苏教版八上数学1.3探索三角形全等的条件(7)教案

合集下载

苏科版八年级数学上册《1章 全等三角形 1.3 探索三角形全等的条件 “HL”》公开课教案_17

苏科版八年级数学上册《1章 全等三角形  1.3 探索三角形全等的条件  “HL”》公开课教案_17

11.3探索三角形全等的条件⑸学习目标⒈理解“HL”的条件,并运用“HL”判别两个直角三角形全等;⒉了解特殊与一般的关系,培养辩证的思维方法;⒊要求学生学会文字语言、符号语言和图形语言的表达和相互转化.学习重点、难点理解“HL”的条件,并运用“HL”判别两个直角三角形全等教学过程一、设置情景,探索问题1、复习:(1)、判定两个三角形全等方法,,,,。

(2)、有两条直角边对应相等的两个直角三角形全等吗?理由是什么?(3)、有一个锐角和斜边对应相等的两个直角三角形全等吗?理由是什么?情境1:试用尺规作出满足下列条件的三角形.⑴∠B=30°,AB=5cm,AC=3cm;(追问:所作的三角形为什么不一定全等?)⑵∠B=30°,AB=5cm,AC=2.5cm;(追问:所作的三角形全等吗?)情境2:先准备一张等腰三角形纸片ABC(AB=AC),将它沿底边上的高AD对折.让学生猜测:高两侧的部分能否完全重合?(如图11.3-5-3)为什么?情境3:两个直角三角形全等的条件有哪些?与你的同伴交流交流.问题1:“SSA”和“AAA”不能作为三角形全等的判定,你能举出反例吗?问题2:既然直角三角形是特殊的三角形,那么它是否也有特殊的全等条件呢?2、归纳总结:对两个直角三角形,如果斜边和一条直角对应相等,那么这两个直角三角形全等.简写为“斜边、直角边”或“HL”.⑵如何正确进行文字语言、符号语言和图形语言的相互转化.二、小试牛刀:1.已知:如图,△ABC 中,AB =AC ,AD 是高,则______≌______,依据是______.BD =______,∠BAD =______.2.如图,∠C =∠D =90°,请你再添加一个条件,使△ABD ≌ △BAC ,并在添加的条件后的( )内写出判定全等的依据.(1) ( )(2) ( )(3) ( )(4) ( )三、例题教学例1.如图,AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足,求证:CF =DF .例2、已知:如图,AD ⊥DB ,BC ⊥CA ,AC 、BD 相交于点O ,且AC=BD.⑴试说明:OD=OC .⑵在图中,你还能得到哪些结论?四、体会·交流1.“HL”定理是:有________相等的两个_____三角形全等.2.在应用“HL”定理时,必须先得出两个_____三角形,然后证明___________对应相等.这节课你有什么收获,还有什么疑惑?与你的同伴进行交流.。

苏科版八年级数学上册《1章 全等三角形 1.3 探索三角形全等的条件 “ASA”》公开课教案_9

苏科版八年级数学上册《1章 全等三角形  1.3 探索三角形全等的条件  “ASA”》公开课教案_9

1.3 探索三角形全等的条件(4)预习目标1.经历探索三角形全等“角角边”条件的过程,体会通过操作、归纳获得数学结论的过程.2.掌握三角形全等的“角角边”条件,并能运用“角角边”判定两个三角形全等.3.能够进一步结合具体问题和情境进行有条理的思考和简单的推理证明.4.进一步学会文字语言、符号语言和图形语言的表达和相互转化.教材导读1、练一练已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.2、提问:你有什么发现?阅读教材P19~P20内容,回答下列问题:三角形全等的条件——“角角边”两_______分别相等且其中一组_______的对边相等的两个三角形全等(简写成“角角边”或“_______”).符号语言:如上图在△ABC和△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).热身练习1 .如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件___________;根据“AAS”,那么补充的条件为____________,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?做一做1、已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.变化一下怎么做?(1)已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中∠A和∠A'的角平分线.求证:AD=A'D'.(2)已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'的BC和B'C'边上的中线.求证:AD=A'D'.小结这节课你学到了什么?课后作业1.如图,∠1=∠2,∠3=∠4,则图中全等的三角形有_____________________.2.如图,∠BAC=∠ABD,请你添加一个条件:_______,使OC=OD(填一个即可).3.如图,AD∥BC,∠A=90°,以点B为圆心,BC的长为半径作弧,交射线AD与点E,连接BE,过点C作CF ⊥BE,垂足为F.求证:AB=FC.4.如图,AC、BD互相平分于点O,过点O的直线分别交AB、CD于点E、F,那么OE 与OF相等吗?为什么?。

苏科版数学八年级上册教学设计《1-3探索三角形全等的条件(1)》

苏科版数学八年级上册教学设计《1-3探索三角形全等的条件(1)》

苏科版数学八年级上册教学设计《1-3探索三角形全等的条件(1)》一. 教材分析《1-3探索三角形全等的条件(1)》是苏科版数学八年级上册的教学内容。

这部分内容主要让学生掌握三角形全等的判定方法,包括SSS、SAS、ASA、AAS四种方法。

教材通过具体的例题和练习,让学生理解和掌握这些判定方法,并能够运用到实际问题中。

二. 学情分析学生在学习这部分内容时,已经掌握了三角形的基本概念和性质,如三角形的边长、角度等。

但是,对于三角形全等的判定方法,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索三角形全等的条件,提高他们的动手操作能力和逻辑思维能力。

三. 教学目标1.知识与技能目标:让学生理解和掌握三角形全等的判定方法SSS、SAS、ASA、AAS,并能够运用到实际问题中。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的动手操作能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:三角形全等的判定方法SSS、SAS、ASA、AAS。

2.难点:理解和掌握这些判定方法,并能够灵活运用到实际问题中。

五. 教学方法1.情境教学法:通过设置具体的问题情境,引导学生主动探索三角形全等的条件。

2.互动教学法:引导学生通过观察、操作、思考、交流等活动,共同探讨三角形全等的问题。

3.引导发现法:教师引导学生发现问题,引导学生通过自己的努力解决问题。

六. 教学准备1.教具准备:多媒体教学设备、黑板、粉笔、三角板、剪刀、胶水等。

2.教学资源:教材、教学课件、练习题等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过多媒体展示三角形全等的图片,让学生直观地感受三角形全等的现象,引发学生的兴趣。

3.操练(10分钟)教师引导学生分组进行动手操作,让学生尝试用SSS、SAS、ASA、AAS四种方法判断两三角形是否全等。

八年级数学苏科版上册1-3探索三角形全等的条件 课时练 ( 含简单答案)

八年级数学苏科版上册1-3探索三角形全等的条件 课时练 ( 含简单答案)

八年级数学苏科版上册1.3探索三角形全等的条件课时练一.全等三角形的判定1.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 2.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为秒时,△ABP和△DCE全等.3.如图,∠1=∠2.(1)当BC=BD时,△ABC≌△ABD的依据是;(2)当∠3=∠4时,△ABC≌△ABD的依据是.4.已知如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.5.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?二.直角三角形全等的判定6.如图,∠C=∠D=90°,添加下列条件:①AC=AD;②∠ABC=∠ABD;③BC=BD,其中能判定Rt△ABC与Rt△ABD全等的条件的个数是()A.0B.1C.2D.37.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是()A.ASA B.AAS C.SAS D.HL8.下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等9.如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′三.全等三角形的判定与性质10.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,连接BE,点D 恰好在BE上,则∠3=()A.60°B.55°C.50°D.无法计算11.工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线.这种作法的道理是()A.HL B.SSS C.SAS D.ASA12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=.13.如图,在3×3的正方形网格中,∠1+∠2+∠3+∠4+∠5=.14.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.15.如图,AB=AC,直线l过点A,BM⊥直线l,CN⊥直线l,垂足分别为M、N,且BM =AN.(1)求证△AMB≌△CNA;(2)求证∠BAC=90°.16.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.17.如图①,在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,且BD⊥l于的D,CE⊥l于的E.(1)求证:BD+CE=DE;(2)当变换到如图②所示的位置时,试探究BD、CE、DE的数量关系,请说明理由.四.全等三角形的应用18.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cm B.7cm C.8cm D.9cm19.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.1;SAS B.2;ASA C.3;ASA D.4;SAS20.如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB =DE,那么判定△ABC和△DEC全等的依据是()A.SSS B.SAS C.ASA D.AAS21.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第块去配,其依据是根据定理(可以用字母简写)22.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离,你能说说其中的道理吗?参考答案一.全等三角形的判定1.B.2.1或7.3.SAS、ASA.4.3.5.解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.二.直角三角形全等的判定6.D.7.A.8.D.9.C.三.全等三角形的判定与性质10.B.11.B.12.65°.13.225°14.(1)证明:如图①,∵PD⊥BD,∴∠PDB=90°,∴∠BDC+∠PDA=90°,又∵∠C=90°,∴∠BDC+∠CBD=90°,∴∠PDA=∠CBD,又∵AE⊥AC,∴∠PAD=90°,∴∠PAD=∠C=90°,又∵BC=6cm,AD=6cm,∴AD=BC,在△PAD和△DCB中,,∴△PDA≌△DBC(ASA);(2)解:如图②,∵PD⊥AB,∴∠AFD=∠AFP=90°,∴∠PAF+∠APF=90°,又∵AE⊥AC,∴∠PAF+∠CAB=90°,∴∠APF=∠CAB,在△APD和△CAB中,,∴△APD≌△CAB(AAS),∴AP=AC,∵AC=8cm,∴AP=8cm,∴t=8.15.证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,,∴Rt△AMB≌Rt△CNA(HL);(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.16.解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等.17.证明:(1)∵∠DAB+∠EAC=90°,∠DAB+∠ABD=90°,∴∠EAC=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,CE=AD,∵DE=AD+AE,∴DE=BD+CE;(2)BD﹣CE=DE,理由如下:∵CE⊥AN,BD⊥AN,∴∠AEC=∠BDA=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,即∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴BD﹣CE=AE﹣AD=DE.四.全等三角形的应用18.A.19.B.20.B.21.③;ASA.22.解:在△ABC和△CED中,AC=CD,∠ACB=∠ECD(对顶角),EC=BC,∴△ABC≌△DEC,∴AB=ED,即量出DE的长,就是A、B的距离。

八年级数学教案:探索三角形全等的条件 ( 全8课时 )

八年级数学教案:探索三角形全等的条件 ( 全8课时 )

合吗?(2)重新利用这张长方形剪一个直角三角形,要使得全班同学剪下的都能够重合,你有什么办法?(3)剪下直角三角形,验证是否能够重合,并能得出什么结论?5.如图,△ABC 与△DEF 、△MNP 能完全重合吗?(1)直觉猜想哪两个三角形能完全重合? (2)再用工具测量,验证猜想是否正确.6.按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC =b .作法:1.作∠MAN =∠α.2.在射线AM 、AN 上分别作线段AB =a ,AC =b . 3.连接BC .△ABC 就是所求作的三角形.图形:你作的三角形与其他同学作的三角形能完全重合吗? 三.交流展示通过上面几个活动你对三角形全等所需要的条件有什么看45︒31.5CB A60︒3DEF1.5P45︒31.5MN课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(3)教学目标1.掌握三角形全等的条件“ASA”;会利用“ASA”进行有条理的简单的推理;2.通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心.教学重点掌握三角形全等的条件“ASA”,并能利用它们判定三角形是否全等.教学难点探索三角形全等的条件“ASA”的过程及应用教学方法教具准备教学课件教学过程个案补充一.自主先学:(1)要证明两个三角形全等,需要几个条件?(2)上节课我们学习了哪些条件可以构成全等(3)请你们猜想,构成全等还有哪些条件组合?二.探究交流1.调皮的小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?2.粗心的小明不小心将一块三角形模具打碎了,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?3.请你和小明一起画:用圆规和直尺画△ABC,使AB=a,∠A=∠α,∠B=∠β.(1)作AB=a.(2)在AB的同一侧分别作∠MAB=∠α,∠NBA=∠β,AM、BN相交于点C.(3)△ABC就是所求作的三角形.以上三个问题回答完毕了,你有什么发现?基本事实两角及其夹边分别相等的两个三角形全等(ASA)三.交流展示1.说一说图中有几对全等三角形?你能找出它们并说出理由吗?2.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么(以填空方式回答)?四.拓展提高:已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE//AC,DF//AB.求证:BE=DF,DE=CF.五.小结与反思:这节课你学到了什么?哪些三个条件的组合是你还想去探索求证的?课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(4)1.掌握三角形全等的条件“AAS”,会用“AAS”进行有条理的简单的推理;教学目标2.学会根据题目的条件选择适当的定理进行全等的证明.教学重点掌握三角形全等的条件“AAS”,并能利用它们判定三角形是否全等.教学难点在解题时选择适当定理应用.教学方法教具准备教学课件教学过程个案补充一. 自主先学:1.回忆上节课内容,用自己的语言表达出来!2.解决下面的问题,你有什么发现吗?已知:如图,∠A=∠D,∠ACB=∠DBC,求证:AB=DC.二.探究交流探索新知一已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.基本推论:两角及其中一角的对边分别相等的两个三角形全等.简称“角角边”或“AAS”.在△ABC与△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).三.交流展示1.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.四.拓展提高:4.已知:如图,△ABC ≌△A 'B 'C ',AD 和A 'D '分别是△ABC 和△A 'B 'C '中∠A 和∠A’的角平分线.求证:AD =A 'D '.五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期A 'B ' D 'C 'AB DC AB DC A 'B'D 'C '教学课题 1.3 探索三角形全等的条件(5)教学目标1.会用“角边角”“角角边”证明两个三角形全等,进而证明线段或角相等;2.渗透综合、分析等思想方法,从而提高学生演绎推理的条理性和逻辑性.教学重点用“角边角”“角角边”定理证明两个三角形全等,进而证明线段或角相等教学难点角边角”“角角边”定理的灵活应用教学方法教具准备教学课件教学过程个案补充一.自主先学:如图,已知AD平分∠BAC,要使△ABD≌△ACD,(1)根据“SAS”需添加条件________;(2)根据“ASA”需添加条件________;(3)根据“AAS”需添加条件________.二.探究交流1.如图,∠A=∠B,∠1=∠2,EA=EB,你能证明AC=BD吗?2.如图,点C、F在AD上,且AF=DC,∠B=∠E,∠A=∠D,你能证明AB=DE吗?三.交流展示例1: 已知:如图,点A、B、C、D在一条直线上,EA∥FB,EC∥FD,EA=FB.求证:AB=CD.例2;已知:如图,AB=AC,点D、E分别在AB、AC上,∠B =∠C.求证:DB=EC变式一已知:∠1=∠2,∠B=∠C,AB=AC.求证:AD=AE,∠D=∠E.变式二已知:∠1=∠2,∠B=∠C,AB=AC,D、A、E在一条直线上.求证:AD=AE,∠D=∠E.四.拓展提高:1.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.2.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F.求证:EF+AE=CF.五.小结与反思:课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(6)教学目标1.掌握“边边边”定理.理解三角形的稳定性和它在生产、生活中的应用;教会学生如何利用尺规来完成“已知三边画三角形”,如何添加辅助线构造全等三角形;2.培养学生观察、操作、分析、综合、抽象、概括和发散思维的能力;感悟转化的数学思想方法.教学重点探究三角形全等的方法及运用“边边边”条件证明两个三角形全等.教学难点边边边”定理的应用和转化意识的形成及辅助线的添加.教学方法教具准备教学课件教学过程个案补充一.自主先学:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,小明该怎么办呢?二.探究交流实践探索一:已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合.通过以上的操作你发现了什么?实践探索二:教师出示三角形、四边形木架,让学生动手拉动木架的两边.教师提出问题:(1)演示实验说明了什么?教师总结:三角形的这个性质叫做三角形的稳定性.(2)你能举出生活中利用三角形稳定性的例子吗?三.交流展示1.下列图形中,哪两个三角形全等?2.如图,C 点是线段BF 的中点,AB =DF ,AC =DC .△ABC 和△DFC 全等吗?变式1若将上题中的△DFC 向左移动(如图),若AB =DF ,AC =DE ,BE =CF ,问:△ABC ≌△DFE 吗 ?变式2若继续将上题中的△DFC 向左移动(如图),若AB =DC ,AC =DB ,问:△ABC ≌ △DCB 吗 ?3.已知:如图, 在△ABC 中,AB =AC ,求证:∠B =∠C .四.拓展提高:1.已知:如图,AB =CD ,AD =CB ,求证:∠B =∠D .117667119942.如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D .五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期CDOAB教学课题 1.3 探索三角形全等的条件(7)教学目标1.会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯;2.会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法;3.能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.教学重点能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.”.教学难点几何图形信息转化为尺规操作教学方法教具准备教学课件教学过程个案补充一. 自主先学:工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.请同学们说明这样画角平分线的道理.二.探究交流1.说请按序..说出木工师傅的“操作”过程.2.作与写用直尺和圆规在图(2)中按序..将木工师傅的“操作”过程作出来,并写出作法.3.证请证明你的作法是正确的.4.用用直尺和圆规完成以下作图:(1)在图(3)中把∠MON四等分.图(1)(2)在图(4)中作出平角∠AOB 的平分线.说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的角平分线.1.观察思考.在图(2)作图的基础上,作过C 、D 的直线l (如图(5)),观察图中射线OM 与直线l 的位置关系,并说明理由.2.问题变式.你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB 外一点P 作AB 的垂线PQ ). 3.比较分析.引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略. 4.作图与证明.1 以点P 为圆心,适当的长为半径作弧,使它与AB 交于C 、D .2 分别以点C 、D 为圆心,大于12CD 的长为半径作弧,两弧交于点Q .3 作直线PQ .∴直线PQ 就是经过直线AB 外一点P 的AB 的垂线(如图(7)). (2)证明略.5.归纳总结.图(2)O BA 图(4)NOM图(3)(图7)QDC BAPMDCBOA图(5)l图(6)BAP课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(8)教学目标 1.利用尺规作图,掌握已知斜边、直角边画直角三角形的画图方法; 2.经历操作、实验、观察、归纳,证明斜边、直角边(HL )定理;3.用HL 及其他三角形全等的判定方法进行证明和计算,发展演绎推理的能力. 教学重点 斜边、直角边”定理的证明和应用. 教学难点 斜边、直角边”定理的证明和应用.教学方法教具准备教学课件教 学 过 程个案补充一.自主先学:1.判定两个三角形全等的方法: 、 、 、___ .2.如图,在Rt △ABC 中,直角边是 、 , 斜边是___ 3.如何将一个等腰三角形变成两个全等的直角三角形? 4.如图,在Rt △ABC 、Rt △DEF 中,∠B =∠E =90°, (1)若∠A =∠D ,AB =DE 则△ABC ≌△DE ( ) (2)若∠A =∠D ,BC =EF ,则△ABC ≌△DEF ( ) (3)若AB =DE ,BC =EF ,则△ABC ≌△DEF ( ).上面的每一小题,都只添加了两个条件,就使两个直角三角形全等,你还能添加哪两个不同的条件使这两个直角三角形全等?二.探究交流探索活动一. (1)交流、操作.用直尺和圆规作Rt △ABC ,使∠C =90°,CB =a ,AB =c .(2)思考、交流.①△ABC 就是所求作的三角形吗?BADE C F。

苏科版八年级数学上册1.3 探索三角形全等的条件同步练习(含解析)

苏科版八年级数学上册1.3 探索三角形全等的条件同步练习(含解析)

数是

28.如图,已知五边形 ABCDE 中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,
则五边形 ABCDE 的面积为

三.解答题(共 12 小题)
29.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.
30.如图,在△ABC 和△ADE 中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.
A.2 个
B.4 个
C.6 个
D.8 个
12.在△ABC 中,已知∠CAB=60°,D,E 分别是边 AB,AC 上的点,且∠AED=60°,
2 / 37
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
ED+DB=CE,∠CDB=2∠CDE,则∠DCB=( )
A.15°
B.20°
C.25°
D.30°
A.
B.2
C.2
D.
【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出 BE=DC,就可以求出 DE 的值. 【解答】解:∵BE⊥CE,AD⊥CE, ∴∠E=∠ADC=90°, ∴∠EBC+∠BCE=90°. ∵∠BCE+∠ACD=90°, ∴∠EBC=∠DCA. 在△CEB 和△ADC 中,
1 / 37
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
仍无法判定△ABC≌△DEF 的是(
A.AB=DE
B.AC=DF
) C.∠A=∠D
D.BF=EC
7.如图,在△ABC 和△DEF 中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能
证明△ABC≌△DEF,这个条件是( )
A.∠A=∠D

三角形全等的判定(第1课时)八年级数学教师集体备课教案

三角形全等的判定(第1课时)八年级数学教师集体备课教案

八年级数学教师集体备课教案定(1)1.会正确运用“边边边”“边角边”条件证明三角形全等.2.会根据“边边边”“边角边”作一个角等于已知角.3.经历探索三角形全等条件的过程,体验用操作、归纳得出结论的过程.一、情境导入,初步认识出示投影片,回忆前面研究过的全等三角形.如图1,已知△ABC≌△A′B′C′,找出其中相等的边与角.图1 图2图中相等的边是:AB=A′B′,BC=B′C′,AC=A′C′.相等的角是:∠A=∠A′,∠B=∠B′,∠C=∠C′.[来源:学科网ZXXK]探究新知活动一:只给一个条件有可能是什么条件?学生:一组对应边相等或一组对应角相等.一组对应边相等或一组对应角相等时画出的两个三角形一定全等吗?请同学们动手操作.学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.结果展示:(1)只给定一条边时,如图2.(2)只给定一个角时,如图3.结论:活动二:给出两个条件画三角形时,有几种可能的情况?学生:给出的两个条件可能是一边一内角、两内角、两边.每种情况下作出的三角形一定全等吗?分别按下列条件画一画.(1)三角形的一个内角为30°,一条边长为3 cm.(2)三角形的两个内角分别为30°和50°.(3)三角形的两条边长分别为4 cm,6 cm.结果展示学生得出结论:只给出两个条件时,所画的三角形也不一定全等.活动三:给出三个条件画三角形,你能说出有几种可能的情况吗?学生:有四种可能,即三内角、三边、两边一内角、两内角一边.在刚才的探索过程中,我们已经发现三内角相等不能保证三角形全等(如图4中的(2)).接下来我们就逐一探索其余的三种情况.首先,探索三边对应相等的情况.已知一个三角形的三条边长分别为6 cm,8 cm,10 cm.你能画出这个三角形吗?把你画的三角形剪下来与同伴画的三角形进行比较,它们全等吗?(1)作图方法:先画一条线段AB,使得AB=6 cm,再分别以A,B为圆心,8 cm,10 cm长为半径画弧,两弧交点记作C,连接线段AC,BC,就可以得到△ABC,且它的边长分别为AB=6 cm,AC=8 cm,BC=10 cm.(2)以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.这说明这些三角形都是全等的.(3)特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个△A′B′C′,使AB=A′B′,AC=A′C′,BC=B′C′.将△A′B′C′剪下来,发现两三角形重合.结论:三边分别相等的两个三角形全等(可以简写为“边边边”或“SSS”).1.组织学生做游戏(找朋友),游戏规则:发放图4中的卡片若干张,利用全等三角形的概念找出与自己手中的三角形卡片全等的卡片所有者,即为朋友.图42.如图5①,已知△ABC,画△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A.画法:如图5②所示,(1)画∠DA′E=∠A;(2)在射线A′D上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′.则△A′B′C′即为所求作的三角形.①②图5把画好的△A′B′C′剪下来放在△ABC上,观察这两个三角形是否全等.如何验证?学生:全等,放在一起完全重合.这两个三角形全等是因为满足哪三个条件?学生:两边一夹角.二.新知应用例1 如图5,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.图5 图6例2 已知:如图6,AD=BC,AC=BD.求证:∠A=∠B.三.课堂小结1.三角形全等的判定:三边分别相等的两个三角形全等(可以简写为“边边边”或“SSS”).2.证明线段(或角)相等转化成证明线段(或角)所在的两个三角形全等.3.证明两个三角形全等应注意:(1)书写格式;(2)注意图形中隐含的条件(如公共边、公共角、对顶角等);(3)有时需添加辅助线.。

《全等三角形》单元教学设计-精品教案(推荐)

《全等三角形》单元教学设计-精品教案(推荐)

全等三角形1课时
探索三角形全等的条件8课时
小结与思考2课时
第1课时教学设计(其他课时同)
课题全等图形
新授课 章/单元复习课□专题复习课□
课型
习题/试卷讲评课□学科实践活动课□其他□
1.教学内容分析
2.学习者分析
本节课是在学生掌握了三角形有关知识的基础上,重点研究了全等三角形的有关概念、表示方法及对
观察下面两组图形,它们是不是全等图形?为什么?
在课堂上观察学生对概念的理解程度,评价学生的掌握情况,通过问题的设置评价学生对概念的理解,通过课堂例题的解决过程评价学生的掌握,最后可以通过当堂训练的完成情况评价学生的学习情况。

6.学习活动设计 教师活动
学生活动
环节一:(一)、创设情境,引入新课 教师活动1
1、请同学们观察几组图片,这些图片有何特征?
学生活动1
通过观察我们发现,这些图形中有些是完全一样的,如果把它们叠在一起,它们就能重合.
通过设置有趣的生活图片,让学生通过观察、举例,对全等图形有一个感性认识。

学生发现每组图片能够完全重合在一起,进而得出全等图形的概念。

这样做不仅有利于激发学生的学习兴趣,而且让学生知道生活中的一些图形是全等图形。

环节二:(二)、探究新知,得出结论 教师活动2
1、完成课本“议一议”。

观察下面两组图形,它们是不是全等图形?为什么?
学生活动2
1. 这两组图形都不是全等图形,全等图形的形状和大小都相同。

得出全等图形的两个基本特征。

2. 类比全等图形的特征得出全等三。

1.3探索三角形全等的条件(SAS)导学案2022-2023学年苏科版数学八年级上册

1.3探索三角形全等的条件(SAS)导学案2022-2023学年苏科版数学八年级上册

1.3 探索三角形全等的条件(SAS)导学案导学目标•了解SAS(边-角-边)的三角形全等条件•掌握使用SAS判断两个三角形是否全等的方法•能够在实际问题中应用SAS判断三角形的全等性导入问题1.如果两个三角形的两个边分别相等,并且夹角相等,可以说这两个三角形全等吗?2.如果两个三角形的两个边分别相等,并且夹角相等,它们的第三边是否一定相等?3.如果两个三角形的两个边分别相等,并且第三边相等,它们的夹角是否一定相等?4.从导入问题中我们可以得出什么结论?导学过程SAS全等条件的介绍SAS全等条件是指在两个三角形中,如果一个三角形的两边和夹角分别等于另一个三角形的两边和夹角,那么这两个三角形全等。

在三角形ABC和三角形DEF中,如果满足以下条件,即可判断这两个三角形全等:•AB = DE (两边相等)•AC = DF (两边相等)•∠BAC = ∠EDF (夹角相等)使用SAS判断全等的例题例题:已知∆ABC中,AB=5 cm,AC=4 cm,∠BAC=45°,请判断∆ABC与以下哪个三角形全等:(A)∆DEF,其中DE=5 cm,DF=4 cm,∠EDF=45°;(B)∆XYZ,其中XY=6 cm,XZ=3 cm,∠YXZ=45°;(C)∆UVW,其中UV=4cm,UW=5 cm,∠VUW=45°;(D)∆PQR,其中PQ=6 cm,PR=4 cm,∠QPR=45°。

解析:根据题目中所给的条件,我们需要找到与∆ABC满足SAS全等条件的三角形。

•对于选项A,符合条件DE=5cm,DF=4cm,但∠EDF=45°,与∠BAC不相等,所以排除选项A;•对于选项B,符合条件XY=6cm,XZ=3cm,但∠YXZ=45°,与∠BAC不相等,所以排除选项B;•对于选项C,符合条件UV=4cm,UW=5cm,并且∠VUW=45°,与∠BAC相等,所以∆ABC与∆UVW全等;•对于选项D,符合条件PQ=6cm,PR=4cm,但∠QPR=45°,与∠BAC不相等,所以排除选项D。

苏科版数学八年级上册第1课时探索三角形全等的条件SAS(一)课件

苏科版数学八年级上册第1课时探索三角形全等的条件SAS(一)课件

预习导学
如图,AB=AC,∠BAD=∠CAD,证
明:△ABD≌△ACD.
=,
证明:在△ABD和△ACD中,ቐ∠=∠,
=,
∴△ABD≌△ACD(SAS).
合作探究
利用“SAS”判定三角形全等
如图,点A,D,B,E在同一条直线上,AD=BE,
AC∥DF,AC=DF.
求证:△ABC≌△DEF.
阅读课本“讨论”和“交流”部分的内容,思考判定两个
三角形全等需要的条件.
思考 用一张长方形纸片,任意剪一个直角三角形,全班
同学剪得的直角三角形能全等吗?如何剪一个直角三角形,使
全班同学剪得的直角三角形都全等?
预习导学
答:通过实践操作,学生进一步明确只有一个条件的两个直
角三角形不全等,有两条直角边相等的两个直角三角形全等.
第1章 全等三角形
1.3 探索三角形全等的条件
第1课时 探索三角形全等的条件
——SAS(一)
素养目标
1.探索三角形全等的判定方法——“边角边”.
2.能熟练运用“边角边”判定方法解决有关问题.
◎重点:能用三角形全等的判定方法——“边角边”解决
问题.
◎难点:能熟练运用“边角边”判定方法解决有关问题.
预习导学
我们知道,全等三角形的对应边相等,对应角相等,那么
反过来,当两个三角形有多少对边或角分别相等时,这两个三
角形就全等呢?
预习导学
·导学建议·
设置问题式情境,既能激发学生的学习兴趣,又能让学生
探究思考判定两个三角形全等的条件.(准备圆规、直尺)
预习导学
两边及其夹角分别相等的两个三角形全等(可简写为
“边角边”或“SAS”)

苏教版数学八上

苏教版数学八上

苏教版数学八上课本目录:
第一章全等三角形
1.1 全等图形
1.2 全等三角形
1.3 探索三角形全等的条件
数学活动关于三角形全等的条件第二章轴对称图形
2.1 轴对称与轴对称图形
2.2 轴对称的性质
2.3 设计轴对称图案
2.4 线段、角的轴对称性
2.5 等腰三角形的轴对称性
数学活动折纸与证明
第三章勾股定理
3.1 勾股定理
3.2 勾股定理的逆定理
3.3 勾股定理的简单应用
数学活动探寻“勾股数”
第四章实数
4.1 平方根
4.2 立方根
4.3 实数
4.4 近似数
数学活动有关“实数”的课题探究
第五章平面直角坐标系
5.1 物体位置的确定
5.2 平面直角坐标系
数学活动确定藏宝地
第六章一次函数
6.1 函数
6.2 一次函数
6.3 一次函数的图像
6.4 用一次函数解决问题
6.5 一次函数与二元一次方程
6.6 一次函数、一元一次方程和一元一次不等式
数学活动温度计上的一次函数。

1.3探索三角形全等的条件(HL)教学设计2022-2023学年苏科版数学八年级上册

1.3探索三角形全等的条件(HL)教学设计2022-2023学年苏科版数学八年级上册

1.3 探索三角形全等的条件(HL)教学设计一、教学目标1.理解并能够运用三角形全等的条件之一:HL(Hypotenuse Leg)。

2.掌握使用HL判定三角形全等的方法。

3.通过练习和实际问题的解决,能够灵活运用HL条件解决相关问题。

二、教学内容1.三角形全等的条件之一:HL。

2.使用HL条件判定三角形全等的方法。

三、教学过程1. 导入与激发•通过提问或展示两个三角形,引导学生思考如何判断它们是否全等。

•引导学生思考并回顾之前学过的两个全等条件:SAS和ASA。

2. 概念讲解•讲解HL全等条件:当两个直角三角形的斜边和一个锐角(非直角角)的对边相等时,这两个三角形全等。

3. 理解与归纳•布置小组讨论任务:给出若干直角三角形,让学生观察它们之间的关系并尝试归纳HL全等条件。

•学生小组展示归纳结果,并与全班共同归纳HL全等条件。

4. 讲解与示范•结合归纳结果,讲解HL全等条件的具体运用方法。

•通过示例引导学生理解HL条件的具体运用步骤。

5. 练习与拓展•学生个人或小组完成若干练习题目,巩固HL条件的运用。

•提供一些拓展题目,鼓励学生运用HL条件解决实际问题。

6. 温故与总结•学生之间互相检查对方的练习答案,讨论并纠正错误。

•教师回顾本节课的重点内容,帮助学生归纳总结HL全等条件的判定方法。

四、教学评价•教师观察与记录学生在讨论和解答问题过程中的表现。

•检查学生完成的练习题目,评价其掌握程度和运用能力。

•参考学生的反馈和回答问题的准确性,评估教学效果。

五、教学拓展•鼓励学生尝试解决与HL条件相关的实际问题,并通过项目制等形式展示出来。

•引导学生思考其他全等条件的应用情境,与HL条件进行对比和综合运用。

六、板书设计#### 1.3 探索三角形全等的条件(HL)教学设计- 教学目标- 教学内容- 教学过程- 导入与激发- 概念讲解- 理解与归纳- 讲解与示范- 练习与拓展- 温故与总结- 教学评价- 教学拓展七、教学反思本节课通过引导学生观察、归纳和讨论,帮助他们理解和运用HL全等条件。

探索三角形全等的条件-【帮课堂】2021-2022学年八年级数学上册同步精品讲义(苏科版)(解析版)

探索三角形全等的条件-【帮课堂】2021-2022学年八年级数学上册同步精品讲义(苏科版)(解析版)

第1章全等三角形1.3探索三角形全等的条件课程标准课标解读1.理解和掌握全等三角形判定方法1——“角边角”,判定方法2——“边角边”;能运用它们判定两个三角形全等.2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.3.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL”).1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.3.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等.知识点01 全等形的判定1.全等三角形判定1——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).【微点拨】如果∠A=∠,AB=,∠B=∠,则△ABC≌△.【即学即练1】1.如图,为了测量池塘两岸相对的两点A,B之间的距离,小颖在池塘外取AB的垂线BF 上两点C,D,使BC CD,再画出BF的垂线DE,使点E与A,C在同一条直线上,这时,可得ABC EDC△≌△,因此,测得DE的长就是AB的长.这里判定ABC EDC△≌△的依据是()A.ASA B.SAS C.AAS D.SSS【答案】A【分析】'A''A B'B'''A B C目标导航知识精讲根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法. 【详解】解:因为证明在△ABC △△EDC 用到的条件是:BC =CD ,△ABC =△EDC =90°,△ACB =△ECD (对顶角相等), 所以用到的是两角及这两角的夹边对应相等即ASA 这一方法. 故选:A .【即学即练2】2.下列条件中,不能判定两个直角三角形全等的是( ) A .一条直角边和斜边分别对应相等 B .两条直角边分别对应相等 C .一个锐角和一条斜边分别对应相等 D .两个锐角分别对应相等 【答案】D 【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解. 【详解】解:A. 可以利用边角边或HL 判定两三角形全等,不符合题意; B. 可以利用边角边判定两三角形全等,不符合题意; C. 可以利用角角边判定两三角形全等,不符合题意.D. 两个锐角对应相等,不能说明两三角形能够完全重合,符合题意; 故选:D .2. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”). 【微点拨】如果AB = ,∠A =∠,AC = ,则△ABC ≌△. 注意:这里的角,指的是两组对应边的夹角.3. 有两边和其中一边的对角对应相等,两个三角形不一定全等.△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等. 4.全等三角形判定3——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”). 【微点拨】''A B 'A ''A C '''A B C如果=AB ,=AC ,=BC ,则△ABC ≌△. 5.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 【微点拨】由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论. 6.三个角对应相等的两个三角形不一定全等.在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.知识点02 判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理.【即学即练3】3.如图,在ABC 中,90C ∠=︒,D 是AC 上一点,DE AB ⊥于点E ,BE BC =,连接BD ,若8cm AC ,则AD DE +等于( )A .6cmB .7cmC .8cmD .10cm【答案】C 【分析】证明Rt△BCD△Rt△BED (HL ),由全等三角形的性质得出CD=DE ,则可得出答案. 【详解】解:DE AB ∵⊥,90DEB ∴∠=︒,在Rt BCD 和Rt BED △中,BD BDBE BC =⎧⎨=⎩, Rt Rt (HL)BCD BED ∴≅△△,CD DE ∴=,''A B ''A C ''B C '''A BCAD DE AD CD AC∴+=+=,8AC =cm,8AD DE AC∴+==cm.故选:C.【即学即练4】4.如图,△ACB=90°,AC=BC,AD△CE,BE△CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.2B.4C.D【答案】A【分析】根据条件可以得出△EBC=△DCA,进而得出△CEB△△ADC,就可以得出BE=DC,就可以求出DE的值.【详解】解:△BE△CE,AD△CE,△△E=△ADC=90°,△△EBC+△BCE=90°.△△BCE+△ACD=90°,△△EBC=△DCA,在△CEB和△ADC中,E ADCEBC DCA BC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,△△CEB△△ADC(AAS),△BE=DC=1,CE=AD=3,△DE=EC-CD=3-1=2.故选:A.考法01 判断方法的选择已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典例1】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC CD=,再作出BF的垂线DE,使点A、C、E在同一条直线上,可以说明ABC EDC△≌△,得AB DE=,因此测得DE的长就是AB的长,判定ABC EDC△≌△,最恰当的理由是()A.SAS B.HL C.SSS D.ASA【答案】D【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【详解】解:因为证明在△ABC△△EDC用到的条件是:CD=BC,△ABC=△EDC=90°,△ACB=△ECD,能力拓展所以用到的是两角及这两角的夹边对应相等即ASA 这一方法. 故选:D .考法02 判断直角三角形全等的特殊方法---斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”【典例2】如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是( )A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF =【答案】C 【分析】直接根据三角形证明全等的条件进行判断即可; 【详解】A 、△AB△DE ,△△ABC=△DEC ,△根据ASA 即可判定三角形全等,故此选项不符合题意;B 、△AC△DF ,△△DFE=△ACB ,△根据AAS 即可判定三角形全等,故此选项不符合题意;C 、AC△DE ,不符合三角形全等的证明条件,故此选项符合题意;D 、△AC=DF ,△根据SAS 即可判定三角形全等,故此选项不符合题意; 故选:C .题组A 基础过关练1.如图,MB ND =,MBA D ∠=∠,添加下列条件不能判定ABM CDN ≌的是( )分层提分A .M N ∠=∠B .AM CN =C .AB CD = D .AC BD =【答案】B 【分析】根据全等三角形的判定定理可解. 【详解】A 选项:根据ASA 可以判定ABM CDN ≌,故A 错误;B 选项:根据SSA 不能判定ABM CDN ≌,故B 正确;C 选项:根据SAS 可以判定ABM CDN ≌,故C 错误;D 选项:根据AC BD =,可推AB CD =,所以根据SAS 可以判定ABM CDN ≌,故D 错误. 故答案选:B .2.如图,在ABC 和ABD △中,已知AC AD =,BC BD =,则能说明ABC ABD △≌△的依据是( )A .SASB .ASAC .SSSD .HL【答案】C 【分析】由题意,结合AB=AB ,即可由SSS 判定ABC ABD △≌△ 【详解】解:在△ABC 和△ABD 中, △AC AD =,BC BD = 又△AB=AB△ABC ABD △≌△(SSS )故选:C3.在△ABC 和△DEF 中,下列给出的条件,能用“SAS”判定这两个三角形全等的是( ) A .AB =DE ,BC =DF ,△A =△D B .AB =BC ,DE =EF ,△B =△E C .AB =EF ,AC =DF ,△A =△D D .BC =EF ,AC =DF ,△C =△F【答案】D 【分析】根据三角形全等的判定条件“SAS”逐项判断即可. 【详解】A .BC 边和EF 边是对应边,所以所给条件证明不出ABC DEF ≅.故A 不符合题意.B .边AB 与BC 都在ABC 中,边DE 与EF 都在DEF 中,所给条件不是对应边相等,所以证明不出ABC DEF ≅,故B 不符合题意.C .AB 边和DE 边是对应边,所以所给条件证明不出ABC DEF ≅,故C 不符合题意.D .相邻两对应边分别相等且所夹的角相等,可以利用SAS 证明ABC DEF ≅,故D 符合题意. 故选:D .4.如图,要测量池塘两岸相对的两点A ,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C ,D ,使BC =CD ,再画出BF 的垂线DE ,使E 与A ,C 在一条直线上,可得△ABC △△EDC ,这时测得DE 的长就是AB 的长.判定△ABC △△EDC 最直接的依据是( )A .HLB .SASC .ASAD .SSS【答案】C 【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,再根据已知选择判断方法. 【详解】解:根据题意,△ABC=△EDC ,BC=CD ,△ACB=△ECD , △能证明△ABC△△EDC 最直接的依据是ASA . 故选:C .5.如图,DC CA ⊥,EA AC ⊥,BC AE =,CD AB =,证明BCD EAB △≌△的理由是( ).A .HLB .SASC .ASAD .AAS【答案】B 【分析】根据SAS 可证明两个三角形全等. 【详解】因为DC CA ⊥,EA AC ⊥, 所以90BCD EAB ︒∠=∠=, 所以在BCD △与EAB 中,BC EA BCD EAB CD AB =⎧⎪∠=∠⎨⎪=⎩, 所以BCD EAB △≌△(SAS ), 故选B .6.下列说法正确的是( )A .在ABC 中,若::1:2:3ABC ∠∠∠=,则ABC 是直角三角形 B .每条边都相等的多边形是正多边形 C .所有正方形都是全等图形D .如果两个三角形有两边和一角分别对应相等,那么这两个三角形全等 【答案】A 【分析】直角三角形的判定、正多边形的定义及三角形判定分别判断后即可确定正确的选项. 【详解】解:A. 若::1:2:3A B C ∠∠∠=,设△A=a ,则△B=2a, △C=3a .△ △A+△B+△C=180°, △a+2a+3a=180°△a=30°,3a=90°,△ABC 是直角三角形,说法正确; B. 各边都相等,各角也相等的多边形是正多边形,故说法错误; C. 所有正方形不是全等图形,说法错误;D. 如果两个三角形有两边和两边的夹角分别对应相等,那么这两个三角形全等,故说法错误. 故答案为:A .7.下列条件中,能利用“SAS ”判定△ABC △△A′B′C′的是 ( ) A .AB=A′B′,AC=A′C′,△C=△C′ B .AB=A′B′,△A=△A′,BC=B′C′ C .AC=A′C′,△C=△C′,BC=B′C′ D . AC=A′C′,△A=△A′,BC=B′C′ 【答案】C 【分析】依据全等三角形的判定定理进行判断,并结合线段与角的位置关系准确分析即可. 【详解】解:A 、边边角不能证明两个三角形全等,故A 错误; B 、边边角不能证明两个三角形全等,故B 错误;C 、AC=A'C',△C=△C',BC=B'C',符合ASA ,故C 正确;D 、边边角不能证明两个三角形全等,故D 错误. 故选:C .题组B 能力提升练1.在ABC 和DEF 中,条件:△AB DE =;△BC EF =;△AC DF =;△A D ∠=∠;△B E ∠=∠;△C F ∠=∠;则下列各组给出的条件不能保证ABC DEF △≌△的是( ) A .△△△ B .△△△C .△△△D .△△△【答案】D 【分析】根据全等三角形的判定方法 对各选项分析判断后利用排除法求解. 【详解】解:A 、△△△可以利用“SSS”证明△ABC△△DEF ,故本选项不符合; B 、△△△可以利用“SAS”证明△ABC△△DEF ,故本选项不符合; C 、△△△可以利用“AAS”证明△ABC△△DEF ,故本选项不符合; D 、△△△符合“SSA”,不能证明△ABC△△DEF ,故本选项符合. 故选:D .2.如果两个三角形的两条边和其中一条边上的中线分别对应相等,那么这两个三角形第三条边所对的角的关系是( ) A .相等 B .互余C .互补D .以上答案都不正确【答案】A 【分析】如图,在ABC 和DEF 中,AG ,DH 分别是两个三角形的中线,AB DE =,BC EF =,AG DH =,则B E ∠=∠.根据SSS 证明ABG DEH ≅即可. 【详解】解:如图,在ABC 和DEF 中,AG ,DH 分别是两个三角形的中线,AB DE =,BC EF =,AG DH =,则B E ∠=∠.理由:在ABC 和DEF 中,AG ,DH 分别是两个三角形的中线,12BG BC ∴=,12EH EF =,BC EF =,BG EH ∴=,AB DE =,AG DH =,△ABG DEH ≅(SSS ),B E ∴∠=∠,∴这两个三角形的第三条边所对的角的关系是相等,故选A .3.以下命题是假命题的是( ) A .两个全等三角形的三条边对应相等B .三条边对应相等的两个三角形全等C .两个全等三角形的面积相等D .面积相等的两个三角形全等【答案】D 【分析】根据假命题的定义,再根据全等三角形的判定方法及性质逐个选项进行判断即可得出结果. 【详解】A 、两个全等三角形的三条边对应相等,是真命题,不符合题意;B 、三条边对应相等的两个三角形全等,是真命题,不符合题意;C 、两个全等三角形的面积相等,是真命题,不符合题意;D 、面积相等的两个三角形不一定全等,原命题是假命题,符合题意. 故选:D .4.下列判断中错误..的是( ) A .有两角和一边对应相等的两个三角形全等 B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有两条直角边对应相等的两个直角三角形全等 【答案】B 【分析】根据三角形全等判定的条件逐一判断即可. 【详解】解:A 、有两角和一边对应相等的两个三角形全等(AAS 或ASA ),故正确;B 、有两边和一角对应相等的两个三角形全等,可能为(SSA )或者(SAS ),其中只有(SAS )能够作为三角形全等的判定条件,故错误;C 、有两边和其中一边上的中线对应相等的两个三角形全等:对应两边与中线所构成的三角形全等(SSS ),可证得对应两边的夹角相等,再根据(SAS )可证得两个三角形全等,故正确;D 、有两条直角边对应相等的两个直角三角形全等(SAS ),故正确; 故选:B .5.如图,ABC 中,90ACB ∠=︒,AC CB =,D 为CB 延长线上一点,AE AD =,且AE AD ⊥,BE 与AC 的延长线交于点P ,若3AC PC =,则DBBC=__________.【答案】23【分析】作EM AP ⊥于M ,根据全等三角形性质得出CP =PM ,DC =AM ,设PC =PM =x ,AC =BC =3x ,AM =DC =5x ,求出BD =2x ,即可求出答案. 【详解】解:作EM AP ⊥于M ,90ACB ∠=︒,M ACD ∴∠=∠,AD AE ⊥,90DAE ∴∠=︒,90EAM AEM ∴∠+∠=︒,90EAM DAC ∠+∠=︒, DAC AEM ∴∠=∠,在ADC 和EAM △中,DAC AEMACD MAD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADC EAM AAS ∴≅△△,AC EM ∴=,AC BC =,BC EM ∴=, 90ACB ∠=︒,BCP M ∴∠=∠,在BCP 和EMP 中BCP M BPC EPM BC EM ∠=∠⎧⎪∠=∠⎨⎪=⎩()BCP EMP AAS ∴≅△△,BCP EMP ≅△△,ADC EAM ≅△△, CP PM ∴=,AMDC =,设PC PM x ==,3AC BC x ==,5AM DC x ==,2BD x ∴=,∴23DB BC =, 故答案为:23.6.如图,在四边形ABCD 中,,90,AB BC ABC CDA BE AD ︒=∠=∠=⊥于,10ABCD E S =四边形,则BE 的长为__________【分析】过点B 作BF CD ⊥ 交DC 的延长线交于点F ,证明AEB △()CFB AAS 推出BE BF =,ABEBFC S S =,可得BEDF ABCD S S 12==正方形四边形,由此即可解决问题; 【详解】解:过点B 作BF CD ⊥交DC 的延长线交于点F ,如右图所示, △BF CD ⊥,⊥BE ADBFC BEA 90∠∠∴==ABC ADC 90∠∠==ABE EBC 90∠∠∴+= ,EBC CBF 90∠∠+=ABE CBF ∠∠∴= AB CB =△AEB △()CFB AASBE BF ∴=,ABEBFC SS =BEDF ABCD S S 10∴==正方形四边形,BE BF 10∴⨯=,即2BE 10=,BE ∴=.7.如图,AC=BC ,△ACD=90°,AE 平分△BAC ,BF△AE ,交AC 的延长线于F ,且垂足为E ,则下列结论:△AD=BF ;△BF=AF ;△AB=BF ;△AC+CD=AB ;△AD=2BE .其中正确的结论有________.【答案】△、△、△ 【分析】利用ASA 证明△ADC△△BFC 判断△正确;由AF>AD ,推出BF ≠AF 判断△错误;利用角平分线的性质及垂直的定义证明△AEB△△AEF ,得到AB=AF ,BE=FE ,即可判断△错误;根据△ADC△△BFC 推出CF=CD ,由AF=CF+AC 判断△正确;由AD=BF ,BF=2BE ,判断△正确. 【详解】 △BF△AE ,△△AEF=△BCF=△ACD=90°,△△F+△FAE=90°,△F+△FBC=90°,△△FAE=△FBC,又△AC=BC,△△ADC△△BFC,△AD=BF,故△正确;△AF>AD,△BF≠AF,故△错误;△AE平分△BAC,△△BAE=△FAE,△AE△BF,△△AEB=△AEF=90°,△AE=AE,△△AEB△△AEF,△AB=AF,BE=FE,△BF≠AF,△BF≠AB,故△错误;△△ADC△△BFC,△CF=CD,△AF=CF+AC,△AB=CD+AC,故△正确;△AD=BF,BF=2BE,△AD=2BE,故△正确;故答案为:△、△、△.题组C 培优拔尖练1.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE△△CBE.现给出如下五个条件:△△A=△C;△△B=△D;△AE=CE;△BE=DE;△AD=CB.其中符合要求有( )A.2个B.3个C.4个D.5个【答案】D【分析】延长DA、BC使它们相较于点F ,首先根据AAS证明△FAB△△FCD,然后根据全等三角形的性质即可得到AF=FC,FD=FB,进而得到AD=BC,即可证明△ADE△△CBE,可判断△、△的正误;根据SAS证明△ADE△△CBE,即判断△、△的正误;连接BD,根据SSS证明△ADB△△CBD,根据全等三角形的性质得到△A=△C,结合△即可证明△.【详解】延长DA、BC使它们相较于点F△△DAB=△DCB,△AED=△BEC△△B=△D又△△F=△F,AB=CD△△FAB△△FCD△AF=FC,FD=FB△AD=BC△△ADE△△CBE,即△正确;同理即可证明△正确;△AE=CE,AB=CD△DE=BE 又△△AED=△BEC △△ADE△△CBE ,△正确; 同理即可证明△正确; 连接BD ,△AD=CB ,AB=CD ,BD=BD △△ADB△△CBD △△DAB=△BCD△△ADE△△CBE ,△正确; 故选D .2.如图,已知120AOB ∠=︒,在AOB ∠的平分线OM 上有一点C ,将一个60°角的顶点与点C 重合,它的两条边分别与直线OA ,OB 相交于点D ,E .下列结论:(1)CD CE =;(2)OE OD OC +=;(3)OE OD OC -=;(4)OC a =,OD b =,则=-OE a b ;其中正确的有( ).A .1个B .2个C .3个D .4个【答案】A 【分析】过C 点作CN OB ⊥于N 点,CF OA ⊥于F 点,根据AOB ∠的平分线OM 上有一点C ,得60AOC BOC ∠=∠=︒,CF CN =,从而得12ON OC =,12OF OC =,36060∠=︒-∠-∠-∠=︒FCN AOB CFO CNO ;当D ,E 在射线OA ,OB 上时,通过证明≌CFD CNE △△,得OE OD OC +=;当D ,E 在直线OA ,射线OB 上时,通过≌CFD CNE △△,得OE OD OC -=;当D ,E 在直线OA 、OB 上时,得OD OE OC -=,即可完成求解. 【详解】过C 点作CN OB ⊥于N 点,CF OA ⊥于F 点△OC 平分AOB ∠ 又△120AOB ∠=︒△60AOC BOC ∠=∠=︒,CF CN =, △30∠=∠=︒OCF OCN △12ON OC =,12OF OC =,36060∠=︒-∠-∠-∠=︒FCN AOB CFO CNO△当D ,E 在射线OA ,OB 上时60∠=∠=︒FCN DCE△∠=∠FCD ECN△CF CN =,90∠=∠=︒CFD CNE △≌CFD CNE △△ △CD CE =,=FD NE△+=++=++=+=OE OD ON NE OD ON DF OD ON OF OC . △如图,当D ,E 在直线OA ,射线OB 上时≌CFD CNE △△=+=+=++=+OE ON NE ON DF ON OF OD OC OD△OE OD OC -=;△如图,当D,E在直线OA、OB上时△△≌CFD CNE-=△OD OE OC综上:△△△错误;故选:A.3.如图,已知△ABC与△CDE都是等边三角形,AD与BE相交于点G,BE与AC相交于点F,AD与CE 相交于点H,则下列结论:△△ACD△△BCE;△△AFB=60°;△BF=AH;△△ECF△△DCG;△连CG,则△BGC=△DGC.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】运用等边三角形的性质和角的和差可得出条件,△△ACD△△BCE;由△ACB=60°,可得△AFB=△ACB+△FBC >60°,可知△错误;由△ACD△△BCE可得出△CBF=△CAH,以及由题意得BC=AC,但找不到其他条件是,不能证明△BCF△△ACH;在△BCF和△DCG中△CEG=△CDG,缺少其他条件,说明△错误;作CJ△BE,CK△AD,由△BCE△△ACD,可得△BGC=△DGC.【详解】解:△ △ABC与△CDE都是等边三角形△△BCA=△DCE=60°△△BCA+△ACE=△ACE+△DCE,△△BCE=△ACD,在△BCE和△ACD中BC=AC,△BCE=△ACD,CE=CD△△ACD△△BCE(SAS),△正确;△△ACB=60°,△△AFB=△ACB+△FBC>60°,可知△错误;△△ACD△△BCE△△CBF=△CAH;在△BCF和△ACH中△CBF=△CAH,BC=AC,缺少其他条件故△错误;△△ACD△△BCE△△CEG=△CDG;在△BCF和△DCG中△△CEG=△CDG,缺少其他条件,故△错误;作CJ△BE,CK△AD,△△BCE△△ACD,△CJ=CK,△GC平分△BGD,△△BGC=△DGC,故△正确;故选B.4.如图1,已知AB=AC,D为△BAC 的平分线上一点,连接BD、CD;如图2,已知AB= AC,D、E 为△BAC的平分线上两点,连接BD、CD、BE、CE;如图3,已知AB=AC,D、E、F为△BAC的平分线上三点,连接BD、CD、BE、CE、BF、CF;…,依次规律,第n个图形中全等三角形的对数是()A.n B.2n-1C.()12n n+D.3(n+1)【答案】C【分析】根据条件可得图1中△ABD△△ACD有1对三角形全等;图2中可证出△ABD△△ACD,△BDE△△CDE,△ABE△△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n个图形中全等三角形的对数.【详解】解:△AD是△BAC的平分线,△△BAD=△CAD.在△ABD与△ACD中,AB=AC,△BAD=△CAD,AD=AD,△△ABD△△ACD.△图1中有1对三角形全等;同理图2中,△ABE△△ACE,△BE=EC,△△ABD△△ACD.△BD=CD,又DE=DE,△△BDE△△CDE,△图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是(1)2n n.故选:C.5.如图,点C是线段AE上一动点(不与A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,有以下5个结论:△AD=BE;△PQ△AE;△AP=DQ;△DE=DP;△△AOB=60°.其中一定成立的结论有()个A.1B.2C.3D.4【答案】D【分析】△由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,△ACB=△DCE=60°,从而证出△ACD△△BCE,可推知AD=BE;△由△ACD△△BCE得△CBE=△DAC,加之△ACB=△DCE=60°,AC=BC,得到△ACP△△BCQ(ASA),所以AP=BQ;故△正确;△根据△△CQB△△CPA(ASA),再根据△PCQ=60°推出△PCQ为等边三角形,又由△PQC=△DCE,根据内错角相等,两直线平行,可知△正确;△根据△DQE=△ECQ+△CEQ=60°+△CEQ,△CDE=60°,可知△DQE≠△CDE,可知△错误;△利用等边三角形的性质,BC△DE,再根据平行线的性质得到△CBE=△DEO,于是△AOB=△DAC+△BEC=△BEC+△DEO=△DEC=60°,可知△正确.【详解】△△等边△ABC和等边△DCE,△BC=AC,DE=DC=CE,△DEC=△BCA=△DCE=60△,△△ACD=△BCE,在△ACD和△BCE中,AC=BC,△ACD=△BCE,DC=CE,△△ACD△△BCE(SAS),△AD=BE;故△正确;△△△ACD△△BCE(已证),△△CAD=△CBE,△△ACB=△ECD=60°(已证),△△BCQ=180°-60°×2=60°,△△ACB=△BCQ=60°,在△ACP与△BCQ中,△CAD=△CBE,AC=BC,△ACB=△BCQ=60°,△△ACP△△BCQ(ASA),△AP=BQ;故△正确;△△△ACP△△BCQ,△PC=QC,△△PCQ是等边三角形,△△CPQ=60△,△△ACB=△CPQ,△PQ△AE;故△正确;△△AD=BE,AP=BQ,△AD−AP=BE−BQ,即DP=QE,△DQE=△ECQ+△CEQ=60°+△CEQ,△CDE=60°,△△DQE≠△CDE,△DE≠QE ,则DP≠DE ,故△错误;△△△ACB=△DCE=60°,△△BCD=60°,△等边△DCE ,△EDC=60°=△BCD ,△BC△DE ,△△CBE=△DEO ,△△AOB=△DAC+△BEC=△BEC+△DEO=△DEC=60°.故△正确;综上所述,正确的结论有:△△△△,错误的结论只有△,故选D .6.如图,D 为BAC ∠的外角平分线上一点并且满足BD CD =,过D 作DE AC ⊥于E ,DF AB ⊥交BA 的延长线于F ,则下列结论:△△△CDE BDF ≅,△CE AB AE =+,△BDC BAC ∠=∠,△DAF CBD ∠=∠,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】 根据角平分线上的点到角的两边距离相等可得DE =DF ,再利用“HL”可证明Rt△CDE 和Rt△BDF 全等,根据全等三角形对应边相等可得CE =AF ,利用“HL”证明Rt△ADE 和Rt△ADF 全等,根据全等三角形对应边相等可得AE =AF ,然后求出CE =AB +AE ;根据全等三角形对应角相等可得△DBF =△DCE ,根据三角形内角和是180°和△AOB=△COD (设AC 交BD 于点O ),得到△BDC =△BAC ;根据三角形内角和是180°易得△DAE =△CBD ,再根据角平分线可得△DAE =△DAF ,然后求出△DAF =△CBD .【详解】△AD 平分△CAF ,DE△AC ,DF△AB△DE =DF在Rt△CDE 和Rt△BDF 中BD CD DE DF ⎧⎨⎩== △Rt△CDE△Rt△BDF (HL ),故△正确;△CE =AF在Rt△ADE 和Rt△ADF 中AD AD DE DF ==⎧⎨⎩△Rt△ADE△Rt△ADF (HL )△AE =AF△CE =AB +AF =AB +AE ,故△正确;△Rt△CDE△Rt△BDF△△DBF =△DCE△△AOB=△COD (设AC 交BD 于点O )△△BDC =△BAC ,故△正确;△△BAC+△ABC+△ACB=180°△BDC+△DBC+△DCB=180°△DBF =△DCE△△DAE =△CBD ,△△DAE =△DAF ,△△DAF =△CBD ,故△正确;综上所述,正确的结论有△△△△.故选D7.如图,在△ABC 中,△BAC 和△ABC 的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O作OD△BC于D,下列四个结论:△△AOB=90°+12△C;△当△C=60°时,AF+BE=AB;△若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是()A.△△B.△△C.△△△D.△△【答案】C【分析】由角平分线的定义结合三角形的内角和的可求解△AOB与△C的关系,进而判定△;在AB上取一点H,使BH=BE,证得△HBO△△EBO,得到△BOH=△BOE=60°,再证得△HBO△△EBO,得到AF=AH,进而判定△正确;作OH△AC于H,OM△AB于M,根据三角形的面积可证得△正确.【详解】解:△△BAC和△ABC的平分线相交于点O,△△OBA=12△CBA,△OAB=12△CAB,△△AOB=180°﹣△OBA﹣△OAB=180°﹣12△CBA﹣12△CAB=180°﹣12(180°﹣△C)=90°+12△C,△正确;△△C=60°,△△BAC+△ABC=120°,△AE,BF分别是△BAC与ABC的平分线,△△OAB+△OBA=12(△BAC+△ABC)=60°,△△AOB=120°,△△AOF=60°,△△BOE=60°,如图,在AB上取一点H,使BH=BE,△BF是△ABC的角平分线,△△HBO=△EBO,在△HBO 和△EBO 中,BH BE HBO EBO BO BO =⎧⎪∠=∠⎨⎪=⎩,△△HBO △△EBO (SAS ),△△BOH =△BOE =60°,△△AOH =180°﹣60°﹣60°=60°,△△AOH =△AOF ,在△HBO 和△EBO 中,HAO FAO AO AO AOH AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△HBO △△EBO (ASA ),△AF =AH ,△AB =BH +AH =BE +AF ,故△正确; 作OH △AC 于H ,OM △AB 于M ,△△BAC 和△ABC 的平分线相交于点O , △点O 在△C 的平分线上,△OH =OM =OD =a ,△AB +AC +BC =2b△S △ABC =12×AB ×OM +12×AC ×OH +12×BC ×OD =12(AB +AC +BC )•a =ab ,△正确. 故选:C .。

(最新)苏科版八年级数学上册《探索三角形全等的条件 (7)》教案

(最新)苏科版八年级数学上册《探索三角形全等的条件 (7)》教案

图(2)图(1)NOM图(3)MDCBOA图(5)l《探索三角形全等的条件(7)》教案班级:姓名:学号:【学习目标】1.会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯.2.会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法.3.能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.【学习重难点】会“作已知角的角平分线”和“过一点作已知直线的垂线”.【学习过程】(一)情境创设工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.请同学们说明这样画角平分线的道理?(二)探索活动一1.说请按序..说出木工师傅的“操作”过程.2.作与写用直尺和圆规在图(2)中按序..将木工师傅的“操作”过程作出来,并写出作法.3.证请证明你的作法是正确的.4.用用直尺和圆规完成以下作图:(1)在图(3)中把∠MON四等分.(2)在图(4)中作出平角∠AOB的平分线.(三)探索活动二1.观察思考.在图(2)作图的基础上,作过C、D的直线l(如图(5)),观察图中射线OM与直线l 的位置关系,并说明理由.图(4)B A P b a 图(8)图(9) l P 图(10) A O B2.问题变式.你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB 外一点P 作AB 的垂线PQ ).步骤1 以点P 为圆心,适当的长为半径作弧,使它与AB 交于C 、D .步骤2 分别以点C 、D 为圆心,大于12CD 的长为半径作弧,两弧交于点Q . 步骤3 作直线PQ .∴直线PQ 就是经过直线AB 外一点P 的AB 的垂线经过一点可用直尺和与圆规作一条直线与已知直线垂直. 如图(6)(四)知识运用用直尺和圆规作一个直角三角形,使它的两条直角边分别等于a 、b (如图(8)).(五)拓展延伸 如图(9),已知A 、B 是l 上的两点,P 是l 外的一点.(1)按照下面画法作图(保留作图痕迹):①以A 为圆心,AP 为半径画弧;②以B 为圆心,BP 为半径画弧; ③设两弧交于点Q (Q 与P 分别在l 的两旁); ④连结PQ .(2)求证:PQ ⊥l .【达标检测】1.已知∠AOB (如图(10)),求作:(1)∠AOB 的平分线OC .(2)作射线OD ⊥OC (两种作法).(3)在OC 上取一点P ,作出点P 到∠AOB 两边的垂线段,并比较这两条垂线段的大小关系(要求保留作图痕迹,不写作法和证明过程).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小组ቤተ መጻሕፍቲ ባይዱ流一下
〖反馈练习〗
如图,已知M在线段BD上,∠1=∠2,∠3=∠4,且AB=BC
求证:BM平分∠ABC
〖收获体会〗
你在这节课学到了哪些知识?
〖板书设计〗
作业
1、补充习题
2、伴你学
教后
笔记
八年级上学期数学教案
主备人:张东林
备课
时间
13.9.5
上课
时间
13.9.13
教学
课题
1.3探索三角形全等的条件(7)
教时
计划
7/8
教学
目标
会用直尺和圆规作角的平分线和垂线,并能说出其作法正确的依据;能用平移、旋转、翻折等图形运动变化的思想来认识图形,提高识图能力,发展空间观念。
重点
难点
重点:用直尺和圆规作角的平分线和垂线,并能说出其作法正确的依据
1、如图,PC=PD,QC=QD,PQ、CD相交于点E
(1)根据以上条件,你能得出哪些结论呢?
(2)PQ⊥CD吗?请写出说理过程。
2、你能总结出用直尺和圆规过已知直线外一点作这条直线的垂线的方法吗?用你的方法在下图中作出过点P且与直线AB垂直的直线。
变式:你能说明性质:“线段垂直平分线上任一点,到线段二端点的距离相等”吗?
用直尺和圆规作∠AOB的平分线
变式:
你能说明角平分线的性质:“角平分线上一点到角的两边距离相等”吗?
小组交流一下
巩固练习:1、课本第26页练习1
2、如图,点 在 的平分线上,若使 ,则需添加的一个条件是(只写一个即可,不添加辅助线).
活动二:过已知直线外一点作这条直线的垂线
自学课本第26页内容,完成下列问题:
难点:通过作图发展学生的空间观念
导学过程
个性设计
(个人复备)
〖问题导学〗
活动一:作已知角的角平分线
自学课本第25页内容,完成下列问题:
1、你学过哪些与角平分线相关的知识?
2、课本的“思考”内容中工人师傅这样画角平分线的理由是什么?写出你的说明过程。
3、从木工师傅的画法中,你能找到并总结出用直尺和圆规作角平分线的方法吗?
相关文档
最新文档