《大学物理》期末考试复习题(振动与波)
大学物理题库-振动与波动

振动与波动题库一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
当0=t 时, 位移为cm 6,且向x 轴正方向运动。
则振动表达式为( ) (A))(3cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x (C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A) y=2×10-2cos (πt/2-π/2) (m)(B) y=2×10-2cos (πt + π) (m)(C) y=2×10-2cos(πt/2+π/2) (m)(D) y=2×10-2cos (πt -3π/2) (m)7、一平面简谐波,沿X 轴负方向 传播。
x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。
大学物理复习题答案(振动与波动)

大学物理1复习题答案一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内)1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为'T 1和'T 2。
则有 ( B )A .'T T >11且 'T T >22B .'T T =11且 'T T >22C .'T T <11且 'T T <22D .'T T =11且 'T T =222.一物体作简谐振动,振动方程为cos 4x A t ⎛⎫=+⎪⎝⎭πω,在4Tt =(T 为周期)时刻,物体的加速度为 ( B )A. 2ω B 。
2ω C 。
2ω D2ω3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D )AAAAAAC)AxxAAxA B C D4。
两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为)cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 ( B )A. )π21cos(2++=αωt A x B. )π21cos(2-+=αωt A x . C 。
)π23cos(2-+=αωt A x D. )cos(2π++=αωt A x . 5.波源作简谐运动,其运动方程为t y π240cos 100.43-⨯=,式中y 的单位为m ,t 的单位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A )A .m 25.0B .m 60.0C .m 50.0D .m 32.06.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: ( B )A .cos x t ππ⎛⎫=+ ⎪⎝⎭22233B .cos x t ππ⎛⎫=+ ⎪⎝⎭42233C .cos x t ππ⎛⎫=- ⎪⎝⎭22233D .cos x t ππ⎛⎫=- ⎪⎝⎭42233二. 填空题(每空2分)1. 简谐运动方程为)420cos(1.0ππ+=t y (t 以s 计,y 以m 计),则其振幅为 0.1 m ,周期为 0。
大学物理 振动与波练习题

振动与波练习题2005 一、填空题 1.一物体作简谐振动,振动方程为x = A cos (ωt+π/ 4 )。
在t =T / 4 (T 为周期)时刻,物体的加速度为 .2.一质点沿x 轴作简谐振动,振动方程为x = 4×10-2 cos (2πt + 31) (SI) 。
从t = 0 时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为3.已知两个简谐振动曲线如图1所示。
x 的位相比x 的位相为 .(A) 落后π/2 (B )超前π/2 (C) 落后π (D) 超前π图1 图24.一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为5.一平面简谐波,沿x 轴负方向传播。
圆频率为ω,波速为u 。
设t = T/4时刻的波形如图2所示,则该波的表达式为 。
6.当机械波在媒质中传播时,一媒质质元的最大变形量发生在 位置处。
7.如图3所示两相干波源S 1和S 2相距λ/4,(λ为波长)S 1的位相比S 2的位相超前π/2,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的位相差是 .8.一质点作简谐振动。
其振动曲线如图4所示。
根据此图,它的周期T = ,用余弦函数描述时初位相φ= 。
图3 图49.一物体同时参与同一直线上的两个简谐振动:x 1 = 0.05 cos (4πt +π/3 ) (SI)x 1 = 0.03 cos (4πt -2π/3 ) (SI)合振动的振幅为 m.10一平面简谐波沿X 轴正方向传播,波速u = 100 m/s ,t = 0时刻的波形曲线如图所示。
波长λ= ,振幅 A = ,频率ν= 。
11.一平面简谐波(机械波)沿x轴正方向传播,波动方程为y = 0.2 cos (πt –πx/2 )(SI),则x = -3 m 处媒质质点的振动加速度a的表达式为。
《大学物理》期末复习试卷B

《大学物理》期末复习试卷B第6章 机械振动基础§6.1-1简谐振动 振幅 周期和频率 相位一.选择题和填空题1. 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A). (B) . (C) . (D) φωcos A . [ ]3.一物体作简谐振动,其振动方程为 )23cos(04.0π-π=t x(SI) .(1) 此简谐振动的周期T =__________________;2.一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.§6.1-2简谐运动的能量5. 一作简谐振动的振动系统,振子质量为2 kg ,系统振动频率为1000 Hz ,振幅为0.5 cm ,则其振动能量______________.§6.1-3旋转矢量3. 已知一质点沿y轴作简谐振动,其振动方程为)4/3cos(π+=t A y ω.与之对应的振动曲线是 [ ]-院系: 专业班级: 姓名: 学号:装 订 线6. 用余弦函数描述一简谐振子的振动.若其速度~时间(v ~t )关系曲线如图所示,则振动的初相位为(A) π/6. (B) π/3. (C) π/2. (D) 2π/3.(E) 5π/6. [](1) 振子在负的最大位移处,则初相为______________;(2) 振子在平衡位置向正方向运动,则初相为_____________; (3) 振子在位移为A /2处,且向负方向运动,则初相为______. 8.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________;φ =_______________.二.计算题1. 一质点作简谐振动,其振动方程为x = 0.24)3121cos(π+πt (SI),试用旋转矢量法求出质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .3. 两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.§6.2简谐运振动的合成一.填空题 二.计算题 一质点同时参与两个同方向的简谐振动,其振动方程分别为x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程.第7章 机械波 §7.1机械波的产生 波长 波线及波面 波速 一.选择题和填空题 1. 在下面几种说法中,正确的说法是:[ ] (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同. (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).--1. 一个沿x 轴正向传播的平面简谐波(用余弦函数表示)在t = 0时的波形曲线如图所示.(1) 在 x = 0,和x = 2,x = 3各点的振动初相各是多少?(2) 画出t = T / 4时的波形曲线.§7.2平面简谐波一.选择题1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为 [ ](A) )21(cos 50.0ππ+=t y , (SI). (B) )2121(cos 50.0ππ-=t y , (SI).(C) )2121(cos 50.0ππ+=t y , (SI).(D) )2141(cos 50.0ππ+=t y , (SI).2.如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为[ ](A)])/(cos[0φω+-=u x t A y . (B) )]/([cos u x t A y +=ω.(C) })]/([cos{0φω+-=u x t A y . (D) })]/([cos{0φω++=u x t A y . 二.计算题1. 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式.2. 如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为t y π⨯=-4cos 1032 (SI).(1) 以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式.§7.3波的能量一. 选择题与填空题1. 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是 [ ](A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零.2. 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是 (A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4 [ ]3. 当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?[ ] (A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒.(B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同. (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等.(D) 媒质质元在其平衡位置处弹性势能最大.4. 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则 [ ](A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播. (C) B 点处质元的振动动能在减小.(D) 各点的波的能量密度都不随时间变化.A B xu(C) o ',d . (D) b ,f .6. 一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中(A) 它的势能转换成动能.(B) 它的动能转换成势能.(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.(D )它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小. [ ]7. 一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J ,则在)(T t +(T 为波的周期)时刻该媒质质元的振动动能是___________.8.一个波源位于O 点,以O 为圆心作两个同心球面,它们的半径分别为R 1和R 2,在两个球面上分别取相等的面积∆S 1和∆S 2,则通过它们的平均能流之比=21P /P ___________________.§7.4 惠更斯原理 §7.5 波的干涉(A) )22cos(2π-π=t A y . (B) )2cos(2π-π=t A y .(C) )212cos(2π+π=t A y(D) )1.02cos(22π-π=t A y .[ ]3. 如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为(A) λk r r =-12.(B)π=-k 212φφ.(C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ. [ ]4.已知波源的振动周期为4.00×10-2s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________. 5. 频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为_____________. 二.计算题在均匀介质中,有两列余弦波沿Ox 轴传播,波动表达式分别为)]/(2cos[1λνx t A y -π= 与)]/(2cos[22λνx t A y +π= ,试求Ox 轴上合振幅最大与合振幅最小的那些点的位置.三.问答题设P 点距两波源S 1和S 2的距离相等,若P 点的振幅保持为零,则由S 1和S 2分别发出的两列简谐波在P 点引起的两个简谐振动应满足什么条件?§7.6、7.7 驻波、多普勒效应一.选择题和.填空题3. 若在弦线上的驻波表达式是 t x y ππ=20cos 2sin 20.0.则形成该驻波的两个反向进行的行波为:[ ](A)]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π++π=x t y (SI). (B) ]50.0)10(2cos[10.01π--π=x t y ]75.0)10(2cos[10.02π++π=x t y (SI).(C) ]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π-+π=x t y (SI).(D )]75.0)10(2cos[10.01π+-π=x t y ]75.0)10(2cos[10.02π++π=x t y (SI).5. 一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是: [ ](A) o ',b ,d ,f . (B) a ,c ,e ,g . S4. 电磁波的电场强度E 、磁场强度 H 和传播速度 u的关系是:[ ](A) 三者互相垂直,而E 和H 位相相差π21.(B) 三者互相垂直,而且E 、H 、 u构成右旋直角坐标系.(C) 三者中E 和H 是同方向的,但都与 u垂直.(D) 三者中E 和H 可以是任意方向的,但都必须与 u垂直.5.一机车汽笛频率为750 Hz ,机车以时速90公里远离静止的观察者.观察者听到的声音的频率是(设空气中声速为340 m/s ).[ ](A) 810 Hz . (B) 699 Hz . (C) 805 Hz . (D) 695 Hz .6. 两列波在一根很长的弦线上传播,其表达式为y 1 = 6.0×10-2cos π(x - 40t ) /2 (SI)y 2 = 6.0×10-2cos π(x + 40t ) /2 (SI) 则合成波的表达式为_________;在x = 0至x = 10.0 m 内波节的位置是_________________________________________________;波腹的位置是_______________________________________________________.7. 电磁波在媒质中传播速度的大小是由媒质的____________________决定的.8. 一静止的报警器,其频率为1000 Hz ,有一汽车以79.2 km 的时速驶向和背离报警器时,坐在汽车里的人听到报警声的频率分别是___________________和______________(设空气中声速为340 m/s ).。
大学物理机械波振动题目汇总

0318一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?解:(1) 小物体受力如图. 设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正)ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分 A = 10 cm ,N/m 3.060=k 有50/==m k ω rad ·s -1 2分系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-== 2分6.19/2-=-=ωg x cm 1分即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分3014一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置6 cm 处速度是24cm/s ,求(1)周期T ;(2)当速度是12 cm/s 时的位移.解:设振动方程为t A x ωcos =,则 t A ωωsin -=v(1) 在x = 6 cm ,v = 24 cm/s 状态下有t ωcos 126=t ωωsin 1224-=解得 3/4=ω,∴ 72.2s 2/3/2=π=π=ωT s 2分(2) 设对应于v =12 cm/s 的时刻为t 2,则由t A ωωsin -=v得 2sin )3/4(1212t ω⨯⨯-=,解上式得 1875.0sin 2-=t ω相应的位移为 8.10sin 1cos 222±=-±==t A t A x ωω cm 3分 3021一木板在水平面上作简谐振动,振幅是12 cm ,在距平衡位置6 cm 处速率是24 cm/s .如果一小物块置于振动木板上,由于静摩擦力的作用,小物块和木板一起运动(振动频率不变),当木板运动到最大位移处时,物块正好开始在木板上滑动,问物块与木板之间的静摩擦系数μ为多少?解:若从正最大位移处开始振动,则振动方程为)cos(t A x ω=, t A xωωsin -=在6=x cm 处,24=xcm/s ∴ 6 =12|cos ω t |, 24=|-12 ω sin ω t |,解以上二式得3/4=ωrad/s 3分t A xωωcos 2-= , 木板在最大位移处x 最大,为 2ωA x = ① 2分 若mA ω2稍稍大于μmg ,则m 开始在木板上滑动,取2ωμmA mg = ② 2分∴ 0653.0/2≈=g A ωμ ③ 1分 3022一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解:由旋转矢量图和 |v A | = |v B | 可知 T /2 = 4秒,∴ T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分 (1) 以AB 的中点为坐标原点,x 轴指向右方.t = 0时, 5-=x cm φcos A =t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分25cos /==φx A cm 1分∴ 振动方程 )434c o s (10252π-π⨯=-t x (SI) 1分 (2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分 3027在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T= 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板?解:选平板位于正最大位移处时开始计时,平板的振动方程为t A x π=4cos (SI)t A x π4cos π162-= (SI) 1分 (1) 对物体有 x m N mg=- ① 1分 t A mg x m mg N ππ+=-=4cos 162 (SI) ② 物对板的压力为 t A mg N F ππ--=-=4cos 162 (SI)t ππ--=4cos 28.16.192 ③ 2分 x(2) 物体脱离平板时必须N = 0,由②式得 1分04cos 162=ππ+t A mg (SI)A q t 2164cos π-=π 1分 若能脱离必须 14cos ≤πt (SI)即 221021.6)16/(-⨯=π≥g A m 2分3264 一质点作简谐振动,其振动方程为 )4131cos(100.62π-π⨯=-t x (SI) (1) 当x 值为多大时,系统的势能为总能量的一半?(2) 质点从平衡位置移动到上述位置所需最短时间为多少?解:(1) 势能 221kx W P = 总能量 221kA E = 由题意,4/2122kA kx =, 21024.42-⨯±=±=A x m 2分 (2) 周期 T = 2π/ω = 6 s 从平衡位置运动到2Ax ±=最短时间 ∆t 为 T /8.∴ ∆t = 0.75 s . 3分3265在一轻弹簧下端悬挂m 0 = 100 g 砝码时,弹簧伸长8 cm .现在这根弹簧下端悬挂m = 250g 的物体,构成弹簧振子.将物体从平衡位置向下拉动4 cm ,并给以向上的21 cm/s 的初速度(令这时t = 0).选x 轴向下, 求振动方程的数值式.解: k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯= N/m11s 7s 25.025.12/--===m k ω 2分 5cm )721(4/2222020=+=+=ωv x A cm 2分 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad 3分)64.07cos(05.0+=t x (SI) 1分3273一弹簧振子沿x 轴作简谐振动(弹簧为原长时振动物体的位置取作x 轴原点).已知振动物体最大位移为x m = 0.4 m 最大恢复力为F m = 0.8 N ,最大速度为v m = 0.8π m/s ,又知t =0的初位移为+0.2 m ,且初速度与所选x 轴方向相反.(1) 求振动能量;(2) 求此振动的表达式.解:(1) 由题意 kA F m =,m x A =,m m x F k /=.16.021212===m m m x F kx E J 3分 (2) π===2mm m x A v v ω rad /s 2分由 t = 0, φc o s 0A x ==0.2 m , 0sin 0<-=φωA v可得 π=31φ 2分 则振动方程为 )312cos(4.0π+π=t x 1分 3391在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2 cm 而平衡.再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数 0/l mg k =. 选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得 220d /d )(t x m x l k mg =+- 将 0/l mg k = 代入整理后得 0//d d 022=+l gx t x∴ 此振动为简谐振动,其角频率为. 3分π===1.958.28/0l g ω 2分设振动表达式为 )cos(φω+=t A x 由题意: t = 0时,x 0 = A=2102-⨯m ,v 0 = 0,解得 φ = 0 1分 ∴ )1.9cos(1022t x π⨯=- 2分3827质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 2分(2) )318sin(1042π+π⨯π-==-t x v (SI) )318cos(103222π+π⨯π-==-t x a (SI) 2分 (3) 2222121A m kA E E E P K ω==+==7.90×10-5 J 3分 (4) 平均动能 ⎰=T K t m T E 02d 21)/1(v ⎰π+π⨯π-=-Tt t m T 0222d )318(sin )104(21)/1( = 3.95×10-5 J = E 21+x )同理 E E P 21== 3.95×10-5 J 3分 3828一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.解:(1) 1s 10/-==m k ω 1分63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分 ∵ x 0 > 0 ,∴ π=31φ (3) )3110cos(10152π+⨯=-t x (SI) 2分 3834一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ·m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求(1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.解:(1) 221kA E E E p K =+= 2/1]/)(2[k E E A p K +== 0.08 m 3分(2)222121v m kx = )(sin 22222φωωω+=t A m x m )(sin 222φω+=t A x 2222)](cos 1[x A t A -=+-=φω222A x =, 0566.02/±=±=A x m 3分(3) 过平衡点时,x = 0,此时动能等于总能量221v m E E E p K =+= 8.0]/)(2[2/1±=+=m E E p K v m/s 2分3835在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm .(1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得 F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x0 则 02020)/(x x A =+=ωv 2分 又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分(2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分 2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分 解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ), kA F = 2分 2224νωπ==m m k ,ν = 1.5 Hz 2分∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kA E J 2分 当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分 ∴ 21007.1)25/24(-⨯==E E K J ,41044.425/-⨯==E E p J 1分5191一物体作简谐振动,其速度最大值v m = 3×10-2 m/s ,其振幅A = 2×10-2 m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求:(1) 振动周期T ;(2) 加速度的最大值a m ;(3) 振动方程的数值式.解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴ T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5×10-2 m/s 2 2分 (3) π=21φ 5511如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )c o s(φω+=t A x . 恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J .2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分 A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2c o s (204.0π+=t x (SI). 2分x = 0.02)215.1cos(π+t (SI) 3分 3078一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式. 解:(1) 设x = 0 处质点的振动方程为 )2c o s(φν+π=t A y 由图可知,t = t '时 0)2cos(=+'π=φνt A y 1分0)2sin(2d /d <+'ππ-=φννt A t y 1分所以 2/2π=+'πφνt , t 'π-π=νφ221 2分 x = 0处的振动方程为 ]21)(2cos[π+'-π=t t A y ν 1分 (2) 该波的表达式为 ]21)/(2cos[π+-'-π=u x t t A y ν 3分 3082如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为t y π⨯=-4c o s 1032 (SI).(1) 以A 点为坐标原点写出波的表达式; (2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式. 解:(1) 坐标为x 点的振动相位为)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π= 2分波的表达式为 )]20/([4cos 1032x t y +π⨯=- (SI) 2分(2) 以B 点为坐标原点,则坐标为x 点的振动相位为 ]205[4-+π='+x t t φω (SI) 2分 波的表达式为 ])20(4cos[1032π-+π⨯=-x t y (SI) 2分 3083一平面简谐纵波沿着线圈弹簧传播.设波沿着x 轴正向传播,弹簧中某圈的最大位移为3.0 cm ,振动频率为25 Hz ,弹簧中相邻两疏部中心的距离为24 cm .当t = 0时,在x = 0处质元的位移为零并向x 轴正向运动.试写出该波的表达式.解:由题 λ = 24 cm, u = λν = 24×25 cm/s =600 cm/s 2分A = 3.0 cm , ω = 2πν = 50 π/s 2分y 0 = A cos φ = 0, 0s i n 0>-=φωA yx u O t =t ′yA B x uπ-=21φ 2分 ]21)6/(50cos[100.32π--π⨯=-x t y (SI) 2分 3084一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O 点分别为λ / 8和3λ / 8 两处质点的振动方程. (3) 求距O 点分别为λ / 8和3λ / 8 两处质点在t = 0时的振动速度.解:(1) 以O 点为坐标原点.由图可知,该点振动初始条件为0c o s 0==φA y , 0s i n 0<-=φωA v所以 π=21φ波的表达式为 ]21)/(c o s [π+-=u x t A y ωω4分 (2) 8/λ=x 处振动方程为]21)8/2(cos[π+π-=λλωt A y )4/cos(π+=t A ω1分 8/3λ=x 的振动方程为]218/32cos[π+-=λλπωt A y )4/cos(π-=t A ω1分 (3) )21/2sin(/d d π+π--=λωωx t A t yt = 0,8/λ=x 处质点振动速度]21)8/2sin[(/d d π+π--=λλωA t y 2/2ωA -=1分 t = 0,8/3λ=x 处质点振动速度]21)8/32sin[(/d d π+⨯π--=λλωA t y 2/2ωA =1分 3108两波在一很长的弦线上传播,其表达式分别为:)244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=- (SI)求: (1) 两波的频率、波长、波速;(2) 两波叠加后的节点位置;(3) 叠加后振幅最大的那些点的位置.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得:ν = 4 Hz , λ = 1.50 m ,各1分 波速 u = λν = 6.00 m/s1分 (2) 节点位置 )21(3/4π+π±=πn x x u Oy)21(3+±=n x m , n = 0,1,2,3, … 3分 (3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, … 2分3109设入射波的表达式为 )(2cos 1Tt xA y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式;(3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 ])//(2cos[2π+-π=T t x A y λ 3分(2) 驻波的表达式是 21y y y +=)21/2cos()21/2cos(2π-ππ+π=T t x A λ 3分 (3) 波腹位置: π=π+πn x 21/2λ, 2分 λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ 2分 λn x 21= , n = 1, 2, 3, 4, (3110)一弦上的驻波表达式为 t x y ππ⨯=-550c o s )6.1(c o s 1000.32 (SI).(1) 若将此驻波看作传播方向相反的两列波叠加而成,求两波的振幅及波速;(2) 求相邻波节之间的距离;(3) 求t = t 0 = 3.00×10-3 s 时,位于x = x 0 = 0.625 m 处质点的振动速度.解:(1) 将 t x y ππ⨯=-550cos 6.1cos 1000.32与驻波表达式 )2cos()/2cos(2t x A y νλππ= 相对比可知:A = 1.50×10-2 m, λ = 1.25 m , ν = 275 Hz波速 u = λν = 343.8 m/s 5分(2) 相邻波节点之间距离 λ21=∆x = 0.625 m 2分 (3) 2.4600,-=∂∂=t y t x v m/s 3分 3111 如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为])/(2c o s [1φλν+-π=x t A y 2分 则反射波的表达式是 ])(2cos[2π++-+-π=φλνxDP OP t A y 2分 合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分 在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分 因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分 3138某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.解:(1) 振动方程 )22cos(06.00π+π=t y )cos(06.0π+π=t (SI) 3分 (2) 波动表达式 ])/(c o s[06.0π+-π=u x t y 3分 ])21(c o s [06.0π+-π=x t (SI) (3) 波长 4==uT λ m 2分 3141图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式;(2) P 处质点的振动方程. 解:(1) O 处质点,t = 0 时0cos 0==φA y , 0sin 0>-=φωA v所以 π-=21φ 2分 又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2c o s [04.0π--π=x ty (SI) 4分 (2) P 处质点的振动方程为 ]2)4.02.05(2cos[04.0π--π=ty P )234.0cos(04.0π-π=t (SI) 2分 3142 (m) -图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φc o s 0A =, φωs i n 00A -=<v ,故 π-=21φ 2分 又t = 2 s ,O 处质点位移为 )214cos(2/π-π=νA A 所以 π-π=π-21441ν, ν = 1/16 Hz 2分振动方程为 )218/c o s (0π-π=t A y (SI) 1分 (2) 波速 u = 20 /2 m/s = 10 m/s波长 λ = u /ν = 160 m 2分波动表达式 ]21)16016(2cos[π-+π=x t A y (SI) 3分 3143如图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求 (1) 该波的表达式;(2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式. 解:(1) 由P 点的运动方向,可判定该波向左传播. 原点O 处质点,t = 0 时φcos 2/2A A =, 0sin 0<-=φωA v所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y (SI) 3分 由图可判定波长λ = 200 m ,故波动表达式为]41)200250(2c o s [π++π=x t A y (SI) 2分 (2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y 1分 振动速度表达式是 )45500cos(500π+ππ-=t A v (SI) 2分 3144一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.(1) 求P 处质点的振动方程;(2) 求此波的波动表达式; t (s)0-A 1y P (m)(3) 若图中 λ21=d ,求坐标原点O 处质点的振动方程.解:(1) 由振动曲线可知,P 处质点振动方程为])4/2cos[(π+π=t A y P )21cos(π+π=t A (SI) 3分 (2) 波动表达式为 ])4(2c o s [π+-+π=λd x tA y (SI) 3分(3) O 处质点的振动方程 )21cos(0t A y π= 2分 3158在均匀介质中,有两列余弦波沿Ox 轴传播,波动表达式分别为)]/(2cos[1λνx t A y -π= 与 )]/(2cos[22λνx t A y +π= ,试求Ox 轴上合振幅最大与合振幅最小的那些点的位置.解:(1) 设振幅最大的合振幅为A max ,有φ∆⋅++=cos 22)2(222max A A A A A式中 λφ/4x π=∆,又因为 1/4c o s c o s =π=∆λφx 时,合振幅最大,故 π±=πk x 2/4λ合振幅最大的点 λk x 21±= ( k = 0,1,2,…) 4分 (2) 设合振幅最小处的合振幅为A minφ∆⋅++=cos 22)2(222min A A A A A因为 1cos -=∆φ 时合振幅最小且 λφ/4x π=∆故 π+±=π)12(/4k x λ合振幅最小的点 4/)12(λ+±=k x ( k = 0,1,2,…) 4分 3335一简谐波,振动周期21=T s ,波长λ = 10 m ,振幅A = 0.1 m .当 t = 0时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求:(1) 此波的表达式;(2) t 1 = T /4时刻,x 1 = λ /4处质点的位移;(3) t 2 = T /2时刻,x 1 = λ /4处质点的振动速度.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) 3分 (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T ym 1.0)818/1(4cos 1.0=-π= 2分(3) 振速 )20/(4sin 4.0x t t y -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 O P d26.1)21sin(4.02-=π-ππ-=v m/s 3分 3410一横波沿绳子传播,其波的表达式为 )2100c o s(05.0x t y π-π= (SI) (1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度.(3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.解:(1) 已知波的表达式为)2100cos(05.0x t y π-π= 与标准形式)/22cos(λνx t A y π-π= 比较得A = 0.05 m , ν = 50 Hz , λ = 1.0 m 各1分u = λν = 50 m/s 1分(2) 7.152)/(max max =π=∂∂=A t y νv m /s 2分322m a x 22m a x 1093.44)/(⨯=π=∂∂=A t y a ν m/s 2 2分(3) π=-π=∆λφ/)(212x x ,二振动反相 2分3476一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π=求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212c o s (1π-π=t A y ν , )212cos(22π+π=t A y ν 2分 ∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的 初相一样为π21. 4分 合振动方程 )212cos(π+π=t A y ν 1分 (2) x = λ /4处质点的速度 )212sin(2/d d π+ππ-== v t A t y νν )2cos(2π+ππ=t A νν 3分 5199有一沿x 轴正方向传播的平面简谐波,其波速u = 400 m/s ,频率ν = 500 Hz .(1) 某时刻t ,波线上x 1处的相位为φ 1,x 2处的相位为φ 2,试写出 x 2 - x 1与φ 2 - φ 1的关系式,并计算出当x 2 - x 1 = 0.12 m 时φ 2 - φ 1的值.(2) 波线上某定点 x 在t 1时刻的相位为1φ',在t 2时刻的相位为2φ', 试写出t 2 - t 1与12φφ'-'的关系式,并计算出t 2 - t 1 = 10-3 s 时12φφ'-'的值. 解:该波波长 λ = u /ν = 0.8 m(1) x 2点与x 1点的相位差为λφφ/)(2)(1212x x -π=--λφφ/)(21212x x -π-=- 3分当=-12x x 0.12 m 时 π-=-3.012φφ rad 1分(2) 同一点x ,时间差12t t -,相应的相位差T t t /)(21212-π='-'φφ)(212t t -π=ν 3分当 31210-=-t t s 时, π='-'12φφ rad 1分5319已知一平面简谐波的表达式为 )24(cos x t A y +π= (SI).(1) 求该波的波长λ ,频率ν 和波速u 的值;(2) 写出t = 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;(3) 求t = 4.2 s 时离坐标原点最近的那个波峰通过坐标原点的时刻t .解:这是一个向x 轴负方向传播的波.(1) 由波数 k = 2π / λ 得波长 λ = 2π / k = 1 m 1分由 ω = 2πν 得频率 ν = ω / 2π = 2 Hz 1分 波速 u = νλ = 2 m/s 1分(2) 波峰的位置,即y = A 的位置.由 1)24(cos =+πx t有 π=+πk x t 2)24( ( k = 0,±1,±2,…)解上式,有 t k x 2-=.当 t = 4.2 s 时, )4.8(-=k x m . 2分所谓离坐标原点最近,即| x |最小的波峰.在上式中取k = 8,可得 x = -0.4的波峰离坐标原点最近. 2分(3) 设该波峰由原点传播到x = -0.4 m 处所需的时间为∆t ,则 ∆t = | ∆x | /u = | ∆x | / (ν λ ) = 0.2 s 1分 ∴ 该波峰经过原点的时刻 t = 4 s 2分 5516平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.解:设x = 0处质点振动的表达式为 )c o s (0φω+=t A y ,已知 t = 0 时,y 0 = 0,且 v 0 > 0 ∴π-=21φ ∴ )2cos(0φν+π=t A y )21100cos(1022π-π⨯=-t (SI) 2分 由波的传播概念,可得该平面简谐波的表达式为 )/22c o s (0u x t A y νφνπ-+π=)2121100cos(1022x t π-π-π⨯=- (SI) 2分 x = 4 m 处的质点在t 时刻的位移)21100cos(1022π-π⨯=-t y (SI) 1分 该质点在t = 2 s 时的振动速度为 )21200sin(1001022π-π⨯⨯-=-πv 2分 = 6.28 m/s 1分5519在绳上传播的入射波表达式为)2cos(1λωxt A y π+=,入射波在x = 0处绳端反射,反射端为自由端.设反射波不衰减,求驻波表达式.解:入射波在x = 0处引起的振动方程为 t A y ωc o s 10=,由于反射端为自由端,所以反射波在O 点的振动方程为 t A y ωc o s 20= 2分∴反射波为 )2cos(2λωxt A y π-= 3分合成的驻波方程为 21y y y +=)2cos(λωx t A π+=)2cos(λωx t A π-+ t x A ωλcos )2cos(2π= 3分5520 在绳上传播的入射波表达式为)2cos(1λπωx t A y +=,入射波在x = 0处反射,反射端为固定端.设反射波不衰减,求驻波表达式. 解:入射波在x = 0处引起的振动方程为 t A y ωc o s 10=,由于反射端为固定端,∴反射波在 x = 0处的振动方程为)cos(20π+=t A y ω 或 )c o s (20π-=t A y ω 2分 ∴反射波为 )2cos(2λωxt A y π-π+=或 )2cos(2λωxt A y π-π-=3分 驻波表达式为 21y y y += )2cos(λωxt A π+=)2cos(λωxt A π-π-+)21cos()212cos(2π+π-π=t x A ωλ3分 或 )21cos()212cos(2π-π+π=t xA y ωλ。
C1(振动与波答案)

C1
解: 动 力 学 表 征 式 : F kx
运 动 学 表 征 式 : y A c os[ ( t
x
x
)]
u :波沿传播方向传播距离落后的时间 u
x
u
:波沿传播方向传播距离落后的相位。
振动波动练习题(二) 三、1
大 学 物 理 练 习 册 振 动 波 动
如图所示,以P点在平衡位置向正方向运动作为计时零 点,已知圆频率为ω,振幅为A,简谐波以速度u向轴 的正方向传播,试求:(1)P点的振动方程。(2) 波动方程 u P · 解: t 0, x p 0, v p 0 p O
5 x B 5 m , B 点 的 振 动 方 程 : y B 5 c os t 20 x B 为 原 点 的 波 动 方 程 : y A 5 c os t 20 4 5
10m O A (a) 5m B -5 (b) O 0.5 1.5 t/s
2 3
C1
B
Ek 1 2
3 8
C
2
8 27
D
E k1
27 32
解:
kA
1 2
kx
2
4 9
kA
2
Ek2
3 8
kA
2
E k 2 / E k 1 27 : 32
答案:D
振动波动练习题(一) 二、1
大 学 物 理 练 习 册 振 动 波 动
如图所示,有一条简谐振动曲线,请写出: 振幅A = _____cm,周期T=_____s,圆频率ω=______,初 相位φo=______,振动表达式x =_______cm,振动 速度表达式υ=_______ cm/s,振动加速度表达式a =___________cm/s2,t =3s的相位______。
大学物理(下)期末复习题

大学物理(下)期末复习题一、填空题1、 振幅为A 的简谐振动在 位置动能最大,在 位置势能最大, 位置势能与动能相等。
2.有一平面简谐波沿x 轴正方向传播,波速为6s m /,已知在0=x 处的质点的振动方程为))(23cos(1.0m t y ππ-=,则波动方程为 ;质点在x 轴上m x 3-=处的振动方程为 ,m x 3-=处的振动加速度为 。
3.一平面简谐波的表达式为 )37.0125cos(025.0x t y -= (SI),其角频率ω =______,波速u =________,波长λ = 。
4. 一列平面简谐波沿x 轴正向无衰减地传播,波的振幅为 2×10-3 m ,周期为0.01 s ,波速为400 m/s . 当t = 0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为________________。
5. 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________。
6. 如图所示,两个直径微小差别的彼此平行的滚珠之间的距离,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。
如果两滚珠之间的距离L 变大,则在L 范围内干涉条纹的数目 ,条纹间距 (填变化情况)。
7. 如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,若薄膜厚度为e ,而且321n n n >>,则两束透射光的位相差为 。
8. 在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长λ=600nm 的单色光的第2级明纹位置重合,这光波的波长 。
9.在单缝衍射中,沿第二级明纹的衍射方向狭缝可分为 个半波带,沿第三级暗纹的衍射方向狭缝可分为 个半波带,若用波长为λ的单色光照射时沿衍射角为θ方向,宽度为b 的单缝可分为 个半波带。
大学物理振动和波复习题

1、 以波速为u 向X 轴正方向传播的平面简谐波,振幅为A ,角频率为ω,设位于坐标)0,(0x 的质点,t=0时,位移y=0,且向y 正方向振动,则该质点的振动方程是什么?该平面简谐波的波动方程是什么?2、 一音叉置于反射面S 和观察者R 之间,音叉频率为0ν;若R 静止,音叉以速度1υ向反射面S 运动,如图所示。
若声速为u ,则观察者R 直接接收到的音频为什么?经反射面S 反射的音频是多少?3、 入射波方程)(2cos 1λπxT t A y -=,波源在原点。
现在在右方x=λ有一反射壁,若平面波从空气传到墙壁而反射。
已知墙墙空空u u ρρ<,(1)求反射波波动方程(反射时振幅假定不变);(2)在0到λ间波节点的位置?4、劲度系数为K 的轻质弹簧,上端放一轻平台面,下端固定于地面。
当质量为m 的人站于平面上时,弹簧压缩了0x 长度(弹簧原长时,人站上去)。
设X 轴正方向向下,求:(1)系统的振动周期;(2)系统的振动方程。
5、 水平光滑桌面上有一谐振子系统,弹簧劲度系数为K ,物体质量为m ,则该谐振系统的振动频率为多少?若把该谐振子系统竖直悬挂,则谐振系统的振动频率为多少?6、 设一简谐波的方程为()ππ-+=x t y 50200cos 2(SI 制),则该波的波长λ为多少?波速是多少?传播方向为什么?7、如图所示,劲度系数为k 的轻质弹簧一端固定,另一端通过一定滑轮系一质量为m 的物体,定滑轮半径为R ,转动惯量为I ,绳与滑轮之间无相对滑动。
试证明该系统为简谐振动系统,并求处振动周期。
8、如图所示,一沿x 方向传播的简谐波,波速为u =400m/s ,波长λ=20m ,求:(1)在x =0处质点振动的初位相;(2)简谐波方程。
题5图)m9、一轻质弹簧的劲度系数为k ,下端固定于桌面,上端连接一轻质平板,平板处于水平位置,在轻质平板上放置一质量为m 的物块,今物块与平板系统在竖直方向作振幅为A 的简谐振动,则弹簧被压缩至最低位置时,物块对平板的压力N 1为多少?在弹簧被伸长至最高位置时,物块对平板的压力N 2为多少?10、一平面简谐波沿+x 方向传播,波速为u =200m/s ,已知A 1A 2=5m ,A 2A 3=10m ,A 2处质点的简谐振动方程为()ππ+=t y 10cos 1.0m ,则A 1处质点的简谐振动方程为什么?A 3处质点的简谐振动方程为什么?11、一平面简谐波以速度u=10m/s 向右传播,t =0时的波形如图所示。
大学物理期末复习题---填空,计算题

填空题 (1)一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置取作 坐标原点。若 t=0 时质点第一次通过 x=-2cm 处且向 x 轴负方向运动,则质点 第二次通过 x=-2cm 处的时刻为__ __s。
[答案: 2 s ] 3
(2)一水平弹簧简谐振子的振动曲线如题 4.2(2)图所示。振子在位移为零,速度 为-A、加速度为零和弹性力为零的状态,对应于曲线上的____________点。振 子处在位移的绝对值为 A、速度为零、加速度为-2A 和弹性力为-KA 的状态, 则对应曲线上的____________点。
8.9 设题8.9图中两导线中的电流均为8A,对图示的三条闭合曲线 a , b , c ,
分别写出安培环路定理等式右边电流的代数和.并讨论:
(1)在各条闭合曲线上,各点的磁感应强度
B
的大小是否相等?
(2)在闭合曲线
c
上各点的
B
是否为零?为什么?
解:
B dl a
= 80
B dl
ba
= 80
cB dl = 0
计, t 以秒计.求:
(1)绳子上各质点振动时的最大速度和最大加速度;
(2)求 x =0.2m 处质点在 t =1s时的位相,它是原点在哪一时刻的位相?这一位相所代表 的运动状态在 t =1.25s时刻到达哪一点?
解: (1)将题给方程与标准式
y = Acos(t − 2 x)
相 比 , 得 振 幅 A = 0.05 m , 圆 频 率 = 10 , 波 长 = 0.5 m , 波 速 u = = = 2.5 m s−1 .
=
2s
即
= 2 = rad s−1
大学物理专题:振动与波、光学、热学、量子物理考试答案

1单选(3分)得分/总分∙A.∙B.∙C.∙D.正确答案:C你没选择任何选项2单选(3分)两个振动方向相同、频率相同、振幅均为A的简谐运动合成后,振幅为,则这两个简谐运动的相位差为[]得分/总分∙A.∙B.∙C.∙D.正确答案:D你没选择任何选项3单选(3分)一根很长的细线挂在又高又暗的城堡中,看不见它的上端而只能看见它的下端,若将其下端系一个小球,并让小球以很小的角度作单摆运动,用秒表测得其摆动周期为6.35s,则该细绳的长度为[]得分/总分∙A.10m∙B.63m∙C.1.58m∙D.31.5m正确答案:A你没选择任何选项4单选(3分)将频率为348Hz的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3Hz。
若在待测频率音叉的一端加上一小块物体,则拍频将减小。
那么待测音叉的固有频率为[]得分/总分∙A.382Hz∙B.351Hz∙C.345Hz∙D.368Hz正确答案:B你没选择任何选项5单选(3分)在驻波中,两个相邻波节间各质点的振动[]得分/总分∙A.相位不同,振幅相同∙B.相位相同,振幅不同∙C.相位不同,振幅不同∙D.相位相同,振幅相同正确答案:B你没选择任何选项6单选(3分)一根管子一端封闭、一端开口,放置在空气中,其内空气柱的简正频率由低到高分别为...,则有[]得分/总分∙A.∙B.∙C.∙D.正确答案:A你没选择任何选项7单选(3分)一机车汽笛频率为740Hz,机车以时速108公里远离静止的观察者,观察者听到的声音的频率是[](设空气中声速为340m/s)得分/总分∙A.699Hz∙B.680Hz∙C.705Hz∙D.695Hz正确答案:B你没选择任何选项8单选(3分)光强分别为和的两束相干光相遇叠加而发生干涉,则叠加区域内的最大光强与最小光强的比值为[]得分/总分∙A.4∙B.2∙C.9∙D.5/3正确答案:C你没选择任何选项9单选(3分)电子显微镜的分辨本领要比普通光学显微镜的分辨本领大得多,这是因为[]得分/总分∙A.电子能量低∙B.电子穿透能力大∙C.电子显微镜所用电子波长比可见光波长小∙D.电子易于被物质吸收正确答案:C你没选择任何选项10单选(3分)已知天空中两颗星相对于一望远镜的角距离为,它们发出的光波波长为550nm,则根据瑞利判据,为了能分辨出这两颗星,望远镜口径至少应为[]得分/总分∙A.4.16m∙B.1.39m∙C.2.09m∙D.2.77m正确答案:B你没选择任何选项11单选(3分)波长550nm的单色光垂直入射于光栅常数的衍射光栅上,可能观察到的光谱线的最大级次为[]得分/总分∙A.3∙B.5∙C.2∙D.4正确答案:A你没选择任何选项12单选(3分)在一容积不变的封闭容器内理想气体分子的平均速率若提高为原来的2倍,则气体的温度、压强分别变为原来的多少倍?[]得分/总分∙A.4倍、2倍∙B.2倍、4倍∙C.4倍、4倍∙D.2倍、2倍正确答案:C你没选择任何选项13单选(3分)一定量的理想气体,在压强不变的情况下,当温度降低时,分子的平均碰撞频率和平均自由程的变化为[]得分/总分∙A.和都增大∙B.减小,增大∙C.增大,减小∙D.和都减小正确答案:C你没选择任何选项14单选(3分)关于熵的说法,下列表述中正确的是[]得分/总分∙A.熵与系统的微观状态数有关∙B.熵为每改变单位温度所交换的热∙C.可逆过程的熵变为零∙D.不可逆过程的熵将增加正确答案:A你没选择任何选项15单选(3分)设有一物体可视为绝对黑体,其温度自300K升高到900K,则其辐出度增加为原来的[]得分/总分∙A.27倍∙B.9倍∙C.3倍∙D.81倍正确答案:D你没选择任何选项16单选(3分)在加热绝对黑体的过程中,单色辐出度的峰值所对应的波长从700nm变到350nm,则前后两种情况绝对温度之比为[]得分/总分∙A.1:2∙B.1:1∙C.4:1∙D.3:2正确答案:A你没选择任何选项17判断(1分)一定质量的理想气体在一准静态过程中的内能始终保持不变,则该过程为等温过程.得分/总分∙A.∙B.正确答案:A你没选择任何选项18判断(1分)相干光相遇满足叠加原理,而非相干光相遇不满足叠加原理得分/总分∙A.∙B.正确答案:B你没选择任何选项。
大学物理下波的振动部分的习题及答案

第九章 振动一、简答题1、如果把一弹簧振子和一单摆拿到月球上去,它们的振动周期将如何改变? 答案:弹簧振子的振动周期不变,单摆的振动周期变大。
2、完全弹性小球在硬地面上的跳动是不是简谐振动,为什么?答案:不是,因为小球在硬地面上跳动的运动学方程不能用简单的正弦或余弦函数表示,它是一种比较复杂的振动形式。
3、怎样判定一个振动是否简谐振动?写出简谐振动的运动学方程和动力学方程。
答案:物体在回复力作用下,在平衡位置附近,做周期性的线性往复振动,其动力学方程中加速度与位移成正比,且方向相反:x dt xd 222ω−=或:运动方程中位移与时间满足余弦周期关系:)cos(φω+=t A x 4、简谐运动的三要素是什么? 答案: 振幅、周期、初相位。
5、 一质量未知的物体挂在一劲度系数未知的弹簧上,只要测得此物体所引起的弹簧的静平衡伸长量,就可以知道此弹性系统的振动周期,为什么? 答案:因为kmT π2=,若知伸长量为l ,则有kl mg =,于是glT π2=。
6、 弹簧振子作简谐运动时,如果振幅增为原来的两倍而频率减小为原来的一半,问它的总能量怎样改变? 答:根据2222121A m kA E ω==,如果是保持质量不变通过减小劲度系数减小频率,则总能量不变;如果是保持劲度系数不变通过增大质量减小频率,则总能量将变为原来的4倍。
二、选择题1、一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A−,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( B )2、已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( D ):(A) ⎪⎭⎫ ⎝⎛−=ππ3232cos 2x t (B) ⎪⎭⎫ ⎝⎛+=ππ3232cos 2x t(C) ⎪⎭⎫ ⎝⎛−=ππ3234cos 2x t (D) ⎪⎭⎫ ⎝⎛+=ππ3234cos 2x t3、 两个同周期简谐运动曲线如图所示,1x 的相位比2x 的相位( B ):(A) 落后2π(B) 超前2π(C) 落后π (D) 超前π4、当质点以频率f作简谐运动时,它的动能的变化频率为( C ):(A)2f (B)f (C) f 2 (D) f 45、 一个沿x 轴做简谐振动的弹簧振子,己知其振幅为A ,周期为T ,如果在0t =时质点处于2A 处并且向x 轴正向运动,则振动方程为( D ): (A)⎪⎭⎫ ⎝⎛+=3T 2Acos x ππt (B) ⎪⎭⎫ ⎝⎛+=32T2Acos x ππt (C)⎪⎭⎫ ⎝⎛−=32T 2Acos x ππt (D) ⎪⎭⎫ ⎝⎛−=3T 2Acos x ππt 6、两个质点各自作简谐振动,他们的振幅相同、周期相同,第一个质点的振动方程为()αω+=t Acos x 1。
大学物理习题册---振动与波

一 选择题 (共60分)1. (本题 3分)(0327) 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是:(A) 2max 2max/x m k v =. (B) x mg k /=. (C) 22/4T m k π=. (D) x ma k /=. [ ]2. (本题 3分)(3255) 如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质量为m 的物体,则这三个系统的周期值之比为(A) 1∶2∶2/1. (B) 1∶21∶2 . (C) 1∶2∶21. (D) 1∶2∶1/4 . [ ]3. (本题 3分)(3256) 图(a)、(b)、(c)为三个不同的简谐振动系统.组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同.(a)、(b)、(c)三个振动系统的ω2(ω为固有角频率)值之比为(A) 2∶1∶21. (B) 1∶2∶4 .(C) 2∶2∶1 . (D) 1∶1∶2 .[ ](a)(b)4. (本题 3分)(5507) 图中三条曲线分别表示简谐振动中的位移x ,速度v ,和加速度a .下列说法中哪一个是正确的?(A) 曲线3,1,2分别表示x ,v ,a 曲线;(B) 曲线2,1,3分别表示x ,v ,a 曲线; (C) 曲线1,3,2分别表示x ,v ,a 曲线; (D) 曲线2,3,1分别表示x ,v ,a 曲线;(E) 曲线1,2,3分别表示x ,v ,a 曲线. [ ]x, v , at O123已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A) )3232cos(2π+π=t x .(B) )3232cos(2π−π=t x .(C) )3234cos(2π+π=t x .(D) )3234cos(2π−π=t x .(E) )4134cos(2π−π=t x . [ ]6. (本题 3分)(3028) 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为 (A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 . [ ]7. (本题 3分)(3023) 一弹簧振子,当把它水平放置时,它可以作简谐振动.若把它竖直放置或放在固定的光滑斜面上,试判断下面哪种情况是正确的:(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动. (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动.(C) 两种情况都可作简谐振动.(D) 两种情况都不能作简谐振动. [ ]放在光滑斜面上8. (本题 3分)(5181) 一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是 (A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]9. (本题 3分)(3560) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A) kA 2. (B) 221kA .(C) (1/4)kA 2. (D) 0. [ ]10. (本题 3分)(3066) 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]一平面余弦波在t = 0时刻的波形曲线如图所示,则O 点的振动初相φ 为:(A) 0. (B) π21(C) π (D) π23(或π−21) [ ]xyOu12. (本题 3分)(3151) 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为 [ ]13. (本题 3分)(3072) 如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为 (A) }]/)([cos{0φω+−−=u l x t A y . (B) })]/([cos{0φω+−=u x t A y .(C) )/(cos u x t A y −=ω.(D) }]/)([cos{0φω+−+=u l x t A y . [ ]14. (本题 3分)(3071) 一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示.则坐标原点O 的振动方程为 (A) 2)(cos[π+′−=t t b u a y . (B) ]2)(2cos[π−′−π=t t b u a y . (C) ]2)(cos[π+′+π=t tb u a y .(D) 2)(cos[π−′−π=t t b u a y . [ ]15. (本题 3分)(3286) 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ',b ,d ,f . (B) a ,c ,e ,g .(C) o ',d . (D) b ,f .[ ]17. (本题 3分)(3289) 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小.(D)各点的波的能量密度都不随时间变化. [ ]18. (本题 3分)(3090) 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能. (B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. [ ]19. (本题 3分)(5321) S 1和S 2是波长均为λ 的两个相干波的波源,相距3λ /4,S 1的相位比S 2超前π21.若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2连线上S 1外侧和S 2外侧各点,合成波的强度分别是(A) 4I 0,4I 0. (B) 0,0.(C) 0,4I 0 . (D) 4I 0,0. [ ]20. (本题 3分)(3101) 在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ ]二 填空题 (共81分)21. (本题 4分)(3010) 有两相同的弹簧,其劲度系数均为k .(1) 把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________;(2) 把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________________________.22. (本题 3分)(3041) 一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为__________________.23. (本题 5分)(3398) 一质点作简谐振动.其振动曲线如图所示.根据此图,它的周期T =___________,用余弦函数描述时初相φ =_________________.24. (本题 5分)(3400) 试在下图中画出简谐振子的动能,振动势能和机械能随时间t 而变的三条曲线(设t = 0时物体经过平衡位置).EtTT/2T 为简谐振动的周期25. (本题 3分)(3569) 如图所示的是两个简谐振动的振动曲线,它们合成的余弦振动的初相为__________________.21−一质点同时参与了三个简谐振动,它们的振动方程分别为)31cos(1π+=t A x ω, )35cos(2π+=t A x ω, )cos(3π+=t A x ω其合成运动的运动方程为x = ______________.27. (本题 4分)(5315) 两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位差φ1 − φ2为____________.28. (本题 5分)(3075) 一平面简谐波的表达式为 )37.0125cos(025.0x t y −= (SI),其角频率ω =__________________________,波速u =______________________,波长λ = _________________.29. (本题 4分)(3862) 一横波的表达式是 )30/01.0/(2sin 2x t y −π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .30. (本题 5分)(3074) 一平面简谐波的表达式为 )/(cos u x t A y −=ω)/cos(u x t A ωω−= 其中x / u 表示_____________________________;ωx / u 表示________________________;y 表示______________________________.31. (本题 5分)(3863) 已知平面简谐波的表达式为 )cos(Cx Bt A y −=式中A 、B 、C 为正值常量,此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两点的振动相位差是____________________.一简谐波沿BP 方向传播,它在B 点引起的振动方程为t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.33. (本题 5分)(3063) 一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ____________; 振幅A = __________;频率ν = ____________.34. (本题 5分)(3133) 一平面简谐波沿Ox 轴正方向传播,波长为λ.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________.OP 1P 235. (本题 3分)(3301) 如图所示,S 1和S 2为同相位的两相干波源,相距为L ,P 点距S 1为r ;波源S 1在P 点引起的振动振幅为A 1,波源S 2在P 点引起的振动振幅为A 2,两波波长都是λ,则P 点的振幅A = _________________________________________________________.1236. (本题 4分)(5517) S 1,S 2为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距λ23(λ为波长)如图.已知S 1的初相为π21.(1) 若使射线S 2C 上各点由两列波引起的振动均干涉相消,则S 2的初相应为________________________.(2) 若使S 1 S 2连线的中垂线MN 上各点由两列波引起的振动均干涉相消,则S 2的初位相应为_______________________.37. (本题 3分)(3595) 一驻波的表达式为 )2cos()/2cos(2t x A y νλππ=.两个相邻波腹之间的距离是___________________.一驻波表达式为t x A y ωλcos )/2cos(2π=,则λ21−=x 处质点的振动方程是___________________________________________;该质点的振动速度表达式是______________________________________.39. (本题 5分)(3107) 如果入射波的表达式是)(2cos 1λxT t A y +π=,在x = 0处发生反射后形成驻波,反射点为波腹.设反射后波的强度不变,则反射波的表达式y 2 =___________________________________________; 在x = 2λ /3处质点合振动的振幅等于______________________.40. (本题 3分)(3462) 在真空中一平面电磁波的电场强度波的表达式为:103(102cos[100.6882×−×π×=−xt E y (SI)则该平面电磁波的波长是____________________.三 计算题 (共74分)41. (本题10分)(3022) 一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.42. (本题 5分)(3045) 一质点作简谐振动,其振动方程为x = 0.24)3121cos(π+πt (SI),试用旋转矢量法求出质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .43. (本题 5分)(3085) 在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)214cos(01.0π−π−=x t y (SI).若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式.如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+−π=x t A y (SI),求(1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式.OP45. (本题 5分)(3332) 如图所示,一简谐波向x 轴正向传播,波速u = 500 m/s ,x 0 = 1 m, P 点的振动方程为 )21500cos(03.0π−π=t y (SI).(1) 按图所示坐标系,写出相应的波的表达式;(2) 在图上画出t = 0时刻的波形曲线.46. (本题 8分)(5516) 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.47. (本题 8分)(3078) 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求 (1) x = 0处质点振动方程;(2) 该波的表达式.xu O t =t ′y48. (本题 8分)(3138) 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.49. (本题10分)(3146) 如图为一平面简谐波在t = 0 时刻的波形图,已知波速u = 20 m/s .试画出P 处质点与Q 处质点的振动曲线,然后写出相应的振动方程.如图所示,两列相干波在P 点相遇.一列波在B 点引起的振动是 t y π×=−2cos 103310 (SI);另一列波在C 点引起的振动是)212cos(103320π+π×=−t y (SI); 令=BP 0.45 m ,=CP 0.30m ,两波的传播速度u = 0.20 m/s ,不考虑传播途中振幅的减小,求P 点的合振动的振动方程.51. (本题 5分)(3336) 如图所示,两列波长均为λ 的相干简谐波分别通过图中的O 1和O 2点,通过O 1点的简谐波在M 1 M 2平面反射后,与通过O 2点的简谐波在P 点相遇.假定波在M 1 M 2平面反射时有相位突变π.O 1和O 2两点的振动方程为 y 10 =A cos(πt ) 和y 20 = A cos(πt ),且 λ81=+mP m O , λ32=P O (λ 为波长),求:(1) 两列波分别在P 点引起的振动的方程;(2) P 点的合振动方程.(假定两列波在传播或反射过程中均不衰减)2。
大学物理振动波动与光学

等厚干涉
劈尖干涉 牛顿环干涉
劈尖干涉
L S
T 明条纹or暗条纹!
M
l
光程差
2n2e 2
2n2e2
k
G1
O
O
ek
2n2
O
G2
O
k1,2,3,明纹
2n2e2(2k1)2 k0,1,2,暗纹
明、暗条纹的位置:
能确定明暗条纹的位置!
e k 明 ( k2 ) /2 n ( 2 ) e k 暗 ( k) ( /2 n 2 )
会2分析 (1)asinφ中有几个半波带
第一级明纹 第一级暗纹
中央明纹
3/ 2
(2)缝宽对条纹宽度的影响!
0 asinφ (3)波长对条纹宽度的影响!
第第光一一栅级级明暗衍纹纹射
3/2
第二级暗纹
2 5/2
第二级明纹
光栅衍射 (单缝衍射+多缝干涉) 理解!
主极大 dsin k 光栅方程
简谐振动
《振动》复习
(一)振动基本知识
微分方程 表达式
2
dx dt2
2x
0
(动力学方程)
x A co t s(运动方程)
振动三要素的物理意义?如何求?
振幅A:
圆频率 :
E 1 kA2
k m
2
弹簧振子
初相位 :
g l
单摆
t 0时刻
x0 Acos v0 Asin
相遇前后各自独立; 相遇时相互叠加.
频率相同、振动方向相同、具有恒定相位差
波的相干
波源 y y1 20 0 A A 1 20 0 cco o sstt 12
大学物理振动与波练习题与答案

第二章 振动与波习题答案12、一放置在水平桌面上的弹簧振子,振幅2100.2-⨯=A 米,周期50.0=T 秒,当0=t 时 (1) 物体在正方向的端点;(2) 物体在负方向的端点;(3) 物体在平衡位置,向负方向运动; (4) 物体在平衡位置,向正方向运动。
求以上各种情况的谐振动方程。
【解】:π=π=ω45.02 )m ()t 4cos(02.0x ϕ+π=, )s /m ()2t 4cos(08.0v π+ϕ+ππ=(1) 01)cos(=ϕ=ϕ,, )m ()t 4cos(02.0x π=(2) π=ϕ-=ϕ,1)cos(, )m ()t 4cos(02.0x π+π=(3) 21)2cos(π=ϕ-=π+ϕ, , )m ()2t 4cos(02.0x π+π= (4) 21)2cos(π-=ϕ=π+ϕ, , )m ()2t 4cos(02.0x π-π=13、已知一个谐振动的振幅02.0=A 米,园频率πω4=弧度/秒,初相2/π=ϕ。
(1) 写出谐振动方程;(2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】:)m ()2t 4cos(02.0x π+π= , )(212T 秒=ωπ=15、图中两条曲线表示两个谐振动(1) 它们哪些物理量相同,哪些物理量不同? (2) 写出它们的振动方程。
【解】:振幅相同,频率和初相不同。
虚线: )2t 21cos(03.0x 1π-π= 米实线: t cos 03.0x 2π= 米16、一个质点同时参与两个同方向、同频率的谐振动,它们的振动方程为t 3cos 4x 1= 厘米)32t 3cos(2x 2π+= 厘米试用旋转矢量法求出合振动方程。
【解】:)cm ()6t 3cos(32x π+=17、设某一时刻的横波波形曲线如图所示,波动以1米/秒的速度沿水平箭头方向传播。
(1) 试分别用箭头表明图中A 、B 、C 、D 、E 、F 、H 各质点在该时刻的运动方向; (2) 画出经过1秒后的波形曲线。
厦门大学大学物理第二学期期末习题集(振动与波习题)

I0
2
如图,介质I和III为空气(n1=1.00),II 为玻璃 (n2=1.732),玻璃的两表面相互平行 。一束自然光由介质I中以i角入射。若使I,II交界面上的反射光为线偏振光,求
10. 用波长=500nm的单色光垂直照射在由两块玻璃板(一端刚 好接触成为劈棱)构成的空气劈尖上。劈尖角 =210-4rad。现在 劈尖内充满折射率为n=1.40的液体。求从劈棱数起第5个明条纹在
x x 充入液体前后移动的距离。 (参考答案:
5 5
1.607(mm) 。 x5
d y 2 2 dt dt
2
a
o
b
1题图
x
上式是简谐振动的微分方程,它的通解为: y A cos(t 0 ) 所以木块的运动是简谐振动.
振动周期:
m a T 2 2 gS g
2
t 0 时, x b 0
v0 0
振幅: A
y0 b a
2 y0
2
(n1 )t
P
A A A 2AA 1 2 cos (n1 )t 2A 2A 1 cos 1 cos 2
2 1 2 2
d2
O
)t (2) 若使O点处光强 为零,有 (n1 (2m1 ) 2 (2m1 ) t (m 0,1 , )
在可见光范围内,取k=2和k=3,计算出波长分别为674nm和404nm。
在可见光范围内,取k=2,计算出波长分别为505nm。
9. 在空气中垂直入射的白光从肥皂膜上反射,在可见光谱中630nm 处有一干涉极大,而在525nm处有一干涉极小,在这极大与极小之 间没有另外的极小。假定膜的厚度是均匀的,求这膜的厚度。肥皂 水的折射率看作与水相同,为1.33。
大学物理振动与波题库及答案

一、选择题:(每题3分)1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ ]3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ ]4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为:(A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ ]5、一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ ]6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ]7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4. [ ]8、两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[ ]9、一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]10、一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3. [ ]11、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. [ ]12 一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T . [ ]13、当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν . (C) ν. (D) ν21. [ ]14、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ ]15、若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ ]16、下列函数f (x , t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=.(C) bt ax A t x f cos cos ),(⋅=. (D) bt ax A t x f sin sin ),(⋅=. [ ]17、频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m .A/ -A(C) 0.5 m . (D) 0.25 m . [ ]18、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ ]19、一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s . [ ]20、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]21、图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为(A) 0.(B) π21. (C) π. (D) π23. [ ]22、一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是 (A) A ,0,-A. (B) -A ,0,A. (C) 0,A ,0. (D) 0,-A ,0. [ ]23一平面简谐波表达式为 )2(sin 05.0x t y -π-= (SI),则该波的频率 ν (Hz), 波速u (m/s)及波线上各点振动的振幅 A (m)依次为(A) 21,21,-0.05. (B) 21,1,-0.05. (C) 21,21,0.05. (D) 2,2,0.05. [ ]24、在下面几种说法中,正确的说法是:(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计) [ ]25、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定x y O u(A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]26、一平面简谐波沿x 轴负方向传播.已知 x = x 0处质点的振动方程为)cos(0φω+=t A y .若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y . (B) }]/)([cos{00φω+--=u x x t A y . (C) }]/)[(cos{00φω+--=u x x t A y . (D) }]/)[(cos{00φω+-+=u x x t A y . [ ]27、一平面简谐波,其振幅为A ,频率为ν .波沿x 轴正方向传播.设t = t 0时刻波形如图所示.则x = 0处质点的振动方程为(A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν. (C) ]21)(2cos[0π--π=t t A y ν. (D) ])(2cos[0π+-π=t t A y ν. [ ]28、一平面简谐波的表达式为 )/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 3 [ ]29、在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]30、如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ. (D) π=-π+-k r r 2/)(22112λφφ.[ ]31、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.叠加后形成的驻波中,波节的位置坐标为 (A) λk x ±=. (B) λk x 21±=. (C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x . x y t =t 0u O其中的k = 0,1,2,3, …. [ ]32、有两列沿相反方向传播的相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=. 叠加后形成驻波,其波腹位置的坐标为:(A) x =±k λ. (B) λ)12(21+±=k x . (C) λk x 21±=. (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ ]33某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是(A) 0 (B) π21(C) π. (D) 5π/4. [ ]34、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是(A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ ]35、在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ . [ ]36、在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4. [ ]37在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式是)/(2cos 0λνx t E E z -π=,则磁场强度波的表达式是:(A) )/(2cos /000λνμεx t E H y -π=. (B) )/(2cos /000λνμεx t E H z -π=.(C) )/(2cos /000λνμεx t E H y -π-=. (D) )/(2cos /000λνμεx t E H y +π-=. [ ]38、在真空中沿着z 轴负方向传播的平面电磁波,其磁场强度波的表达式为)/(cos 0c z t H H x +-=ω,则电场强度波的表达式为:(A) )/(cos /000c z t H E y +=ωεμ. (B) )/(cos /000c z t H E x +=ωεμ. (C) )/(cos /000c z t H E y +-=ωεμ.(D) )/(cos /000c z t H E y --=ωεμ. [ ]39、电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:(A) 三者互相垂直,而E 和H 位相相差π21. (B) 三者互相垂直,而且E 、H 、 u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意方向的,但都必须与 u 垂直. [ ]40、电磁波在自由空间传播时,电场强度E 和磁场强度H(A) 在垂直于传播方向的同一条直线上.(B) 朝互相垂直的两个方向传播.(C) 互相垂直,且都垂直于传播方向.(D) 有相位差π21. [ ] 二、填空题:(每题4分)41、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A /2处,且向负方向运动,则初相为______.42、三个简谐振动方程分别为 )21cos(1π+=t A x ω,)67cos(2π+=t A x ω和)611cos(3π+=t A x ω画出它们的旋转矢量图,并在同一坐标上画出它们的振动曲线.43、一物体作余弦振动,振幅为15×10-2 m ,角频率为6π s -1,初相为0.5 π,则振动方程为x = ________________________(SI).44、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点.已知周期为T ,振幅为A .(1) 若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为x =_____________________________.(2) 若t = 0时质点处于A x 21=处且向x 轴负方向运动,则振动方程为 x =_____________________________.45、一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动 周期为______________________.46、在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振动的周期之比为_______________________.47、一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________.48、一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为_________________________.49、两个简谐振动曲线如图所示,则两个简谐振动 的频率之比ν1∶ν2=__________________,加速度最 大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.50、有简谐振动方程为x = 1×10-2cos(π t +φ)(SI),初相分别为φ1 = π/2,φ2 = π,φ3 = -π/2的三个振动.试在同一个坐标上画出上述三个振动曲线.51、一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为 __________________.52、已知两个简谐振动的振动曲线如图所示.两 简谐振动的最大速率之比为_________________.53、一水平弹簧简谐振子的振动曲线如图所示.当振子处在位移为零、速度为-ωA 、加速度为零和弹性力为零 的状态时,应对应于曲线上的________点.当振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力 为-kA 的状态时,应对应于曲线上的____________点.x (cm)t (s)O- x (cm)54、一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________; φ =_______________.55、已知两个简谐振动曲线如图所示.x 1的相位比x 2 的相位超前_______.56、两个简谐振动方程分别为 t A x ωcos 1=,)31cos(2π+=t A x ω 在同一坐标上画出两者的x —t 曲线.xtO57、已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.58、已知三个简谐振动曲线如图所示,则振动方程分别为:x 1 =______________________,x 2 = _____________________,x 3 =_______________________.59、图中用旋转矢量法表示了一个简谐振动.旋转矢量的长度为0.04 m ,旋转角速度ω = 4π rad/s .此简谐振动以余弦函数表 x (cm)t (s)O 12示的振动方程为x =__________________________(SI).60、一质点作简谐振动的角频率为ω 、振幅为A .当t = 0时质点位于A x 21=处,且向x 正方向运动.试画出此振动的旋转矢量图.61、两个同方向的简谐振动曲线如图所示.合振动的振幅 为_______________________________,合振动的振动方程 为________________________________. 62、一平面简谐波.波速为6.0 m/s ,振动周期为0.1 s ,则波长为___________.在波的传播方向上,有两质点(其间距离小于波长)的振动相位差为5π /6,则此两质点相距___________.63、一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在 该时刻的运动方向.A _____________;B _____________ ;C ______________ . 64、一横波的表达式是 )30/01.0/(2sin 2x t y -π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .65、已知平面简谐波的表达式为 )cos(Cx Bt A y -=式中A 、B 、C 为正值常量, 此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两点的振动相位差是____________________.66、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时, 波长变成了0.37 m ,它在该介质中传播速度为______________.67、已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________.68、一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示. 可知波长λ = ____________; 振幅A = __________;频率ν = ____________.69、频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为________________________.70、一平面简谐波沿x 轴正方向传播.已知x = 0处的振动方程为 )cos(0φω+=t y ,波速为u .坐标为x 1和x 2的两点的振动初相位分别记为φ 1和φ 2,则相位差φ 1-φ 2 =_________________.·---y (m)71、已知一平面简谐波的波长λ = 1 m ,振幅A = 0.1 m ,周期T = 0.5 s .选波的传播方向为x 轴正方向,并以振动初相为零的点为x 轴原点,则波动表达式为y = _____________________________________(SI).72、一横波的表达式是)4.0100(2sin 02.0π-π=t y (SI), 则振幅是________,波长是_________,频率是__________,波的传播速度是______________.77、已知一平面简谐波的表达式为 )cos(bx at A -,(a 、b 均为正值常量),则波沿x 轴传播的速度为___________________.74、一简谐波的频率为 5×104 Hz ,波速为 1.5×103 m/s .在传播路径上相距5×10-3 m 的两点之间的振动相位差为_______________.75、一简谐波沿BP 方向传播,它在B 点引起的振动方程为 t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.76、已知一平面简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播方向上相距为a 的两点的相位差为______________.77、在简谐波的一条射线上,相距0.2 m 两点的振动相位差为π /6.又知振动周期为0.4 s ,则波长为_________________,波速为________________.78、一声纳装置向海水中发出超声波,其波的表达式为)2201014.3cos(102.153x t y -⨯⨯=- (SI)则此波的频率ν = _________________ ,波长λ = __________________, 海水中声速u = __________________.79、已知14℃时的空气中声速为340 m/s .人可以听到频率为20 Hz 至20000 Hz 范围内的声波.可以引起听觉的声波在空气中波长的范围约为______________________________.80、一平面简谐波(机械波)沿x 轴正方向传播,波动表达式为)21cos(2.0x t y π-π= (SI),则x = -3 m 处媒质质点的振动加速度a 的表达式为________________________________________.81、在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16,则这两列波的振幅之比是A 1 / A 2 = ____________________.82、两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y . S 1距P 点3个波长,S 2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.83、两相干波源S 1和S 2的振动方程分别是t A y ωcos 1=和)21cos(2π+=t A y ω.S 1距P 点3个波长,S 2距P 点21/4个波长.两波在P 点引起的两个振动的相位差是____________.84、两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21cos(2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.85、一弦上的驻波表达式为)90cos()cos(1.0t x y ππ=(SI).形成该驻波的两个反向传播的行波的波长为________________,频率为__________________.86、一弦上的驻波表达式为 t x y 1500cos 15cos 100.22-⨯= (SI).形成该驻波的两个反向传播的行波的波速为__________________.87、在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.88、频率为ν = 5×107 Hz 的电磁波在真空中波长为_______________m ,在折射率为n = 1.5 的媒质中波长为______________m .89、在电磁波传播的空间(或各向同性介质)中,任一点的E 和H 的方向及波传播方向之间的关系是:_________________________________________________________________________________________________________.90、在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式为)/(2cos 600c x t E y -π=ν (SI),则磁场强度波的表达式是______________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)91、在真空中沿着x 轴负方向传播的平面电磁波,其电场强度的波的表达式为)/(2cos 800c x t E y +π=ν (SI),则磁场强度波的表达式是________________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)92、在真空中沿着z 轴正方向传播的平面电磁波的磁场强度波的表达式为])/(cos[00.2π+-=c z t H x ω (SI),则它的电场强度波的表达式为____________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )93、在真空中沿着负z 方向传播的平面电磁波的磁场强度为)/(2cos 50.1λνz t H x +π= (SI),则它的电场强度为E y = ____________________. (真空介电常量ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )94真空中一简谐平面电磁波的电场强度振幅为 E m = 1.20×10-2 V/m 该电磁波的强度为_________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )95、在真空中沿着z 轴的正方向传播的平面电磁波,O 点处电场强度为)6/2cos(900π+π=t E x ν,则O 点处磁场强度为___________________________. (真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )96、在地球上测得来自太阳的辐射的强度=S 1.4 kW/m 2.太阳到地球的距离约为1.50×1011 m .由此估算,太阳每秒钟辐射的总能量为__________________.97、在真空中沿着z 轴负方向传播的平面电磁波,O 点处电场强度为)312cos(300π+π=t E x ν (SI),则O 点处磁场强度为_____________________________________.在图上表示出电场强度,磁场强度和传播速度之间的相互关系.98、电磁波在真空中的传播速度是_________________(m/s)(写三位有效数字).99、电磁波在媒质中传播速度的大小是由媒质的____________________决定的.100、电磁波的E 矢量与H 矢量的方向互相____________,相位__________.三、计算题:(每题10分)101、一质点按如下规律沿x 轴作简谐振动:)328cos(1.0π+π=t x (SI).求此振动的周期、振幅、初相、速度最大值和加速度最大值.102、一质量为0.20 kg 的质点作简谐振动,其振动方程为)215cos(6.0π-=t x (SI).求:(1) 质点的初速度;(2) 质点在正向最大位移一半处所受的力.z yxO103、有一轻弹簧,当下端挂一个质量m 1 = 10 g 的物体而平衡时,伸长量为 4.9 cm .用这个弹簧和质量m 2 = 16 g 的物体组成一弹簧振子.取平衡位置为原点,向上为x 轴的正方向.将m 2从平衡位置向下拉 2 cm 后,给予向上的初速度v 0 = 5 cm/s 并开始计时,试求m 2的振动周期和振动的数值表达式.104、有一单摆,摆长为l = 100 cm ,开始观察时( t = 0 ),摆球正好过 x 0 = -6 cm 处,并以v 0 = 20 cm/s 的速度沿x 轴正向运动,若单摆运动近似看成简谐振动.试求(1) 振动频率; (2) 振幅和初相.105、质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.106、一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.107、一质量为10 g 的物体作简谐振动,其振幅为2 cm ,频率为4 Hz ,t = 0时位移为 -2 cm ,初速度为零.求(1) 振动表达式;(2) t = (1/4) s 时物体所受的作用力.108、两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.109、一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ·m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求(1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.110、在一竖直轻弹簧下端悬挂质量m = 5 g 的小球,弹簧伸长∆l = 1 cm 而平衡.经推动后,该小球在竖直方向作振幅为A = 4 cm 的振动,求(1) 小球的振动周期; (2) 振动能量.111、一物体质量m = 2 kg ,受到的作用力为F = -8x (SI).若该物体偏离坐标原点O 的最大位移为A = 0.10 m ,则物体动能的最大值为多少?112、一横波沿绳子传播,其波的表达式为)2100cos(05.0x t y π-π= (SI)(1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度.(3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.113、一振幅为 10 cm ,波长为200 cm 的简谐横波,沿着一条很长的水平的绷紧弦从左向右行进,波速为 100 cm/s .取弦上一点为坐标原点,x 轴指向右方,在t = 0时原点处质点从平衡位置开始向位移负方向运动.求以SI 单位表示的波动表达式(用余弦函数)及弦上任一点的最大振动速度.114、一振幅为 10 cm ,波长为200 cm 的一维余弦波.沿x 轴正向传播,波速为 100 cm/s ,在t = 0时原点处质点在平衡位置向正位移方向运动.求(1) 原点处质点的振动方程.(2) 在x = 150 cm 处质点的振动方程.115、一简谐波沿x 轴负方向传播,波速为1 m/s ,在x 轴上某质点的振动频率为1 Hz 、振幅为0.01 m .t = 0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x 轴的原点.求此一维简谐波的表达式.116、已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI)(1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程;(2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.117、一横波方程为 )(2cos x ut A y -π=λ, 式中A = 0.01 m ,λ = 0.2 m ,u = 25 m/s ,求t = 0.1 s 时在x = 2 m 处质点振动的位移、速度、加速度.118、如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+-π=x t A y (SI),求 (1) P 处质点的振动方程; (2) 该质点的速度表达式与加速度表达式.119、一平面简谐波,频率为300 Hz ,波速为340 m/s ,在截面面积为3.00×10-2 m 2的管内空气中传播,若在10 s 内通过截面的能量为2.70×10-2 J ,求(1) 通过截面的平均能流;(2) 波的平均能流密度;(3) 波的平均能量密度.120、一驻波中相邻两波节的距离为d = 5.00 cm ,质元的振动频率为ν =1.00×103 Hz ,求形成该驻波的两个相干行波的传播速度u 和波长λ .O P大学物理------振动与波参考答案一、选择题1 - 5 CBDBB 6 -10 BCBBD 11-15 EBBBC 16-20 ACDCB 21-25 DBCCA 26-30 ABACD 31-35 DCCDB 36-40 CCCBC二、填空题41.(1) π; (2)2/π-; (3)3/π; 42. 略; 43. 21510cos[6]2t ππ-⨯+; 44. (1)2cos[]2A t T ππ-, (2) 2cos[]3A t T πλ+;45. 2 46. 1:2; 47. m 05.0,π205.0- or 09.36-; 48. 25210cos[]22x t π-=⨯- ; 49. 1:2,1:4,1:2; 51. 0,s m /3; 52. 1:1; 53. e a f b ,,,;54. cm 10,s rad /6/π,3/π;55. 3/4π; 56. 略 ;57.(1),...2,1,0,2/)12(=+n n ,(2),...2,1,0,=n n ,(3),...2,1,0,2/)14(=+n n ,; 58. t πcos 1.0,)2/cos(1.0ππ-t ,)cos(1.0ππ±t ; 59. ]24cos[04.0ππ-t ; 60. 略; 61. 21A A -, ]22cos[12ππ+-=t T A A x ; 62. m 6.0,m 25.0; 63. 向下,向上;64. cm 30,30; 65. c /2π,c B /,cd ; 66. s m /503;67. π;68. m 8.0,m 2.0,Hz 125;69. m 233.0;70. u x x /)(12-ω;71. ]24cos[1.0x t ππ-;72. cm 2,cm 5.2,Hz 100,51~2500;73. b a /; 74. 3/π; 75. 0;76. aE ; 77. m 4.2, s m /0.6;78. Hz 4100.5⨯,m 21086.2-⨯,s m /1043.13⨯; 79. m 2107.1~17-⨯; 80. )23cos(2.02x t πππ+-; 81. 4; 82. 0; 83. 0; 84. A 2; 85. m 2,Hz 45; 86. s m /100; 87. 2/λ; 88. m 6, m 4; 89. H E S ⨯= ; 90. )](2cos[59.1c x t H z -=πν; 91. )](2cos[12.2cx t H z +-=πν; 92. ])(cos[754πω+--=c z t E y ; 93. )](2cos[565λνπz t +; 94. 271091.1--⨯wm ;95. ]62cos[39.2ππν+=t H y ; 96. J 26100.4⨯;97. ]32cos[796.0ππν+-=t H y ;98. 81000.3⨯; 99. με,; 100. 垂直,相同,相同三、计算题101、解:周期 25.0/2=π=ωT s ,振幅 A = 0.1 m ,初相 φ = 2π/3,v max = ω A = 0.8π m/s ( = 2.5 m/s ),a max = ω 2A = 6.4π2 m/s 2 ( =63 m/s 2 ).102、解:(1) )25sin(0.3d d π--==t t x v (SI) t 0 = 0 , v 0 = 3.0 m/s .(2) x m ma F 2ω-==A x 21= 时, F = -1.5 N . 103、解:设弹簧的原长为l ,悬挂m 1后伸长∆l ,则 k ∆l = m 1g ,k = m 1g/ ∆l = 2 N/m取下m 1上m 2后, 2.11/2==m k ω rad/sω/2π=T =0.56 st = 0时, φcos m 10220A x =⨯-=-φωsin m/s 10520A -=⨯=-v解得 220201005.2m )/(-⨯=+=ωv x A m =-=-)/(tg 001x ωφv 180°+12.6°=3.36 rad也可取 φ = -2.92 rad振动表达式为 x = 2.05×10-2cos(11.2t -2.92) (SI)或 x = 2.05×10-2cos(11.2t +3.36) (SI)104、解:(1) 13.3/==l g ω rad/s ,5.0)2/(=π=ων Hz(2) t = 0 时,x 0 = -6 cm= A cos φ, v 0 = 20 cm/s= -A ω sin φ由上二式解得 A = 8.8 cm ,φ = 180°+46.8°= 226.8°= 3.96 rad ,(或-2.33 rad )105、解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 (2) )318sin(1042π+π⨯π-==-t x v (SI))318cos(103222π+π⨯π-==-t x a (SI)(3) 2222121A m kA E E E P K ω==+==7.90×10-5 J(4) 平均动能 ⎰=TK t m T E 02d 21)/1(v⎰π+π⨯π-=-T t t m T 0222d )318(sin )104(21)/1(= 3.95×10-5 J = E 21同理 E E P 21== 3.95×10-5 J106、解: (1) 1s 10/-==m k ω, 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0由 2020)/(ωv +=x A得 3.12020-=--=x A ωv m/sπ=-=-31)/(tg 001x ωφv 或 4π/3∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI)107、解:(1) t = 0时,x 0 = -2 cm = -A , 故初相 φ = π ,ω = 2 πν = 8 π s -1)8cos(1022π+π⨯=-t x (SI)(2) t = (1/4) s 时,物体所受的作用力 126.02=-=x m F ω N 108、解:依题意画出旋转矢量图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
(A) 2 ;
答案:(D)
(B)
m1 m2
2
;
(C)
m2 m1
2
;
(D) 2
m2 . m1
一物体作简谐振动,振动方程为
x
A cos(t
1 4
) 。在
t = T/4(T
为周期)时刻,物体的
加速度为 ( )
(A)
2 2
A 2
;
(B)
2 2
A 2 ;
(C)
3 2
A 2
;
(D)
3 2
A 2
。
一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判
一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的 1/4 时,其动能为振 动总能量的
(A) 7/16 ; (B) 9/16 ; (C) 11/16 ; (D) 15/16 。 []
答案:(D)
第十章 波动
10-1 机械波的几个概念
10-2 平面简谐波的波函数
如图所示,有一平面简谐波沿 x 轴负方向传播,
断下列情况正确的是
(A)竖直放置作简谐振动,在光滑斜面上不作简谐振动;
(B)竖直放置不作简谐振动,在光滑斜面上作简谐振动;
(C)两种情况都作简谐振动;
(D)两种情况都不作简谐振动。
[]
竖直放置 放在光滑斜面上
答案:(C)
同一弹簧振子悬挂相同的质量,分别按如图(a)、(b)、(c)所示的三种方式放置,摩擦力都
(A) 曲线 3,1,2 分别表示 x,v,a 曲线; (B) 曲线 2,1,3 分别表示 x,v,a 曲线; (C) 曲线 1,2,3 分别表示 x,v,a 曲线; (D) 曲线 2,3,1 分别表示 x,v,a 曲线.
x, v, a
21
3
t
O
答案:(C)
一质点作简谐振动,周期为 T。当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移 处到最大位移处这段路程所需要的时间为 ( )
坐标原点 O 的振动规律为 y Acos(t 0 ) ,则 B
表此简谐振动的旋转矢量图为 (
)
A
x
(A) o A/2
(C)
A -A/2 o
x
(B) oA/2 x A
(D) -A/2o
x
A
9-3 单摆和复摆
一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为 T1 和 T2.
将它们拿到月球上去,相应的周期分别为 T1 和 T2 。则有(
忽略不计,它们的振动周期分别为 Ta 、Tb 、Tc ,则三者
之间的关系为( )
(A) Ta Tb Tc ; (B) Ta Tb Tc ; (C) Ta Tb Tc ; (D) Ta Tb Tc .
(a)
(b)
(c)
答案:(A)
图中三条曲线分别表示简谐振动中的位移 x、速度 v 和加速度 a.下列说法中哪一个是正确 的?( )
一物体作简谐振动,振动方程为
x
A cos(t
1 4
) 。在
t = T/4(T
为周期)时刻,物体的
加速度为
(A)
2 2
A 2
;
(B)
2 2
A 2 ;
(C)
3 2
A 2
;
(D)
3 2
A 2
。
[]
答案:(B)
两个质量分别为 m1 、 m2 并由一轻弹簧的两端连结着的小球放在光滑的水平桌面上。当 m1
固定时, m2 的振动频率为 2 ,当 m2 固定时, m1 的振动频率1 为:(
一弹簧振子,当 t 0 时,物体处在 x A / 2(A 为振幅)处且向负方向运动,则它的初相为
()
(A)
3
;
(B)
6
;
(C)
3
;
(D)
6
。
两个同周期简谐振动曲线如图所示。x1 的相位比 x2 的相位(
)
(A) 落后/2 ; (B) 超前;
x x1 x2
(C) 落后;
(D) 超前。 答案:(B)
O
t
弹簧振子沿直线作简谐振动,当振子连续两次经过相同位置时,以下说法正确的是( ) (A)加速度不同,动能相同; (B)动能相同,动量相同; (C)回复力相同,弹性势能相同; (D)位移、速度和加速度都相同。
一质点作简谐振动,振幅为 A,在起始时刻质点的位移为 A / 2 ,且向 x 轴的正方B) /2 ;
(C) 0 ;
(D) .
答案:(C)
9-4 简谐运动的能量
一单摆作简谐振动,振动方程式为
0.08 cos(2t
2
)
(SI),则动能变化的周期为(
)
(A) 3.14s ; (B) 1.57s ; (C) 6.28s ; (D) 2.00s 。
答案:(B)
一弹簧振子作简谐振动,当位移大小为振幅的一半时,其势能为总能量的
(A) T /12 ; (B) T /8 ; (C) T /6 ; (D) T /4 。
物体做简谐运动时,下列叙述中正确的是( )
(A)在平衡位置加速度最大;
(B)在平衡位置速度最小;
(C)在运动路径两端加速度最大; (D)在运动路径两端加速度最小。
9-2 旋转矢量
两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为 x1 =
)
(A) T1 T1 且 T2 T2 ;
(B) T1 T1 且 T2 T2 ;
(C) T1 T1 且 T2 T2 ;
(D) T1 T1 且T2 T2 .
答案:(D)
把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止
放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为
《大学物理》章节复习题-振动与波
一、选择题
第九章 振动
9-1 简谐运动
一质点作简谐振动,振动方程为 x A cos(t ) ,在 t = T/2(T 为周期)时刻,质点的速
度为 (
)
(A) A sin ; (B) A sin ; (C) A cos ; (D) A cos .
答案:(B)
(A) 1/4 ; (B) 1/2 ;
(C) 1/ 2 ; (D) 3/4 。
[
]
答案:(A)
弹簧振子沿直线作简谐振动,当振子连续两次经过相同位置时,以下说法正确的是( ) (A)加速度不同,动能相同; (B)动能相同,动量相同; (C)回复力相同,弹性势能相同; (D)位移、速度和加速度都相同. 答案:(C)
Acos(t + )。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点
恰在最大负位移处。则第二个质点的振动方程为
(A)
x2
A cos(t
1 2
π
)
;
(B)
x2
A cos(t
1 2
π
)
;
(C)
x2
A cos(t
3 2
π
)
;
(D) x2 Acos(t ) 。
[]
答案:(A)(C)