2009年7月自学考试线性代数试题
高等教育自学考试《线性代数(经管类)》题库一
高等教育自学考试《线性代数(经管类)》题库一1. 【单选题】(江南博哥)A.B.C.D.正确答案:B参考解析:2. 【单选题】A. a=-1,b=3,c=0,d=3B. a=-1,b=3,c=1,d=3C. a=3,b=-1,c=1,d=3D. a=3,b=-1,c=0,d=3正确答案:D参考解析:3. 【单选题】A.B.C.D.正确答案:B参考解析:合同矩阵A和B 有相同的秩和正惯性指数,只有B符合且都有一个正惯性指数4. 【单选题】设A为m×n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件为A. A的行向量组线性相关B. A的行向量组线性无关C. A的列向量组线性相关D. A的列向量组线性无关正确答案:D参考解析:设A为m×n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件为A的列向量组线性无关5. 【单选题】设α1,α2,α3,线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不可由α1,α2,α3线性表示,则对任意常数k必有()A. α1,α2,α3,kβ1+β2线性相关B. α1,α2,α3,β1+kβ2线性无关C. α1,α2,α3,β1+kβ2线性相关D. α1,α2,α3,kβ1+β2线性无关正确答案:D参考解析:6. 【填空题】我的回答:正确答案:参考解析:7. 【填空题】设A为三阶方阵,且|A|=-2,则|2A|=_____.我的回答:正确答案:参考解析:由|A|=|A T|,则|2A T|=23|A T|=8×(-2)=-16.8. 【填空题】我的回答:正确答案:参考解析:9. 【填空题】设实二次型f(x1,x2,x3)=.则f的秩为_______. 我的回答:正确答案:参考解析:10. 【填空题】我的回答:正确答案:参考解析:【答案】方程组只有零解,说明系数矩阵满秩.11. 【填空题】我的回答:正确答案:参考解析:【答案】x=k(1,1,1) T12. 【填空题】我的回答:正确答案:参考解析:【答案】313. 【填空题】设A为3阶方阵,其特征值分别为1,2,3,则|A+2E|=_______.我的回答:正确答案:参考解析:【答案】60|A+2E|=(1+2)X(2+2)X(3+2)=3 X 4 X 5=60.14. 【填空题】我的回答:正确答案:参考解析:【答案】15. 【填空题】我的回答:正确答案:参考解析:【答案】16. 【计算题】我的回答:参考解析:17. 【计算题】求向量组=(2,3,1),=(1,-1,3),=(3,2,4)的一个极大无关组,并将其余向量用该极大无关组表示出来.我的回答:参考解析:18. 【计算题】我的回答:参考解析:19. 【计算题】我的回答:参考解析:20. 【计算题】我的回答:参考解析:21. 【计算题】我的回答:参考解析:线性方程组的增广矩阵22. 【计算题】我的回答:参考解析:23. 【证明题】我的回答:参考解析:高等教育自学考试《线性代数(经管类)》模拟卷(二)1. 【单选题】设A为三阶方阵,其特征值分别为1,-2,-1,则|A+E|= ()A. 0B. 2C. -2D. 12正确答案:A参考解析:2. 【单选题】下列矩阵中能相似于对角阵的矩阵是()A.B.C.D.正确答案:C参考解析:3. 【单选题】A、B为n阶矩阵,且A~B,则下述结论中不正确的是()A. λE-A=λE-BB. |A|=|B|C. |λE-A|=|λE-B|D. r(A)=r(B)正确答案:A参考解析:4. 【单选题】A. -EB. EC. DD. A正确答案:B参考解析:5. 【单选题】二次型的秩为A. 1B. 2C. 3D. 4正确答案:D参考解析:6. 【填空题】设向量=(1,1,2,--2),=(1,1,-2,-4),=(1,1,6,0),则向量空间V={β|β=,∈R,i=1,2,3)的维数为_______.我的回答:正确答案:参考解析:6. 【计算题】我的回答:参考解析:7. 【填空题】设二次型)=,则二次型的秩是_______.我的回答:正确答案:参考解析:7. 【计算题】设二次型()=,用正变变换化上述二次型为标准形,并指出二次型的秩及其正定性。
2009年7月高等教育自学考试全国统一命题考试
A¥肯定拒绝原假设B¥肯定接受原假设
C¥有可能拒绝原假设D¥有可能接受原假设
答案:B
解析: > ,即原假设为真,接受原假设
19¥根据各季度商品销售额数据计算的各季度指数为:一季度130%,二季度120%,三季度50%,四季度100%。相对来讲,受季节因素影响最大的是()
28¥某企业20名员工2008年请假天数的分组数据如下所示:
分组界限
频数
[1,5]
7
[6,10]
2
[11,15]
6
[16,20]
5
试计算平均数和方差。
解:四组的组中值分别为:3,8,13,18.平均数为:
方差为
29¥某车间发生事故的概率服从泊松分布,若每月平均事故数的标准差为1.732,则一个月内没有事故的概率是多少?(e-3=0.0498)
t0.05(9)=1.8331,t0.05(10)=1.8125
解:(1)样本均值为:
(2)样本方差为:
(3)原假设为 :µ≥100,备择假设为 :µ<100
检验统计量为:
t=
t= =-1.885< =-1.8331
故该厂家声明不可信。
33¥为研究某商品A的销售量与价格之间的关系,调查获得5个月的月销售量与月销售价格的数据如下:
23¥一个因变量与两个自变量的回归问题称为______。
答案:二元回归
解析:一个因变量与两个自变量的回归问题称为二元回归
24¥在保持样本容量和抽样方式不变的情况下,若要提高置信度则置信区间______。
2009年10月全国自考线性代数(经管类)真题和参考答案
2009年10月全国自考线性代数(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A.-2B.-1C.1D.2答案:B2.A.AB.BC.CD.D答案:C3.A.AB.BC.CD.D答案:A4.A.AB.BC.CD.D答案:A5.A.AB.BC.CD.D答案:B6.A.A2 自考资料,自考白皮书2009年10月全国自考线性代数(经管类)真题参考答案3B.BC.CD.D答案:C7.A.AB.BC.CD.D答案:D8.下列矩阵中不是初等矩阵的为()A.AB.BC.CD.D答案:D9.A.1B.2C.3D.4答案:B10.4A.AB.BC.CD.D答案:D二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1.图中空白出应为:___答案:22.图中空白出应为:___答案:3.图中空白出应为:___ 自考资料,自考白皮书2009年10月全国自考线性代数(经管类)真题参考答案5答案:4.图中空白出应为:___9.图中空白出应为:___答案:5.图中空白出应为:___答案:16.图中空白出应为:___答案:27.图中空白出应为:___答案:-18.图中空白出应为:___答案:246 自考资料,自考白皮书72009年10月全国自考线性代数(经管类)真题参考答案8答案:-110.图中空白出应为:___答案:-3<a <1三、计算题(本大题共6小题,每小题9分,共54分)1.答案:2. 自考资料,自考白皮书2009年10月全国自考线性代数(经管类)真题参考答案9答案:3.答案:4.答案:5.答案:10 自考资料,自考白皮书2009年10月全国自考线性代数(经管类)真题参考答案116.答案:四、证明题(本题6分)1.12 自考资料,自考白皮书2009年10月全国自考线性代数(经管类)真题参考答案13答案:。
自学考试线性代数2007-2012历年真题及答案
全国2012年10月自学考试线性代数试题请考生按规定用笔将所有试题的答案涂、写在答题纸上。
说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,A表示方阵A 的行列式,r(A )表示矩阵A 的秩。
选择题部分一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题 纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设行列式1122=1a b a b ,11221a c a c -=--,则行列式111222=a b c a b c -- A .-1 B .0C .1D .22.设矩阵123456709⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*A 中位于第2行第3列的元素是A .-14B .-6C .6D .143.设A 是n 阶矩阵,O 是n 阶零矩阵,且2-=A E O ,则必有 A .1-=A A B .=-A E C .=A ED .1=A4.已知4×3矩阵A 的列向量组线性无关,则r (A T )= A .1 B .2 C .3 D .45.设向量组T T12(2,0,0),(0,0,-1)αα==,则下列向量中可以由12,αα线性表示的是A .(-1,-1,-1)TB .(0,-1,-1)TC .(-1,-1,0)TD .(-1,0,-1)T6.齐次线性方程组134234020x x x x x x ++=⎧⎨-+=⎩的基础解系所含解向量的个数为A.1B.2C.3D.47.设12,αα是非齐次线性方程组Ax =b 的两个解向量,则下列向量中为方程组解的是A .12αα-B .12αα+C .1212αα+D .121122αα+8.若矩阵A 与对角矩阵111-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭D 相似,则A 2= A.EB.AC.-ED.2E9.设3阶矩阵A 的一个特征值为-3,则-A 2必有一个特征值为 A.-9 B.-3 C.3 D.910.二次型222123123121323(,,)222f x x x x x x x x x x x x =+++++的规范形为A .2212z z -B .2212z z + C .21zD .222123z z z ++二、填空题(本大题共10小题,每小题2分,共20分)11.行列式123111321的值为______. 12.设矩阵011001000⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则A 2=______.13.若线性方程组12323323122(1)x x x x x x λλ++=⎧⎪-+=-⎨⎪+=-⎩无解,则数λ=______.14.设矩阵43012110⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,=A P ,则PAP 2=______.15.向量组T T 12,-2,2,(4,8,8)k αα==-()线性相关,则数k =______. 16.已知A 为3阶矩阵,12,ξξ为齐次线性方程组Ax =0的基础解系,则=A ______. 17.若A 为3阶矩阵,且19=A ,则-1(3)A =______. 18.设B 是3阶矩阵,O 是3阶零矩阵,r (B )=1,则分块矩阵⎛⎫⎪⎝⎭E O B B 的秩为______.19.已知矩阵211121322⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,向量11k ⎛⎫ ⎪= ⎪ ⎪⎝⎭α是A 的属于特征值1的特征向量,则数k =______.20.二次型1212(,)6f x x x x =的正惯性指数为______. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式a ba b D a a b b aba b+=++的值.22.设矩阵100112210,022222046A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求满足方程AX =B T 的矩阵X .23.设向量组123411212142,,,30614431αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,求该向量组的秩和一个极大线性无关组.24.求解非齐次线性方程组123412341234124436x x x x x x x x x x x x +--=⎧⎪+++=⎨⎪+--=⎩.(要求用它的一个特解和导出组的基础解系表示).25.求矩阵200020002⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的全部特征值和特征向量.26.确定a ,b 的值,使二次型22212312313(,,)222f x x x ax x x bx x =+-+的矩阵A 的特征值之和为1,特征值之积为-12. 四、证明题(本题6分)27.设矩阵A 可逆,证明:A *可逆,且*11*--=()()A A .全国2012年7月高等教育自学考试一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 为三阶矩阵,且13A -=,则 3A -( )A.-9B.-1C.1D.92.设[]123,,A a a a =,其中 (1,2,3)i a i = 是三维列向量,若1A =,则[]11234,23,a a a a - ( )A.-24B.-12C.12D.243.设A 、B 均为方阵,则下列结论中正确的是( ) A.若AB =0,则A=0或B=0 B. 若AB =0,则A =0或B =0 C .若AB=0,则A=0或B=0 D. 若AB ≠0,则A ≠0或B ≠04. 设A 、B 为n 阶可逆阵,则下列等式成立的是( ) A. 111()AB A B ---=B. 111()A B A B ---+=+ C .11()AB AB-= D. 111()A B A B ---+=+5. 设A 为m ×n 矩阵,且m <n ,则齐次方程AX=0必 ( ) A.无解B.只有唯一解 C .有无穷解 D.不能确定6. 设12311102103A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦则()r A = A.1 B.2 C.3 D.47. 若A 为正交矩阵,则下列矩阵中不是正交阵的是( ) A. 1A -B.2A C .A ²D. T A8.设三阶矩阵A有特征值0、1、2,其对应特征向量分别为123ξξξ、、,令[]312,,2P ξξξ= 则1P AP -=( ) A. 200010000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B. 200000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .000010004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ D. 200000002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦9.设A 、B 为同阶方阵,且()()r A r B =,则( ) A.A 与B 等阶 B. A 与B 合同 C .A B =D. A 与B 相似10.设二次型22212312123(,,)22f x x x x x x x x =+-+则f 是( ) A.负定 B.正定 C .半正定 D.不定二、填空题(本大题共10小题,每小题2分,共20分) 11.设A 、B 为三阶方阵,A =4,B =5, 则2AB = 12.设121310A ⎡⎤=⎢⎥⎣⎦ , 120101B ⎡⎤=⎢⎥⎣⎦ ,则TA B 13.设120010002A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则1A - =14.若22112414A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦且()2r A =,则t= 15.设1231120,2,2110a a a -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则由 123,,a a a 生成的线性空间123(,,)L a a a的维数是16. 设A 为三阶方阵,其特征值分别为1、2、3,则1A E --=17.设111,21t a β-⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,且a 与β正交,则t = 18.方程1231x x x +-=的通解是19.二次型212341223344(,,,)5f x x x x x x x x x x x =+++所对应的对称矩阵是20.若00100A x =⎢⎥⎢⎥⎥⎥⎦是正交矩阵,则x =三、计算题 (本大题共6小题,每小题9分,共54分)21.计算行列式1112112112112111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 22.设010111101A ⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦= 112053-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦B = ,且X 满足X=AX+B,求X23.求线性方程组的123412345221.53223x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩12x x 的通解,24.求向量组 (2,4,2),(1,1,0),(2,3,1),(3,5,2)====1234a a a a 的一个极大线性无关组,并把其余向量用该极大线性无关组表示。
自考试题线性代数题库及答案
自考试题线性代数题库及答案线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
以下是一套自考试题线性代数题库及答案,供学习者参考。
一、选择题1. 下列矩阵中,哪一个是可逆矩阵?A. \( A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \)B. \( B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)C. \( C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)D. \( D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \)答案: C2. 设 \( A \) 是一个 \( n \times n \) 矩阵,\( I \) 是 \( n\times n \) 的单位矩阵,若 \( A^2 = I \),则 \( A \) 称为:A. 正交矩阵B. 反对称矩阵C. 正交变换矩阵D. 反射变换矩阵答案: D二、填空题1. 设向量 \( \mathbf{v} = (1, 2, 3) \),向量 \( \mathbf{w} =(4, 5, 6) \),这两个向量的点积为 __________。
答案: 322. 若 \( A \) 是一个 \( m \times n \) 矩阵,\( B \) 是一个\( n \times p \) 矩阵,则 \( AB \) 的行列数为 __________。
答案: \( m \times p \)三、解答题1. 证明:若 \( A \) 是一个 \( n \times n \) 矩阵,且 \( A^n =I \),则 \( A \) 必定可逆。
解答:由于 \( A^n = I \),我们可以得出 \( A \) 的 \( n \) 次幂是单位矩阵。
全国自考 线性代数 历年考试真题与答案
全国高等教育 线性代数(经管类) 自学考试 历年(2009年07月——2013年04月)考试真题与答案全国2009年7月自考线性代数(经管类)试卷课程代码:04184试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A的秩;|A |表示A 的行列式;E 表示单位矩阵。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。
错选、多选或未选均无分。
1.设A ,B ,C 为同阶方阵,下面矩阵的运算中不成立...的是( ) A.(A +B )T =A T +B T B.|AB |=|A ||B | C.A (B +C )=BA +CA D.(AB )T =B T A T2.已知333231232221131211a a a a a a a a a =3,那么333231232221131211222222a a a a a a a a a ---=( ) A.-24 B.-12 C.-6D.123.若矩阵A 可逆,则下列等式成立的是( ) A.A =*1A AB.0=AC.2112)()(--=A AD.113)3(--=A A4.若A =⎥⎦⎤⎢⎣⎡-251213,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-131224,C =⎥⎦⎤⎢⎣⎡--211230,则下列矩阵运算的结果为3×2矩阵的是( ) A.ABC B.AC T B T C.CBAD.C T B T A T5.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( ) A.α1,α3线性无关B.α1,α2,α3,α4线性无关C.α1,α2,α3,α4线性相关D.α2,α3,α4线性相关6.若四阶方阵的秩为3,则( ) A.A 为可逆阵B.齐次方程组Ax =0有非零解C.齐次方程组Ax =0只有零解D.非齐次方程组Ax =b 必有解7.设A 为m×n 矩阵,则n 元齐次线性方程Ax=0存在非零解的充要条件是( ) A.A 的行向量组线性相关 B.A 的列向量组线性相关 C.A 的行向量组线性无关 D.A 的列向量组线性无关8.下列矩阵是正交矩阵的是( ) A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001B.21⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110011101C.⎥⎦⎤⎢⎣⎡--θθθθcos sin sin cos D.⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--3361022336603361229.二次型正定的充要条件是为实对称阵)(A Ax x T =f ( ) A.A 可逆B.|A |>0C.A 的特征值之和大于0D.A 的特征值全部大于010.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--4202000k k 正定,则( )A.k>0B.k ≥0C.k>1D.k ≥1二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数自考试题及答案
1.设3阶方阵A的行列式为2,则= 【 B 】A.-1 B.C. D.12.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,假设|A|≠|B|,则必有【 C 】 A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A+B|≠03.设,则方程的根的个数为【 B 】A.0 B. 1C.2 D.34. 设A为n阶方阵,则以下结论中不正确的选项是:【 C 】A.是对称矩阵 B. 是对称矩阵C.是对称矩阵 D.是对称矩阵5.设,其中,则矩阵A的秩为【 B 】A.0 B. 1C.2 D.36. 设阶方阵A的秩为4,则A的伴随矩阵的秩为【 A 】A.0 B. 2C.3 D.47.设向量a=(1,-2,3)与=(2,k,6)正交,则数k为【 D 】A.-10 B. -4C.4 D.108.设3的阶方阵A的特征多项式为,则|A|= 【 A 】A.-18 B. -6C.6 D.189.已知线性方程组无解,则数a= 【 D 】A. B.0C. D.110.设二次型正定,则数a的取值应满足【 C 】A.a>9 B.3 a9C.-3<a< 3 D.a-3二、填空题(本大题共10小题,每题2分,共20分)请在每题的空格中填上正确答案。
错填、不填均无分。
11.设行列式,其第三行各元素的代数余子式之和为 0 。
12.设则AB= 。
13.设线性无关的向量组可由向量组线性表示,则r与s的关系为14.设A是4x3的矩阵且r〔A〕=2,,则r〔AB〕= 215.已知向量组 =(1,2,-1), =(2,0,t), =(0,-4,5)的秩为2,则数t=316.设4元线性方程组Ax=b的三个解,已知,,r(A)=3.则方程组的通解是.17.设方程组有非零解,且 <0,则= -2 .18.设矩阵有一个特征值=2,对应的特征向量为,则数a= 219.设3阶方阵4的秩为2,且,则A的全部特征值为 0,-5,-5 .20.设实二次型,己知A的特征值为-1,1,2,则该二次型的标准形为。
全国2009年7月高等教育自学考试
全国2009年7月高等教育自学考试信号与系统试题课程代码:02354一、单项选择题(本大题共12小题,每小题2分,共24分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.GCL 并联电路谐振频率为( ) A.C L B.G C0ω C.L R 0ω D.LC 12.题2图f(t)的表达式是( )A.[])1t ()1t ()t (t -ε+-ε-εB.-[])1t ()t (t -ε-εC.[])1t ()t ()1t (-ε-ε--D.[])2t ()t (t -ε-ε3.已知函数f(t)=e -t [ε(t)- ε(t-2)],则f(3-2t)的表达式为( ) A.⎥⎦⎤⎢⎣⎡-ε--ε-)23t ()21t (e t 23 B. ⎥⎦⎤⎢⎣⎡-ε--ε-)23t ()21t (e 3t 2 C. ⎥⎦⎤⎢⎣⎡-ε--ε-)23t ()21t (e t D. ⎥⎦⎤⎢⎣⎡-ε--ε)23t ()21t (e t4.积分⎰+∞∞--+δ+dt )2t ()t e (t的结果为( )A.e 2-2B.0C.e -2+2D.e 2+25.周期电压信号u(t)=1+4sin5t V ,则该电压信号的有效值为( )A.4VB.5VC.1VD.3V6.线性常系数微分方程)t (x )t (x 2)t (y 3)t (y 2)t (y '+=+'+''表征的LTI 系统,其单位冲激响应h(t)中()A.不包括)t (δ项B.包括)t (δ项C.不能确认D.包括)t (δ'项7.已知)nT t ()t ()t (f -δ-δ=,n 为任意整数,则f(t)的拉氏变换为( )A.1-e -sTB.1-e -nsC.1-e -nsTD.1-e -nT8.已知f(t)的象函数为1s 2s 22++,则f(t)为( )A.)t (δ-sin tB.)t (δ+sin tC.)t (δ+cos tD.1-cos t9.下列对线性系统稳定性的说明不正确的是( )A.对于有界激励信号产生有界响应的系统是稳定系统B.系统稳定性是系统自身的性质之一C.系统是否稳定与激励信号有关D.当t 趋于无穷大时,h(t)趋于有限值或0,则系统可能稳定10.两个有限长序列的非零序列值的宽度分别为13和7,则两个序列卷积所得的序列为( )A.宽度为21的有限宽度序列B.宽度为19的有限宽度序列C.宽度为20的有限宽度序列D.宽度大于21的有限宽度序列11.一个线性时不变系统,它的单位序列响应)n (])31(2)21(3[]n [h n n ε--=,则其系统函数H(Z)是( ) A.H(Z)=61Z 61Z Z 2Z 22++- B.H(Z)=61Z 61Z Z 2Z 22+++ C.H(Z)=61Z 61Z Z 2Z 22--+ D.H(Z)=6Z 6Z Z 2Z 22--+ 12.一个线性时不变系统,它的系统函数H(Z)=)aZ 21(11--,如果该系统是稳定的,则( ) A.21a <B.21a ≤C.21a >D.21a ≥ 二、填空题(本大题共12小题,每小题2分,共24分)请在每小题的空格中填上正确答案。
线性代数自考试题及答案
线性代数自考试题及答案一、单项选择题(每题2分,共20分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 行等价于零矩阵D. 列等价于零矩阵答案:B2. 若矩阵A的秩为r,则矩阵A的齐次线性方程组的解空间的维数为()A. rB. r-1C. n-rD. n+r答案:C3. 向量组α1,α2,…,αs线性无关,则()A. 向量组α1+α2,α2+α3,…,αs-1+αs线性无关B. 向量组kα1,kα2,…,kαs线性无关,其中k为非零常数C. 向量组α1+α2,α2+α3,…,αs-1+αs,αs线性无关D. 向量组kα1,kα2,…,kαs线性相关,其中k为非零常数答案:B4. 设A为n阶方阵,且|A|≠0,则下列命题中正确的是()A. A与A*的秩相等B. A*与A^(-1)的秩相等C. A与A^(-1)的秩相等D. A与A*的秩不相等答案:C5. 矩阵A=()A. 行最简形矩阵B. 行阶梯形矩阵C. 行等价于单位矩阵的矩阵D. 行等价于零矩阵的矩阵答案:C6. 设A为3×3矩阵,且|A|=2,则|2A|=()A. 4B. 8C. 16D. 32答案:C7. 设A为n阶方阵,且A^2=0,则()A. A=0B. |A|=0C. A可逆D. A不可逆答案:D8. 设A为n阶方阵,且A^2=E,则()A. A=0B. |A|=0C. A可逆D. A不可逆答案:C9. 设A为n阶方阵,且A^T=A,则()A. A为对称矩阵B. A为反对称矩阵C. A为正交矩阵D. A为斜对称矩阵答案:A10. 设A为n阶方阵,且|A|=1,则|A^(-1)|=()A. 0B. 1C. -1D. 2答案:B二、填空题(每题2分,共20分)11. 若A为n阶方阵,且|A|=-3,则|-2A|=______。
答案:1212. 设A为n阶方阵,且A^2=0,则矩阵A的秩r(A)满足______。
线性代数2009试题A答案
2009年《线性代数》统考试题参考答案一.填空题(每个小题3分,共15分)二.选择题(每小题3分,共15分)三.(8分)解: 9644129644129644129644122222++++++++++++=d d d d c c c cb b b b a a a a D 062126212621262122222=++++=d d c cb b a a四.(12分)解:由B A AB +=2知B A AB =-2,即B E B A =-)2(,又⎪⎪⎪⎭⎫ ⎝⎛=-0020202002E B ,显然082≠=-E B ,故⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--002102102100)2(1E B 而⎪⎪⎪⎭⎫ ⎝⎛=-=-101020101)2(1E B B A 。
所以⎪⎪⎪⎭⎫ ⎝⎛=--001010100)(1E A 。
五.(12分)解: 对增广矩阵作初等变换,⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛------=0000061000802103010133707101133110143412),(b A取3x 为自由未知数,1x 、2x 和4x 为非自由未知数,则⎪⎪⎩⎪⎪⎨⎧==-=+-=68234333231x x x x x x x ,所以方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛608301214321c x x x x 。
六.(10分)证明:A A An T)1(-=-=,由n 是奇数和A A T =得A A -=,整理得02=A ,故0=A 。
七.(10分)解:21ηη-和31ηη-是齐次线性方程组的解,)(23213121ηηηηηηη+-=-+-是齐次线性方程组的解。
齐次方程组的基础解系中含解向量的个数为4-3=1.所以方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54326543k x ,其中k 可取任意常数。
八.(10分)证明:按题设,有111p Ap λ=,212p Ap λ=,故.)(221121p p p p A λλ+=+用反证法,假设21p p +是A 的特征向量,则应存在数λ,使),()(2121p p p p A +=+λ于是221121)(p p p p λλλ+=+,即,0)()(2211=-+-p p λλλλ因21λλ≠,所以1p ,2p 线性无关,故由上式得,021=-=-λλλλ即21λλ=,与题设矛盾。
全国2009年7月高等教育自学考试高等数学(一)试题
全国2009年7月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数f (x )=21sin 2xx ++是( ) A.奇函数B.偶函数C.有界函数D.周期函数 2.设f (x )=2x ,则f ″(x )=( )A.2x ·ln 22B.2x ·ln4C.2x ·2D.2x ·43.函数f (x )=33x -x 的极大值点为( ) A.x =-3B.x =-1C.x =1D.x =3 4.下列反常积分收敛的是( ) A.⎰∞+1d x x B.⎰∞+1d x x C.⎰∞++11d x x D.⎰∞++121d x x 5.正弦曲线的一段y =sin x ≤≤x 0(π)与x 轴所围平面图形的面积为( )A.1B.2C.3D.4二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设f (x )=3x ,g (x )=x 2,则函数g [f (x )]-f [g (x )]=_______________.7.函数f (x )=xx x ++231间断点的个数为_______________. 8.极限x x x 20)21(lim -→-=________________.9.曲线y =x +ln x 在点(1,1)处的切线方程为________________.10.设函数y =ln x ,则它的弹性函数ExEy =_____________. 11.函数f (x )=x 2e -x 的单调增加区间为______________.12.不定积分⎰+32d x x =__________________.13.设f (x )连续且⎰+=xx x t t f 022cos d )(,则f (x )=________________.14.微分方程x d y -y d x =2d y 的通解为____________________.15.设z=x e xy,则y x z ∂∂∂2=______________________. 三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设函数f(x)=⎩⎨⎧≤+>-0130e x x x k x在x =0处连续,试求常数k . 17.求函数f(x)=xx2sin e +x arctan x 的导数. 18.求极限xx x x x sin e lim 20-→. 19.计算定积分⎰π202d 2sin x x . 20.求不定积分⎰++211x x d x .四、计算题(二)(本大题共3小题,每小题7分,共21分)21.求函数f (x )=x 3-6x 2+9x -4在闭区间[0,2]上的最大值和最小值.22.已知f (3x +2)=2x e -3x ,计算⎰52d )(x x f . 23.计算二重积分⎰⎰D y x y xd d 2,其中D 是由直线y =x ,x =1以及x 轴所围的区域.五、应用题(本大题9分)24.已知矩形相邻两边的长度分别为x,y ,其周长为4.将矩形绕其一边旋转一周得一旋转体(如图).问当x,y 各为多少时可使旋转体的体积最大?题24图六、证明题(本大题5分)25.设z =y +F (u ),u =x 2-y 2,其中F 是可微函数.证明:y x y z x x z =∂∂+∂∂.。
自考 线性代数 04184 07年到10年全套真题
全国2010年7月高等教育自学考试线性代数(经管类)试题课程代码:04184试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;r (A )表示矩阵A 的秩;| A |表示A 的行列式;E 表示单位矩阵。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A =(α1,α2,α3),其中αi (i =1,2,3)为A 的列向量,若| B |=|(α1+2α2,α2,α3)|=6,则| A |=( ) A.-12 B.-6 C.6D.122.计算行列式32 3 20 2 0 0 0 5 10 20 2 0 3 ----=( )A.-180B.-120C.120D.1803.若A 为3阶方阵且| A -1 |=2,则| 2A |=( ) A.21B.2C.4D.84.设α1,α2,α3,α4都是3维向量,则必有( ) A.α1,α2,α3,α4线性无关 B.α1,α2,α3,α4线性相关 C.α1可由α2,α3,α4线性表示D.α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则r (A )=( ) A.2 B.3 C.4D.56.设A 、B 为同阶方阵,且r (A )=r (B ),则( ) A.A 与B 相似 B.| A |=| B | C.A 与B 等价D.A 与B 合同7.设A 为3阶方阵,其特征值分别为2,1,0则| A +2E |=( ) A.0 B.2 C.3D.248.若A 、B 相似,则下列说法错误..的是( )A.A 与B 等价B.A 与B 合同C.| A |=| B |D.A 与B 有相同特征值9.若向量α=(1,-2,1)与β=(2,3,t )正交,则t =( ) A.-2 B.0 C.2D.410.设3阶实对称矩阵A 的特征值分别为2,1,0,则( ) A.A 正定 B.A 半正定 C.A 负定 D.A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
自考本科 线性代数 历年真题
第 1 页全国2010年1月自考线性代数(经管类)试题课程代码:04184说明:本卷中,A T 表示矩阵A 的转置,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式==1111034222,1111304zy x z y x 则行列式( ) A.32B.1C.2D.382.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( )A. A -1B -1C -1B. C -1B -1A -1C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( )A.-32B.-4C.4D.324.设α1,α2,α3,α4 是三维实向量,则( )A. α1,α2,α3,α4一定线性无关B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )A.1B.2C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是() A.1 B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是( )A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯一解C.r (A )=mD.Ax =0存在基础解系第 2 页 8.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( )A.(1,1,1)TB.(1,1,3)TC.(1,1,0)TD.(1,0,-3)T9.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )A.4B.5C.6D.710.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为() A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963640341C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡960642621D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9123042321二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数自考试题及答案
线性代数自考试题及答案一、单项选择题(每题2分,共10分)1. 向量组α1,α2,α3线性无关的充分必要条件是()。
A. 齐次方程组Ax=0只有零解B. 齐次方程组Ax=0有非零解C. 齐次方程组Ax=0只有零解,且α1,α2,α3线性相关D. 齐次方程组Ax=0只有零解,且α1,α2,α3线性无关答案:A2. 矩阵A与矩阵B相等的充分必要条件是()。
A. A与B的行数相同B. A与B的列数相同C. A与B的行数相同,且A与B的列数相同D. A与B的行数相同,且A与B的列数相同,且对应元素相等答案:D3. 设A为n阶矩阵,若A的行列式|A|=0,则A是()。
A. 可逆矩阵B. 非可逆矩阵C. 正交矩阵D. 反对称矩阵答案:B4. 设A为3阶矩阵,且A的特征多项式为f(λ)=λ(λ-1)(λ+2),则A的迹为()。
A. 0B. 1C. 2D. -3答案:C5. 设A为3阶矩阵,且A的秩为2,则A的零度为()。
A. 0B. 1C. 2D. 3答案:B二、填空题(每题3分,共15分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|=______。
答案:42. 设矩阵A=\(\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\),则矩阵A的逆矩阵A^{-1}=______。
答案:\(\begin{bmatrix}-2 & 1 \\ 1.5 & -0.5\end{bmatrix}\)3. 若向量α=(1,2,3),β=(4,5,6),则向量α与向量β的夹角的余弦值为______。
答案:\(\frac{1}{3}\)4. 设矩阵A的特征值λ1=2,λ2=3,对应的特征向量分别为α1和α2,则矩阵A+E的特征值λ3=______,对应的特征向量为______。
答案:3,α1;4,α25. 设矩阵A=\(\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\),则矩阵A的秩为______。
全国2009年7月高等教育自学考试
全国2009年7月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( )A .P (AB )=l B .P (A )=1-P (B )C .P (AB )=P (A )P (B )D .P (A ∪B )=12.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( )A .P (AB )=0 B .P (A -B )=P (A )P (B )C .P (A )+P (B )=1D .P (A |B )=03.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A .0.125B .0.25C .0.375D .0.504.设函数f (x )在[a ,b ]上等于sin x ,在此区间外等于零,若f (x )可以作为某连续型随机变量的概率密度,则区间[a ,b ]应为( )A .[0,2π-]B .[2π,0] C .]π,0[D .[23π,0] 5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤<-≤<其它021210x xx x ,则P (0.2<X<1.2)=( ) A .0.5 B .0.6C .0.66D .0.76.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( )A .61B .41 C .31 D .21 7.设随机变量X ,Y 相互独立,其联合分布为则有( )A .92,91==βαB .91,92==βα C .32,31==βα D .31,32==βα 8.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( )A .-2B .0C .21D .29.设n μ是n 次独立重复试验中事件A 出现的次数,P 是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有}|{|lim εμ>-∞→p n P n n ( )A .=0B .=1C .> 0D .不存在10.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0 :μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A .不接受,也不拒绝H 0B .可能接受H 0,也可能拒绝H 0C .必拒绝H 0D .必接受H 0二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国自学考试线性代数历年考试真题及答案
全国自学考试线性代数历年考试真题及答案2003年4月全国自学考试线性代数答案第一部分选择题(共20分)一、单项选择题(本大题共10小题。
每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.对任意n阶方阵A、B总有( )A.AB=BA B.|AB|=|BA|2.在下列矩阵中,可逆的是 ( )3.设A是3阶方阵( )A.-2D.24.设A是m×n矩阵,则齐次线方程线Ax=0仅有零解的充分必要条件是 ( ) A.A的行向量组线性无关 B.A的行向量组线性相关C.A的列向量组线性无关 D.A的列向量组线性相关5.设有m维向量组,则 ( )A.当m<n时,(I)一定线性相关 B.当m>n时,(I)一定线性相关C.当m<n时,(I)一定线性无关 D.当m>n时,(I)一定线性无关6.已知是非齐次线性方程组Ax=b的两个不同的解,是其导出组Ax=0的一个基础解系,为任意常数,则方程组Ax=b的通解可表成 ( )7.设n阶可逆矩阵A有一个特征值为2,对应的特征向量为x,则下列等式中不正确的是( )A.Ax=2x8.设矩阵的秩为2,则λ= ( )A.2 8.1C.0 D.-l9.二次型的矩阵是( )10.二次型是 ( )A.正定的 B.半正定的C.负定的 D.不定的第二部分非选择题(共80分)二、填空题(本大题共10小题。
每小题2分,共20分)请在每小题的空格中填上正确答案。
错选、不填均无分。
1 1.行列式的值为___.12.设向量a=(2,1,2),则与它同方向的单位向量为__.13.设α=(2,1,-2),β=(1,2,3),则2α=3β=____.14.向量组a=(1,2,3,4,5)的秩为____.15.设m×n矩阵A的,m个行向量线性无关,则矩阵的秩为____.16.若线性方程组无解,则=______.17.设2阶方阵均为2维列向量,且|A|=|B|=1,则|A+B|=_______.18.设矩阵,则A的全部特征值为___.19.设P为n阶正交矩阵,α、β为n维列向量,已知内知(α,β)=-l,则(Pa,Pβ)________20.设二次型的正惯性指数为P,负惯性指数为q,则p-q=______.三、计算题(本大题共8小题,每小题6分,共48分)21.设向量22.设,矩阵X满足方程求矩阵X.23.当t取何值时,向量组线性相关?24.求下列矩阵的秩:25.设矩阵矩阵A由矩阵方程确定,试求的通解(要求用它的一个特解和导出组的基础解系表示).27.设3阶方阵A的三个特征值为的特征向量依次为求方阵A.28.设为正定二次型,试确定实数a的最大取值范围.四、证明题(本大题共2小题,每小题6分,共12分)30.设向量β可由向量组线性表示.试证明:线性表示法唯一的充分必要条件是线性无关.参考答案一、单项选择题二、填空题11.O13.(1,-4,-l3)14.115.ml6.017.418.1,1,-l19.-l20.O三、计算题知当且仅当t=3时该向量组线性相关.所求通解x=都是非零列向量,故题设条件说明A有特征值对应的特征向量分别为因为A为3阶方阵.故1,0.-l就是A的全部特征值,因A的特征值互不相同,于是由推论4.1知A可对角化,令矩阵由上式得28.解,的矩阵为,A的顺序主子式为四、证明题所以30.证由条件,存在常数若表示法唯一,设有一组数2005年10月自考线性代数试题答案全国2004年10月高等教育自学考试线性代数试题课程代码:02198试卷说明:A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式。
历年2014-2009全国自考线性代数试题及答案
全国 2010 年 7 月高等教育自学考试试卷说明:在本卷中,A T 表示矩阵 A 的转置矩阵; A * 表示 A 的陪伴矩阵; R(A)表示矩阵 A 的秩; |A|表示 A 的行列式; E 表示单位矩阵。
1.设 3 阶方阵 A=[ α 1, α 2, α 3] ,此中 α i (i= 1,2,3) 为 A 的列向量, 若 |B |=|[α 1 +2α 2, α 2, α 3]|=6 ,则 |A|=()A.-12B.-6C.6D.123 0 2 02.计算队列式2 105 0 )D.1800 02 (2 3233.设 A= 12,则 |2A *|=()D.83 44.设 α 1,α 2 ,α 3, α 4 都是 3 维向量,则必有A. α , α , α , α 线性没关B. α ,α , α , α 线性有关12341 2 34C. α 1 可由 α 2,α 3 , α 4 线性表示D. α 1 不行由 α 2 ,α 3, α 4 线性表示 5.若 6.设7.设8.若A 为 6 阶方阵,齐次线性方程组Ax=0 的基础解系中解向量的个数为2,则 R(A)=( ) A . 2A 、B 为同阶矩阵,且 R(A )=R(B),则( ) A . A 与 B 相像 B . |A |=|B |C . A 与 B 等价A 为 3 阶方阵,其特点值分别为 2,l ,0 则 |A +2E |=( ) A . 0B . 2C . 3D . 24 A 、 B 相像,则以下说法错误 的是( )A .A 与 B 等价 B . A 与 B 合同 C .|A |=|B | D .A 与..B 3C . 4D .5D .A 与 B 合同B 有同样特点9.若向量 α =(1, -2,1) 与β = (2 , 3, t)正交,则 t=( )A .-2 B .0C .2D .410.设 3 阶实对称矩阵 A 的特点值分别为 2, l , 0,则()A .A 正定B .A 半正定C .A 负定D .A 半负定二、填空题 (本大题共 10 小题 ,每题 2 分,共 20 分 )请在每题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国2009年7月高等教育自学考试
线性代数试题 课程代码:02198
试卷说明:在本卷中,A T
表示矩阵A 的转置矩阵;A *
表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行
列式;E 表示单位矩阵。
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ,B ,C 为同阶方阵,下面矩阵的运算中不成立...的是( ) A .(A +B )T =A T +B T B .|AB |=|A ||B | C .A (B +C )=BA +CA
D .(AB )T =B T A T
2.已知3332
31
232221
131211a a a a a a a a a =3,那么33
32
31
23222113
12
11222222a a a a a a a a a ---=( ) A .-24 B .-12 C .-6
D .12
3.若矩阵A 可逆,则下列等式成立的是( ) A .A =
|
|1A A *
B .|A |=0
C .(A 2)-1=(A -1)2
D .(3A )-1=3A -1
4.若
A =⎥⎦
⎤⎢⎣⎡-25
1
21
3
,B =⎥⎥⎦
⎤
⎢⎢⎣⎡-12
32
14
,C =⎥⎦
⎤⎢⎣⎡
--21
312
,则下列矩阵运算的结果为3×2的矩阵的是( )
A .ABC
B .A
C T B T C .CBA
D .C T B T A T
5.设有向量组A :4321,,,αααα,其中α1,α2,α3线性无关,则(
)
A .α1,α
3线性无关
B .α1,α2,α3,α4线性无关
C .α1,α2,α3,α4线性相关
D .α2,α3,α
4线性无关
6.若四阶方阵的秩为3,则( ) A .A 为可逆阵
B .齐次方程组Ax =0有非零解
C .齐次方程组Ax =0只有零解
D .非齐次方程组Ax =b 必有解
7.已知方阵A 与对角阵B =⎥⎥⎦
⎤
⎢⎢⎣⎡---20
020
00
2
相似,则A 2
=( ) A .-64E B .-E C .4E
D .64E
8.下列矩阵是正交矩阵的是( )
A .⎥⎥⎦
⎤⎢⎢⎣⎡--10
010
00
1 B .⎪⎪⎭⎫ ⎝⎛110011
10121 C .⎪⎭
⎫
⎝⎛--θθ
θθcos sin sin cos D .⎪⎪⎪⎪⎪⎪⎪⎭
⎫
⎝
⎛-
-336
102233660
336122 9.二次型f =x T
Ax (A 为实对称阵)正定的充要条件是( ) A .A 可逆
B .|A |>0
C .A 的特征值之和大于0
D .A 的特征值全部大于0
10.设矩阵A =⎥⎥⎦
⎤
⎢⎢⎣⎡--42
020
00
k k
正定,则( ) A .k >0 B .k ≥0 C .k >1 D .k ≥1
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设A =(1,3,-1),B =(2,1),则A T B =__________.
12.若1
2
131
12
k
=0,则k =__________. 13.若ad ≠bc ,A =⎥⎦
⎤⎢⎣⎡d c
b a
,则A -1=__________.
14.已知A 2-2A -8E =0,则(A +E )-1=__________.
15.向量组α1=(1,1,0,2),α2=(1,0,1,0),α3=(0,1,-1,2)的秩为__________. 16.两个向量α=(a ,1,-1)和β=(b ,-2,2)线性相关的充要条件是__________. 17.方程组⎩⎨
⎧=+=+0
03221x x x x 的基础解系为__________.
18.向量α=(3,2,t ,1)β=(t ,-1,2,1)正交,则t =__________. 19.若矩阵A =⎥⎦
⎤
⎢⎣⎡40
01
与矩阵B =⎥⎦
⎤
⎢⎣⎡x a b 3
相似,则x =__________.
20.二次型f (x 1,x 2,x 3)=31212
322
21332x x x x x x x -+-+对应的对称矩阵是__________.
三、计算题(本大题共6小题,每小题9分,共54分)
21.计算三阶行列式16
4
1
421
111
. 22.已知A =⎥⎦⎤
⎢⎣⎡0132
,B =⎥⎦
⎤⎢⎣⎡---12
13,C =⎥⎦
⎤⎢⎣⎡-02
1
11
,D =⎥⎦
⎤⎢⎣
⎡10
1021,矩阵X 满足方程AX +BX =D -C ,求X .
23.设向量组为α1=(2,0,-1,3)
α2=(3,-2,1,-1) α3=(-5,6,-5,9) α4=(4,-4,3,-5)
求向量组的秩,并给出一个最大线性无关组. 24.求λ取何值时,齐次方程组
⎪⎩
⎪
⎨⎧=-+-=+=++0
50
40
3)4(3213121x x x x x x x λλ 有非零解?并在有非零解时求出方程组的结构式通解.
25.设矩阵A =⎥⎥⎦
⎤
⎢⎢⎣⎡----46
350
36
1
,求矩阵A 的全部特征值和特征向量. 26.用正交变换化二次型f (x 1,x 2,x 3)=322
322212334x x x x x -++为标准形,并求所用的正交矩阵P .
四、证明题(本大题共1小题,6分)
27.若n 阶方阵A 的各列元素之和均为2,证明n 维向量x =(1,1,…,1)T 为A T 的特征向量,并且相应的特征值为2.。