概率论第一章第四节

合集下载

1-4 等可能概型(古典概型)

1-4 等可能概型(古典概型)
n! 一共有 n !n ! n !种分法。(n1+n2+„+nk = n ) 1 2 k
n
1
证:从n个不同的元素中取出n1个元素有 n n !( n n )! 种取法;

1 1
n!
(n n1 )! 再从剩下的n-n1个元素中取出n2个元素有 n !(n n n )! 2 1 2
组合分析的两条基本原理
火车2次 火车
成都
汽车3次
重庆
成都
汽车
重庆
火车 飞机 轮船
武汉
共有23=6种方法 共有2+3=5种方法 1.加法原理 若完成一件事有两种方式,第一种方式有n1种方法, 第二种方式有n2种方法,无论通过哪种方法都可以完成这件事,
则完成这件事总共有n1+n2种方法。 2.乘法原理 若完成一件事有两个步骤,第一个步骤有n1种方法,
种分法。
例题7
例7 将15名新生随机地平均分配到三个班级中去,这15名新生中
种取法;„
从最后剩下的n-(n1+n2+„+nk-1)个元素中取出nk个元素有
[n (n1 n2 nk 1 )]! 种取法。 nk ![n (n1 n2 nk )]!
按乘法原理,n个不同的元素,分成k组,每组分别有n1,n2,„,nk 个元素,应该有
[n (n1 n2 nk 1 )]! n! (n n1 )! n! n1!(n n1 )! n2!(n n1 n2 )! nk !0! n1!n2! nk !
P ( A) kA 16 4 , n 36 9
kB 4 1 . n 36 9 5 8 P( A B) P( A) P( B) , P(C ) P( B) 1 P( B) 9 9 P( B)

1-4概率的公理化定义及性质

1-4概率的公理化定义及性质

因而
P(B A)

P(B)

P( AB)

1 2


1 8

3. 8
A AB B S
三、小结
概率的主要性质 (1) 0 P(A) 1, P(S) 1, P() 0; (2) P( A) 1 P( A); (3) P( A B) P( A) P(B) P( AB); (4) 设 A, B 为两个事件,且 A B,则 P( A) P(B), P( A B) P( A) P(B).
P( A1 A3 ) P( A1 A2 A3 ).
例1 设事件 A, B 的概率分别为1 和 1 , 求在下列 32
三种情况下 P(B A) 的值.
(1) A与B互斥; (2) A B; (3) P( AB) 1 . 8
解 (1)由图示得 P(B A) P(B),
故 P(B A) P(B) 1 .
但反过来,如果P(A)=0,未必有A=Φ 例如:
一个质地均匀的陀螺的圆周上均匀地刻有[0 , 5) 上诸数字,在桌面上旋转它,求当它停下来时,圆周 与桌面接触处的刻度为2的概率等于0,但该事件有可 能发生。
(2) 若A1, A2, , An是两两互不相容的事件,则有 P( A1 A2 An ) P( A1) P( A2 ) P( An ).
所以 1 P(S) P( A A)
P( A) P( A).
P( A) 1 P( A).
(6) (加法公式) 对于任意两事件 A, B 有 P( A B) P( A) P(B) P( AB).
证明 由图可得
A B A (B AB), 且 A (B AB) ,

高等概率论

高等概率论

高等概率论第一章:测度与积分第一节:集族与测度(Ω,Φ,μ)---------测度空间①Ω---------------非空集合-------------研究对象全体②Φ----------------σ代数(域)-------由Ω的一些子集组成σ代数对集合的一切有限次或可数次运算封闭Φ{,}φ=Ω-------------平凡的σ代数③μ:Φ+→R ([0,1])集函数(是Ω的元素的一种测度或度量)例:Ω=[0,1].(a,b]?Ω,((,])a b b a μ- ,I 是Ω的子集,I 为区间,()I μ=I 的长度,Φ=B ([0,1])=()σε--------包含ε的最小σ代数,[0,1]ε=中的一切开集测度的唯一扩张定理,{:()}n x x ωξω?∈≤∈R Φ 称ξ是可测函数({})a b μξξ<≤---的分布①..()lim ()n x a e μξωμ→∞几乎处处收敛依测度收敛依分布收敛(弱收敛)②ξ是一维可测函数,积分ξωμωΩ()d ()-------数学期望积分的收敛性---------Lebesgue 控制收敛定理lim ()?lim ()n n x x d d ξωμξωμ→∞→∞ΩΩ=??Fatou 引理,Levy 引理记号、述语:大写英文字母表示Ω的子集(事件)花写英文字母表示Ω的子集组成的集合类(集类,集族)AαBβXχ?δEεΦφΓγHηIι??KκΛλMμNνOο∏πΘθPρ∑σTτYυ??ΩωΞξψψZζ 某集类对某种运算封闭:如A 对可数并封闭指:对?A1,A2,…A n ∈A ,则1i ∞=A i ∈A第二节:集族与测度1. 集合序列的极限设1,2,...,,...,A A An ?Ω111limsup {:}{,,...,}x K k k K k n kAn n An X A A Anωω→∞∞+=∞∞==∈Ω?∈== 可数个不同的,使至少一个发生111lim inf {:}{,,...,}x k k k k n kAn n An A A Anωω→∞∞+=∞∞==∈Ω∈== 除有限个以外,都发生关系:lim inf lim sup n n An An →∞→∞如果lim inf lim sup n n An An →∞→∞=,称{}An 的极限存在,记为lim x An →∞特例:单调上升集合列:121,lim n n A A An An ∞→∞=?=单调下降集合列:121,lim n n A A An An ∞→∞=?=例:A,B 是Ω的两个子集,221,,1,2,n n A A A B n -=== ,则lim sup ,lim inf n n An A B An A B →∞→∞==11((1),1(1))nn An n n=-+-,则lim sup [0,1],lim inf (0,1)n n An An →∞→∞==11(,1)(0,1)2211(,1)(0,1)22n n n n An Bn =-↑=-+↓2几种常用集类的定义:①A 称为一个π类:如果A 对有限交封闭②?称为一个λ类:如果:(a).ω∈ ?;(b). ?对真差封闭:若,A B ∈?,且A B ?,则B A -∈? (c )?对单调上升(下降)集合列的极限封闭③环A :如果A 对有限并、差运算封闭(交:()A B A A B =-- )④代数Φ:如果Φ是环,且Ω∈Φ0(代数对一切有限次运算封闭)⑤σ环A :如果A 对可数并、差运算封闭(?可数交封闭,极限运算封闭)⑥σ代数(域)Φ:如果Φ是σ环,且Ω∈Φ(σ代数对一切可数次集合运算封闭)⑦单调族M :如果M 对单调上升(下降)列的极限封闭,即:如果An ∈M ,且An ↑,则1n An ∞=∈ M如果An ∈M ,且An ↓,则1n An ∞=∈ M代数、且又是单调族σ?代数π类、且又是λ类σ?代数A 是任意集类,分别称λ()A ,σ()A ,M (A )是由A 生成的最小λ类,最小σ代数,最小单调类。

概率论与数理统计第一章

概率论与数理统计第一章

具有以上两个特点的随机试验称为等可能概型。 由于它是概率论发展初期的主要研究对象,所以 也称之为古典概型.
设试验E是古典概型,由于基本事件两两互不相容 n n 因此 1 = P( ) = P( {wi }) = P{wi } = nP{w i }
1 从而 P{w i } = n
i =1
i =1
则事件 A表示“某公司今年年底结算将亏损”.
AAຫໍສະໝຸດ 按差事件和对立事件的定义,显然有A B = AB
A
B

A
B

运算规律
1.交换律 A B = B A A B = B A 2.结合律 A ( B C ) = ( A B) C
A ( B C ) = ( A B) C
A B = 事件A和事件B不能同时发生
A
B

对立事件
A 称为事件A的对立事件或逆事件,记做 A
即A = A
事件 A发生 事件A不发生
A A= A A=
故在每次试验中事件A , A 中必有一个且仅有一个发生
A也是 A 的对立事件,所以称事件A与A互逆
若事件A表示“某公司今年年底结算将不亏损”
抛硬币实验
试验者
出现正面的 频率
n
2048 4040 12000 24000 80640
出现正面的 试验次 次数 数 n
nH
1061 2048 6019 12012 39699
f n (H ) =
A
n
德摩根 蒲丰 K.皮尔逊 K.皮尔逊 罗曼诺夫斯基
0.5181 0.5069 0.5016 0.5005 0.4923
( i = 1, 2, , n )

概率论第一章概率论的基本概念第4节独立性

概率论第一章概率论的基本概念第4节独立性

第一章 概率论的基本概念
三个事件的独立性
§4 独立性
设A、B、C是三个随机事件,如果
PAB PAPB PBC PBPC PAC PAPC PABC PAPBPC
则称A、B、C是相互独立的随机事件.
返回主目16 录
第一章 概率论的基本概念
注意
§4 独立性
在三个事件独立性的定义中,四个等式是缺一不
p2 p2 p4 2 p2 p4.
返回主目26 录
练习一下
• 甲、乙、丙三人在同一时间分别破译某个密码, 他们译出的概率分别为1/3、1/4、1/5,求密码 能译出的概率.
解:设B={密码能够被破译}
Ai 第i个人破译密码 ,i 1,2,3.
则:
PB PA1 A2 A3 1 P A1A2 A3 1 PA1PA2 PA3
234 3
1
345 5
27
思考
• 甲、乙两人进行乒乓球比赛,每局甲胜的概 率为 p, p 1/ 2.问对甲而言,采用三局二胜制 有利,还是采用五局三胜制有利. 设各局胜负 相对独立.
28
返回主目5 录
第一章 概率论的基本概念
证明: 由于事件 A 与 B 相互独立,故 §4 独立性
PAB PAPB
因此,
PB
A
PAB PA
PAPB PA
PB
2)必然事件S与任意随机事件A相互独立; 不可能事件Φ与任意随机事件A相互独立.
证明:由 PSA PA 1 PA PSPA
可知必然事件S 与任意事件 A 相互独立;
C={ 取出的球涂有黑色 } 则:
PA PB PC 1
2
PAB PBC PAC 1
4
返回主目18 录

《概率论与数理统计》1.4条件概率

《概率论与数理统计》1.4条件概率

P( A B) P( AB) 1 个基本事件 P(B) 15
掷两颗骰子,观察出现的点数,设 x1 , x2分别表示第
一颗、第二颗骰子的点数,且设:
A ( x1, x2 ) x1 x2 10 B ( x1, x2 ) x1 x2
二. 乘法原理
由条件概率的定义:P( A
|
B)
P( AB) P(B)
若已知 P(B),P(A|B)时,可以反求P(AB).即有:
定理1:设 P(B)> 0 或 P(A)> 0,则:
P( AB) P(B)P( A B) P( A)P(B A)
注 乘法原理可推广到多个事件的积事件的情形:
(1) P(ABC) P( A) P(B A) P(C AB)
其中: P(AB) > 0
方法1: 在样本空间S中计算P(B),P(AB)
然后依 P ( A B ) 公式计算
AB { (6, 4) } P( AB) 1 ,
又 : P( A) 3 , 36
P(B) 15 36
从而: P(B A) P( AB) 1 P( A) 3
36Βιβλιοθήκη 样本空间S有36 个方基法本2: 事在件缩;减 A的中样有本3空个间基本S A 事和件S;B B中中计有算15
求: 该地区由疑似病人转为非典病人的概率. 解: 设 事件A: {非典病人},事件B: {疑似病人}
(1) 若求 P(A), 则此时 S {1, 2, ,10000}
显然:P( A) 10 0.1% (千分之一) 10000
这是没有附加条件的概率 (无条件概率)
(2)该地区由疑似病人转为非典病人的概率为:p
P( AB) ,(P( A) 0)
P( A)

概率论与数理统计总结

概率论与数理统计总结

第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。

3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。

5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。

(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。

(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。

(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。

用交并补可以表示为。

(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。

8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。

具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。

概率论第一章1-4

概率论第一章1-4

解 设 x, y 分别为 甲、乙两人到 达的时刻, 则有
1 x 2,
1 y 2.
y 2
1 : 45


1 : 30
1 : 15
1
o




1 1 : 15 1 : 30 1 : 45
2
x
见车就乘 的概率为
p
阴影部分面积 正方形面积

4 (1 4 ) (2 1)
4 种 2
2个
2 种 2
2个
因此第1、2个杯子中各有两个球的概率为
4 2 p 2 2 3
4

2 27
.
(2) 每个杯子只能放一个球
问题2: 把4个球放到10个杯子中去,每个杯子只 能
放一个球, 求第1 至第4个杯子各放一个球的概率. 解 第1至第4个杯子各放一个球的概率为
p 1 365 364 ( 365 64 1 ) 365
64
0 . 997 .
说明
随机选取 率为 n ( 365 ) 个人 , 他们的生日各不相同的 概
p
365 364 ( 365 n 1 ) 365
n
.
而 n 个人中至少有两个人生
x 表示针投到平面上时 M 到最近的一条平行 , 表示针与该平行直线的
a
,
M
针的中点 直线的距离
x
夹角 . .
那么针落在平面上的位
置可由 ( x , ) 完全确定
投针试验的所有可能结 矩形区域
果与
a
M
S {( x , ) 0 x
中的所有点一一对应

概率论与数理统计第一章

概率论与数理统计第一章
P(ABC)=1/4.
显然 P(AB)=P(A)P(B),P(AC)=P(A)P(C),
P(BC)=P(B)P(C),
即A,B,C两两相互独立,但是 P(ABC)=P(A)P(B)P(C)
定义3:对n个事件 A1,A 2,,A n ,若下面 的等式同时成立
P(Ai Aj ) P(Ai )P(Aj ),1 i j n; P(Ai Aj Ak ) P(Ai )P(Aj )P( Ak ),1 i j k n;
解:A表示“随机选一人是色盲患者”
B1表示“随机选一人是男性”
B2表示“随机选一人是男性”
2
P( A) P(Bi )P( A | Bi )
i1
例1 一保险公司据以往的资料知 道来投保的客户可分为两类,一类 是容易出事故的,另一类则不是。 前一类在一年中出一次事故的概率 为0.1,后一类则为0.05。一新来的 投保客户属于易出事故一类的概率 为0.2。求一新来投保客户在第一年 内出一次事故的概率。
信号为好,为什么?
例6 某电子设备制造厂所用的晶 体管是由三家元件制造厂提供的, 根据已往的纪录有以下数据,设这 三家工厂的产品在仓库中是均匀混 合的,且无区别的标志。
(1)在仓库中随机地取一只晶体管, 求它是次品的概率。
(2)在仓库中随机地取一只晶体管, 若已知取到的是次品,试分析此次 品最可能出自哪个制造厂?
立与A,B互不相容不能同时成立。
例2 甲、乙两人独立地对同一目标射击 一次,其命中率分别是0.5和0.4。现已 知目标被命中,则它是乙射中的概率是 多少?
例3 设0<P(A)<1,且P(B|A)=P(B|A ), 试证:A、B相互独立.
二、多个事件相互独立性

概率论 第一章 4-6节

概率论 第一章 4-6节

A
独立
B
A的对立事件
B的对立事件
定义 设A,B,C是三个事件, 如果满足等式
则称事件A,B,C相互独立.
一般, 设A1,A2,...,An(n2)个事件, 如果对于其中任意2个, 任意3个, ..., 任意n个事件的积事件的概率, 都 等于各事件概率之积, 则称事件 A1,A2,...,An相互独立.
20
“条件概率”和“概率” 条件概率P( |A)符合概率定义中的三个条件, 非负性: 对任一事件B, 有P(B|A)0; 规范性: 对于样本空间S, 有P(S|A)=1; 可列可加性: 设B1,B2,...是两两互斥事件, P B A P B A i i i 1 i 1
例5 袋中有a只白球, b只红球, k个人依次 在袋中取一只球, (1)作放回抽样; (2)作不 放回抽样, 求第i (i=1,2,...,k)个人取到白球 (记为事件Bi )的概率(k a+b).
(2) 不放回抽样时,
a 解 (1) 放回抽样的情况, 显然有 P( B) a b
k 1 # Bi a Aa a b 1 P( Bi ) k #S Aa b ab
定理 设试验E的样本空间为S, A为E的 事件, B1,B2,...,Bn为S的一个划分, 且 P(Bi)>0(i=1,2,...,n), 则
P( A) P( A | B1) P( B1) P( A | Bn ) P( Bn ) P( A | B j ) P( B j )
j 1 n
k P( A) P({ei }) n j 1
k
j
A包含的基本事件数 # A (4.1) S中基本事件的总数 # S

一概率论的基本概念

一概率论的基本概念

2)将一枚硬币抛掷二次,观察出现正面的次数。
3)在一批电视中任抽取一次,测试它的寿命。
注: 样本空间是一个有限或无限的点集。 样本空间的元素是由试验的目的所确定。
随机事件(简称事件):
随机试验E的样本空间 的子集称为E的随机事件。
通常用大写字母A,B,…表示。 当且仅当这一子集中的一个样本点出现时,称这一
20 同色球无区别。 k
例4 两封信任意地向标号为1,2,3,4的四个邮筒投寄, 求 1)第3个邮筒恰好投入1封信的概率; 2)有两个邮筒各有一封信的概率。 解 1)设事件A表示“第三个邮筒只投入1封信” 两封信任意投入4个邮筒,共有 42 种 而事件A的不同投法有
2)设事件B表示“有两个邮筒各有1封信”
P(A )
r P365 r
例6 设有n个球每个球都以同样的概率 格子(N≥ n)的每个格子中,试求 1)某指定的n个格子中各有一球的概率。
落到N个
2)任何n个格子中各有1球的概率。 解 设 A ={某指定的n个格子中各有一球}
B ={任何n个格子中各有一球} 1 2 3 n
N
例7:从0,1,2, …,9共10个数字中随机地有放回地接连取4 个数字,并按其出现的先后排成一行.试求下列事件的概 率
例(5) 有r 个人,设每个人的生日是365天的 任何一天是等可能的,试求事件“至少有两 人同生日”的概率.
解:令 A={至少有两人同生日} 则 A ={ r 个人的生日都不同} 为求P(A), 先求P( A )
(365) r P365 P(A ) 1 P(A ) 1 r (365)
于是 P ( A) 1 P ( A ) 1 1 1 2! 3! 3
1 1 n1 1 1 (1 ( 1) ) 2! 3! n! 1 1 n 1 ( 1) 2! 3! n!

概率论知识点总结

概率论知识点总结

概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。

随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。

必然事件:在试验中必然出现的事情,记为Ω。

样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。

基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。

事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。

相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。

事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。

记为 A∪B 。

事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。

事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。

用交并补可以表示为B A BA =-。

互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。

互斥时B A ⋃可记为A +B 。

对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。

对立事件的性质:Ω=⋃Φ=⋂B A B A ,。

事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂ 第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时 概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -= (4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB) 第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可. 第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B). 乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则 第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立. 三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。

概率论

概率论

1第一章 随机事件及其概率第一节 随机事件一. 必然现象与随机现象在自然界里,在生产实践和科学实验中,人们观察到的现象大体可归结为两种类型。

一类是可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或是根据它过去的状态,在相同条件下完全可以预言将来的发展。

我们把这一类型现象称之为确定性现象或必然现象。

如在一个大气压下,水在100度时会沸腾等。

一类是事前不可预言的,即在相同条件下重复进行试验,每次结果未必相同;或是知道它过去状况,在相同条件下,未来的发展事前却不能完全肯定。

这一类型的现象我们称之为偶然性现象或随机现象。

如掷一个质地均匀的硬币,结果可能是正面向上,或是背面向上。

二. 样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为ω;它们的全体称为样本空间, 记为Ω.事件 是指某一可观察特征的随机试验的结果。

基本事件是相对观察目的而言不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.如掷一枚骰子,向上的一面会出现1点,2点,3点,4点,5点,6点。

则样本点有6个。

若记,16i i i ω=≤≤,i ω即为样本点。

样本空间为123456{,,,,,}ωωωωωωΩ=。

记{}i i A ω=,i A 为一个基本事件,把“出现偶数点”这样一个事件记为B ,则246{,,}B ωωω=。

B 为一个复合事件。

三. 事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,第二节 随机事件的概率一. 概率的定义定义1 设E 是随机试验, Ω是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件:1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:()1P Ω=;3. 可列可加性:设 ,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i AP A P2则称)(A P 为事件A 的概率.二. 概率的性质性质1:()0P ∅=。

概率论.pdf

概率论.pdf

考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@参考教材概率论与数理统计第四版(浙江大学主编)重要定理、性质、公式、结论经典例题、重要例题及不需要做的题目第一章概率论的基本概念(考小题)第一节随机试验(了解)第二节样本空间,随机事件(了解)第三节频率与概率(频率可以不用看,了解)第四节等可能概率(古典概论)(难点非重点,做一些基本题即可)第五节条件概率(重要,考小题为主,考大题有时会用到)第六节独立性(重要,考小题为主,大题经常会用到)第二章随机变量及其分布(至少考小题,考大题一定会用到)第一节随机变量(了解)第二节离散型随机变量及其分布律(重要,经常考)第三节随机变量的分布函数(重要,每年必考)第四节连续型随机变量及其概率密度(重要,每年必考)第五节随机变量的函数分布(重要,大题的命题点)第三章多维随机变量及其分布(考大题可能性极大)第一节二维随机变量(了解)第二节边缘分布(理解)第三节条件分布(理解)第四节概率独立的随机变量(重要,基本每年必考)第五节两个随机变量函数的分布(重要,大题的经典命题点)第四章随机变量的数字特征(重要)第一节数学期望(重要,每年必考)第二节方差(重要,每年必考)第三节协方差与相关系数(重要,经常考)第四节矩,协方差矩阵(矩,了解,协方差矩阵不用看).第五章大数定律及中心极限定理(了解)第一节大数定律(了解,关注定律的前提条件与结论)第二节中心极限定理(了解,关注定理的前提条件与结论)考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@第六章样本及抽样分布(考小题为主)第一随机样本(了解,其中有重要概念,简单随机样本)第二直方图和箱线图(重要,考小题)第三抽样分布(重要,考小题)第七章参数估计(重要,考大题经典章节)第一节点估计(极其重要,矩估计:重点非难点,最大似然估计(重点且难点))第二节基于截尾样本的最大似然估计(不用看)第三节估计量的评选标准(数一重要,数三不用看)第四区间估计(数一理解,考的比较少)第五正态总体均值与方差的区间估计(数一理解,考的比较少)第六(0-1)分布参数的区间估计(不用看)第七单侧置信区间(理解,一般不考)(第四-第七,只有数一考,数三均不用看)第八章假设检验(理解,一般不考,只有数一有要求,数三不考)第一假设检验(理解)第二正态总体均值的假设检验(理解)第三正态总体方差的假设检验(理解)第四,第五,第六,第七,第八(均不用看).考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@考研数学概率统计的重点难点必考点及重要例题和习题不用做的例题和习题第一章概率论的基本概念P3最后4行的小写字体不用看P5例3不用做(一)频率不用看P6-7 例 1 与例 2 均不用做,P7 概率重点看P9 等可能概率一般都不单独考,考大题经常会用到,P13 例 6 不用做,P14 例 8 不用做 P14 条件概率重点看,P15 例 2 不用做,P16 例 3 不用做,P17 例 4 重点做P17(三)全概率公式和贝叶斯公式为难点P19例5不用做,P20独立性为考研数学的绝对重点,P22例2与例3均不用做P23例4重点做P24-29 不用做的习题是 1、5、6、10、12、15、16、18、19、20、21、23、25、26、29、32、34、35、38、39、40第二章随机变量及其分布P30 例 1 不用看P37 泊松定理只需要记住结论,证明可以不用看P38 随机变量的分布函数为考研必考概念P42 连续性随机变量概率密度为考研必考点P50 随机变量的函数的分布是考大题的重要命题点P53 例 5 不用做P55-59 不用做的习题 1、5、6、7、9、10、11、13、15、16、19、22、27、28、30、31、38、39第三章多位随机变量及其分布P63 性质 4 的解释不用看P65 例 1 不用做,P66 例 3 重点做一下(提升计算能力)P68 例 1 不用做,P72 相互独立的随机变量为重点章节P76 两个随机变量的函数的分布为考大题的重要备考章节P78 例 3 不用做,P81 例 5 不用做P84-89 不用做的习题是 3、6、7、10、11、12、13、28、31第四章随机变量的数字特征P91 例 1 不用做,P92 例 3 与例 4 不用做,P93 例 5 不用做P95 中间的证明不用看,P96 例 8 与例 10 不用做P97 例 11 不用做,P100 例 13 不用做,P105 不用做P107 XY的两条重要性质的推导及含义不用看考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@P108 只需要看前四行即只需要记住定理 4 证明可以不用看P109 例 2 重点做(提升计算能力)P110 矩为一般考点,协方差矩阵不用看P113-118 不用做的习题是 1.4.5.12.13.15.16.18.19.22.23.24.35.36.37.38第五章大数定律及中心极限定理(难点非重点)P124 例 1 不用做P126-127 不用做的习题是 2、4、5、10、11、13第六章样本及抽样分布(一般考点考小题)P130 第四行简单随机样本为重要概念P130 第二节直方图和箱线图不用看P135 第三节抽样分布(考小题),P136 统计量定义及几个常见统计量要重点看而且要牢记其表达式P137 经验分布函数只有数三同学稍微了解P138-141 数理统计所有的三大分布的典型模式要牢记但三种分布的概率密度表达式可以不用记P145-147 定理 2 的证明与推广均不用看P147-148 不用做的习题是 1、5、6、10、11第七章参数估计(数一数三的绝对的重点和难点)P149 点估计数一数三的绝对重点矩估计重点非难点,最大似然估计重点且难点P163-155 例 4 例 5 例 6 重点做P156-158 第二节基于截尾样本的最大似然估计不用看P158 估计量的评选标准数一重点看,数三大纲上虽然没有但建议数三看一下最好P161-168 区间估计,正态总体均值与方差的区间估计,只有数一看,为一般考点P168 0-1 分布参数的区间估计数一数三均不用看P169 单侧置信区间,只有数一看,为一般考点P193-177 数三不用做的习题为 4(3)、6、7、8、9、10、11-27 均不用做数一不用做的习题为4(3)、6、7、8、9、15、17、20、21、22、23、26、27第八章假设检验(数一特有的考点,难点非重点)数一只需要看前四节P178-193从第五节以后均不需要看P218-223 习题只需要做 1、2、3、4 其余的题目可以不用做考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@。

概率论与数理统计-基于R 第一章 第四节 事件的独立性

概率论与数理统计-基于R 第一章 第四节 事件的独立性

2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
定理1.3:若两事件A、B独立,则
A与B, A与B, A与B也相互独立.
证明:由已知A P(A-B) =P(A-AB)= P(A)- P(AB)
=P(A)- P(A)P (B) =P(A)[1- P (B)] =P(A) P (B).
(1)此密码能被译出的概率为
P( A B) P( A) P(B) P( AB) 0.55.
(2)密码恰好被一个人译出的概率为
P(AB AB) P(AB) P(AB)
P( A)P(B) P( A)P(B) 0.45.
二、多个事件的独立性
定义1.9对于三个事件A、B、C,若
课堂练习
1. 设A、B为互斥事件,且P(A)>0,P(B)>0,
下面四个结论中,正确的是:
1. P(B|A)>0 3. P(A|B)=0
2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
2. 设A、B为独立事件,且P(A)>0,P(B)>0,
下面四个结论中,正确的是:
1. P(B|A)>0 3. P(A|B)=0
n
n
P( A) 1 P Ak k1
1
k 1
P ( Ak )
1 (0.99)n
(2) P( A) 0.5 0.99n 0.5
n lg 2 2 lg 99
684.16.
例:有4个独立元件构成的系统(如图),设每个元 件能正常运行的概率为p,求系统正常运行的
由此可见两事件相互独立,但两事件不互斥.
14
若 P( A) 1 , P(B) 1

概率论与数理统计第一章4

概率论与数理统计第一章4

旳概率分别为0.85、0.64、0.45、0.32,今随机
选一人参加比赛,试求该小组在比赛中射中目
标旳概率.
解:设 B 该小组在比赛中射中目 标
Ai
选i级射手参加比赛 i
4
由全概率公式,有 PB P
2
6
9 i1
1, 2,
Ai P B 3
3
Ai
4
0.85 0.64 0.45 0.32
5
35
第二台机器加工数 50
15
65
总计
80
20
100
设A={产品合格} B={第一台机器加工旳产品 }
求:PA, P(B), PAB, P( A | B).
解:PA 80 , PB 35 , PAB 30 ,
100
100
100
PA B 30 PA 80 ,
35
100
目 录 前一页 后一页 退 出
目 录 前一页 后一页 退 出
▪ 例:设袋中有r只红球,t只白球,每次自袋 中任取一只球,观察颜色然后放回,并再 放入a只与所取出旳那只球同色旳球,若在 袋中连续取球四次,试求第一、二次取到 红球,且第三、四次取到白球旳概率
▪ 练习: 袋中有一种白球与一种黑球,现每 次从中取出一球,若取出白球,则除把白 球放回外再加进一种白球,直至取出黑球 为止.求取了n 次都未取出黑球旳概率.
目 录 前一页 后一页 退 出
▪ 例1.17 某种动物出生后活到20岁旳概率为 0.7,活到25岁旳概率为0.56,求现年为20 岁旳这种动物活到25岁旳概率。
解 设A表达事件“活到20岁以上”,B表 达事件“活到25岁以上”,显然
P( A) 0.7 P(B) 0.56 P( AB) P(B) 0.56

概率论第一章第四节

概率论第一章第四节

m1 m2
mn
完成这件事的方法总数 N m1 m2 mn.
8
乘法原理
做某件事有n个步骤
第一步有 m1种方法 第二步有 m2种方法
……
第 n 步有 mn 种方法
12
n
完成这件事的方法总数 N m1m2 mn.
9
古典概型的几类基本问题 1. 抽球问题(抽样模型)
从n只球(或产品等)中任取k (k≤n)个球, 每一个球被取到的可能相同.
取球方式有:
有放回抽样、无放回抽样; 考虑取球次序、不考虑取球次序.
在每一种方式下各有不同取法.
在实际中,产品的检验、疾病的抽查、农作物 的选种等问题均可化为随机抽球问题.
10
例2 一只口袋装有6只球, 其中4只白球、2只红球. 从袋中取球两次, 每次随机地取一只, 考虑两种取 球方式: (a) 放回抽样;(b) 不放回抽样, 试分别就上面两种情况求
6
排列与组合
➢ 选排列 从n个不同的元素中, 任取k(k≤n) 个元素, 按照一定的顺序排成一列, 全部排列个数为
与顺序有关
Ank
n! (n k)!
n(n 1) (n k
1).
➢ 全排列 k n时称为全排列.
Ann n!.
➢ 可重复排列 n个元素中取 k个元素的排列数为
n n n nk
A含基本事件个数:N (N 1) (N n 1),
P( A)
N(N
1) ( N Nn
n 1) .
说明:许多问题和本例有相同数学模型.
生日问题
21
练习 一宿舍住有6位同学,求他们之中恰有4人 的生日在同一月份的概率.

C
4 6
12

概率论与数理统计第一章第四节

概率论与数理统计第一章第四节
1
例 1甲、乙独立地向同一敌机炮击,已知甲击 甲 乙独立地向同一敌机炮击, 中的概率为0.6,乙击中的概率为0.5, 中的概率为 ,乙击中的概率为 ,求敌 机被击中的概率。 机被击中的概率。
1 1 在下列两种情况下, 例 2 已知 P( A) = , P(B) = .在下列两种情况下, 2 3
分别计算 P( A B) 互不相容; 相互独立; (1) A 与 B 互不相容;(2) A 与 B 相互独立;
6
二项概率公式
n 重伯努利试验中, 设每次试验中事件A出现的 重伯努利试验中, 设每次试验中事件 出现的 概率为p(0<p<1), n次试验中 出现 次的概率为 次试验中A出现 概率为 次试验中 出现k次的概率为
pk ∆pn (k) = C p (1− p)
k n k
n−k
, k = 0,1,2,L, n
假设正常人血清含有肝炎病毒的概率为0.4%,若将 例2假设正常人血清含有肝炎病毒的概率为 , 100个互不相干的人的血清混合,试求混合血清含有 个互不相干的人的血清混合, 个互不相干的人的血清混合 肝炎病毒的概率. 肝炎病毒的概率.
4
例3
1 2
4个相同原件独 立工作, 立工作,每个 元件正常8,哪一种 连接方式更加 可靠? 可靠?
§1.4事件的独立性 1.4事件的独立性
定义: 定义:若P(AB)= P(A) P(B),则称事件 A,B(相互) , (相互) 独立. 注: 任意事件 与 独立 ,与Φ独立 独立 任意事件A与
区别: 独立与A 区别: A,B独立与 ,B互不相容 独立与 互不相容 相互独立, 定理一 设P(A) >0,若事件 A,B相互独立,则 若事件 相互独立 P(B|A)=P(B) ,反之亦然。 反之亦然。 相互独立, 定理二 若事件 A,B相互独立,则下列各对事件也 相互独立 相互独立: 相互独立: A, B ; A, B; A, B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
4
2、组合: 从n个不同元素取 k个 (1 kn)的不同组合总数为:
P n! C k! ( n k )! k!
k n
k n
C
k n
常记作
n k
,称为组合系数。
P C k!
k n k n
3、组合系数与二项式展开的关系
n 组合系数 k 又常称为二项式系数,因为
正确的答案是:
5 8 5 1 2 2 P ( A) 10 4
请思考: 还有其它解法吗?
3、许多表面上提法不同的问题实质上属于同 一类型:
有n个人,每个人都以相同的概率 1/N (N≥n)被分在 N 间房的每一间中,求指定的n 间房中各有一人的概率. 人
……
例 设有N件产品,其中有M件次品,现从这N 件中任取n件,求其中恰有k件次品的概率. 解:令B={恰有k件次品} P(B)=? 有放回抽样:
C M (N M ) P(B ) Nn
k n k n k
次品 正品
M件 次品
N-M件 正品
……
例6 设有5个人,每个人以同等机会被分配 在7个房间中,求恰好有5个房间中各有一 个人的概率。
G的测度 P( A) 的测度
例 两船欲停同一码头, 两船在一昼夜内 独立随机地到达码头. 若两船到达后需在 码头停留的时间分别是 1 小时与 2 小 时, 试求在一昼夜内,任一船到达时,需 要等 待空出码头的概率.
解 设船1 到达码头的瞬时为 x , 0 x < 24 船2 到达码头的瞬时为 y , 0 y < 24

3、许多表面上提法不同的问题实质上属于同 一类型: 有n个旅客,乘火车途经N个车站,设每 个人在每站下车的概率为1/ N(N ≥ n) ,求指 定的n个站各有一人下车的概率. 旅客 车站
3、许多表面上提法不同的问题实质上属于同 一类型: 有n个人,设每个人的生日是任一天的概 率为1/365. 求这n (n ≤365)个人的生日互不相 同的概率. 人 任一天
(怀疑假设的正确性)
例 区长办公室某一周内曾接待过9次来 访, 这些来访都是周三或周日进行的,是否 可以断定接待时间是有规定的? 解 假定办公室每天都接待,则
29 P( 9次来访都在周三、日) = 9 = 0.0000127 7
这是小概率事件,一般在一次试验中不会发 发生. 现居然发生了, 故可认为假定不成立, 从而推断接待时间是有规定的.
排列组合是计算古典概率的重要工具 .
例1 从0到9这十个数字中任取三个, 问大小在中间的号码恰为5的概率是 多少?
解:设所求事件为A. 基本事件总数为C10
3
A所含基本事件数为C 4C1C 5
故 P( A) C C C C
4 1 3 10 1 1 1 5
1
1
1
1 6
例2 有9个人排成一排,求指定的3人 排在一起的概率。
P4 4 3 2 1 24
从n个不同元素取 k个(允许重复)
(1 kn)的不同排列总数为:
n n n n
k
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 1 2 3 第2张 1 2 3 第3张 1 2 3
1
2
3
4
n=4,k =3
共有4.4.4=43种可能取法
4
解:设A表示恰有5个房间中各有一个人。 每人进入各房间等可能 基本事件总数为75个。
5人进入的5个房间有C 种选择,选定房间 后5个人还有5!种排列
5 7
5! C 故P(A) 7
7 5
5
360 0.15 2401
小概率事件 —— 若P(A) 0.01 , 则称A为小概率事件.
小概率原理 —— ( 即实际推断原理 ) 一次试验中小概率事件一般是不 会发生的. 若在一次试验中居然发生了, 则可怀疑该事件并非小概率事件.
(2)将3名优秀生分配在同一班级的分法共有 3种。 对于这每一种分法,其余12名新生的分法 (一个班级2名,另两个班级各5名)有12!/ (2!5!5!)种。 因此3名优秀生分配在同一班级的分法共有 (3×12!)/(2!5!5!)种, 于是,所求概率为
6 3 12! 15! p2 . 2!5!5! 5!5!5! 91
下面的算法错在哪里?
5 8 1 2 P ( A) 10 4
2
4
6
8
10
从5双中取1双,从剩 下的 8只中取2只
错在同样的“4只配 成两双”算了两次.
2、在用排列组合公式计算古典概率时,必须 注意不要重复计数,也不要遗漏. 例如:从5双不同的鞋子中任取4只,这4只 鞋子中“至少有两只配成一双”(事件A) 的概率是多少?

rk个 元素
n个元素
因为
C C
r1 n
r2 n r1
C
rk rk
n! r1! r2! rk !
5、若n个元素中有n1个带足标“1”,n2个带足标 “2”,……,nk个带足标“k”,且,从这n个元 素中取出r个,使得带足标“i”的元素有ri个,而
r1 r2 rk r
我们用 i 表示取到 i号球, i =1,2,…,10 . 则该试验的样本空间 S={1,2,…,10} , 且每个样本点(或者说 基本事件)出现的可能 性相同 .
称这样一类随机试验 为古典概型.
如i =2
2
5 8 19 4 6 7 3 10
定义2 设试验E是古典概型, 其样本空间S由n 个样本点组成 , 事件A由k个样本点组成 . 则定 义事件A的概率为: A包含的样本点数 P(A)=k/n= S中的样本点总数 称此概率为古典概率. 这种确定概率的方法 称为古典方法 . 这样就把求概率问题转化为计数问题 .
§1.4 古典概型
(Classical Probability)
这里我们先简要复习一下计算古典概率 所用到的 基本计数原理 1. 加法原理 设完成一件事有m种方式, 第一种方式有n1种方法, 第二种方式有n2种方法, 则完成这件事总共 有n1 + n2 + … + nm …; 第m种方式有nm种方法, 种方法 . 无论通过哪种方法都可以 完成这件事,
需要注意的是: 1、在应用古典概型时必须注意“等可能性” 的条件. “等可能性”是一种假设,在实际应用 中,我们需要根据实际情况去判断是否可 以认为各基本事件或样本点是等可能的.
在许多场合,由对称性和均衡性,我 们就可以认为基本事件是等可能的并在此 基础上计算事件的概率.
2、在用排列组合公式计算古典概率时,必须 注意不要重复计数,也不要遗漏. 例如:从5双不同的鞋子中任取4只,这4只 鞋子中“至少有两只配成一双”(事件A) 1 5 7 9 3 的概率是多少?
例如,某人要从甲地到乙地去, 可以乘火车,
也可以乘轮船.
火车有两班
甲地 回答是 3 + 2 种方法
轮船有三班
乙地
乘坐不同班次的ቤተ መጻሕፍቲ ባይዱ车和轮船,共有几种方法?
基本计数原理 2. 乘法原理
设完成一件事有m个步骤,
则完成这件事共有 第二个步骤有n2种方法, …; n1 n2 nm 第m个步骤有nm种方法, 种不同的方法 . 必须通过每一步骤, 才算完成这件事, 第一个步骤有n1种方法,
这时不同取法的总数为
n1 r 1
nk n2 r …… r 2 k
一、 古典概型(等可能概型) (Classical probability)
定义1 若随机试验满足下述两个条件: (1) 它的样本空间只有有限多个样本点; (2) 每个样本点出现的可能性相同. 称这种试验为古典概型。
例如,若一个男人有三顶帽子和两 件背心,问他可以有多少种打扮?
可以有 3 2 种打扮
加法原理和乘法原理是两个很重要 计数原理,它们不但可以直接解决不少 具体问题,同时也是推导下面常用排列 组合公式的基础 .
三、排列、组合的几个简单公式
排列和组合的区别:
顺序不同是 不同的排列 而组合不管 顺序
例 设有N件产品,其中有M件次品,现从这N 件中任取n件,求其中恰有k件次品的概率. 解:令B={恰有k件次品} P(B)=?
M N M k nk P ( B ) N n
次品 正品
M件 次品
N-M件 正品
这是一种无放回抽样.
k = n时称全排列
P Pn n(n 1)(n 2)
n n
2 1 n ! 2 1 n !
或A n(n 1)(n 2)
n n
第1次选取
第2次选取
B
第3次选取 C 例如:n=4,
D B D B
k =3
A
C D
C
B
P 4 3 2 24
3 4
C
D
……
3把不同的钥匙的6种排列
C 3
2 3
从3个元素取出2个 的排列总数有6种
从3个元素取出2个 的组合总数有3种
P 6
2 3
排列、组合的几个简单公式 1、排列: 从n个不同元素取 k个 (1 kn)的不同排列总数为:
P n(n 1)(n 2)
k n
n! (n k 1) (n k )!
几何概型 (等可能概型的推广)
例9 某人的表停了,他打开收音机听电台 报时,已知电台是整点报时的,问他等待 报时的时间短于十分钟的概率
10分钟
9点 10点
10 1 P( A) 60 6
几何概型
设样本空间为有限区域 , 若样本点 落入 内任何区域 G 中的概率与区域G 的测度成正比, 则样本点落入G内的概率 为
相关文档
最新文档