_平方差公式专项练习题1

合集下载

平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)

For personal use only in study and research; not for commercial use平方差公式1、利用平方差公式计算:(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算(1)(1)(-41x-y)(-41x+y) (2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -b )C .(13a+b )(b -13a )D .(a 2-b )(b 2+a ) 8.下列计算中,错误的有( )①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.A .1个B .2个C .3个D .4个9.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-510.(-2x+y )(-2x -y )=______.11.(-3x 2+2y 2)(______)=9x 4-4y 4.12.(a+b -1)(a -b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a 2+4)(a 4+16)(a -2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2 (2)(-2m+5n)2 (3)(2a+5b)2 (4)(4p-2q)22利用完全平方公式计算:(1)(21x-32y 2)2 (2)(1.2m-3n)2 (3)(-21a+5b)2 (4)(-43x-32y)2 3 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。

平方差、完全平方公式专项练习题(精品)

平方差、完全平方公式专项练习题(精品)

平方差公式专项练习题一、选择题1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -b )C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a ) 3.下列计算中,错误的有( )①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.A .1个B .2个C .3个D .4个4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-5二、填空题5.(-2x+y )(-2x -y )=______. 6.(-3x 2+2y 2)(______)=9x 4-4y 4.7.(a+b -1)(a -b+1)=(_____)2-(_____)2.三、计算题1.利用平方差公式计算:2023×2113. 2.计算:(a+2)(a 2+4)(a 4+16)(a -2).四、经典中考题1.(2007,泰安,3分)下列运算正确的是( )A .a 3+a 3=3a 6B .(-a )3·(-a )5=-a 8C .(-2a 2b )·4a=-24a 6b 3D .(-13a -4b )(13a -4b )=16b 2-19a 2. 完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差公式练习题

平方差公式练习题

平方差公式练习题一、选择题1. 平方差公式是什么?A. a^2 - b^2 = (a+b)(a-b)B. a^2 - b^2 = (a-b)(a+b)C. a^2 + b^2 = (a+b)^2D. a^2 - b^2 = a^2 - 2ab + b^22. 以下哪个表达式是正确的平方差公式?A. (x+y)(x-y) = x^2 + y^2B. (x+y)(x-y) = x^2 - y^2C. (x+y)(x-y) = x^2 + 2xy - y^2D. (x+y)(x-y) = x^2 - 2xy + y^23. 计算下列表达式的值:(3x+5)(3x-5) = ?A. 9x^2 - 25B. 9x^2 + 25C. 15x^2 - 25D. 15x^2 + 254. 如果 (a+b)(a-b) = 49,那么 a^2 - b^2 的值是多少?A. 49B. 7C. 50D. 0二、填空题5. 利用平方差公式,将下列表达式展开:(2x-3)(2x+3) = _______。

6. 如果 (m+n)(m-n) = 64,那么 m^2 - n^2 = _______。

7. 计算下列表达式的值:(4a+7b)(4a-7b) = _______。

8. 已知 (x-y)^2 = 25,(x+y)^2 = 36,求 x^2 - y^2 的值。

三、解答题9. 利用平方差公式简化下列表达式,并求其值:(2a+3b)(2a-3b) - 5(a^2 - b^2)。

10. 已知 a^2 - b^2 = 48,求 (a+b)(a-b) 的值。

11. 计算下列表达式的值,如果可能的话,使用平方差公式:(3x-2y)(3x+2y) + (5x+4y)(5x-4y)。

12. 假设 (x+y)(x-y) = 100,求 x^2 - y^2 的值,并说明 x 和 y 的可能值。

四、证明题13. 证明平方差公式 a^2 - b^2 = (a+b)(a-b)。

平方差完全平方公式专项练习题

平方差完全平方公式专项练习题

公式变形一、基础题1.(-2x+y)(-2x-y)=______.2.(-3x2+2y2)(______)=9x4-4y4.3.(a+b-1)(a-b+1)=(_____)2-(_____)2.4.两个正方形边长之和为5, 边长之差为2, 那么用较大正方形面积减去较小正方形面积, 差是_____.5.利用平方差公式计算: 2023×2113.×-2.6.计算: (a+2)(a2+4)(a4+16)(a-2).(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(3+1)(32+1)(34+1)…(3+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程: x(x+2)+(2x+1)(2x-1)=5(x2+3).8(规律探究题)已知x≠1, 计算(1+x)(1-x)=1-x2, (1-x)(1+x+x2)=1-x3, (1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想: (1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)依据你猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)经过以上规律请你进行下面探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方法常见变形有:abbaba2)(222-+=+abbaba2)(222+-=+abbaba4)(22=--+)(bcacabcbacba222)(2222---++=++1、已知m2+n2-6m+10n+34=0, 求m+n值2、已知0136422=+-++yxyx, yx、都是有理数, 求y x值。

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

公式变形之南宫帮珍创作一、基础题1.(-2x+y )(-2x -y )=______. 2.(-3x 2+2y 2)(______)=9x 4-4y 4.3.(a+b -1)(a -b+1)=(_____)2-(_____)2. 4.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.5.利用平方差公式计算:2023×2113.2009×2007-20082.6.计算:(a+2)(a 2+4)(a 4+16)(a -2).(2+1)(22+1)(24+1) (22)+1)+1(n 是正整数);(3+1)(32+1)(34+1)…(32008+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3). 8(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜测:(1-x )(1+x+x 2+…+x n)=______.(n 为正整数) (2)根据你的猜测计算:①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+ (2)=______(n 为正整数). ③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索: ①(a -b )(a+b )=_______. ②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______. 完全平方式罕见的变形有:1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求yx 的值。

平方差公式练习题精选(答案)

平方差公式练习题精选(答案)

平方差公式1、利用平方差公式计算: (1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算 (1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算 (1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)8.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b-1)(a-b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a2+4)(a4+16)(a-2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2(2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)22利用完全平方公式计算:(1)(21x-32y 2)2(2)(1.2m-3n)2(3)(-21a+5b)2(4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。

平方差公式练习题

平方差公式练习题

平方差公式练习题平方差公式题型一】利用平方差公式计算1.位置变化:1) $(5+2x)(-5+2x)$2) $(ab+x)(x-ab)$符号变化:3) $(-x+1)(-x-1)$4) $-3a-2b)(-3a+2b)$指数变化:7) $(-3x+y)^2$8) $(-2a+5b)^2$改写:1) $(2x+5)^2-25$2) $(x+ab)(ab-x)$3) $(x+1)^2-1$4) $(2b-3a)(2b+3a)$7) $9x^2-6xy+y^2$8) $4a^2-20ab+25b^2$2.增项变化1) $(x-y+z)(-x+y+z)$2) $(-x+y+z)(x+y-z)$3) $(x+2y-1)(x-2y+1)$4) $13x+9$改写:1) $-x^2+y^2-z^2$2) $-x^2-y^2+z^2$3) $x^2-3y^2+2x-2y$4) $4x^2+13x+9$3.增因式变化1) $(x+1)(x-1)(x+12)$2) $\frac{(x-1)(x+1)}{4}+\frac{1}{2}$ 改写:1) $(x^2-1)(x+12)$2) $\frac{x^2}{4}-\frac{1}{4}$题型二】利用平方差公式判断正误4.下列计算正确的是()A。

$(5x+2y)(5x-2y)=25x^2-4y^2$B。

$(-1+3a)(-1-3a)=1-9a^2$C。

$(-2x-3y)(3y-2x)=9y^2-4x^2$D。

$(x+4)(x-2)=x^2+2x-8$改写:A。

正确B。

正确C。

正确D。

正确题型三】运用平方差公式进行一些数的简便运算例5.用平方差公式计算。

1) $403\times397$2) $\frac{29}{31}\times\frac{30}{44}$3) $99\times101\times$4) $2007-2006\times2008$改写:1) $(400+3)(400-3)=-9=$2) $\frac{(31-2)^2}{31\times44}=\frac{729}{1352}$3) $(+1)(-1)(99)=xxxxxxxx$4) $2007-2006\times2008=2007-(2004+2)\times2008=-4011$ 题型四】平方差公式的综合运用6.计算:1) $x-(x-2y)(x+2y)+(x-y)(y+x)$2) $\frac{(x-1)(x+1)}{x+1}-x+\frac{24}{x+1}$改写:1) $4y^2$2) $\frac{x^2}{x+1}-x+24-\frac{24}{x+1}$题型五】利用平方差公式进行化简求值与解方程7.化简求值:2b+3a)(3a-2b)-(2b-3a)(2b+3a)$,其中$a=-1,b=2$。

平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)

平方差公式 【2 】1.应用平方差公式盘算:(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2.应用平方差公式盘算(1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)3应用平方差公式盘算(1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24.应用平方差公式盘算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5.应用平方差公式盘算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式盘算的是() A.(a+b)(b+a) B.(-a+b)(a-b)C.(13a+b)(b-13a) D.(a2-b)(b2+a)8.下列盘算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.A .1个B .2个C .3个D .4个9.若x 2-y 2=30,且x -y=-5,则x+y 的值是()A .5B .6C .-6D .-510.(-2x+y )(-2x -y )=______.11.(-3x 2+2y 2)(______)=9x 4-4y 4.12.(a+b -1)(a -b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.盘算:(a+2)(a 2+4)(a 4+16)(a -2).完整平方公式1应用完整平方公式盘算:(1)(21x+32y)2 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2应用完整平方公式盘算:(1)(21x-32y 2)2 (2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,个中x=12,y=9.5已知x ≠0且x+1x =5,求441x x 的值.平方差公式演习题精选(含答案)一.基本练习1.下列运算中,准确的是()A.(a+3)(a-3)=a2-3 B.(3b+2)(3b-2)=3b2-4 C.(3m-2n)(-2n-3m)=4n2-9m2 D.(x+2)(x-3)=x2-6 2.鄙人列多项式的乘法中,可以用平方差公式盘算的是()A.(x+1)(1+x) B.(12a+b)(b-12a)C.(-a+b)(a-b) D.(x2-y)(x+y2)3.对于随意率性的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()A.3 B.6 C.10 D.94.若(x-5)2=x2+kx+25,则k=()A.5 B.-5 C.10 D.-105.9.8×10.2=________; 6.a2+b2=(a+b)2+______=(a-b)2+________.7.(x-y+z)(x+y+z)=________; 8.(a+b+c)2=_______.9.(12x+3)2-(12x-3)2=________.10.(1)(2a-3b)(2a+3b); (2)(-p2+q)(-p2-q);(3)(x-2y)2; (4)(-2x-12y)2.11.(1)(2a-b)(2a+b)(4a2+b2);(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z).12.有一块边长为m的正方形旷地,想在中央地位修一条“十”字型巷子,•巷子的宽为n,试求残剩的旷地面积;用两种办法表示出来,比较这两种表示办法,•验证了什么公式?二.才能练习13.假如x2+4x+k2正好是另一个整式的平方,那么常数k的值为()A.4 B.2 C.-2 D.±214.已知a+1a=3,则a2+21a,则a+的值是()A.1 B.7 C.9 D.1115.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为()A.10 B.9 C.2 D.116.│5x-2y│·│2y-5x│的成果是()A.25x2-4y2 B.25x2-20xy+4y2 C.25x2+20xy+4y2 D.-25x2+20xy-4y217.若a2+2a=1,则(a+1)2=_________.三.分解练习18.(1)已知a+b=3,ab=2,求a2+b2;(2)若已知a+b=10,a2+b2=4,ab的值呢?19.解不等式(3x-4)2>(-4+3x)(3x+4).参考答案1.C 点拨:在应用平方差公式写成果时,要留意平方后作差,尤其当消失数与字母乘积的项,系数不要忘却平方;D项不具有平方差公式的构造,不能用平方差公式,•而应是多项式乘多项式.2.B 点拨:(a+b)(b-a)=(b+a)(b-a)=b2-a2.3.C 点拨:应用平方差公式化简得10(n2-1),故能被10整除.4.D 点拨:(x-5)2=x2-2x×5+25=x2-10x+25.5.99.96 点拨:9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.6.(-2ab);2ab7.x2+z2-y2+2xz点拨:把(x+z)作为整体,先应用平方差公式,•然后应用完整平方公式.8.a2+b2+c2+2ab+2ac+2bc点拨:把三项中的某两项看做一个整体,•应用完整平方公式睁开.9.6x 点拨:把(12x+3)和(12x-3)分离看做两个整体,应用平方差公式(12x+3)2-(12x-3)2=(12x+3+12x-3)[12x+3-(12x-3)]=x·6=6x.10.(1)4a2-9b2;(2)原式=(-p2)2-q2=p4-q2.点拨:在应用平方差公式时,要留意找准公式中的a,b.(3)x4-4xy+4y2;(4)解法一:(-2x-12y)2=(-2x)2+2·(-2x)·(-12y)+(-12y)2=4x2+2xy+14y2.解法二:(-2x-12y)2=(2x+12y)2=4x2+2xy+14y2.点拨:应用完整平方公式时,要留意中央项的符号.11.(1)原式=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.点拨:当消失三个或三个以上多项式相乘时,依据多项式的构造特点,•先辈行适当的组合.(2)原式=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y·2z=4yz.点拨:此题若用多项式乘多项式轨则,会消失18项,书写会异常繁琐,卖力不雅察此式子的特色,适当选择公式,会使盘算进程简化.12.解法一:如图(1),残剩部分面积=m2-mn-mn+n2=m2-2mn+n2.解法二:如图(2),残剩部分面积=(m-n)2.∴(m-n)2=m2-2mn+n2,此即完整平方公式.点拨:解法一:是用边长为m的正方形面积减去两条巷子的面积,留意两条巷子有一个重合的边长为n的正方形.解法二:应用活动的办法把两条巷子分离移到边缘,残剩面积即为边长为(m-n)•的正方形面积.做此类题要留意数形联合.13.D 点拨:x 2+4x+k 2=(x+2)2=x 2+4x+4,所以k 2=4,k 取±2. 14.B 点拨:a 2+21a=(a+1a )2-2=32-2=7. 15.A 点拨:(2a-b-c )2+(c-a )2=(a+a-b-c )2+(c -a )2=[(a-b )+(a-c )] 2+(c-a )2=(2+1)2+(-1)2=9+1=10.16.B 点拨:(5x-2y )与(2y-5x )互为相反数;│5x-2y │·│2y-5x │=(5x-•2y )2•=25x 2-20xy+4y 2.17.2 点拨:(a+1)2=a 2+2a+1,然后把a 2+2a=1整体代入上式.18.(1)a 2+b 2=(a+b )2-2ab .∵a+b=3,ab=2,∴a 2+b 2=32-2×2=5.(2)∵a+b=10,∴(a+b )2=102,a 2+2ab+b 2=100,∴2ab=100-(a 2+b 2).又∵a 2+b 2=4,∴2ab=100-4,ab=48.点拨:上述两个小题都是应用完整平方公式(a+b)2=a2+2ab+b2中(a+).ab.(a2+b2)•三者之间的关系,只要已知个中两者应用整体代入的办法可求出第三者.19.(3x-4)2>(-4+3x)(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<43.点拨:先应用完整平方公式,平方差公式分离把不等式双方睁开,然后移项,归并同类项,解一元一次不等式.八年级数学上学期平方差公式同步检测演习题1.(2004·青海)下列各式中,相等关系必定成立的是( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x2-6C.(x+y)2=x2+y2D.6(x-2)+x(2-x)=(x-2)(x-6)2.(2003·泰州)下列运算准确的是( )A.x2+x2=2x4B.a2·a3= a5C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y23.(2003·河南)下列盘算准确的是( )A.(-4x)·(2x2+3x-1)=-8x3-12x2-4xB.(x+y)(x2+y2)=x3+y3C.(-4a-1)(4a-1)=1-16a2D.(x-2y)2=x2-2xy+4y24.(x+2)(x-2)(x2+4)的盘算成果是( )A.x4+16B.-x4-16C.x4-16D.16-x45.19922-1991×1993的盘算成果是( )A.1B.-1C.2D.-26.对于随意率性的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4B.3C.5D.27.()(5a+1)=1-25a2,(2x-3)=4x2-9,(-2a2-5b)()=4a4-25b28.99×101=()()=.9.(x-y+z)(-x+y+z)=[z+()][]=z2-()2.10.多项式x2+kx+25是另一个多项式的平方,则k=.11.(a+b)2=(a-b)2+,a2+b2=[(a+b)2+(a-b)2](),a2+b2=(a+b)2+,a2+b2=(a-b)2+.12.盘算.(1)(a+b)2-(a-b)2;(2)(3x-4y)2-(3x+y)2;(3)(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2;(4)1.23452+0.76552+2.469×0.7655;(5)(x+2y)(x-y)-(x+y)2.13.已知m 2+n 2-6m+10n+34=0,求m+n 的值14.已知a +a 1=4,求a 2+21a 和a 4+41a的值. 15.已知(t+58)2=654481,求(t+84)(t+68)的值.16.解不等式(1-3x)2+(2x-1)2>13(x-1)(x+1).17.已知a =1990x+1989,b=1990x+1990,c=1990x+1991,求a 2+b 2+c 2-a b-a c-bc 的值.18.(2003·郑州)假如(2a +2b+1)(2a +2b-1)=63,求a +b 的值.19.已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值.参考答案1.A2.B3.C4.C5.A6.C7.1-5a 2x+3 -2a 2+5b8.100-1100+1 99999.x-yz-(x-y) x-y10.±1011.4a b 21 - 2a b 2a b 12.(1)原式=4a b;(2)原式=-30xy+15y;(3)原式=-8x 2+99y 2;(4)提醒:原式=1.23452+2×1.2345×0.7655+0.76552=(1.2345+0.7655)2=22=4. (5)原式=-xy-3y 2.13.提醒:逆向应用整式乘法的完整平方公式和平方的非负性. ∵m 2+n 2-6m+10n+34=0,∴(m 2-6m+9)+(n 2+10n+25)=0,即(m-3)2+(n+5)2=0,由平方的非负性可知,⎩⎨⎧=+=-,05,03n m ∴⎩⎨⎧-==.5,3n m ∴m+n=3+(-5)=-2. 14.提醒:应用倒数的乘积为1和整式乘法的完整平方公式.∵a +a 1=4,∴(a +a1)2=42. ∴a 2+2a ·a 1+21a =16,即a 2+21a+2=16. ∴a 2+21a =14.同理a 4+41a=194. 15.提醒:应用整体的数学思惟办法,把(t 2+116t)看作一个整体. ∵(t+58)2=654481,∴t 2+116t+582=654481.∴t 2+116t=654481-582.∴(t+48)(t+68)=(t 2+116t)+48×68=654481-582+48×68=654481-582+(58-10)(58+10)=654481-582+582-102=654481-100=654381.16.x <23 17.解:∵a =1990x+1989,b=1990x+1990,c=1990x+1991, ∴a -b=-1,b-c=-1,c-a =2.∴a 2+b 2+c 2-a b-a c-be =21(2a 2+2b 2+2c 2-2a b-2bc-2a c) =21[(a 2-2a b+b 2)+(b 2-2bc+c 2)+(c 2-2a c+a 2)] =21[(a -b 2)+(b-c)2+(c-a)2] =21[(-1)2+(-1)2+22] =21(1+1+4) =3.18.解:∵(2a +2b+1)(2a +2b-1)=63,∴[(2a +2b)+1][(2a +2b)-1]=63,∴(2a +2b)2-1=63,∴(2a +2b)2=64,∴2a +2b=8或2a +2b=-8,∴a +b=4或a +b=-4,∴a +b 的值为4或一4.19.a 2+b 2=70,a b=-5.。

(七年级)初一平方差公式专项练习试题第1卷_附答案_北师大,人教版等通用版本

(七年级)初一平方差公式专项练习试题第1卷_附答案_北师大,人教版等通用版本
(3)介于1到200之间的所有“和谐数”之和为________.
35.设a1=32﹣12,a2=52﹣32,……,an=(2n+1)2﹣(2n﹣1)2,(n为正整数)
(1)试说明an是8的倍数;
(2)若△ABC的三条边长分别为ak、ak+1、ak+2(k为正整数)
①求k的取值范围.
②是否存在这样的k,使得△ABC的周长为一个完全平方数,若存在,试举出一例,若不存在,说明理由.
40.计算: … 的值.
41.化简.
(1)( x- y)( x+ y) ( x2+ y2) ( x4+ y4)·…·(x16+ y16);
(2)(22+1)(24+1)(28+1)(216+1).
42.计算.
(1)(0.25 x - )(0.25 x +0.25);
(2)(x-2 y)(-2y- x)-(3x+4 y)(-3 x +4 y);
17.(m+n+p+q) (m-n-p-q)=(__________)2-(__________)2.
18.计算: _______________.
19.计算: _____________.
20.若 ,则 的值为__________.
21.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).
A.(x+1)(x-1)B.(a+b)(-a-b)C.(-x-2)(x-2)D.(b+a)(a-b)
9.已知 ,则a2-b2-2b的值为
A.4B.3C.1D.0

10道平方差公式的计算题

10道平方差公式的计算题

10道平方差公式的计算题一、10道平方差公式计算题。

1. 计算(3x + 2)(3x - 2)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a = 3x,b=2。

- 计算过程:(3x + 2)(3x - 2)=(3x)^2-2^2=9x^2-4。

2. 计算(5y-1)(5y + 1)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a = 5y,b = 1。

- 计算过程:(5y-1)(5y + 1)=(5y)^2-1^2=25y^2-1。

3. 计算(2m+3n)(2m - 3n)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a = 2m,b = 3n。

- 计算过程:(2m + 3n)(2m-3n)=(2m)^2-(3n)^2=4m^2-9n^2。

4. 计算(x + 5)(x - 5)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=x,b = 5。

- 计算过程:(x + 5)(x - 5)=x^2-5^2=x^2-25。

5. 计算(4a - 3b)(4a+3b)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a = 4a,b = 3b。

- 计算过程:(4a - 3b)(4a + 3b)=(4a)^2-(3b)^2=16a^2-9b^2。

6. 计算(-x+2y)(-x - 2y)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=-x,b = 2y。

- 计算过程:(-x + 2y)(-x-2y)=(-x)^2-(2y)^2=x^2-4y^2。

7. 计算((1)/(2)m+(1)/(3)n)((1)/(2)m-(1)/(3)n)- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=(1)/(2)m,b=(1)/(3)n。

平方差公式巩固练习

平方差公式巩固练习

平方差公式巩固练习(a+b)*(a-b)=a^2-b^2这个公式看似简单,但是在实际应用中却经常需要进行变形和推导。

为了巩固对平方差公式的理解和应用,我们可以通过一些练习来加深我们的认识。

练习1:将以下平方差写成因式分解的形式a)9-4b)16-25c)121-64d)x^2-y^2解答:a)9-4=(3+2)*(3-2)=5b)16-25=(4+5)*(4-5)=-9c)121-64=(11+8)*(11-8)=297d)x^2-y^2=(x+y)*(x-y)练习2:根据给定的平方差公式,计算下面的表达式a)(7+3)*(7-3)b)(12+8)*(12-8)c)(15+5)*(15-5)d)(a+b)*(a-b)解答:a)(7+3)*(7-3)=10*4=40b)(12+8)*(12-8)=20*4=80c)(15+5)*(15-5)=20*10=200d)(a+b)*(a-b)=a^2-b^2练习3:根据给定的平方差公式,计算下面的表达式a)(2+1)*(2-1)b)(5+3)*(5-3)c)(10+2)*(10-2)d)(x+h)*(x-h)解答:a)(2+1)*(2-1)=3*1=3b)(5+3)*(5-3)=8*2=16c)(10+2)*(10-2)=12*8=96d)(x+h)*(x-h)=x^2-h^2练习4:根据给定的平方差公式,将下面的表达式进行因式分解a)25-a^2b)64-x^2c)49y^2-36d)a^2-b^2-c^2解答:a)25-a^2=(5+a)*(5-a)b)64-x^2=(8+x)*(8-x)c)49y^2-36=(7y+6)*(7y-6)d)a^2-b^2-c^2=(a+b+c)*(a-b-c)通过以上的练习,我们对于平方差公式的应用和变形已经有了一定的巩固。

但是为了更加深入地理解和掌握平方差公式,我们还可以通过推导和证明来加深对其的认识。

证明平方差公式:我们可以通过因式分解来证明平方差公式。

(完整版)平方差公式练习题

(完整版)平方差公式练习题
平方差公式
【题型一】利用平方差公式计算
1.位置变化:(1)
(2)
符号变化:(3)
(4)
系数变化:(5)
(6)
指数变化:(7)
(8)
2.增项变化
(1)
(2)
(3)
(4)
3.增因式变化
(1)
(2)
【题型二】利用平方差公式判断正误
4.下列计算正确的是( )
A.
B.
C.
D.
【题型三】运用平方差公式进行一些数的简便运算例
A. B. C. D.
5.解方程: .
6.若 ,求 的值.
二.提搞部分
【典型例题】
例1.用平方差公式计算:
(1) (2) (3)
例2. 用简便方法计算(1) (2)
例3.计算
思考:化简 (其中a≠1)
例4.已知 ,求:(1) ; (2)
例5.计算:502×498 1.01×0.99 30.8×29.2 25.5×24.5
三、解答题
1.计算:(1) (2)
(3) (4)
(5) (6)
2.试求: 的个位数字。
3.解方程
4.设 为自然数且满足 ,则 的值为多少?
一.填空题
1.若 则x+y=2. =
3. =4.
二、选择题
1.下列多项式乘法中,可以用平方差公式计算的是()
A. B. C. D.
2.在下列各式中,运算结果是 的是()
A. B. C. D.
2.对于任意整数n,能够整除代数式 的整数是()
A.4 B.3 C.5 D.2
3.若正整数x,y满足 ,则这样的正整数对 的个数是()
A.1 B.2 C.3 D.4

平方差、完全平方公式专项练习题(1)

平方差、完全平方公式专项练习题(1)

平方差公式专项练习题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个 C.3个 D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-55.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.6.利用平方差公式计算:2009×2007-20082.(1)一变:22007200720082006-⨯.(2)二变:22007200820061⨯+.7.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4 ……(1)观察以上各式并猜想:(1-x)(1+x+x2+……+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.② 2+22+23+……+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+……+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.完全平方式常见的变形有:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方差公式专项练习题
填空.(-2x+y)(-2x-y)=______.
6.(-3x2+2y2)(______)=9x4-4y4.
7.(a+b-1)(a-b+1)=(_____)2-(_____)2.
8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.
二、计算题.计算:(a+2)(a2+4)(a4+16)(a-2)

.(多题-思路题)计算:
(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);
(2)(3+1)(32+1)(34+1)…(32008+1)-.
2.(一题多变题)利用平方差公式计算:2009×2007-20082.
(1)一变:利用平方差公式计算:.
(2)二变:利用平方差公式计算:.
二、知识交叉题解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).
三、实际应用题.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?
四、经典中考题
5.(2007,泰安,3分)下列运算正确的是()
A.a3+a3=3a6B.(-a)3·(-a)5=-a8
C.(-2a2b)·4a=-24a6b3D.(-a-4b)(a-4b)=16b2-a2 6.(2008,海南,3分)计算:(a+1)(a-1)=______.
C卷:课标新型题
1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,
(1-x)(•1+x+x2+x3)=1-x4.
(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)
(2)根据你的猜想计算:
①(1-2)(1+2+22+23+24+25)=______.
②2+22+23+…+2n=______(n为正整数).
③(x-1)(x99+x98+x97+…+x2+x+1)=_______.
(3)通过以上规律请你进行下面的探索:
①(a-b)(a+b)=_______.
②(a-b)(a2+ab+b2)=______.
③(a-b)(a3+a2b+ab2+b3)=______.
2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.
3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下
的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.
完全平方公式变形的应用
完全平方式常见的变形有:
1、已知m2+n2-6m+10n+34=0,求m+n的值
2、已知,都是有理数,求的值。

3.已知求与的值。

练一练 A组:
1.已知求与的值。

2.已知求与的值。

3、已知求与的值。

4、已知(a+b)2=60,(a-b)2=80,求a2+b2及a b的值
B组:
5.已知,求的值。

6.已知,求的值。

7.已知,求的值。

8、,求(1)(2)
9、试说明不论x,y取何值,代数式的值总是正数。

C组:
10、已知三角形ABC的三边长分别为a,b,c且a,b,c满足等式
,请说明该三角形是什么三角形?
整式的乘法、平方差公式、完全平方公式、整式的除法
一、请准确填空
1、若a2+b2-2a+2b+2=0,则a2004+b2005=________.
2、一个长方形的长为(2a+3b),宽为(2a-3b),则长方形的面积为________.
3、5-(a-b)2的最大值是________,当5-(a-b)2取最大值时,a与b的关系是________.
4.要使式子0.36x2+y2成为一个完全平方式,则应加上________.
5.(4a m+1-6a m)÷2a m-1=________.
6.29×31×(302+1)=________.
7.已知x2-5x+1=0,则x2+=________.
8.已知(2005-a)(2003-a)=1000,请你猜想(2005-a)2+(2003-a)2=________.
二、相信你的选择
9.若x2-x-m=(x-m)(x+1)且x≠0,则m等于
A.-1
B.0
C.1
D.2
10.(x+q)与(x+)的积不含x的一次项,猜测q应是
A.5
B.
C.-
D.-5
11.下列四个算式:①4x2y4÷xy=xy3;②16a6b4c÷8a3b2=2a2b2c;③9x8y2÷
3x3y=3x5y; ④(12m3+8m2-4m)÷(-2m)=-6m2+4m+2,其中正确的有
A.0个
B.1个
C.2个
D.3个
12.设(x m-1y n+2)·(x5m y-2)=x5y3,则m n的值为
A.1
B.-1
C.3
D.-3
13.计算[(a2-b2)(a2+b2)]2等于
A.a4-2a2b2+b4
B.a6+2a4b4+b6
C.a6-2a4b4+b6
D.a8-2a4b4+b8
14.已知(a+b)2=11,ab=2,则(a-b)2的值是
A.11
B.3
C.5
D.19
15.若x2-7xy+M是一个完全平方式,那么M是
A.y2
B.y2
C.y2
D.49y2
16.若x,y互为不等于0的相反数,n为正整数,你认为正确的是
A.x n、y n一定是互为相反数
B.()n、()n一定是互为相反数
C.x2n、y2n一定是互为相反数
D.x2n-1、-y2n-1一定相等
三、考查你的基本功
17.计算
(1)(a-2b+3c)2-(a+2b-3c)2;
(2)[ab(3-b)-2a(b-b2)](-3a2b3);
(3)-2100×0.5100×(-1)2005÷(-1)-5;
(4)[(x+2y)(x-2y)+4(x-y)2-6x]÷6x.
18.(6分)解方程
x(9x-5)-(3x-1)(3x+1)=5.
四、生活中的数学
19.(6分)如果运载人造星球的火箭的速度超过11.2 km/s(俗称第二宇宙速度),则人造星球将会挣脱地球的束缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为1.8×106 m/h,请你推算一下第二宇宙速度是飞机速度的多少倍?
五、探究拓展与应用
20.计算.
(2+1)(22+1)(24+1)
=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)
=(24-1)(24+1)=(28-1).
根据上式的计算方法,请计算
(3+1)(32+1)(34+1)…(332+1)-的值.
“整体思想”在整式运算中的运用
“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,有些问题局部求解各个击破,无法解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,思路清淅,演算简单,复杂问题迎刃而解,现就“整体思想”在整式运算中的运用,略举几例解析如下,供同学们参考:
1、当代数式的值为7时,求代数式的值.
2、已知,,,求:代数式
的值。

3、已知,,求代数式的值
4、已知时,代数式,求当时,代数式
的值
5、若,
试比较M与N的大小
6、已知,求的值.。

相关文档
最新文档