特殊方法,成本增加到400元/天,问加温到多少度时增加的利润最大?并说明理由。

中考数学复习《二次函数的最值》专项测试卷(带答案)

中考数学复习《二次函数的最值》专项测试卷(带答案)

中考数学复习《二次函数的最值》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.二次函数2(1)5y m x =++有最小值,则m 的取值范围是( ) A.1m <-B.1m <C.1m >-D.2m >-2.已知抛物线221y x x =--,则当03x ≤≤时函数的最大值为( ) A.-2B.-1C.0D.23.已知二次函数在0x a ≤≤时y 取得的最大值为15,则a 的值为( ) A.1B.2C.3D.44.关于二次函数()214y x =-++的最值,下列说法正确的是( ) A.最小值为1- B.最小值为4C.最大值为1D.最大值为45.如图,ABC △是等腰直角三角形90C ∠=︒,2AC BC ==点D 为边AB 上一点,过点D 作DE AC ⊥,DF BC ⊥垂足分别为E ,F ,点D 从点A 出发沿AB 运动至点B.设DE x =,DF y =四边形CFDE 的面积为S ,在运动过程中,下列说法正确的是( )A.y 与x 满足一次函数关系,S 与x 满足二次函数关系,且S 存在最大值B.y 与x 满足一次函数关系,S 与x 满足二次函数关系,且S 存在最小值C.y 与x 满足反比例函数关系,S 与x 满足二次函数关系,且S 存在最大值D.y 与x 满足反比例函数关系,S 与x 满足二次函数关系,且S 存在最小值6.对称轴为直线1x =的抛物线2y ax bx c =++(a ,b ,c 为常数,且0a ≠)如图所示,小明同学得出了以下结论: ①0abc < ②24b ac > ③420a b c ++>④()a b m am b +≤+(m 为任意实数),其中结论正确的个数为( ).2241y x x =--A.1B.2C.3D.47.已知抛物线()2y x b c =-+经过()11,A n y -,()2,B n y 和()33,C n y +三点13y y =.当1n x n -≤≤时二次函数的最大值与最小值的差为16,则n 的值为( ) A.-B.3C.196D.48.在“探索函数2y ax bx c =++的系数a ,b ,c 与图象的关系”活动中,老师给出了平面直角坐标系中的四个点:(0,2)A 和(1,0)B ,(3,1)C 和(2,3)D ,如图.同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中a 的值最大为( )A.52B.32 C.56D.129.已知二次函数22(2)2y x m x m =+--+的图象与x 轴最多有一个公共点,若223y m tm =--的最小值为3,则t 的值为( )A.12-B.32或32- C.52-或32-D.52-10.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b cp ++=,则其面积()()()S p p a p b p c =---这个公式也被称为海伦一秦九韶公式.若5p =,4c =则此三角形面积的最大值为( ) 5B.4C.25D.511.如图,在矩形ABCD 中3DC =和3AD DC =,P 是AD 上一个动点,过点P 作PG AC ⊥,垂足为G ,连接BP ,取BP 中点E ,连接EG ,则线段EG 的最小值为( )A.34B.32C.3 312.如图,ABC △是等边三角形3AB =E 是AC 的中点,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转90︒,得到线段EF ,当点D 运动时则AF 的最小值为( )A.3B.234C.8D.236二、填空题13.已知二次函数22y ax ax c =-+(a ,c 为常数,0a ≠)的最大值为2,写出一组符合条件的a 和c 的值:__________.14.已知二次函数22y x x m =-+,当04x ≤≤时函数的最大值与最小值的差是__________.15.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是22603s t t -=,则飞机着陆后滑行的最长时间为_________秒.16.某快餐店销售A ,B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40,80.该店为了增加利润,准备降低每份A 种快餐的利润,同时每份B 种快餐也提高同样的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是__________元.17.如图,在直线l :4y x =-上方的双曲线2(0)y x x=>上有一个动点P ,过点P 作x轴的垂线,交直线l 于点Q ,连接OP ,OQ ,则POQ △面积的最大值是___________.18.抛物线2y ax bx c =++(a 为整数)与直线y x c =-+如图所示,抛物线的对称轴为直线1x =,直线y x c =-+与抛物线2y ax bx c =++在第四象限交于点D ,且点D 的横坐标小于3,则a 的最大值为_________.19.如图,约定:三角形下方的数等于上方两数之和,则y 的最小值为__________.20.正方形ABCD 的边长为4,AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .在点E 从点A 移动到点B 的过程中,矩形ECFG 面积的最大值与最小值的和为__________.三、解答题21.已知二次函数25y x =+,当12x -≤≤时求函数y 的最小值和最大值.小王的解答过程如下:解:当1x =-时6y =;当2x =时9y =,所以函数y 的最小值为6,最大值为9. 小王的解答过程正确吗?如果不正确,请写出正确的解答过程.22.某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:单价(元/件) 30 34 38 40 42 销量(件)4032242016(1)计算这5天销售额的平均数(销售额=单价⨯销量)(2)通过对上面表格中的数据进行分析,发现销量y (件)与单价x (元/件)之间存在一次函数关系,求y 关于x 的函数关系式(不需要写出函数自变量的取值范围); (3)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?23.如图,抛物线2y x bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的顶点为P ,已知点()1,0B 和()0,3C -.(1)求抛物线的解析式;(2)当30x -≤≤时求y 的最大值与最小值;(3)点M 是抛物线上一动点,且到x 轴的距离小于3,请直接写出点M 的横坐标M x 的取值范围.24.如图,点(,3)P a 在抛物线2:4(6)C y x =--上,且在C 的对称轴右侧.(1)写出C 的对称轴和y 的最大值,并求a 的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P 及C 的一段,分别记为P ',C '平移该胶片,使C '所在抛物线对应的函数恰为269y x x =-+-,求点移动的最短路程.25.如图,在ABC △中5BC =,高4AD =,矩形EFPQ 的一边QP 在BC 边上,E 、F 分别在AB ,AC 上,AD 交EF 于点H.设EF x =.(1)当四边形EFPQ 为正方形时求x 的值; (2)求矩形EFPQ 的最大面积.26.如图,在平面直角坐标系中,二次函数2y x bx c =-++的图象与x 轴交于A 、B 两点,与y 轴交于()0,3C ,A 点在原点的左侧,B 点的坐标为()3,0.点P 是抛物线上一个动点,且在直线BC 的上方.(1)求这个二次函数及直线BC 的表达式.(2)过点P 作PD y ∥轴交直线BC 于点D ,求PD 的最大值.(3)点M 为抛物线对称轴上的点,问在抛物线上是否存在点N ,使MNO 为等腰直角三角形,且NMO ∠为直角,若存在,请直接写出点N 的坐标;若不存在,请说明理由.参考答案1.答案:C 解析:略 2.答案:D 解析:略P '3.答案:D解析:222412(1)3y x x x =--=--,∴抛物线的对称轴为直线1x =,顶点坐标为(1,3)-.当15y =时22(1)315x --=,解得4x =或2x =-.当0x a ≤≤时y 取得的最大值为15,4a ∴=. 4.答案:D解析:二次函数()214y x =-++中10a =-<∴函数图像开口向下 ∴函数有最大值函数图像的顶点坐标为()1,4-∴二次函数()214y x =-++的最大值为4.故选:D. 5.答案:A 解析:ABC △是等腰直角三角形,90C ∠=︒∴45A B ∠=∠=︒DF BC ⊥ DE AC ⊥AED ∴△和DFB △是等腰直角三角形,四边形CFDE 是矩形CF DE AE x ∴=== BF DF y == 2AC BC ==BF BC CF ∴=-即2y x =-∴y 与x 满足一次函数关系()()222211S CF DF x x x x x =⨯=-=-=--+,最大值为1 ∴S 与x 满足二次函数关系,且S 存在最大值.故选:A. 6.答案:B解析:①由图象可知:0a > 0c <12ba -=20b a ∴=-<0abc ∴>,故①错误;②抛物线与x 轴有两个交点240b ac ∴->24b ac ∴>,故②正确;③图像对称轴为直线1x =,与x 轴一个交点在-1和0之间 则另一个交点在2和3之间∴当2x =时图像在x 轴下方,即0y < ∴当2x =时420y a b c =++<,故③错误;④当1x =时y 取最小值,此时y a b c =++ 而当x m =时2y am bm c =++ 所以2a b c am bm c ++≤++故2a b am bm +≤+,即()a b m am b +≤+,故④正确; 即正确的结论有2个 故选B. 7.答案:B 解析:13y y =∴A ,C 两点关于对称轴对称.1322n n b -++∴==即抛物线解析式为()22y x c =-+.1n x n -≤≤∴点B 在点A 的右侧,且有1n n -≤12n ∴≥. 情况1:如图1,当点A 与点B 均在对称轴的左侧时此时2n <;当1x n =-时二次函数取到最大值为()()22121y n c n c =--+=++; 当x n =时二次函数取到最小值为()22y n c=-+()()221216n c n c ∴++---=,解得196n =(舍去). 情况2:如图2,当点A 与点B 在对称轴的两侧时此时2n ≥;A 到对称轴的水平距离为()211n n --=+.B 到对称轴的距离为2n -,当1x n =-时二次函数取到最大值为()()22121y n c n c =--+=++;当2x =时二次函数取到最小值为y c =()2116n c c ∴++-=,解得3n =或5-(舍).综上3n =. 故选:B. 8.答案:A解析:设过三个点()0,2A ,()1,0B 和()3,1C 的抛物线解析式为:2y ax bx c =++ 分别代入()0,2A ,()1,0B 和()3,1C 得:20931c a b c a b c =⎧⎪++=⎨⎪++=⎩解得561762a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩设过三个点()0,2A ,()1,0B 和()2,3D 的抛物线解析式为:2y ax bx c =++ 分别代入()0,2A ,()1,0B 和()2,3D 得:20423c a b c a b c =⎧⎪++=⎨⎪++=⎩解得52922a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩;设过三个点()0,2A ,()3,1C 和()2,3D 的抛物线解析式为:2y ax bx c =++ 分别代入()0,2A ,()3,1C 和()2,3D 得:2931423c a b c a b c =⎧⎪++=⎨⎪++=⎩解得561362a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩;设过三个点()1,0B ,()3,1C 和()2,3D 的抛物线解析式为:2y ax bx c =++ 分别代入()1,0B ,()3,1C 和()2,3D 得:0931423a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得522128a b c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩; 55552662>>->- ∴a 最大为52故选:A. 9.答案:D解析:二次函数22(2)2y x m x m =+--+的图象与x 轴最多有一个公共点 ∴()()222420m m ∆=---+≤⎡⎤⎣⎦ 化简得2320m m -+≤解得:12m ≤≤()222233ym tm m t t =--=---10a =>,抛物线开口向上当1t <时12m ≤≤,y 随m 增大而增大∴1m =时y 值最小,此时最小值为()221322t t t ---=-- 223y m tm =--的最小值为3∴223t --=解得:52t =-; 当12t ≤≤时当m t =时y 有最小值23t --223y m tm =--的最小值为3∴233t --=此时t 无解;当2t >时12m ≤≤,y 随m 增大而减小∴2m =,y 值最小,此时最小值为()222341t t t ---=-+ 223y m tm =--的最小值为3∴413t -+= 解得12t =-(舍去); 综上,若223y m tm =--的最小值为3,则52t =-. 故选:D.10.答案:C解析:5p = 4c =和2a b c p ++= 26a b p c ∴+=-=5(5)(5)(54)55S a b ab ∴=---=-由6a b +=,得6b a =-,代入上式,得:25(6)5565S a a a a =---+-设265y a a =-+-,当265y a a =-+-取得最大值时S 也取得最大值22+65(3)4y a a a =--=--+∴当3a =时y 取得最大值4∴S 5425=故选:C.11.答案:A解析:如图所示,取AP 的中点F ,连接EF ,作GH AD ⊥于H ,作ET GH ⊥于T设AP m =四边形ABCD 是矩形90D ∴∠=︒ 3AB CD ==3tan 33CD DAC AD CD∴∠===30DAC ∴∠=︒PG AC ⊥1122PG AP m ∴== 9060APG DAC ∠=︒-∠=︒11cos cos6024PH PG APG m m ∴=⋅∠==︒⋅ 13sin sin 602GH PG APG m =⋅∠=︒=⋅ 90PFE BAP ∠=∠=︒ EPF BPA ∠=∠EPF BPA ∴∽△△12PF EF PE AP AB BP ∴=== 1322EF AB ∴== 12PF m = 332GT GH HT GH EF ∴=-=-=- 111244ET FH PF PH m m m ==-=-= 在Rt EGT △中2222223311339()()()24416EG GT ET m m =+=-+=+ ∴当332m =时2EG 取得最小值916 0EG >EG ∴的最小值为34. 故选:A.12.答案:D解析:作DM AC ⊥于M ,FN AC ⊥于N ,如图所示:设为等边三角形,为的中点在中, 线段绕点E 逆时针旋转,得到线段,∴EDM FEN △△≌当D 在BC 上时DM EN x == 343EM NF == 在Rt AFN △中()2223343AF x x ⎛⎫=+ ⎪ ⎪⎝⎭()24333482433x =+++当D 在BC 的延长线上时如图所示:DM x=ABC △∴83AB BC AC ===60BAC B C ∠=∠=∠=︒E AC ∴43AE CE ==Rt CDM △3tan 603DM CM x ==︒ED 90︒EF ∴ED EF =90DEF ∠=︒90ENF DME ∠=∠=︒∴90FEN DEM DEM EDM ∠+∠=∠+∠=︒∴FEN EDM ∠=∠DM EN x == 343EM NF x == 在Rt AFN △中()2223333AF x x ⎛⎫=+ ⎪ ⎪⎝⎭()24333482433x =-++当333x =时2AF 有最小值48243+()2433348243482433x +++≥+∴AF ()248243236236+=+=故选:D.13.答案:2a =- 0c =(答案不唯一)解析:由题意,得24(2)24ac a a--=,2c a ∴-=,故2a =-时0c =. 14.答案:9解析:易知二次函数22y x x m =-+的图象开口向上,对称轴是直线1x =,∴当04x ≤≤时可知1x =时y 取最小值,4x =时y 取最大值.当1x =时1y m =-;当4x =时8y m =+ 8(1)9m m ∴+--=.15.答案:20解析:()2236020262300s t t t ==--+-当20t =时s 取得最大值,此时.故答案是:20.16.答案:1264解析:由题意可知,这两种快餐每天销售的总份数为4080120+=.设每份A 种快餐的利润降低x 元,这两种快餐一天的总利润为y 元,则每份B 种快餐的利润提高x 元.根据题意,得22(12)(402)(8)(802)44811204(6)1264y x x x x x x x =-+++-=-++=--+.因为40-<,所以当6x =时y 取最大值,最大值为1264,即这两种快餐一天的总利润最多是1264元.17.答案:3∴600s =解析:依题意,设2,P x x ⎛⎫ ⎪⎝⎭,则(),4Q x x - 则24PQ x x=-+ ∴()22121141223222POQ S x x x x x x ⎛⎫=-+⨯=-+=--+ ⎪⎝⎭△102-<,二次函数图象开口向下,有最大值 ∴当2x =时POQ △面积的最大值是3故答案为:3.18.答案:-2 解析:抛物线的对称轴为直线1x = 12b a∴-= 2b a ∴=-.观察题图可知,当3x =时拋物线2y ax bx c =++上对应的点在直线y x c =-+上对应的点的下方933a b c c ∴++<-+将2b a =-代入,解得1a <-.又a 为整数,∴a 的最大值为-2.19.答案:-1解析:由题意,得22222343(2)1y a b x x x x x x =+=+++=++=+-,∴当2x =-时y 有最小值-1.故答案为-1.20.答案:32解析:连接DE .12CDE ECFG S S =四边形△ 12CDE ABCD S S =正方形△ ∴矩形ECFG 与正方形ABCD 的面积相等.4416ABCD S =⨯=正方形 ∴矩形ECFG 的面积是定值16,∴矩形ECFG 面积的最大值与最小值的和为32,故答案为32.21.答案:不正确,见解析解析:不正确.正确的解答过程如下:抛物线25y x =+的开口向上,对称轴是直线0x =∴当10x -≤≤时y 随x 的增大而减小;当02x ≤≤时y 随x 的增大而增大.∴当0x =时y 取得最小值5.当1x =-时6y =;当时.当时y 取得最大值9.综上可知,当12x -≤≤时函数y 的最小值是5,最大值是9.22、2x =9y =∴2x =(1)答案:934.4元 解析:30403432382440204216934.45x ⨯+⨯+⨯+⨯+⨯==元. (2)答案:2100y x =-+解析:设所求一次函数关系式为()0y kx b k =+≠将()30,40,()40,20代入y kx b =+,得 30404020k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩2100y x ∴=-+;(3)答案:35元解析:设利润为w 元,产品的单价为x 元/件,根据题意,得22(20)(2100)214020002(35)450w x x x x x =--+=-+-=--+∴当35x =元/件时工厂获得最大利润450元.23.答案:(1)223y x x =+-(2)y 的最大值为0,最小值为4- (3)071M x <或172M x -<<-解析:(1)抛物线2y x bx c =++经过点()1,0B 和()0,3C -013b c c =++⎧∴⎨-=⎩,解得23b c =⎧⎨=-⎩∴抛物线的解析式为223y x x =+-.故答案为:223y x x =+-;(2)()222314y x x x =+-=+- ∴抛物线的对称轴为直线1x =-,开口向上30x -≤≤∴当1x =-时4y =-当3x =-时0y =当0x =时=3y -∴y 的最大值为0,最小值为4-.故答案为:y 的最大值为0,最小值为4-;(3)点M 是抛物线上一动点,且到x 轴的距离小于32233x x ∴-3<+-<.当2233x x +->-时解得0x >或<2x -当2233x x +-<时令2233x x +-=,则17x =-±1717x ∴-<<-.()222314y x x x =+-=+- ()1,4P ∴--∴P 到x 轴距离大于3∴M 点在P 的左边或在P 的右边.∴综合①和②可知,071M x <<或172M x -<<-. 故答案为:071M x <或172M x -<<-.24、(1)答案:对称轴为直线6x =,y 的最大值为4,a=7 解析:抛物线22:4(6)(6)4C y x x =--=--+∴抛物线的顶点为(6,4)Q ,对称轴为直线6x =,y 的最大值为4.当3y =时23(6)4x =--+,5x ∴=或7.点P 在对称轴的右侧(7,3)P ∴ 7a ∴=.(2)答案:5 解析:平移后的抛物线的表达式为2(3)y x =--∴平移后的抛物线的顶点为(3,0)Q '.平移前抛物线的顶点为(6,4)Q∴点P '移动的最短路程22345QQ '==+=.25.答案:(1)209(2)5 解析:(1)由题意知//EF BC ////EQ AD PF EF PQ = EQ PF =AD BC ⊥∴AD EF ⊥四边形EFPQ 为正方形 EF x =∴DH EQ EF x ===,则4AH AD DH x =-=-//EF BC∴AEF ABC∽△△∴EF AHBC AD=,即454x x-=,解得209x=∴x的值为209;(2)设EQ y=,则DH y=4AH y=-同理(1)AEF ABC∽△△∴EF AHBC AD=,即454x y-=,解得445y x=-∴244545552EFPQS xy x x x⎛⎫⎛⎫==-=--+⎪ ⎪⎝⎭⎝⎭矩形45-<∴当52x=时矩形EFPQ的面积最大,最大面积为5.26.答案:(1)二次函数的表达式为223y x x=-++,直线BC的表达式为3y x=-+ (2)94(3)存在,点N的坐标为(3132-,1132+)或(1212+,2132-)或(1212-,2132--)或(3132+,1132-)解析:(1)把点B,点C的坐标代入解析式2y x bx c=-++中得:9303b cc⎧⎨⎩++==解得:23bc⎧⎨⎩==∴二次函数得表达式为223y x x=-++;设BC的函数表达式为y=kx+b把点B,点C的坐标代入可得:033k bb=+⎧⎨=⎩解得:13kb=-⎧⎨=⎩∴直线BC 的函数表达式为:3y x =-+;(2)如图,∴PD y ∥轴∴点P 和点D 的横坐标相同设动点P 的坐标为(x ,223x x -++),则点D 的坐标为(x ,3x -+)PD =()2233x x x -++--+=2229939334424x x x x x ⎛⎫⎛⎫-+=--++=--+ ⎪ ⎪⎝⎭⎝⎭ 当x =32时PD 有最大值94; (3)分情况讨论:∴当点M 在x 轴上方,点N 在对称轴左侧时如图1,设对称轴与x 轴交于点F ,过点N 作NE ∴MF 于点E∴MNO 为等腰直角三角形,且NMO ∠为直角∴NM =MO ,∴NMO =90°∴∴NME +∴OMF =90°∴∴NME +∴MNE =90°∴∴MNE =∴OMF又∴∴MEN =∴OFM =90°∴∴MEN ∴∴OFM (AAS )∴OF =EM ,MF =NE∴二次函数223y x x =-++的对称轴为直线212x =-=- ∴OF =EM =1设点M 坐标为(1,a ),则NE =MF =a∴N (1-a ,1+a )∴点N 在抛物线223y x x =-++上第 21 页 共 21 页 ∴()()211213a a a +=--+-+ 整理得:230a a +-= 解得:1132a -+=∴N (3132-,1132+) ∴当点M 在x 轴上方,点N 在对称轴右侧时如图2 同理可得:点N 坐标为(1212+,2132-); ∴当点M 在x 轴下方,点N 在对称轴左侧时如图3 同理可得:点N 坐标为(1212-,2132--); ∴当点M 在x 轴下方,点N 在对称轴右侧时如图4 同理可得:点N 坐标为(3132+,1132-); 综上,点N 的坐标为(3132-,1132+)或(1212+,2132-)或(1212-,2132--)或(3132+,1132-).。

中考数学总复习《二次函数的最值》练习题及答案

中考数学总复习《二次函数的最值》练习题及答案

中考数学总复习《二次函数的最值》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知二次函数y=a(x+2)2+3(a<0)的图象如图所示,则以下结论:①当x>﹣2时,y随x的增大而增大;②不论a为任何负数,该二次函数的最大值总是3;③当a=﹣1时,抛物线必过原点;④该抛物线和x轴总有两个公共点.其中正确结论是()A.①②B.②③C.②④D.①④2.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,求m的最大值() A.-3B.3C.-6D.93.设实数x>0,y>0,且x+y-2x2y2=4,则1x+1y的最小值为()A.4 √2B.3 √2C.2 √2D.√24.如图,一条抛物线(形状一定)与x轴相交于E、F两点(点E在点F左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(−2,−3)、(4,−3),点E的横坐标的最小值为-5,则点F的横坐标的最大值为()A.6B.7C.8D.95.如图1,在矩形ABCD中,动点E从A出发,沿A−B−C方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.254C.6D.56.已知0≤x≤32,则函数y=x2+x+1()A.有最小值34,但无最大值B.有最小值34,有最大值1C.有最小值1,有最大值194D.无最小值,也无最大值7.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如表:x﹣5﹣4﹣202y60﹣6﹣46;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的是()A.①②③B.①③④C.①②④D.②③④8.已知二次函数y=ax2−2ax+a+2(a≠0),若−1≤x≤2时,函数的最大值与最小值的差为4,则a的值为()A.1B.-1C.±1D.无法确定9.如图,已知二次函数的图象(0≤x≤1+2 √2).关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值﹣2,无最大值B.有最小值﹣2,有最大值﹣1.5C.有最小值﹣2,有最大值2D.有最小值﹣1.5,有最大值210.如图,Rt△ABC中,∠ACB=90°,AC=12BC=2点D是AB上一动点,连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE,当△BED面积最大时,AD的长为()A.2B.√5C.25√5D.4√5511.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是()A.﹣4或72B.﹣2 √3或72C.﹣4 或2 √3D.﹣2 √3或2 √3 12.若二次函数y=ax2+4x+a-1的最小值是2,则a的值为()A.4B.-1C.3D.4或-1二、填空题13.二次函数y=x2−2x+3的最小值是.14.当实数a满足2≤a≤5时,且代数式−a2+2ab−b2取最大值-1时,则b的值为.15.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x-2-1012y04664从上表可知,下列说法中正确的是.)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;②抛物线的对称轴是直线x=12;④在对称轴左侧,y随x增大而增大.16.二次函数y=﹣x2﹣4x+k的最大值是9,则k=.17.已知关于x的函数y=−x2−ax+1,当0≤x≤3时函数有最大值5,则a=.18.已知关于x的二次函数y=x2-2ax+3,当1≤x≤3时,函数有最小值2a,则a的值为.三、综合题19.已知抛物线y=ax2+bx+c与y轴交于点(0,3a),对称轴为x=1.(1)试用含a的代数式表示b、c.(2)当抛物线过点(2,3)时,求此抛物线的解析式.(3)求当b(c+6)取得最大值时的抛物线的顶点坐标.20.如图,正方形ABCD的边长为4,点G,H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E,F,连接AG、AH.(1)当BG=2,DH=3时,则GH:HF=,∠AGH=°;(2)若BG=3,DH=1,求DF、EG的长;(3)设BG=x,DH=y,若∠ABG∠∠FDH,求y与x之间的函数关系式,并求出y的取值范围.21.如图,抛物线y=12x2−32x−2与x轴交于A,B两点,与y轴交于点C,连接AC,BC,点M是线段BC下方抛物线上的任意一点,点M的横坐标为m,过点M画MN∠x轴于点N,交BC于点P.(1)填空:A(,),C(,);(2)探究∠ABC的外接圆圆心的位置,并求出圆心的坐标;(3)探究当m取何值时线段PM的长度取得最大值,最大值为多少?22.某商品现在的售价为每件50元,每天可卖出200件.市场调查反映:如调整价格,每涨价1元,每天要少卖出10件,已知商品的进价为每件40元,请你帮助分析,当每件商品涨价多少元时,可使每天的销售利润最大,最大利润是多少?设每件商品涨价x元,每天售出商品的利润为y元.(1)根据题意,填写下表:每件售价(元)505152……50+x每天售出商品的数量(件)200190……每天售出商品的利润(元)20002090……23.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.24.已知关于x的一元二次方程x2﹣(m+1)x+ 12(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+ 12(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.参考答案1.【答案】C2.【答案】B3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】C10.【答案】C11.【答案】C12.【答案】A13.【答案】214.【答案】1或615.【答案】①③④16.【答案】517.【答案】-418.【答案】119.【答案】(1)解:∵抛物线与y轴交于点(0,3a)∴c=3a∵对称轴为x=1∴x=−b2a=1∴b=−2a(2)解:∵抛物线过点(2,3)∴3=a×22+2(−2a)+3a∴a=1∴b=−2a=−2,c=3a=3∴抛物线为y=x2−2x+3(3)解:∵b(c+6)=−2a(3a+6)=−6a2−12a=−6(a+1)2+6∴当a=−1时,b(c+6)的最大值为6;∴抛物线y=−x2+2x−3=−(x−1)2−2故抛物线的顶点坐标为(1,−2)20.【答案】(1)1:3;90(2)解:∵正方形ABCD的边长为4,BG=3,DH=1∴CG=1,CH=3∵CG∠DF,CH∠BE∴∠CGH∠∠BGE∠∠DFH∴GCHC=BGBE=DFDH,即13=3BE=DF1解得BE=9,DF= 1 3∴Rt∠BEG中,EG= √BG2+BE2= √32+92=3 √10(3)解:∵正方形ABCD的边长为4,BG=x,DH=y ∴CG=4﹣x,CH=4﹣y由(1)可得,∠FDH∠∠GCH,而∠ABG∠∠FDH∴∠ABG∠∠GCH∴ABGC=BGCH,即44−x=x4−y∴y与x之间的函数关系式为:y= 14x2﹣x+4∵44−x=x4−y∴4﹣y= x(4−x)4=﹣14x2+x∴当x=﹣12×(−14)=2时,4﹣y有最大值,且最大值为﹣14×4+2=1∴0<4﹣y≤1解得3≤y<4.21.【答案】(1)-1;0;0;-2(2)解:|OA|=1,|OC|=2,|OB|=4∠AOC=∠COB=90°∴OAOC=OCOB=12∴∠AOC∠∠COB∴∠ACO=∠OBC∠ACO+∠OCB=90°∠OBC+∠OCB=90°=∠ACB∴Rt∠ACB的外接圆圆心为AB的中点∵A(-1,0)B(4,0)∴圆心的坐标( 32,0 ).(3)解:C (0,-2),B (4,0) 又∵直线BC 解析式y =12x −2 p(m ,12m −2) ,M (m , 12m 2−32m −2 )PM=( 12m −2 )-( 12m 2−32m −2 )PM =−12m 2+2m =−12(m −2)2+2 当m=2时,PM 最大值=2.22.【答案】(1)180;200﹣10x ;2160;(200﹣10x )(10+x )(2)解:y =(200﹣10x )(10+x )=﹣10x 2+100x+2000=﹣10(x ﹣5)2+2250 ∴当x =5时,y 取得最大值,此时y =2250即y =﹣10x 2+100x+2000,当每件商品涨价5元时,可使每天的销售利润最大,最大利润是2250元23.【答案】(1)解:∵AB=xm ,铝合金材料长为18m∴AD=BC=18−3x 2∴S =x·18−3x2=−32x 2+9x即S 与x 的函数表达式为:S =−32x 2+9x.(2)解:由题意得:2≤x <18−3x 2解得:2≤x <3.6∵S =−32x 2+9x =−32(x -3)2+272∵−32<0,对称轴是直线x =3,且2≤x <3.6∴当x =3时,S 取得最大值,此时S =272当x =2时,S 取得最小值,此时S =−32(2-3)2+272=12答:窗户总面积S 的最大值272m 2,最小值是12m 2.24.【答案】(1)解:对于一元二次方程x 2﹣(m+1)x+ 12(m 2+1)=0∠=(m+1)2﹣2(m 2+1)=﹣m 2+2m ﹣1=﹣(m ﹣1)2 ∵方程有实数根∴﹣(m﹣1)2≥0∴m=1.(2)解:由(1)可知y=x2﹣2x+1=(x﹣1)2图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)解:由{y=2x+ny=−x2−4x−2消去y得到x2+6x+n+2=0由题意∠≥0∴36﹣4n﹣8≥0∴n≤7∵n≤m,m=1∴1≤n≤7令y′=n2﹣4n=(n﹣2)2﹣4∴n=2时,y′的值最小,最小值为﹣4n=7时,y′的值最大,最大值为21∴n2﹣4n的最大值为21,最小值为﹣4.。

中考数学总复习《二次函数的最值》练习题-附带答案解析

中考数学总复习《二次函数的最值》练习题-附带答案解析

中考数学总复习《二次函数的最值》练习题-附带答案解析一、单选题(共12题;共24分)1.如图,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm。

点P从点A出发,沿AB方向以2cm/s的速度向点B运动,同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点则另一个动点也停止运动,则△APQ的最大面积是()A.0cm2B.8cm2C.16cm2D.24 cm2 2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A.②④⑤⑥⑦B.①②③⑥⑦C.①③④⑤⑦D.①③④⑥⑦3.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时函数值y的最小值为﹣2,则m的值是()A.B.C.或D.- 或4.已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1 C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣25.二次函数y=−x2+6x−7,当x取值为t≤x≤t+2时有最大值t=2,则t的取值范围为()A.t≤0B.0≤t≤3C.t≥3D.以上都不对6.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.√3cm2B.32√3cm2C.92√3cm2D.272√3cm27.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.x>1时y随x的增大而减小C.顶点坐标是(1,2)D.函数有最大值28.如图,一条抛物线与x轴相交于M,N两点(点M在点N的左侧),其顶点P在线段AB上移动,点A,B的坐标分别为(﹣2,﹣3),(1,﹣3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1B.﹣3C.﹣5D.﹣7 9.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是()①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时函数值y随x值的增大而增大;④当x=﹣1或x=3时函数的最小值是0;⑤当x=1时函数的最大值是4A.4B.3C.2D.110.设实数x>0,y>0,且x+y-2x2y2=4,则1x+1y的最小值为()A.4 √2B.3 √2C.2 √2D.√2 11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=-1对称;③当x=-2时函数y的值等于0;④当x=-3或x=1时函数y的值都等于0.其中正确结论的个数是()A.1B.2C.3D.4 12.如图,已知抛物线y=ax2+bx+c(a<0)的对称轴为x=1,交x轴的一个交点为(x1,0),且﹣1<x1<0,有下列5个结论:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共6题;共6分)13.已知二次函数y=ax2+4ax+a2−1,当−4≤x≤1时y的最大值为5,则实数a的值为.14.函数y=2x2-8x+1的最小值是.15.当-2≤x≤1时二次函数若y=−(x−m)2+m2+1有最大值4,则m的值为.16.如图,在△ABC中△B=90°,AB=12cm,BC=24cm,动点P从点A开始向B点以2cm/s的速度移动(不与点B重合);动点Q从点B开始向点C以4cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒四边形APQC的面积最小.17.一条抛物线与x轴相交于A,B两点(点A在点B的左侧),若点M,N的坐标分别为(-1,-2),(1,-2),抛物线顶点P在线段MN上移动.点B的横坐标的最大值为3,则点A的横坐标的最小值为.18.二次函数y=mx2+2x+m−4m2的图象经过原点,则此抛物线的顶点坐标是三、综合题(共6题;共66分)19.如图,在平面直角坐标系中点A、C的坐标分别为(﹣1,0)、(0,﹣√3),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.20.X市与W市之间的城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m与该列车每次拖挂车厢节数n的部分数据如下:车厢节数n4710往返次数m16104b(k,b为常数,k≠0);②y=ax2+bx+c(a,b,c为常数,a≠0)中选取一个合适的函数模型,求出的m关于n的函数关系式是m=(不写n的范围);(2)结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时一天的设计运营人数Q最多(每节车厢载容量设定为常数p).21.在平面直角坐标系xOy中抛物线y=ax2+bx+2(a≠0)经过点A(1,−1),与y轴交于点B.(1)直接写出点B的坐标;(2)点P(m,n)是抛物线上一点,当点P在抛物线上运动时n存在最大值N.①若N=2,求抛物线的表达式;②若−9<a<−2,结合函数图象,直接写出N的取值范围.22.一商店销售某种商品,平均每天可售出20件,每件盈利50元,为了扩大销售、增加利润,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)当每件商品降价多少元时该商店每天销售利润为1600元?(2)当每件商品降价多少元时该商店每天销售利润最大?最大为多少元?23.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?24.如图,已知直线y=﹣12x+2与抛物线y=a (x+2)2相交于A、B两点,点A在y 轴上,M为抛物线的顶点.(1)请直接写出点A的坐标及该抛物线的解析式;(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案1.【答案】C 2.【答案】D 3.【答案】D 4.【答案】D 5.【答案】C 6.【答案】C 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】A 11.【答案】B 12.【答案】D13.【答案】2−√10 或1 14.【答案】-7 15.【答案】2或- √3 16.【答案】3 17.【答案】-3 18.【答案】(-4,-4)19.【答案】(1)解:设二次函数的解析式为y=ax 2+bx+c (a≠0,a 、b 、c 为常数)由抛物线的对称性知B 点坐标为(3,0) 依题意得: {a −b +c =09a +3b +c =0c =−√3解得: {a =√33b =−2√33c =−√3∴所求二次函数的解析式为 y =√33x 2−2√33x −√3(2)解:∵P 点的横坐标为m∴P 点的纵坐标为 √33m 2−2√33m −√3设直线BC 的解析式为y=kx+b (k≠0,k 、b 是常数) 依题意,得 {3k +b =0b =−√3∴{k=√33b=−√3故直线BC的解析式为y=√33x−√3∴点F的坐标为(m,√33m−√3)∴PF=−√33m2+√3n(0<m<3)(3)解:∵△PBC的面积S=S△CPF+S△BPF=12PF⋅BO=12×(−√33m2+√3m)×3=−√32(m−32)2+9√38∴当m=32时△PBC的最大面积为9√38把m=32代入y=√33x2−2√33x−√3得y=−5√34∴点P的坐标为(32,−5√3 4)20.【答案】(1)-2n+24(2)解:由题意得:Q=pmn=pn(−2n+24)=−2pn2+24pn ∵−2p<0∴Q有最大值∴当n=−24p2×(−2p)=6时Q有最大值此时答:一列火车每次挂6节车厢,一天往返12次时一天的设计运营人数最多. 21.【答案】(1)(0,2)(2)解:①依题意,当N=2时该抛物线的顶点为(0,2).设抛物线的解析式为y=ax2+2.由抛物线过A(1,−1),得a+2=−1解得a=−3∴抛物线的表达式为y=−3x2+2.②2≤N<322.【答案】(1)解:设每件商品应降价x元,根据题意,得(50-x)(20+2x)=1600 解得:x1=10,x2=30因要求每件盈利不少于25元,故x2=30应舍去……答:每件商品应减价10元,该商店每天销售利润为1600元.(2)解:设每件商品应降价x元,销售利润为W元。

二次函数的最值问题举例附练习测试参考答案

二次函数的最值问题举例附练习测试参考答案

二次函数的最值问题举例附练习测试参考答案 The pony was revised in January 2021二次函数的最值问题举例(附练习、答案) 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a=-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 12x ≤≤时,求函数21y x x =--+的最大值和最小值.【例2】当解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.可以看出:当1x =时,min 1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-.【例4】当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数21522y x x =--的对称轴为1x =.画出其草图. (1)当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2)当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:当1x =时,2min 1511322y =⨯--=-; (3)当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1)写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2)若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适最大销售利润为多少解:(1)由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为(30)y m x =-,又1623m x =-.(2)由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下∴当42x =时,2max 342252424860432y =-⨯+⨯-=∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.A 组1.抛物线2(4)23y x m x m =--+-,当m =_____时,图象的顶点在y 轴上;当m =_____时,图象的顶点在x 轴上;当m =_____时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为________.3.求下列二次函数的最值:(1)2245y x x =-+; (2)(1)(2)y x x =-+.4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.6.求函数3y =-7.已知关于x 的函数22(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?B 组1.已知关于x 的函数222y x ax =++在55x -≤≤上.(1)当1a =-时,求函数的最大值和最小值;(2)当a 为实数时,求函数的最大值. 2.函数223y x x =++在0m x ≤≤上的最大值为3,最小值为2,求m 的取值范围.3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b的值.4.已知函数221y x ax=++在12x-≤≤上的最大值为4,求a的值.5.求关于x的二次函数221y x tx=-+在11x-≤≤上的最大值(t为常数).第五讲二次函数的最值问题答案A组1.414或2,3 22.22 16lm3.(1)有最小值3,无最大值;(2)有最大值94,无最小值.4.当34x=时,min318y=;当2x=-时,max19y=.5.5y≥-6.当56x=时,min3y=-23x=或1时,max3y=.7.当54t=-时,miny=.B组1.(1)当1x=时,min 1y=;当5x=-时,max 37y=.(2)当0a≥时,max 2710y a=+;当0a<时,max 2710y a=-.2.21m-≤≤-.3.2,2a b==-.4.14a=-或1a=-.5.当0t≤时,max 22y t=-,此时1x=;当0t>时,max 22y t=+,此时1x=-.。

求二次函数的最值 练习题

求二次函数的最值 练习题

求二次函数的最值练习题求二次函数的最值练习题二次函数是数学中的重要概念之一,它的图像呈现出一条开口向上或向下的抛物线。

而求解二次函数的最值,是我们在解决实际问题中经常遇到的一种情况。

本文将通过一些练习题,帮助读者更好地理解和掌握求解二次函数的最值的方法。

练习题一:已知二次函数 f(x) = 2x^2 - 4x + 1,求该函数的最小值。

解答:要求二次函数的最小值,我们可以通过找到抛物线的顶点来实现。

二次函数的顶点坐标可以通过公式 x = -b/2a 和 y = f(-b/2a) 来求得。

对于给定的函数 f(x) = 2x^2 - 4x + 1,我们可以通过计算得到 a = 2,b = -4,c = 1。

将这些值代入公式中,我们可以得到 x = -(-4)/(2*2) = 1,y = f(1) =2*1^2 - 4*1 + 1 = -1。

因此,该函数的最小值为 -1。

练习题二:已知二次函数 g(x) = -3x^2 + 6x - 2,求该函数的最大值。

解答:求解二次函数的最大值的方法与求解最小值的方法类似。

我们同样可以通过找到抛物线的顶点来实现。

对于给定的函数 g(x) = -3x^2 + 6x - 2,我们可以通过计算得到 a = -3,b = 6,c = -2。

将这些值代入公式中,我们可以得到 x = -6/(2*(-3)) = 1,y = g(1) = -3*1^2 + 6*1 - 2 = 1。

因此,该函数的最大值为 1。

练习题三:已知二次函数 h(x) = x^2 + 4x - 3,求该函数的最值所对应的 x 值和 y 值。

解答:对于给定的函数 h(x) = x^2 + 4x - 3,我们同样可以通过计算得到 a = 1,b = 4,c = -3。

将这些值代入公式中,我们可以得到 x = -4/(2*1) = -2,y = h(-2) = (-2)^2 + 4*(-2) - 3 = -7。

二次函数最值问题(含标准答案)

二次函数最值问题(含标准答案)

二次函数最值问题(含答案)————————————————————————————————作者:————————————————————————————————日期:二次函数最值问题一.选择题(共8小题)1.如果多项式P=a2+4a+2014,则P的最小值是()A.2010 B.2011 C.2012 D.20132.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.63.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣34.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.06.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或37.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.9二.填空题(共2小题)9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,=6.当线段OM最长时,点M的坐标为.点M在x轴负半轴上,S△ABM三.解答题(共3小题)11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.12.已知关于x的函数y=kx2+(2k﹣1)x﹣2(k为常数).(1)试说明:不论k取什么值,此函数图象一定经过(﹣2,0);(2)在x>0时,若要使y随x的增大而减小,求k的取值范围;(3)试问该函数是否存在最小值﹣3?若存在,请求出此时k的值;若不存在,请说明理由.13.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y 随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x 的增大而减小.二次函数最值问题(含答案)一.选择题(共8小题)1.A;2.D;3.D;4.B;5.C;6.B;7.D;8.C;9.1;9;10.(﹣3,0);三.解答题(共3小题)11.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又∵A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+d(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又∵t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.则m=或m=即为所求.12.解:(1)将x=﹣2代入,得y=k(﹣2)2+(2k﹣1)•(﹣2)﹣2=0,故不论k取何值,此函数图象一定经过点(﹣2,0).(2)①若k=0,此函数为一次函数y=﹣x﹣2,当x>0时,y随x的增大而减小,∴k=0符合题意.②若k≠0,此函数为二次函数,而图象一定经过(﹣2,0)、(0,﹣2)∴要使当x>0时,y随x的增大而减小,开口向下,须满足k<0即可.综上,k的取值范围是k≤0.(3)若k=0,此函数为一次函数y=﹣x﹣2,∵x的取值为全体实数,∴y无最小值,若k≠0,此函数为二次函数,若存在最小值为﹣3,则=﹣3,且k>0,解得:k=符合题意,∴当k=时,函数存在最小值﹣3.13.解:(1)根据题意得m+2≠0且m2+m﹣4=2,解得m1=2,m2=﹣3,所以满足条件的m值为2或﹣3;(2)当m+2>0时,抛物线有最低点,所以m=2,抛物线解析式为y=4x2,所以抛物线的最低点为(0,0),当x≥0时,y随x的增大而增大;(3)当m=﹣3时,抛物线开口向下,函数有最大值;抛物线解析式为y=﹣x2,所以二次函数的最大值是0,这时,当x≥0时,y随x的增大而减小.。

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值专项练习60题1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性.2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值.3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求(1)函数在一2<x≤a的最小值;(2)函数在a≤x≤a+2的最小值.4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值.5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理:∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0∴(x+1)2+2≥2,故x2+2x+3的最小值是2.试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm).(1)写出▱ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围.(2)当x取什么值时,y的值最大?并求最大值.7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值.8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值.9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.11.已知函数是关于x的二次函数.(1)求m的值;(2)当m取什么值时,此函数图象的顶点为最低点?(3)当m取什么值时,此函数图象的顶点为最高点?12.两个数的和为6,这两个数的积最大可以达到多少?利用图象描述乘积与因数之间的关系.13.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形.这两个正方形面积之和有最值吗?如有,求出最值;如没有请说明理由.14.关于自变量x的二次函数y=x2﹣4ax+5a2﹣3a的最小值为m,且a满足不等式0≤a2﹣4a﹣2≤10,则m的最大值是多少?15.求函数的最小值.16.当﹣1≤x≤1时,函数y=﹣x2﹣ax+b+1(a>0)的最小值是﹣4,最大值是0,求a、b的值.17.已知a2+b2=1,,求a+b+ab的取值范围.18.如图,在矩形ABCD中,B(16,12),E、F分别是OC、BC上的动点,EC+CF=8.当F运动到什么位置时,△AEF的面积最小,最小为多少?19.如图;AC,BD是四边形ABCD的对角线,AC⊥BD于点O;(1)求证:S四边形ABCD=AC•BD;(2)若AC+BD=10,当AC,BD的长是多少时,四边形ABCD的面积最大?20.先画出函数图象,然后结合图象回答下列问题:(1)函数y=3x2的最小值是多少?(2)函数y=﹣3x2的最大值是多少?(3)怎样判断函数y=ax2有最大值或最小值?与同伴交流.21.将长为156cm的铁线剪成两段,每段都围成一个边长为整数(cm)的正方形,求这两个正方形面积和的最小值.22.已知函数y=(a+2)x2﹣2(a2﹣1)x+1,其中自变量x为正整数,a也是正整数,求x何值时,函数值最小.23.设实数a,b满足:3a2﹣10ab+8b2+5a﹣10b=0,求u=9a2+72b+2的最小值.24.若函数y=4x2﹣4ax+a2+1(0≤x≤2)的最小值为3,求a的值.25.说明:不论x取何值,代数式x2﹣5x+7的值总大于0.并尝试求出当x取何值时,代数式x2﹣5x+7的值最小?最小值是多少?26.求经过点A(0,2)、B(2,0)、C(﹣1,2)的抛物线的解析式,并求出其最大或最小值.27.如图,在△ABC中,∠A=90°,∠C=30°,AB=1,两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C.(1)点Q的速度是点P速度的多少倍?(2)设AP=x,△APQ的面积是y,求y关于x的函数关系式,并写出x的取值范围,(3)求出y的最大值.28.已知二次函数y=x2与一次函数y=2x+1相交于A、B两点,点C是线段AB上一动点,点D是抛物线上一动点,且CD平行于y轴,求在移动过程中CD的最大值.29.代数式x2﹣3x﹣1有最大值或最小值吗?若有,请求出:当x取何值时,最大(小)值是多少?30.已知二次函数y=2x2﹣4ax+a2+2a+2(1)通过配方,求当x取何值时,y有最大或最小值,最大或最小值是多少?(2)当﹣1≤x≤2时,函数有最小值2.求a所有可能取的值.31.设函数y=|x2﹣x|+|x+1|,求﹣2≤x≤2时,y的最大值和最小值.32.求函数y=(k﹣1)x2﹣2(k﹣1)x﹣k的最值,其中k为常数且k≠1.33.已知函数y=﹣9x2﹣6ax+2a﹣a2,当时,y的最大值为﹣3,求a.34.求函数y=x2+5x+8的最小值.35.已知二次函数y=(3﹣k)x2+2,求:(1)当k为何值时,函数有最大值?最大值是多少?(2)当k为何值时,函数有最小值?最小值是多少?36.求关于x的二次函数y=x2﹣2tx+1在﹣1≤x≤1上的最大值(t为常数).37.已知二次函数y=﹣9x2﹣6ax﹣a2+2a有最大值﹣3,求实数a的值.38.(1)求函数y=|x2﹣4|﹣3x在区间﹣2≤x≤5中的最大值和最小值.(2)已知:|y|≤1,且2x+y=1,求2x2+16x+3y2的最小值.39.已知y=x2﹣2ax﹣3,﹣2≤x≤2.(1)求y的最小值;(2)求y的最大值.40.当|x+1|≤6时,求函数y=x|x|﹣2x+1的最大值?41.用长14m的篱笆围成如图所示的鸡舍,门MN宽2m,怎样设计才能使鸡舍的面积最大?42.如图所示,在直角梯形ABCD中,AB=2,P是边AB的中点,∠PDC=90°,问梯形ABCD面积的最小值是多少?43.有两条抛物线y=x2﹣3x,y=﹣x2+9,通过点P(t,0)且平行于y轴的直线,分别交这两条抛物线于点A和B,当t在0到3的范围内变化时,求线段AB的最大值.44.如图,半径为1的半圆内接等腰梯形,其下底是半圆的直径,试求:(1)它的周长y与腰长x之间的函数关系式,并求出自变量x的取值范围.(2)当腰长为何值时,周长有最大值?这个最大值为多少?45.已知点P,Q,R分别在△ABC的边AB,BC,CA上,且BP=PQ=QR=RC=1,求△ABC的面积的最大值.46.已知:0≤x≤1,函数的最小值为m,试求m的最大值.47.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2﹣6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.他的解答过程如下:∵二次函数y=x2﹣6x+7的对称轴为直线x=3,∴由对称性可知,x=1和x=5时的函数值相等.∴若1≤m<5,则x=1时,y的最大值为2;若m≥5,则x=m时,y的最大值为m2﹣6m+7.请你参考小明的思路,解答下列问题:(1)当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为_________;(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为_________.48.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.(1)设运动开始后第t秒钟后,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围.(2)t为何值时,S最小?最小值是多少?49.已知二次函数y=x2与一次函数y=2x+1相交于A、B两点,点C是线段AB上一动点,点D是抛物线上一动点,且CD平行于y轴,求在移动过程中CD的最大值.50.如图,在△ABC中,∠A=90°,∠C=30°,AB=1,两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C.(1)点Q的速度是点P速度的多少倍?(2)设AP=x,△APQ的面积是y,求y关于x的函数关系式,并写出x的取值范围,(3)求出y的最大值.51.一块三角形废料如图所示,∠A=30°,∠C=90°,BC=6.用这块废料剪出一个平行四边形AGEF,其中,点G,E,F分别在AB,BC,AC上.设CE=x(1)求x=2时,平行四边形AGEF的面积.(2)当x为何值时,平行四边形AGEF的面积最大?最大面积是多少?52.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=8,点D在BC上运动(不运动至B,C),DE∥AC,交AB 于E,设BD=x,△ADE的面积为y.(1)求y与x的函数关系式及自变量x的取值范围;(2)x为何值时,△ADE的面积最大?最大面积是多少?53.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图﹑推理﹑计算)54.如图,设点P是边长为a的正三角形ABC的边BC上一点,过点P作PQ⊥AB,垂足为Q,延长QP交AC的延长线于点R.当点P在何处时,△BPQ与△CPR的面积之和取最大(小)值?并求出最大(小)值.55.(2012•)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.56.(2003•)二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),若△ABC的面积为9,求此二次函数的最小值.57.(2013•南岗区一模)如图,在Rt△AOB中,∠AOB=90°,且AO=8,BO=6,P是线段AB上一个动点,PE⊥A0于E,PF⊥B0于F.设PE=x,矩形PFOE的面积为S(1)求出S与x的函数关系式;(2)当x为何值时,矩形PFOE的面积S最大?最大面积是多少?58.(2013•资阳)在关于x,y的二元一次方程组中.(1)若a=3.求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最值.59.(2010•)如图,在△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P、Q分别从A、C两点同时出发,其中点P以1cm/s的速度沿AC向终点C移动;点Q以cm/s的速度沿CB向终点B移动.过P作PE∥CB交AD于点E,设动点的运动时间为x秒.(1)用含x的代数式表示EP;(2)当Q在线段CD上运动几秒时,四边形PEDQ是平行四边形;(3)当Q在线段BD(不包括点B、点D)上运动时,求四边形EPDQ面积的最大值.60.(2010•)如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F处,DF交BC于点G.(1)用含有x的代数式表示BF的长.(2)设四边形DEBG的面积为S,求S与x的函数关系式.(3)当x为何值时,S有最大值,并求出这个最大值.二次函数最值解答题60题参考答案:1.解:因为顶点坐标为(3,2),对称轴为x=3,与y轴交点为(0,38),因为△=144﹣4×2×19=144﹣152=﹣8<0,所以与x轴无交点.作图得:最值2.增减性:当x≥3时,y随x的增大而增大;当x≤3时,y随x的增大而减小2.解:由函数图象可得二次函数图象过点C(0,3),将A,B,两点代入函数解析式得解得:a=﹣1,b=2,c=3,可得二次函数解析式为:y=﹣x2+2x+3;配方得:y=﹣(x﹣1)2+4,∴对称轴x=1,最大值为43.解:二次函数y=x2﹣x﹣2=﹣的图象如图:顶点坐标为(,),(1)当﹣2<a<时,函数为减函数,最小值为当x=a时,y=a2﹣a﹣2.当a≥时,y min=﹣,(2)当a>﹣2,且a+2<,即:﹣2<a<﹣时,函数为减函数,最小值为:y x=a+2=(a+2)2﹣(a+2)﹣2,当a<≤a+2,即﹣≤a<时,函数的最小值为y=﹣4.解:配方y=(x+a)2﹣1,函数的对称轴为直线x=﹣a,顶点坐标为(﹣a,﹣1).①当0≤﹣a≤3即﹣3≤a≤0时,函数最小值为﹣1,不合题意;②当﹣a<0即a>0时,∵当x=3时,y有最大值;当x=0时,y有最小值,∴,解得a=2;③当﹣a>3即a<﹣3时,∵当x=3时,y有最小值;当x=0时,y有最大值,∴,解得a=﹣5.∴实数a的值为2或﹣55.解:原式=3(y﹣1)2+8,∵(y﹣1)2≥0,∴3(y﹣1)2+8≥8,∴有最小值,最小值为86.解:(1)过A作AE⊥BC于E,如图,∵∠B=30°,AB=x,∴AE=x,又∵平行四边形ABCD的周长为8cm,∴BC=4﹣x,∴y=AE•BC=x(4﹣x)=﹣x2+2x(0<x<4);(2)y=﹣x2+2x=﹣(x﹣2)2+2,∵a=﹣,∴当x=2时,y有最大值,其最大值为27.解:对称轴x=﹣=﹣=,①≤0,即a≤0时,0≤x≤1范围内,y随x的增大而增大,当x=0时,y最小,最小值y=2×02﹣a×0+1=1,②0<<1,即0<a<4时,当x=时有最小值,最小值y=2×()2﹣a×+1=1﹣,③≥1,即a≥4时,0≤x≤1范围内,y随x的增大而减小,当x=1时,y最小,最小值y=2×12﹣a×1+1=3﹣a,综上所述,a≤0时,最小值为1,0<a<4时,最小值为1﹣,a≥4时,最小值为3﹣a8.解:依题意△=4a2﹣4(a+6)≥0,即a2﹣a﹣6≥0,∴a≤﹣2或a≥3,(3分)由m+n=2a,mn=a+6,y=m2+n2﹣2(m+n)+2=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣6a﹣10,=4(a﹣)2﹣,∴a=3时,y的最小值为8.(12分)故y的最小值为89.解:对称轴x=﹣=﹣=a,①a≤﹣1时,﹣1≤x≤2范围内,y随x的增大而增大,当x=﹣1时,y最小,最小值y=2×(﹣1)2﹣4a×(﹣1)+a2+2a+2=a2+6a+4,②﹣1<a<2时,当x=a时,有最小值,最小值y=2×a2﹣4a×a+a2+2a+2=﹣a2+2a+2,③a≥2时,﹣1≤x≤2范围内,y随x的增大而减小,当x=2时,y最小,最小值y=2×22﹣4a×2+a2+2a+2=a2﹣6a+10,综上所述,a≤﹣1时,最小值为a2+6a+4,﹣1<a<2时,最小值为﹣a2+2a+2,a≥2时,最小值为a2﹣6a+10;∵最小值为﹣1,∴a2+6a+4=﹣1,整理得a2+6a+5=0,解得a1=﹣1,a2=﹣5,﹣a2+2a+2=﹣1,整理得,a2﹣2a﹣3=0,解得a3=﹣1,a4=3(舍去),a2﹣6a+10=﹣1,整理得,a2﹣6a+11=0,△=(﹣6)2﹣4×1×11=﹣8<0,方程无解,综上所述,a的所有可能值为﹣1、﹣510.解:根据抛物线顶点坐标公式得:=1,解得:m=1011.解:(1)根据二次函数的定义可知:m2+2m﹣6=2,m+2≠0,解得:m=2或﹣4.(2)当m=2时,抛物线的开口向上,有最小值,此函数图象的顶点为最低点;(3)当m=﹣4时,抛物线的开口向下,有最大值,此函数图象的顶点为最高点12.解:设两数为x、y,两数的积为s,根据题意列方程组得,,整理得,s=x(6﹣x)=﹣x2+6x,配方得,s=﹣(x﹣3)2+9,可见,s的最大值为9.如图:由于函数为抛物线,其与x轴的交点坐标为:(0,0),(6,0),顶点为(3,9),对称轴为直线x=3,画出函数图象13.解:设一段铁丝的长度为x,另一段为(20﹣x),则S=x2+(20﹣x)(20﹣x)=(x﹣10)2+12.5,∴由函数当x=10cm时,S最小,为12.5cm214.解:由0≤a2﹣4a﹣2≤0,解得:﹣2≤a≤2﹣或2+≤a≤6.由y=x2﹣4ax+5a2﹣3a可得y=(x﹣2a)2+a2﹣3a,则最小值m=a2﹣3a=(a﹣)2﹣,它的图象的对称轴为a=.在上述a的取值范围内的a值中6与的距离最大.∴a=6时,原函数的最小值m有最大值m=62﹣3×6=1815.解:根据x2﹣x﹣6≥0且x2﹣x﹣6≠6时,函数才有意义,解得:x≤﹣2且x≠﹣3或x≥3且x≠4,此时函数y=x2﹣4x﹣9,图象如图:在x≤﹣2且x≠﹣3或x≥3且x≠4的范围内可知,当x=3时,这个函数的最小值为﹣1216.解:由题意:对称轴为x=﹣.其次这是一个定区间(﹣1≤x≤1)动对称轴(x=﹣)的函数,所以需要对对称轴所在位置进行分类讨论.第一种情况:0<﹣≤1,不可能.因对称轴在区间内故函数最大值在x=﹣时取到,因对称轴在区间左半段故函数最小值在x=1时取到.联立x=﹣时y=﹣4与x=﹣1时y=0两个方程解得a=2±2,均不符合条件,故舍去.第二种情况,﹣<﹣1,即对称轴在区间外,此时a>2,在区间内函数单调递减,故x=﹣1时y=0,x=1时y=﹣4,解得a=2,b=﹣2,满足a>0的条件.解得:a=2,b=﹣217.解:∵a2+b2=(a+b)2﹣2ab,a2+b2=1,∴ab=,设a+b=t,则﹣≤t≤,∴y=a+b+ab=+a+b=(t2﹣1)+t=t2+t﹣=(t+1)2﹣1,∴t=﹣1时,y有最小值为﹣1,t=时,y有最大值,此时y=(+1)2﹣1=,∴﹣1≤y≤,即a+b+ab的取值范围为﹣1≤a+b+ab≤18.解:在矩形ABCD中,B(16,12),EC+CF=8;则AB=OC=16,BC=OA=12;设CF=x,则EC=8﹣x;S△AEF=S□ABCO﹣S△AOE﹣S△ABF﹣S△ECF=OA×OC﹣×OE×OA﹣×AB×BF﹣×CE×CF=12×16﹣×[16﹣(8﹣x)]×12﹣×16×(12﹣x)﹣×x×(8﹣x)=x2﹣2x+48=(x﹣2)2+46;因此,当x=2时,S△AEF取得最小值46.故当F运动到CF为2时,△AEF的面积最小,最小为4619.(1)证明:∵AC⊥BD,∴S四边形ABCD=S△ABC+S△ACD,=AC•OB+AC•OD,=AC(OB+OD)=AC•BD;(2)解:设AC=x,∵AC+BD=10,∴BD=10﹣x,∴四边形ABCD的面积=x(10﹣x)=﹣(x2﹣10x)=﹣(x﹣5)2+,∵﹣<0,∴当x=5时,四边形ABCD的面积有最大值,此时AC=5,BD=520.解:(1)根据图象得:它的最小值是0;(2)根据图象得:它的最大值是0;(3)当a>0时,y=ax2有最小值,当a<0时,y=ax2有最大值21.解:设其中一段铁丝的长度为xcm,另一段为(156﹣x)cm,则两个正方形面积和S=x2+(156﹣x)2=(x﹣78)2+761,∴由函数当x=78cm时,S最小,为761cm2.答:这两个正方形面积之和的最小值是761cm222.解:∵y=(a+2)x2﹣2(a2﹣1)x+1,∴y=(a+2)+1﹣,其对称轴为,因为a为正整数,故因,,因此,函数的最小值只能在x取a﹣2,a﹣1,时达到,(1)当a﹣1=时,a=1,此时,x=0使函数取得最小值,由于x是正整数,故应舍去;(2)a﹣2<<a﹣1时,即a>1时,由于x是正整数,而为小数,故x=不能达到最小值,当x=a﹣2时,y1=(a+2)(a﹣2)2﹣2(a2﹣1)(a﹣2)+1,当x=a﹣1时,y2=(a+2)(a﹣1)2﹣2(a2﹣1)(a﹣1)+1,又y1﹣y2=4﹣a,①当4﹣a>0时,即1<a<4且a为整数时,x取a﹣1,使y2为最小值;②当4﹣a=0时,即a=4时,有y1=y2,此时x取2或3;③当4﹣a<0时,即a>4且为整数时,x取a﹣2,使y1为最小值;综上,(其中a为整数)23.解:由3a2﹣10ab+8b2+5a﹣10b=0可得(a﹣2b)(3a﹣4b+5)=0,(6分)所以a﹣2b=0,或3a﹣4b+5=0.(8分)①当a﹣2b=0,即a=2b时,u=9a2+72b+2=36b2+72b+2=36(b+1)2﹣34,于是b=﹣1时,u的最小值为﹣34,此时a=﹣2,b=﹣1.(13分)②当3a﹣4b+5=0时,u=9a2+72b+2=16b2+32b+27=16(b+1)2+11,于是b=﹣1时,u的最小值为11,此时a=﹣3,b=﹣1.(18分)综上可知,u的最小值为﹣3424.解:∵y=4x2﹣4ax+a2+1(0≤x≤2),∴y=4+1,(1)当0≤≤2,即0≤a≤4时,最小值为1,不符合题意,舍去;(2)当<0即a<0时,令f(0)=3得:a2+1=3,解得:a=±,故a=﹣;(3)当>2即a>4时,令f(2)=3,即a2﹣8a+14=0,解得;a=4±,故a=4+;综上有;a=﹣或4+25.解:原式=(x)2+.∵(x)2≥0.∴原式>0恒成立;当x=时,原式有最小值为26.解:由题意设二次函数解析式为:y=ax2+bx+c,把A(0,2)、B(2,0)、C(﹣1,2)分别代入二次函数解析式,得:解得所以函数解析式为:y=﹣x2﹣x+2,配方得:y=﹣(x﹣)2+,所以二次函数有最大值且最大值为:27.解:(1)∵在△ABC中,∠A=90°,∠C=30°,AB=1,∴BC=2,AC=,而两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C ∴Q的速度是P的速度的(2+1)÷=倍;(2)∵设AP=x,△APQ的面积是y,①当Q在AB上,即时,,②当Q在BC上,即时,,即:;(3)对于()当时,对于(≤x≤)当时,,∵,∴当时,.28.解:设C(m,2m+1),D(m,m2),则CD=2m+1﹣m2=﹣m2+2m+1=﹣(m﹣1)2+2,当m=1时,CD有最大值229.解:原式=(x﹣)2﹣,∴当x=时,原式有最小值为﹣30.解:(1)y=2x2﹣4ax+a2+2a+2,y=2(x﹣a)2﹣a2+2a+2,当x=a时,y有最小值为3﹣(a﹣1)2;(2)当﹣1≤x≤2时,3﹣(a﹣1)2=2,解得a=0或a=2,当x<﹣1时,则当x=﹣1时y=2,解得,当x>2时,则当x=2时y=2,解得a=4,所以:a=0或a=2或或a=431.解:(1)当1≤x≤2时,y=x2﹣x+x+1=x2+1,当x=1时取最小值为2,x=2时取最大值为5;(2)当﹣2≤x≤﹣1时,y=x2﹣2x﹣1=(x﹣1)2﹣2,当x=﹣1时,y取得最小值为2,当x=﹣2时,y取得最大值为7;(3)当﹣1≤x≤0时,y=x2﹣x+x+1=x2+1,当x=﹣1时,y取最大值为2,当x=0时,y取最小值为1;(4)当0≤x≤1时,y=x﹣x2+x+1=﹣(x﹣1)2+2,当x=1时y取最大值为2,当x=0时y取最小值为1;综上所述:y的最大值为7,最小值为132.解:∵y=(k﹣1)x2﹣2(k﹣1)x﹣k,=(k﹣1)(x﹣1)2﹣2k+1,∴当k>1时,函数有最小值为﹣2k+1,当k<1时,函数有最大值为﹣2k+133.解:(1)若,即﹣1≤a≤1,抛物线开口向下,当时,y最大值=2a,∵二次函数最大值﹣3,即与﹣1≤a≤1矛盾,舍去.(2)若当时,y随x增大而减小,当时,y最大值=﹣a2+4a﹣1,由又a>1,∴(3)若当时,y随x增大而增大,当时,y最大值=﹣a2﹣1,由又a<﹣1,∴综上所述,或34.最小值===.35.解:(1)3﹣k<0,即k>3时,函数有最大值2;(2)3﹣k>0,即k<3时,函数有最大小236.解:二次函数的对称轴为直线x=﹣=t,①﹣1≤t≤1时,x=t时,函数有最大值y=t2﹣2t•t+1=﹣t2+1,②t<﹣1时,x=1时,函数有最大值y=12﹣2t•1+1=﹣2t+2,③t>1时,x=﹣1时,函数有最大值y=(﹣1)2﹣2t•(﹣1)+1=2t+237.解:(1)若,即﹣1≤a≤1,抛物线开口向下,当时,y最大值=2a,∵二次函数最大值﹣3,即与﹣1≤a≤1矛盾,舍去.(2)若当时,y随x增大而减小,当时,y最大值=﹣a2+4a﹣1,由又a>1,∴(3)若当时,y随x增大而增大,当时,y最大值=﹣a2﹣1,由又a<﹣1,∴综上所述,或38.解:(1)若x2﹣4≥0,即|x|≥2,则y=x2﹣3x﹣4∴,若x2﹣4≤0,即|x|≤2,则y=﹣x2﹣3x+4∴,∴(2≤x≤5),当x=5时,y最大值=6;当x=2时,y最小值=﹣6,对(﹣2≤x≤2),当时,;x=2时,y最小值=﹣6,综上所述,x=2时,y最小值=﹣6;当时,;(2)由2x+y=1得,y=1﹣2x,由|y|≤1得﹣1≤x≤1故0≤x≤1,∴z为开口向上,对称轴为的抛物线,虽然有最小值,但不在0≤x≤1的范围内,因此不是所求的最值.又x=0时,z=3;x=1时,z=21.∴所求的最小值为339.解:对称轴为直线x=﹣=a,①a<﹣2时,x=﹣2时,y有最小值,最小值=(﹣2)2﹣2a×(﹣2)﹣3=4+4a﹣3=4a+1,x=2时,y有最大值,最大值=22﹣2a×2﹣3=4﹣4a﹣3=﹣4a+1;②﹣2≤a≤0时,x=a时y有最小值,最小值=a2﹣2a•a﹣3=﹣a2﹣3,x=2时,y有最大值,最大值=22﹣2a×2﹣3=4﹣4a﹣3=﹣4a+1;③0<a≤2时,x=a时y有最小值,最小值=a2﹣2a•a﹣3=﹣a2﹣3,x=﹣2时,y有最大值,最大值=(﹣2)2﹣2a×(﹣2)﹣3=4+4a﹣3=4a+1;④a>2时,x=2时,y有最小值,最小值=22﹣2a×2﹣3=4﹣4a﹣3=﹣4a+1,x=﹣2时,y有最大值,最大值=(﹣2)2﹣2a×(﹣2)﹣3=4+4a﹣3=4a+140.解:∵|x+1|≤6,解得:﹣7≤x≤5,∴当﹣7≤x<0时,y=﹣x2﹣2x+1=﹣(x+1)2+2,当x=﹣1时,取得最大值为2;当0≤x≤5时,y=x2﹣2x+1=(x﹣1)2,故当x=5时,y取得最大值为16.综合上述,原函数式最大值为1641.解:设鸡舍的长为x,则宽为(14﹣2x+2)=8﹣x,所以,鸡舍的面积=x(8﹣x)=﹣x2+8x=﹣(x﹣4)2+16,所以,当x=4,即长与宽都是4时,鸡舍的面积最大,最大值是16m2.答:鸡舍的长与宽都是4m时,鸡舍的面积最大42.解:设梯形上底为x,下底为y,∵AB=2,P是边AB的中点,∠PDC=90°,∴1+y2﹣(1+x2)=4+(y﹣x)2,解得:y=+x,梯形ABCD面积=×(x+y)×2=x+y=x+x+=2x+≥4=4,当x=时,即x=1,y=3时,梯形ABCD面积取得最小值为443.解:将直线x=t,代入y=x2﹣3x,y=﹣x2+9中,得A和B的纵坐标分别为t2﹣3t,﹣t2+9,∴AB=,∴当时,线段AB取得最大值44.解:(1)作OE⊥AD,DF⊥AO,垂足分别为E、F,由垂径定理可知AE=AD=x,易证Rt△ADF∽Rt△AOE,∴=,即=,解得AF=x2,∴CD=AB﹣2AF=2﹣x2,∴y=2x+2+2﹣x2=﹣x2+2x+4,∵OA=1,AF=x2,∴x2<1∴0<x<;(2)∵y=﹣x2+2x+4=﹣(x﹣1)2+5,∴x=1时,周长最大为545.解:由正弦定理得:BQ=2cosB,CQ=2cosC,由上可推出BC=2(cosB+cosC),AB=BC,AC=BC,∴S△ABC=×AB×AC×sinA,∵三边固定,当面积最大时,sinA=1,∠A=90°,又∠APR=∠ARP=∠QPR=∠QRP所以△APR相似于△QPR因为PR边公用,所以AP=AR=QP=QR=1AB=AC=2,∴S△ABC=×AB×AC×sinA=246.解:函数,∴y=+﹣,(1)当0≤≤1时,m=﹣,(2)当<0时,m=,(3)当>1时,m=1﹣a+,综上知:a=1时,m有最大值0.2547.解:(1)∵抛物线的对称轴为直线x=﹣1,∴当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为:2×42+4×4+1=49;(2)∵二次函数y=2x2+4x+1的对称轴为直线x=﹣1,∴由对称性可知,当x=﹣4和x=2时函数值相等,∴若p≤﹣4,则当x=p时,y的最大值为2p2+4p+1,若﹣4<p≤2,则当x=2时,y的最大值为17;(3)t<﹣2时,最大值为:2t2+4t+1=31,整理得,t2+2t﹣15=0,解得t1=3(舍去),t2=﹣5,t≥﹣2时,最大值为:2(t+2)2+4(t+2)+1=31,整理得,(t+2)2+2(t+2)﹣15=0,解得t1=1,t2=﹣7(舍去),所以,t的值为1或﹣548.解:(1)第t秒钟时,AP=tcm,故PB=(6﹣t)cm,BQ=2tcm,故S△PBQ=•(6﹣t)•2t=﹣t2+6t∵S矩形ABCD=6×12=72.∴S=72﹣S△PBQ=t2﹣6t+72(0<t<6);(2)∵S=t2﹣6t+72=(t﹣3)2+63,∴当t=3秒时,S有最小值63cm249.解:设C(m,2m+1),D(m,m2),则CD=2m+1﹣m2=﹣m2+2m+1=﹣(m﹣1)2+2,当m=1时,CD有最大值250.解:(1)∵在△ABC中,∠A=90°,∠C=30°,AB=1,∴BC=2,AC=,而两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C ∴Q的速度是P的速度的(2+1)÷=倍;(2)∵设AP=x,△APQ的面积是y,①当Q在AB上,即时,,②当Q在BC上,即时,,即:;(3)对于()当时,对于(≤x≤)当时,,∵,∴当时,51.解:设平行四边形AGEF的面积是S.∵四边形AGEF是平行四边形,∴EF∥AG;∵∠A=30°,∠C=90°,CE=x,BC=6,∴∠A=∠CFE=30°,∴CF=x,AC=6,∴AF=6﹣x;∴S=AF•CE=(6﹣x)x=﹣x2+6x,即S=﹣x2+6x;(1)当x=2时,S=﹣4+12=8,即S=8.答:平行四边形AGEF的面积为(平方单位)…4分(2)由S=﹣x2+6x,得,∴,∴当x=3时,平行四边形AGEF的面积最大,最大面积是(平方单位)…9分52.解:(1)在Rt△ABC中,AC==6,∴tanB=.∵DE∥AC,∴∠BDE=∠BCA=90°.∴DE=BD•tanB=x,CD=BC﹣BD=8﹣x.设△ADE中DE边上的高为h,∵DE∥AC,∴h=CD.∴y=DE•CD=•(8﹣x),即y=+3x.自变量x的取值范围是0<x<8;(2)x==4时,y最大==6.即当x=4时,△ADE的面积最大为653.(1)证明:过点A作AE⊥BC于E,AF⊥CD于F,∵两条纸条宽度相同(对边平行),∴AB∥CD,AD∥BC,AE=AF,∴四边形ABCD是平行四边形,∵S▱ABCD=BC•AE=CD•AF,又∵AE=AF,∴BC=CD,∴四边形ABCD是菱形;(2)解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,由勾股定理:x2=(8﹣x)2+22,得:4x=17,即菱形的最大周长为17cm.当两张纸条如图所示放置时,即是正方形时取得最小值为:2×4=8.54.解:在Rt△BPQ中,设PB=x,由∠B=60°,得:BQ=,PQ=,从而有PC=CR=a﹣x,∴△BPQ与△CPR的面积之和为:S=x2+(a﹣x)2=(x﹣a)2+a2,∵0≤x≤a,∴当x=0时,S取最大值a2,当x=a时,S取最小值a255.解:k可取值﹣1,1,2(1)当k=1时,函数为y=﹣4x+4,是一次函数(直线),无最值;(2)当k=2时,函数为y=x2﹣4x+3,为二次函数.此函数开口向上,只有最小值而无最大值;(3)当k=﹣1时,函数为y=﹣2x2﹣4x+6,为二次函数.此函数开口向下,有最大值.因为y=﹣2x2﹣4x+6=﹣2(x+1)2+8,则当x=﹣1时,函数有最大值为856.解:设A(m,0),B(n,0),则m,n是方程x2+bx+c=0的两个根,∵y=x2+bx+c过点C(0,3),∴c=3,又∵S△ABC=|AB|•|OC|=|AB|•3=9,∴|AB|=6,∴|m﹣n|=6,即(m+n)2﹣4mn=36,而,∴b2﹣12=36,b=±4,∴y=x2±4x+3=(x±2)2﹣9,∴所求的最小值为﹣957.解:(1)在矩形PFOE中,OF=PE=x,∵AO=8,BO=6,∴tanB==,即=,解得PF=(6﹣x),∴矩形PFOE的面积为S=PE•PF=x•(6﹣x)=﹣x2+8x,即S=﹣x2+8x;(2)∵S=﹣x2+8x=﹣(x2﹣6x+9)+12=﹣(x﹣3)2+12,∴当x=3时,矩形PFOE的面积S最大,最大面积是1258.解:(1)当a=3时,方程组为,②×2得,4x﹣2y=2③,①+③得,5x=5,解得x=1,把x=1代入①得,1+2y=3,解得y=1,所以,方程组的解是;(2)方程组的两个方程相加得,3x+y=a+1,所以,S=a(3x+y)=a(a+1)=(a+)2﹣,所以,当a=﹣时,S有最小值﹣59.解:(1)∵PE∥CB,∴∠AEP=∠ADC,又∵∠EAP=∠DAC,∴△AEP∽△ADC,(2分)∴=,∴=,(3分)∴.(4分)(2)由四边形PEDQ1是平行四边形,可得EP=DQ1.(5分)即x=3﹣x,所以x=1.5.(6分)∵0<x<2.4(7分)∴当Q在线段CD上运动1.5秒时,四边形PEDQ是平行四边形.(8分)(3)S四边形EPDQ2=(x+x﹣3)•(4﹣x)(9分)=﹣x2+x﹣6=﹣(x﹣)2+,(10分)又∵2.4<x<4,(12分)∴当x=时,S取得最大值,最大值为60.解 :(1)由题意,得EF=AE=DE=BC=x ,AB=30, ∴BF=2x-30.(2)∵∠F=∠A=45°,∠CBF=∠ABC=90°, ∴∠BGF=∠F=45°.∴BG=BF=2x-30,∴S=S DEF △−S GBF △=21DE ²−21BF ² =21 x ²−21(2x −30)² =−23 x ²+60x −450. (3)S=−23 x ²+60x −450=−23 (x −20)²+150. ∵a =−23 <0,15<20<30, ∴当x=20时,S 有最大值,最大值为150。

中考数学总复习《二次函数的最值》练习题附带答案

中考数学总复习《二次函数的最值》练习题附带答案

中考数学总复习《二次函数的最值》练习题附带答案一、单选题(共12题;共24分)1.二次函数y=−(x−1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+ n的值为()A.52B.2C.12D.322.已知二次函数y=(x-1)2-3,则此二次函数()A.有最大值1B.有最小值1C.有最大值-3D.有最小值-33.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512⑴二次函数y=ax2+bx+c有最小值,最小值为﹣3;⑴当−12<x<2时,y<0;⑴二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.04.对于代数式x2-10x+24,下列说法:①它是二次三项式;②该代数式的值可能等于2017;③分解因式的结果是(x-4)(x-6);④该代数式的值可能小于-1.其中正确的有()A.1个B.2个C.3 个D.4个5.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④a+b+cb−a的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个6.已知非负数a,b,c满足a+b=3且c﹣3a=﹣6,设y=a2+b+c的最大值为m,最小值为n,则m ﹣n的值是()A.16B.15C.9D.77.由二次函数y=(x﹣1)2﹣3可知()A.图象开口向下B.对称轴是直线x=﹣1C.函数最小值是3D.顶点是(1,﹣3)8.抛物线y=x2,当﹣1≤x≤3时,y的取值范围是()A.﹣1≤y≤9B.0≤y≤9C.1≤y≤9D.﹣1≤y≤39.已知二次函数的图象(-0.7≤x≤2)如图所示。

中考数学《二次函数的最值》专项练习题(附答案)

中考数学《二次函数的最值》专项练习题(附答案)

中考数学《二次函数的最值》专项练习题(附答案)一、单选题1.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论①abc>0;②b−a>c;③4a+2b+c>0;④3a>−c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤2.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是x=−2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2−b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1B.2C.3D.43.已知二次函数y=−x2+2x+c,当−1≤x≤2时,函数的最大值与最小值的差为()A.1B.2C.3D.44.关于二次函数y=x2−4x−4的说法,正确的是()A.最大值为−4B.最小值为−4C.最大值为−8D.最小值为−85.在平面直角坐标系中,点P的坐标(0,2),点Q的坐标为(t−1,−34t−94)(t为实数),当PQ长取得最小值时,t的值为()A.−75B.−125C.3D.46.已知二次函数y=x2+2x+m2+2m﹣1(m为常数),当自变量x的值满足1≤x≤3时,与其对应的函数值y的最小值为5,则m的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或37.已知二次函数y=2(x−1)2−3,则下列说法正确的是()A.y有最小值0,有最大值-3B.y有最小值-3,无最大值C.y有最小值-1,有最大值-3D.y有最小值-3,有最大值08.当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.1B.2C.1或2D.0或39.二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表:下列结论错误的是()x-5-4-202y60-6-46B.若点(-8,y1),点(8,y2)在二次函数图象上,则y1<y2C.当x=-2时,函数值最小,最小值为-6D.方程ax2+bx+c=-5有两个不相等的实数根.10.抛物线y=2x2,y=﹣2x2,y=x2共有的性质是()A.开口向下B.对称轴是y轴C.都有最低点D.y的值随x的增大而减小11.已知二次函数y=−x2+mx+m(m为常数),当−2≤x≤4时,y的最大值是15,则m 的值是()A.-10和6B.-19和315C.6和315D.-19和612.小明在研究某二次函数y=ax2+bx+c时列表如下:x…-2-1023…y=ax2+bx+c…116336…A.有最大值11,有最小值3B.有最大值11,有最小值2C.有最大值6,有最小值3D.有最大值6,有最小值2二、填空题13.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.14.若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,x2−2x+3)图象上的最低点是.15.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则该函数的最小值是16.当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为.17.二次函数y=x2+4x+5(﹣3≤x≤0)的最小值是.18.当x=0时,函数y=2x2+bx+c有最小值1,则b-c=.三、综合题19.抛物线y=−x2+bx+c过点(0,-5)和(2,1).(1)求b,c的值;(2)当x为何值时,y有最大值?20.如图,在平面直角坐标系中,抛物线y=ax2+bx−2交x轴于A,B两点,交y轴于点C,且OA= 2OC=8OB,点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)连接AC,求△PAC面积的最大值及此时点P的坐标.21.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.22.重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y= 16x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=- 18x+194(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:z(元/m2)5052545658…x(年)12345…(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.(参考数据:√315≈17.7,√319≈17.8,√321≈17.9)23.将一条长为56cm的铁丝剪成两段并把每一段铁丝做成一个正方形.(1)要使这两个正方形的面积之和等于100cm2,该怎么剪?(2)设这两个正方形的面积之和为Scm2,当两段铁丝长度分别为何值时,S有最小值?24.一商店销售某种商品,平均每天可售出20件,每件盈利50元,为了扩大销售、增加利润,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)当每件商品降价多少元时,该商店每天销售利润为1600元?(2)当每件商品降价多少元时,该商店每天销售利润最大?最大为多少元?参考答案1.【答案】B2.【答案】C3.【答案】D4.【答案】D5.【答案】A6.【答案】C7.【答案】B8.【答案】D9.【答案】C10.【答案】B11.【答案】D12.【答案】B13.【答案】3;1814.【答案】(1,2)15.【答案】116.【答案】117.【答案】118.【答案】-119.【答案】(1)解:∵抛物线y=−x2+bx+c过点(0,-5)和(2,1)∴{c=−5−4+2b+c=1解得{b=5c=−5∴b, c的值分别为5, -5.(2)解:a= -1 ,b=5∴当x= −b2a=52时y有最大值.20.【答案】(1)解:在抛物线y=ax2+bx−2中令x=0,则y=−2∴点C的坐标为(0,−2)∴OC=2∵OA=2OC=8OB∴OA=4,OB=1 2∴点A 为(−4,0),点B 为(12,0)则把点A 、B 代入解析式,得{16a −4b −2=014a +12b −2=0解得:{a =1b =72∴y =x 2+72x −2;(2)解:设直线AC 的解析式为y =mx +n ,则 把点A 、C 代入,得{−4m +n =0n =−2解得:{m =−12n =−2∴直线AC 的解析式为y =−12x −2;过点P 作PD∥y 轴,交AC 于点D ,如图:设点P 为(x ,x 2+72x −2),则点D 为(x ,−12x −2)∴PD =−12x −2−(x 2+72x −2)=−x 2−4x∵OA=4∴S ΔAPC =12PD •OA =12×(−x 2−4x)×4=−2x 2−8x ∴S ΔAPC =−2(x +2)2+8∴当x =−2时,S ΔAPC 取最大值8;∴x 2+72x −2=(−2)2+72×(−2)−2=−5∴点P 的坐标为(−2,−5). ∵点P 在第三象限的抛物线上 ∴点P 的坐标为(−2,−5)满足条件.21.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0 ∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2有 {4n−m 24n=−49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0解得: {m =53n =−4(舍去). 综上所述:m=2,n=﹣3.22.【答案】(1)解:由题意,z 与x 成一次函数关系,设z=kx+b (k≠0).把(1,50).(2,52)代入得 {k +b =502k +b =52⇒{k =2b =48∴z=2x+48.(2)解:当1≤x≤6时,设收取的租金为W1百万元,则W1=(- 16x+5)•(2x+48)=- 13x2+2x+240,∵对称轴x=- b2a≠=3,而1≤x≤6,∴当x=3时,W1最大=243(百万元).当7≤x≤10时,设收取的租金为W2百万元,则W2=(- 18x+ 194)·(2x+48)=- 14x2+ 72x+228.∵对称轴x=- b2a=7,而7≤x≤10,∴当x=7时,W2最大= 9614(百万元).∵243> 961 4∴第3年收取的租金最多,最多为243百万元.(3)解:当x=6时,y=- 16×6+5=4百万平方米=400万平方米;当x=10时y=- 18×10+ 194=3.5百万平方米=350万平方.∵第6年可解决20万人住房问题∴人均住房为400÷20=20平方米.由题意20×(1-1.35a%)×20×(1+a%)=350.设a%=m,化简为54m2+14m-5=0Δ=142-4×54×(-5)=1276∴m= −14±√12762×54=−7±√31954∵√319≈17.8,∴m1=0.2,m2=- 62135(不符题意,舍去).∴a%=0.2,∴a=20.答:a的值为20.23.【答案】(1)解:设其中一个正方形的边长为xcm,则另一个正方形的边长为(14﹣x)cm 依题意列方程得x2+(14﹣x)2=100整理得:x2﹣14x+48=0(x﹣6)(x﹣8)=0解方程得x1=6,x2=86×4=24(cm),56﹣24=32(cm);因此这段铁丝剪成两段后的长度分别是24cm、32cm。

二次函数的最值与轴对称点的计算练习题

二次函数的最值与轴对称点的计算练习题

二次函数的最值与轴对称点的计算练习题在学习二次函数的过程中,理解和计算函数的最值以及轴对称点是非常重要的。

掌握了这些概念,我们可以更好地分析函数图像,解决实际问题,并在数学考试中取得更好的成绩。

本文将提供一些二次函数的最值和轴对称点的计算练习题,帮助读者巩固这一知识点。

练习题1:已知函数 f(x) = -x^2 + 4x + 3,计算函数的最值以及轴对称点的坐标。

解答:首先,我们可以通过求导数来确定函数的最值。

对 f(x) 进行求导得到 f'(x) = -2x + 4。

令 f'(x) = 0,解方程得到 x = 2。

将 x = 2 代入原函数 f(x),得到 f(2) = -2^2 + 4 * 2 + 3 = 9。

因此,函数的最大值为 9。

接下来,我们来计算轴对称点。

二次函数的轴对称点横坐标即为顶点的横坐标,顶点的横坐标可以通过公式 x = -b / (2a) 来计算,其中 a和 b 分别为二次项和一次项的系数。

对于函数 f(x) = -x^2 + 4x + 3,a = -1,b = 4。

将这两个值代入公式,可以计算出顶点的横坐标为 x = -4 / (2 * (-1)) = 2。

将 x = 2 代入原函数 f(x),得到 f(2) = -2^2 + 4 * 2 + 3 = 9。

因此,轴对称点的坐标为 (2, 9)。

练习题2:已知函数 g(x) = 3x^2 - 6x - 15,计算函数的最小值以及轴对称点的坐标。

解答:同样地,我们首先通过求导数来确定函数的最值。

对 g(x) 进行求导得到 g'(x) = 6x - 6。

令 g'(x) = 0,解方程得到 x = 1。

将 x = 1 代入原函数 g(x),得到 g(1) = 3 * 1^2 - 6 * 1 - 15 = -18。

因此,函数的最小值为 -18。

接下来,我们计算轴对称点。

根据公式 x = -b / (2a),对于函数 g(x) = 3x^2 - 6x - 15,a = 3, b = -6。

中考数学总复习《二次函数的最值》练习题-附答案

中考数学总复习《二次函数的最值》练习题-附答案

中考数学总复习《二次函数的最值》练习题-附答案一、单选题(共12题;共24分)1.关于二次函数y=-2(x-3)²+5的最大值,下列说法正确的是()A.最大值是3B.最大值是-3C.最大值是5D.最大值是-52.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3B.3 √3C.32D.3√323.如图,2017年国际泳联世锦赛在布达佩斯举行,某运动员在10米跳台跳水比赛时估测身体(看成一点)在空中的运动路线是抛物线y=-256x2+103x(图中标出的数据为已知条件),则运动员在空中运动的最大高度离水面的距离为()A.10米B.10 25米C.9 13米D.10 23米4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.272B.18C.20D.不存在5.二次函数y=(x﹣m)2﹣m2﹣1有最小值﹣4,则实数m的值可能是()A.﹣B.﹣3C.D.4 6.对于抛物线y=13(x−5)2+3,下列说法错误的是()A.对称轴是直线x=5B.函数的最小值是3C.当x>5时,y随x的增大而增大D.开口向下,顶点坐标(5,3)7.已知抛物线y=-2(x-3)2+5,则此抛物线()A.开口向下,对称轴为直线x=-3B.顶点坐标为(-3,5)C.最小值为5D.当x>3时y随x的增大而减小8.二次函数y=x2+2x+4的最小值为()A.3B.4C.5D.69.如图,在平面直角坐标系中,点P是以C(﹣√2,√7)为圆心,1为半径的△C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()A.6B.8C.10D.1210.已知二次函数y=ax2+2x+1(a为实数,且a<0),对于满足0≤x≤x0的任意一个x的值,都有−3≤y≤3,则x0的最大值为()A.2√3−2B.2√3+2C.2√5+2D.2√5−211.如图,已知点A(12,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=8时,这两个二次函数的最大值之和等于()A.5B.2√7C.8D.612.在函数y=−x2+2x−2中,若2≤x≤5,那么函数y的最大值是()A.1B.−1C.−2D.−17二、填空题(共6题;共7分)13.若y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式(其中m,k为常数),则m+k=;当x=时,二次函数y=x2+2x﹣2有最小值.14.二次函数y=x2﹣2x+m的最小值为2,则m的值为.15.如图,在四边形ABCD中,AC△BD,BD-AC=4,连接BC,设AC=x,BC=y,若△ABC=△BDC,则y2-6x的最小值为.16.二次函数y =ax 2+4x +a 的最大值是3,则a= .17.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0)。

中考数学《二次函数的最值》专项练习及答案

中考数学《二次函数的最值》专项练习及答案

中考数学《二次函数的最值》专项练习及答案一、单选题1.如果抛物线y=x2−6x+c−2的顶点到x轴的距离是3,那么c的值等于()A.8B.14C.8或14D.-8或-142.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为()A.1或B.- 或C.D.13.如图,已知点A(12,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O 两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=8时,这两个二次函数的最大值之和等于()A.5B.2√7C.8D.64.二次函数y=x2﹣2x﹣3,当m﹣2≤x≤m时的最大值为5,则m的值可能为()A.0或6B.4或﹣2C.0或4D.6或﹣25.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2−4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2−2x−3|的图象(如图所示),并写出下列结论:①图象与坐标轴的交点为(−1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当−1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=−1或x=3时,函数的最小值是0;⑤当x= 1时,函数的最大值是4,⑥若点P(a,b)在该图象上,则当b=2时,可以找到4个不同的点P.其中正确结论的个数是()A.6B.5C.4D.36.关于二次函数y=ax2+bx+c,自变量x与函数y的对应值如表,下列说法正确的是()x…﹣3﹣201…y…7﹣2﹣27…(0,2).图象的对称轴是直线x=1 C.y的最小值为-5D.图象与x轴有且只有一个交点7.二次函数y=ax2+bx+c的自变量x与函数y的对应值如下表:x…-5-4-3-2-10…y…40-2-204…A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是直线x=-528.下列对抛物线y=−2(x−4)2+9性质的描写中,正确的是()A.开口向上B.对称轴是直线x=9C.顶点坐标是(﹣4,9)D.函数y有最大值9.二次函数y=(x﹣m)2﹣m2﹣1有最小值﹣4,则实数m的值可能是()A.﹣B.﹣3C.D.410.y=a(x−x1)(x−x2)+t(a>0),点(x0,y0)是函数图象上任意一点,()<−a4(x1−x2)2A.若t<0,则y>−a4(x1−x2)2B.若t≥0,则y≤−a4(x1−x2)2C.若t<0,则y≥−a4(x1−x2)2D.若t≥0,则y11.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数y的最小值为5,则h的值是()A.﹣1B.﹣1或5C.5D.﹣512.关于二次函数y=-x2+2x的最值,下列叙述正确的是()A.当x=2时,y有最小值0B.当x=2时,y有最大值0C.当x=1时,y有最小值1D.当x=1时,y有最大值1二、填空题13.如图,有长为24米的篱笆,一边利用墙(墙的最大可用长度为3米),围成一个由两个长方形组成的花圃,当花圃的边AB为米时,围成的花圃面积最大,最大面积为平方米.14.抛物线的y=(x﹣3)2﹣2的最小值为.15.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t−62,飞机着陆至停下来共滑.5t16.如图所示,二次函数y=ax2+bx+c(a≠0,a,b,c为实数)的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②3a+c=0;③ax2+bx≤a+ b;④若M(−0.5,y1)、N(3.5,y2)为函数图象上的两点,则y1<y2.其中正确的有.(填写序号即可)17.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如表:下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是(把所有正确结论的序号都填上)x﹣5﹣4﹣202y60﹣6﹣461825元时,平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.三、综合题19.已知二次函数y=−x2+4x+c.(1)该二次函数图象的对称轴是直线.(2)当4≤x≤6时,y的最大值是-3,求此二次函数解析式.20.已知函数y=-x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.21.在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,如图1,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形EFGH,如图2.设小正方形的边长为x厘米.(1)当矩形纸板ABCD的一边长为90厘米时,求纸盒的侧面积的最大值;(2)当EH:EF=7:2,且侧面积与底面积之比为9:7时,求x的值.22.已知二次函数y=x2+bx+2b(b为常数).(1)若图象过(2,8),求函数的表达式.(2)在(1)的条件下,当−2≤x≤2时,求函数的最大值和最小值.(3)若函数图象不经过第三象限,求b的取值范围23.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(−2,0),点P 是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值,面积最大值是多少?(3)已知抛物线的顶点为点D.点M是x轴上的一个动点,当点M的坐标为多少时,△ADM的周长最小?最小值是多少?24.如图,抛物线y=x2+bx−c与x轴交A(−1,0)、B(3,0)两点,直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求抛物线及直线AC的函数表达式;(2)若P点是线段AC上的一个动点,过P点作y轴的平行线交抛物线于F点,求线段PF长度的最大值.参考答案1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】B6.【答案】C7.【答案】D8.【答案】D9.【答案】A10.【答案】D11.【答案】B12.【答案】D13.【答案】7;2114.【答案】﹣215.【答案】750m16.【答案】①②③17.【答案】①③④18.【答案】2219.【答案】(1)x=2(2)y=−x2+4x−320.【答案】(1)解:把(0,-3),(-6,-3)代入y=−x2+bx+c 得b=-6,c=-3(2)解:∵y=−x2−6x−3=−(x+3)2+6又∵-4≤x≤0∴当x=-3时,y有最大值为6.(3)解:①当-3<m≤0时当x=0时,y有最小值为-3当x=m时,y有最大值为−m2−6m−3∴−m2−6m−3+(-3)=2∴m=-2或m=-4(舍去).②当m≤-3时当x =-3时y 有最大值为6 ∵y 的最大值与最小值之和为2 ∴y 最小值为-4 ∴−(m +3)2+6 =-4∴m = −3−√10 或m = −3+√10 (舍去). 综上所述,m =-2或 −3−√10 .21.【答案】(1)解:S 侧=2[x(90-2x)+x(40-2x)] =-8x 2+260x=-8(x - 654 )2+ 42252.∵-8<0,∴当x = 654 时,S 侧最大= 42252(2)解:设EF =2m ,则EH =7m则侧面积为2(7mx +2mx)=18mx ,底面积为7m·2m =14m 由题意,得18mx :14m =9:7,∴m =x . 则AD =7x +2x =9x ,AB =2x +2x =4x 由4x·9x =3600,且x >0 ∴x =1022.【答案】(1)解:∵图象经过点(2,8)∴8=4+2b +2b 解得b =1.∴此函数解析式为y =x 2+x +2.(2)解:y =x 2+x +2=(x +12)2+74.∵抛物线的开口向上∴当−2≤x ≤−12,y 随x 的增大而减小∴当x =−12时,y 的最小值为74当−12≤x ≤2时,y 随x 的增大而增大∴当x =2时y 的最大值为(2+12)2+74=8答:最小值74,最大值8.(3)解:∵图象不经过第三象限,且开口向上 ∴2b ≥0,即b ≥0∴对称轴直线x =−b2≤0,在y 轴左侧∴图象必在x 轴上方(包括x 轴)∴△=b2−8b≤0∴0≤b≤8.23.【答案】(1)解:∵抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0)∴{c=636a+6b+c=0 4a−2b+c=0∴{c=6a=−12b=2∴抛物线的解析式为:y=−12x2+2x+6(2)解:设P点坐标为(x0,y0)∵点P是线段AB上方抛物线上的一个动点,A(0,6)∴0<x0<6过P点作x轴的垂线,与x轴交于点H,如图∵S四边形AOBP =S△PAB+S△AOB=S梯形AOHP+S△PHB∴12(6+y0)x0+12(6−x0)y0=S△PAB+12×6×6可得S△PAB=3x0+3y0−18∵y0=−12x02+2x0+6∴S△PAB=3x0+3(−12x02+2x0+6)−18,得∴S△PAB=−32x02+9x0=−32(x0−3)2+272∴当x0=3时,S△PAB面积最大为272(3)解:做出点A关于x轴的对称点A′,则A′(0,−6),设M点坐标为M(x1,0)根据对称性及两点间线段最短可知,当M 点刚好位于A ′D 与x 轴交点时,△ADM 的周长最小 ,且L △ADM =A ′D +AD∵ 抛物线解析式为y =−12x 2+2x +6=−12(x −2)2+8∴ D 点坐标为(2,8)设直线A ′D 解析式为y =kx +b∵A ′(0,−6),D(2,8) ,代入直线解析式得 {b =−68=2k +b ,得{b =−6k =7∴直线A ′D 解析式为y =7x −6 M 点为直线A ′D 与x 轴交点,则7x 1−6=0 ,得x 1=67∴M(67,0)∵ A ′(0,−6),A(0,6)∴L △ADM =A ′D +AD =√(0−2)2+(−6−8)2+√(0−2)2+(6−8)2=√4+196+√8=10√2+2√2=12√2∴当M 点坐标为M(67,0)时,△ADM 周长最小,最小值为12√2 24.【答案】(1)解:将A (﹣1,0),B (3,0)代入 y =x 2+bx −c得b=﹣2,c=3; ∴y =x 2−2x −3 .将C 点的横坐标x=2代入 y =x 2−2x −3 得y=-3 ∴C (2,-3);∴直线AC 的函数解析式是y=﹣x ﹣1(2)解:设P点的横坐标为x(﹣1≤x≤2)则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2−2x−3);∵P点在E点的上方,PE=(﹣x﹣1)﹣(y=x2−2x−3)= −x2+x+2∴当x= 12时,PE的最大值为94。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数最值习题
1.抛物线2(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m =
_____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.
2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ .
3.求下列二次函数的最值:
(1) 2245y x x =-+; (2) (1)(2)y x x =-+.
4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.
5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.
6.求函数23532y x x =---的最大值和最小值.
7.已知关于x 的函数22
(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?
二次函数最值问题答案
1.4 14或2,3 2
2.
2
2 16
l
m
3.(1) 有最小值3,无最大值;(2) 有最大值9
4
,无最小值.
4.当
3
4
x=时,
min
31
8
y=;当2
x=-时,
max
19
y=.
5.5
y≥-
6.当
5
6
x=时,
min
3
3
6
y=-;当
2
3
x=或1时,
max
3
y=.
7.当
5
4
t=-时,
min
y=.。

相关文档
最新文档