2018年广州中考一模试卷-一中-初中数学

合集下载

2018年广州市数学中考模拟试卷(广雅中学)初中数学

2018年广州市数学中考模拟试卷(广雅中学)初中数学

2018年广州市数学中考模拟试卷(一)问卷第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 下列各组数中,把两数相乘,积为1的是( * ). A . 1和-1 B . 2和-12 C . 3和3D . 2和- 22. 如果代数式xx -1有意义,那么x 的取值范围是( * ). A . x ≠0 B . x ≠1 C . x ≠0或x ≠1 D . x ≠0且x ≠13. 下列运算正确的是( * ).A . (-2a 2)3=-8a 6B . x 2+x 3=x 5C .a 2-b 2a -b=a -b D . a 2=a4. 关于二次函数y =-12(x -3)2-2的图像与性质,下列结论错误的是( * ). A . 抛物线开口方向向下 B . 当x =3时,函数有最大值-2C . 当x >3时,y 随x 的增大而减小D . 抛物线可由y =12x 2经过平移得到5. 某中学篮球队12名队员的年龄如下表所示: 年龄(岁)15 16 17 18 人数4521则这12名队员年龄的众数和平均数分别是( * ).A . 15,15B . 15,16C . 16,16D . 16,16.56. 如图,将△ABC 绕点C (0,1)旋转180°,得到△DEC ,若点A 的坐标为(3,-1),则点D 的坐标为( * ).A . (-3,1)B . (-2,2)C . (-3,2)D . (-3,3)第6题图7. 如图,在△ABC 中,AB =AC =13,BC =10,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( * ). A . 16.5 B . 18 C . 23 D . 26第7题图8.用大小相等的小方块按一定规律拼成下列图形,则第n个图形中小正方体的个数是(* ).A.2n+1 B.n2-1 C.n2+2n D.5n-29.现定义运算“★”,对于任意实数a,b,都有a★b=a2-ab+b,如:3★5=32-3×5+5,若x★2=10,则实数x的值为( * ).A.4 B.-4 C.4或-2 D.2或-410.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为(* ).A.(4,23)B.(3,33)C.(4,33)D.(3,23第10题图第二部分(非选择题共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为________.12.分解因式:a2b-4ab2+4b3=__________.第11题图13.如图,一个空间几何体的主视图和左视图都是边长为2的正三角形,俯视图是一个圆,那么这个几何体的侧面积是_________.第13题图14.如图,在⊙O中CD⊥AB于E,若∠BAD=30°,且BE=2,则CD=________.第14题图15. 如图,A ,B 是双曲线y =kx (x >0)上的两点,过A 作AC ⊥x 轴于点C ,交OB 于点D ,且D 为OB 的中点,若△ABO 的面积为2,则k 的值为________.第15题图16. 如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD =34其中正确的结论是________.第16题图三、解答题(本大题共9小题,满分102分) 17. (本小题满分9分)解方程:x +32-4x -16=1.18. (本小题满分9分) 已知E ,F 是□ABCD 的对角线AC 上的两点,AF =CE ,求证: ∠CDF =∠ABE .第18题图19. (本小题满分10分) 已知A =x -22x +2÷(x -1-3x +1)(1)化简A ;(2)已知x =|1-tan60°|-1,求A 的值.20. (本小题满分10分)如图,Rt △ABC 中,∠C =90°,AC =8,BC =6.(1)尺规作图:作△BAC 的平分线AD (保留作图痕迹,不写作法); (2)求AD 的长.第20题图某初中为了提高学生综合素质,决定开设以下校本课程:A软笔书法;B经典诵读;C钢笔画;D花样跳绳;为了了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行了调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形统计图(2)补充完整;(3)在平时的花样跳绳的课堂学习中,甲、乙、丙三人表现优秀,现决定从这三名同学中任选两名参加全区综合素质展示,求恰好同时选中甲、乙两位同学的概率.22.(本小题满分12分)已知二次函数y=ax2+b的图象与直线y=x+2相交于点A(1,m)和点B(n,0).(1)求二次函数的解析式;(2)在图中的平面直角坐标系中,画出这两个函数的图象,并结合图象直接写出ax2+b>x+2时x的取值范围.第22题图23.(本小题满分12分)某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购进这两种型号的跳绳共50根,并且A型跳绳的数量不多于B型跳绳数量的3倍,请设计出最省钱的购买方案,并说明理由.如图,已知点A (-3,0),二次函数y =ax 2+bx +3的对称轴为直线x =-1,其图象过点A 与x 轴交于另一点B ,与y 轴交于点C . (1)求二次函数的解析式,并写出顶点坐标;(2)动点M ,N 同时从B 点出发,均以每秒2个单位长度的速度分别沿△ABC 的BA ,BC 边上运动,设其运动的时间为t 秒,当其中一个点到达终点时,另一个点也随之停止运动,连结MN ,将△BMN 沿MN 翻折,若点B 恰好落在抛物线弧上的B ′处,求t 的值及点B ′的坐标;(3)在(2)的条件下,Q 为BN 的中点,试探究坐标轴上是否存在点P ,使得以B ,Q ,P 为顶点的三角形与△ABC 相似?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.第24题图 25. (本小题满分14分)如图,在△ABC 中,AB =AC =5,cos B =45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D ,∠BPD =∠BAC ,以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E ,连接CE ,设BD =x ,CE =y .(1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出x 的取值范围; (3)在CE 的垂直平分线上存在一点O ,使得OB =OC ,连接OP ,当OP =54时,求AD 的长.第25题图。

2018年广州中考一模试卷-白云区-初中数学

2018年广州中考一模试卷-白云区-初中数学

白云区2018年初中毕业班综合测试(一)数学试题第一部分 选择题(共30分)一、选择题(本大题共10小题,每题3分,共30分)1.-2的绝对值是( ).(A )-2(B )2(C )-12 (D ) 122.下列说法正确的是( ).(A )直线BA 与直线AB 是同一条直线(B )延长直线AB (C )射线BA 与射线AB 是同一条直线(D )直线AB 的长为2cm 3.下列各式中,正确的是( ).(A )3+2ab =5ab(B )5xy -x =5y (C )-5m 2n +5nm 2=0(D )x 3-x =x 24.矩形ABCD 的对角线AC ,BD 交于点O ,以下结论不一定成立的是( ).(A )∠BCD =90° (B )AC =BD (C )OA =OB (D )OC =CD5.不等式组⎩⎨⎧4x -6≥-103-2x >0的整数解有( ). (A )4个(B )3个(C )2个(D )1个6.在Rt △ABC 中,∠C =90°,sin A =35,则AC :AB =(). (A )3:5(B )3:4(C )4:3(D )4:57.下列说法错误的是( ).(A )必然发生的事件发生的概率为1(B )不可能事件发生的概率为0(C )不确定事件发生的概率为0(D )随机事件发生的概率介于0和1之间8.下列判断中,正确的是( ).(A )各有一个角是 67°的两个等腰三角形相似(B )邻边之比都为 2:1 的两个等腰三角形相似(C )各有一个角是 45°的两个等腰三角形相似(D )邻边之比都为 2:3 的两个等腰三角形相似。

荔湾广雅2018届九年级一模数学试卷

荔湾广雅2018届九年级一模数学试卷

17. (本小题满分 9 分)解方程:x+2 3-4x-6 1=1. 18. (本小题满分 9 分)

教 已知 E,F 是□ABCD 的对角线 AC 上的两点,AF=CE,求证:
∠CDF=∠ABE.
19. (本小题满分 10 分)
山 已知 A=2xx-+22÷(x-1-x+3 1)
(1)化简 A;
榄 (2)已知 x=|1-tan60°|-1,求 A 的值.
A. 15,15
B. 15,16
C. 16,16
D. 16,16.5
6. 如图,将△ABC 绕点 C(0,1)旋转 180°,得到△DEC,若点 A 的坐 标为(3,-1),则点 D 的坐标为( * ). A. (-3,1) B. (-2,2) C. (-3,2) D. (-3,3)
第 6 题图
7. 如图,在△ABC 中,AB=AC=13,BC=10,AD 平分∠BAC 交 BC 于点
视图是一个圆,那么这个几何体的侧面积是_________.

第 13 题图
14.如图,在⊙O 中 CD⊥AB 于 E,若∠BAD=30°,且 BE=2,则 CD=________.
第 14 题图
15. 如图,A,B 是双曲线 y=kx(x>0)上的两点,过 A 作 AC⊥x 轴于 点 C,交 OB 于点 D,且 D 为 OB 的中点,若△ABO 的面积为 2,则 k 的值为________.
2018 年广州市数学中考模拟试卷(一)
问卷
第一部分(选择题共 30 分)
一、选择题(本大题共 10 小题,每小题 3 分,满分 30 分,在每小题给出的四个选项中,只
有一项是符合题目要求的。)
1. 下列各组数中,把两数相乘,积为 1 的是( * ).

广东省2018年中考模拟考试数学试卷(含答案)

广东省2018年中考模拟考试数学试卷(含答案)

九年级学业模拟考试数学试卷说明:本试卷共 4页,25小题,满分120分•考试用时100分钟. 注意事项:1答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号, 再用2B 铅笔把试室号、座位号的对应数字涂黑. 2 •选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3•非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上; 如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的 答案无效. 4.考生必须保持答题卡的整洁•考试结束后,将试卷和答题卡一并交回. 一、选择题(本大题10小题,每题3分,共30分)111.-的倒数是(▲) A .B . - 8C . 88 8若一个正n 边形的每个内角为150。

,则这个正n 边形的边数是(▲)1个球,则摸出的球是白球的概率为( ▲)C .- 21D .-82. 是中心对称图形的是(F 图形是我国国产品牌汽车的标识,在这些汽车标识中, B .C .② D. ®▲)3. 4. C . 5. 10 B . 11 C .地球的表面积约是0.51 XI09 千米5.1 X 07 千米 2一个布袋里装有 12 D . 13510 000 000千米2,用科学记数法表示为(▲) 8十、2B . 5.1X10 千米D . 51 X107 千米 26个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸6.在 Rt △ ABC 中, C=90° 如果BC=2 , 2sinA=,那么AB 的长是(▲)37. 如果代数式 4 324y - C .5D .■132y+5的值是 9,那么代数式2y 2- y+2的值等于(▲)‘2a15.已知满足 a —3+(a —b —5) =0,则 b = ▲.16.如图,△ ABC 的面积是4,点D 、E 、F 分别是 BC 、AD 、 则厶C EF 的面积是▲.三.解答题(一)(本大题3小题,每题6分,共18 分)17 .计算:(兀 一 1) + V_1 _ 寸 9 十 | —1 1 2m18. 先化简,再求值( )* —2 ,其中m =3.m —2 m +2 m —4m +48.下面是一位同学做的四道题, 其中正确的是(▲)3 3 6 2 3 52A . m +m =mB . x ?x =xC . (- b ) 吃b=2b 233 6D . (- 2pq ) = - 6p q9.已知四边形ABCD 是平行四边形,对角线 AC 、BD 交于点O , E 是BC 的中点, 以下说法错误的是(▲) A . OE= DC 2 C .Z BOE= / OBA B . OA=OC D . Z OBE= / OCE 10.对于函数y =-2x ,2,下列结论:①.当x > 1时,y v 0;②.它的图象经过第一、二、三象限; ③.它的图象必经过点 (-2, 2);④.y 的值随x 值的增大而增大,其中正确结论的个数是( 二.填空题(本大题 6小题,每小题4分,共24 分) 11.比较大小:3 ▲ 77(填 “ >” “ c ” 或“=”). 12 .如图,正六边形 ABCDEF 内接于O O ,若AB=2则O O 的半径为▲. D'CAf EF13•不等式组x2:3x的解集为、 x-4 空 0 14 .如图,将 ^ABC 沿直线AB 向右平移后到达 BDE 的位置, 若区 CAB = 50° Z ABC = 100° ,贝U N CBE 的度数为 ▲. DRABE 的中点,ED19. 光明市在道路改造过程中,需要铺设一条污水管道,决定由甲、乙两个工程队来完成这一工程已知甲工程队比乙工程队每天多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.求甲、乙工程队每天各铺设多少米?四•解答题(二)(本大题3小题,每小题7分,共21 分)20. 如图,在△ ABC 中,/ ABC=60。

2018年广东省中考数学模拟试题及答案(一模定稿)

2018年广东省中考数学模拟试题及答案(一模定稿)

市城生卫建 创 第5题2018年广东省中考数学模拟试题(一模定稿)姓名 班级一.选择题(每题3分,共30分)1.6-的倒数是( ).A .6-B .6C .16-D .162.2011年11月30日,“海峡号”客滚轮直航台湾旅游首发团正式起航。

“海峡号”由福建海峡高速客滚航运有限公司斥资近3亿元购进,将3亿用科学记数法表示正确 的是( )A .8103⨯B .9103⨯C .10103⨯D .11103⨯ 3.下列计算中,正确的是( ).A .23x y xy +=B .22x x x ⋅=C .3262()x y x y =D .623x x x ÷=4.已知一个等腰三角形的一边长是3,另一边长为7,则这个等腰三角形的周长为( )A .13B . 17C . 13或17D . 4 5.如图,该图形经过折叠可以围成一个正方体,折好以后与“城”字相对的字是( ) A .生 B .创 C .城 D .卫6.将二次函数y =2(x -1)2-3的图像向右平移3个单位,则平移后的二次函数的顶点是( ) A .(-2,-3)B .(4,3)C .(4,-3)D .(1,0)7.如图,□MNEF 的两条对角线ME ,NF 交于原点O , 点F 的坐标是(3,2),则点N 的坐标为( )A (-3,-2)B (-3,2)C (-2,3)D (2,3)8.已知12n 是整数,则满足条件的最小正整数n 是( ).A .2B .3C .4D .59.有2名男生和2名女生,王老师要随机地、两两一对地排座位, 一男一女排在一起的概率是( )A. 14B. 13C. 12D. 23 10.若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A. a >0B. a =0C. a >4D. a =4二、填空题(每题4分,共24分)11.如图,已知直线21//l l ,135︒∠=,那么2∠= .12.经过点A (1,2)的反比例函数的解析式为:___ ___。

2018年广东省广州市天河区中考一模数学试卷(解析版)

2018年广东省广州市天河区中考一模数学试卷(解析版)

2018年广东省广州市天河区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3D.﹣32.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B.C.D.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5C.6a﹣5a=1D.a6÷a2=a3 4.(3分)下列图形中,不是中心对称有()A.B.C.D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4B.﹣C.0D.37.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC 于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A.=930B.=930C.x(x+1)=930D.x(x﹣1)=9309.(3分)如图,P A和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=50°,则∠ACB的大小是()A.65°B.60°C.55°D.50°10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)把103000000这个数用科学记数法表示为.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是cm.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.三、解答题(本题有9个小题,共102分)17.(8分)解方程组:.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE =CF,求证:BE=DF.19.(10分)先化简,再求值:÷(1+),其中x=﹣1.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(1)该校初三学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标.(2)连接AB,求三角形AOB的面积S.△AOB24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC 交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n <0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.2018年广东省广州市天河区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3D.﹣3【解答】解:3的相反数是:﹣3.故选:D.2.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B.C.D.【解答】解:从正面看易得主视图的形状:.故选:C.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5C.6a﹣5a=1D.a6÷a2=a3【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项正确;C、6a﹣5a=a,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.4.(3分)下列图形中,不是中心对称有()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选:D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【解答】解:∵二次函数y=2(x﹣1)2+3,∴该函数的顶点坐标是(1,3),故选:A.6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4B.﹣C.0D.3【解答】解:∵y=kx﹣4的函数值y随x的增大而增大,∴k>0,而四个选项中,只有D符合题意,故选:D.7.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC 于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm【解答】解:∵MN为AB的中垂线,∴BD=AD.设AD=acm,∴BD=acm,CD=(16﹣a)cm,∴cos∠BDC==,∴a=10.∴在Rt△BCD中,CD=6cm,BD=10cm,∴BC=8cm.故选:A.8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A.=930B.=930C.x(x+1)=930D.x(x﹣1)=930【解答】解:设全班有x名同学,则每人写(x﹣1)份留言,根据题意得:x(x﹣1)=930,故选:D.9.(3分)如图,P A和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=50°,则∠ACB的大小是()A.65°B.60°C.55°D.50°【解答】解:连接OB,如图,∵P A、PB是⊙O的切线,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,∵OB=OC,∴∠OCB=∠OBC,而∠AOB=∠OCB+∠OBC,∴∠OCB=×130°=65°,即∠ACB=65°.故选:A.10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个B.2个C.3个D.4个【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°故②正确;∵∠BAF=∠ACE,∠AEC=∠AEC,∴△AEH∽△CEA,故③正确;在菱形ABCD中,AD=AB,∵△AEH∽△CEA,∴△ABF≌△CAE,∴△AEH∽△AFB,∴=,∴=,∴AE•AD=AH•AF,故④正确,故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(3分)在函数y=中,自变量x的取值范围是x≥.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.13.(3分)把103000000这个数用科学记数法表示为 1.03×108.【解答】解:将103000000用科学记数法表示为:1.03×108.故答案为:1.03×108.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是1<c<5.【解答】解:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是3cm.【解答】解:解得R=3cm.故答案为:3.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【解答】解:如图1所示:作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴=,即=,BP=,CP=BC﹣BP=3﹣=,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣S BEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP=9﹣×3×2﹣×1×﹣×1×=.故答案为:.三、解答题(本题有9个小题,共102分)17.(8分)解方程组:.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE =CF,求证:BE=DF.【解答】证明:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵AE=CF,∴AD﹣AE=BC﹣CF,即ED=BF,而ED∥BF,∴四边形BFDE为平行四边形,∴BE=DF(平行四边形对边相等).19.(10分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:原式=÷,=×,=.∵x=﹣1,∴原式==.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(1)该校初三学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【解答】解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.【解答】解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.23.(12分)如图,直线y =2x 与反比例函数y =(k ≠0,x >0)的图象交于点A (1,a ),B 是反比例函数图象上一点,直线OB 与x 轴的夹角为α,tan α=.(1)求k 的值及点B 坐标.(2)连接AB ,求三角形AOB 的面积S △AOB .【解答】解:(1)把点A (1,a )代入y =2x ,得a =2,则A (1,2).把A (1,2)代入y =,得k =1×2=2;过B 作BC ⊥x 轴于点C .∵在Rt △BOC 中,tan α=,∴可设B (2h ,h ).∵B (2h ,h )在反比例函数y =的图象上,∴2h 2=2,解得h =±1,∵h >0,∴h =1,∴B (2,1);(2)∵A (1,2),B (2,1),∴直线AB 的解析式为y =﹣x +3,设直线AB 与x 轴交于点D ,则D (3,0),∵S △AOB =S △ABD ﹣S △OBD =•OD •y A ﹣•OD •y B ,=×3×2﹣×3×1,=3﹣,=.24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC 交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【解答】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE =4π,S△AOE=8,∴S阴影=4π﹣8.25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n <0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【解答】解:(1)∵二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,∴,解得,∴该二次函数的解析式为y=x2﹣x﹣4;(2)由二次函数y=x2﹣x﹣4可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数y=x2﹣x﹣4可知B(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=x﹣4,设E(m,m﹣4),当DC=CE时,EC2=(m﹣8)2+(m﹣4)2=CD2,即(m﹣8)2+(m﹣4)2=52,解得m1=8﹣2,m2=8+2(舍去),∴E(8﹣2,﹣);当DC=DE时,ED2=(m﹣3)2+(m﹣4)2=CD2,即(m﹣3)2+(m﹣4)2=52,解得m3=0,m4=8(舍去),∴E(0,﹣4);当EC=DE时,(m﹣8)2+(m﹣4)2=(m﹣3)2+(m﹣4)2解得m5=5.5,∴E(,﹣).综上,存在点E,使得△CDE为等腰三角形,所有符合条件的点E的坐标为(8﹣2,﹣)、(0,﹣4)、(,﹣).(3)过点P作y轴的平行线交x轴于点F,∵P点的横坐标为m,∴P点的纵坐标为m2﹣m﹣4,∵△PBD的面积S=S梯形﹣S△BOD﹣S△PFD=m[4﹣(m2﹣m﹣4)]﹣(m﹣3)[﹣(m2﹣m﹣4)]﹣×3×4=﹣m2+m=﹣(m﹣)2+∴当m=时,△PBD的最大面积为,∴点P的坐标为(,﹣).。

2018年广东省中考数学模拟试卷及答案(一)

2018年广东省中考数学模拟试卷及答案(一)

2018年广东省中考数学模拟试卷及答案(一)2018年广东省中考数学模拟试卷(一)一、单项选择题(本题共10个小题,每小题3分,共30分)1.(3分)-3的相反数是()。

A。

3 B。

0 C。

-3 D。

无法确定2.(3分)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()。

A。

美 B。

丽 C。

广 D。

州3.(3分)2016年3月,XXX中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目。

该项目标的金额为13.09亿美元。

13.09亿用科学记数法表示为()。

A。

13.09×10^8 B。

1.309×10^10 C。

1.309×10^9 D。

1309×10^64.(3分)如图所示,几何体的主视图是()。

A。

B。

C。

D。

5.(3分)反比例函数y=k/x,则k的取值范围是()。

A。

k。

1 B。

k。

0 C。

k < 1 D。

k < 06.(3分)XXX根据演讲比赛中九位评委所给的分数作了如下表格:平均数 8.5中位数 8.3众数 8.1方差 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()。

A。

平均数 B。

众数 C。

方差 D。

中位数7.(3分)如图,⊙O是△ABC的外接圆,∠XXX°,则∠A的度数是()。

A。

42° B。

48° C。

52° D。

58°8.(3分)如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,)。

A。

4 B。

7 C。

3 D。

129.(3分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()。

A。

48 + 5x = 720 B。

48x + 5 = 720 C。

720 + 5x = 48 D。

720x + 5 = 4810.(3分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S2016的值为()。

2018年广东省广州市天河区中考数学一模试卷-有答案

2018年广东省广州市天河区中考数学一模试卷-有答案

2018年广东省广州市天河区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3 D.﹣32.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B. C.D.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5 C.6a﹣5a=1 D.a6÷a2=a34.(3分)下列图形中,不是中心对称有()A.B.C.D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3) B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4 B.﹣ C.0 D.37.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A .=930B .=930C .x (x +1)=930D .x (x ﹣1)=9309.(3分)如图,PA 和PB 是⊙O 的切线,点A 和B 的切点,AC 是⊙O 的直径,已知∠P=50°,则∠ACB 的大小是( )A .65°B .60°C .55°D .50°10.(3分)如图,菱形ABCD 中,AB=AC ,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,则下列结论:①△ABF ≌△CAE ;②∠AHC=120°;③△AEH ∽△CEA ;④AE•AD=AH•AF ;其中结论正确的个数是( )A .1个B .2个C .3个D .4个二、填空题(共6小题,每小题3分,满分18分) 11.(3分)分解因式:x 2+3x= .12.(3分)在函数y=中,自变量x 的取值范围是 .13.(3分)把103000000这个数用科学记数法表示为 .14.(3分)若a 、b 、c 为三角形的三边,且a 、b 满足+(b ﹣2)2=0,则第三边c 的取值范围是 .15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm ,则这个扇形的半径是 cm .16.(3分)如图,已知正方形ABCD 边长为3,点E 在AB 边上且BE=1,点P ,Q 分别是边BC ,CD 的动点(均不与顶点重合),当四边形AEPQ 的周长取最小值时,四边形AEPQ 的面积是.三、解答题(本题有9个小题,共102分)17.(8分)解方程组.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF,求证:BE=DF.19.(10分)先化简,再求值:÷(1+),其中x=﹣1.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标.(2)连接AB,求三角形AOB的面积S.△AOB24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.2018年广东省广州市天河区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3 D.﹣3【解答】解:3的相反数是:﹣3.故选:D.2.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B. C.D.【解答】解:从正面看易得主视图的形状:.故选:C.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5 C.6a﹣5a=1 D.a6÷a2=a3【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项正确;C、6a﹣5a=a,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.4.(3分)下列图形中,不是中心对称有()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选:D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3) B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【解答】解:∵二次函数y=2(x﹣1)2+3,∴该函数的顶点坐标是(1,3),故选:A.6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4 B.﹣ C.0 D.3【解答】解:∵y=kx﹣4的函数值y随x的增大而增大,∴k>0,而四个选项中,只有D符合题意,故选:D.7.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm【解答】解:∵MN为AB的中垂线,∴BD=AD.设AD=acm,∴BD=acm ,CD=(16﹣a )cm ,∴cos ∠BDC==,∴a=10.∴在Rt △BCD 中,CD=6cm ,BD=10cm , ∴BC=8cm . 故选:A .8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A .=930B .=930C .x (x +1)=930D .x (x ﹣1)=930【解答】解:设全班有x 名同学,则每人写(x ﹣1)份留言, 根据题意得:x (x ﹣1)=930, 故选:D .9.(3分)如图,PA 和PB 是⊙O 的切线,点A 和B 的切点,AC 是⊙O 的直径,已知∠P=50°,则∠ACB 的大小是( )A .65°B .60°C .55°D .50° 【解答】解:连接OB ,如图, ∵PA 、PB 是⊙O 的切线, ∴OA ⊥PA ,OB ⊥PB , ∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°, ∵OB=OC , ∴∠OCB=∠OBC , 而∠AOB=∠OCB +∠OBC ,∴∠OCB=×130°=65°, 即∠ACB=65°.10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵A B=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°故②正确;∵∠BAF=∠ACE,∠AEC=∠AEC,∴△AEH∽△CEA,在菱形ABCD中,AD=AB,∵△AEH∽△CEA,∴△ABF≌△CAE,∴△AEH∽△AFB,∴=,∴=,∴AE•AD=AH•AF,故④正确,故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(3分)在函数y=中,自变量x的取值范围是x≥.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.13.(3分)把103000000这个数用科学记数法表示为 1.03×108.【解答】解:将103000000用科学记数法表示为:1.03×108.故答案为:1.03×108.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是1<c<5.【解答】解:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是 1.5cm.【解答】解:解得R=1.5cm.故答案为:1.5.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【解答】解:如图1所示:作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P ∽△AE′A′,∴=,即=,BP=,CP=BC ﹣BP=3﹣=,S 四边形AEPQ =S 正方形ABCD ﹣S △ADQ ﹣S △PCQ ﹣S BEP=9﹣AD•DQ ﹣CQ•CP ﹣BE•BP=9﹣×3×2﹣×1×﹣×1×=.故答案为:.三、解答题(本题有9个小题,共102分)17.(8分)解方程组.【解答】解:,①+②得,4x=12, 解得x=3,将x=3代入①得,3+2y=1, 解得y=﹣1,所以,方程组的解是.18.(10分)已知,如图,E 、F 分别为矩形A BCD 的边AD 和BC 上的点,AE=CF ,求证:BE=DF .【解答】证明:∵四边形ABCD 为矩形, ∴AD ∥BC ,AD=BC , 又∵AE=CF , ∴AD ﹣AE=BC ﹣CF , 即ED=BF , 而ED ∥BF ,∴四边形BFDE为平行四边形,∴BE=DF(平行四边形对边相等).19.(10分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:原式=÷,=×,=.∵x=﹣1,∴原式==.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【解答】解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.【解答】解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标..(2)连接AB,求三角形AOB的面积S△AOB【解答】解:(1)把点A(1,a)代入y=2x,得a=2,则A(1,2).把A(1,2)代入y=,得k=1×2=2;过B作BC⊥x轴于点C.∵在Rt△BOC中,tanα=,∴可设B(2h,h).∵B(2h,h)在反比例函数y=的图象上,∴2h2=2,解得h=±1,∵h>0,∴h=1,∴B(2,1);(2)∵A(1,2),B(2,1),∴直线AB的解析式为y=﹣x+3,设直线AB与x轴交于点D,则D(3,0),=S△ABD﹣S△OBD=•OD•y A﹣•OD•y B,∵S△AOB=×3×2﹣×3×1,=3﹣,=.24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【解答】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,=4π,S△AOE=8 ,∴S扇形AOE8.∴S阴影=4π﹣25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【解答】解:(1)∵二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,∴,解得,∴该二次函数的解析式为y=x2﹣x﹣4;(2)由二次函数y=x2﹣x﹣4可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数y=x2﹣x﹣4可知B(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=x﹣4,设E(m,m﹣4),当DC=CE时,EC2=(m﹣8)2+(m﹣4)2=CD2,即(m ﹣8)2+(m ﹣4)2=52,解得m 1=8﹣2,m 2=8+2(舍去),∴E (8﹣2,﹣);当DC=DE 时,ED 2=(m ﹣3)2+(m ﹣4)2=CD 2,即(m ﹣3)2+(m ﹣4)2=52,解得m 3=0,m 4=8(舍去), ∴E (0,﹣4);当EC=DE 时,(m ﹣8)2+(m ﹣4)2=(m ﹣3)2+(m ﹣4)2解得m 5=5.5,∴E (,﹣).综上,存在点E ,使得△CDE 为等腰三角形,所有符合条件的点E 的坐标为(8﹣2,﹣)、(0,﹣4)、(,﹣).(3)过点P 作y 轴的平行线交x 轴于点F , ∵P 点的横坐标为m ,∴P 点的纵坐标为m 2﹣m ﹣4,∵△PBD 的面积S=S 梯形﹣S △BOD ﹣S △PFD =m [4﹣(m 2﹣m ﹣4)]﹣(m ﹣3)[﹣(m 2﹣m﹣4)]﹣×3×4=﹣m 2+m=﹣(m ﹣)2+∴当m=时,△PBD 的最大面积为,∴点P 的坐标为(,﹣).。

2018年广州中考一模试卷-广州中学-初中数学

2018年广州中考一模试卷-广州中学-初中数学

第二部分 非选择题(共 120 分)
二.填空题(每小题 3 分,满分 18 分) 11. 因式分解:ax2-16a=
2x-y=4 12. 方程组 的解是 3x+y=11
; ;
13. 方程 x2-9x+8=0 的解是 ; 2 14. 把抛物线 y=x -2 向左平移 3 个单位,然后向下平移 4 个单位,则平移后的抛物线 解析式(用 y=ax2+bx+c 的形式作答)为 ; 15. 如图,正方形 ABCD 的边长为 6,点 O 是对角线 AC,BD 的交点,点 E 在 CD 上,且 DE=2CE,过点 C 作 CF⊥BE,垂足为 F,连接 OF,则 OF 的长为 ; 第 15 题图 16. 问题:如图,点 O 是等边△ABC 内部一点,OA=1,OB=2 2,OC =3,求∠AOB 的度数.四位同学为了解决此题,分别作了各自的辅 助线,具体如下: 甲:旋转使得△AOB≌△APC;乙翻折使得△AOB≌△AOD, 使得点 B 的对应点 D 落在边 BC 上;丙旋转使得△AOB≌△CEB; 丁旋转使得△BOC ≌△BMA;那么辅助线有利于实现解题的 是 . (只填序号)
第一部分 选择题(共 30 分)
一、选择题(每小题 3 分,满分 30 分) 1. 下列图案中,属于轴对称图形的是( ) .
A.
广
B.

C.

D.

2. 袋子中装有 4 个黑球和 2 个白球,这些球的形状、大小、质地等完全相同,在看不到球 的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( ) . A.摸出的三个球中至少有一个球是黑球. B.摸出的三个球中至少有一个球是白球. C.摸出的三个球中至少有两个球是黑球. D.摸出的三个球中至少有一个球是白球. 3. 如图, △ABC 中, AB=AC, ∠A=36°, BD 是 AC 边上的高, 则∠DBC 的度数是 ( ) . A.18° B.24° C.30° D.36° 4. 下列运算正确的是( ) A.3 2- 2=3 a-b 3a-b C.3× = 2 2 B. 16-9=4-3=1 D.(ab2)3÷(a2b 1)=ab7 ) . 第 3 题图

【初三英语试题精选】2018年广州中考数学一模试卷(带答案和解释)

【初三英语试题精选】2018年广州中考数学一模试卷(带答案和解释)

2018年广州中考数学一模试卷(带答案和解释)
2018年广东省广州XX中学中考数学一模试卷一、选择题.(每小题3分,共30分.每题四个选项中,只有一项是符合题目要求的)
1.(3分)如果+10%表示“增加10%”,那么“减少8%”可以记作()
A.﹣18%B.﹣8%C.+2%D.+8%
2.(3分)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()
A. B. C. D.
3.(3分)某班抽取6名同学参加体能测试,成绩如下85,95,85,80,80,85.下列表述错误的是()
A.众数是85B.平均数是85C.中位数是80D.极差是15
4.(3分)已知点A(a,2018)与点A′(﹣2018,b)是关于原点O的对称点,则a+b的值为()
A.1B.5C.6D.4
5.(3分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()
A.28°B.52°C.62°D.72°
6.(3分)下列运算正确的是()
A.x3+x2=x5B.x3﹣x2=xC.(x3)2=x5D.x3÷x2=x
7.(3分)若分式的值为零,则x的值为()
A.0B.1C.﹣1D.±1
8.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()
A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠0
9.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象。

广州市增城区2018届中考一模数学试卷含答案

广州市增城区2018届中考一模数学试卷含答案

2018 年增城区初中毕业班综合测试数学注意事项:本试卷分选择题和非选择题两部分,共三大题25 小题,共5 页,满分150 分.考试时间120 分钟.1.答卷前,考生务必在答题卡用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、考号.2.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.3.考生可以使用考试专用计算器,必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30 分)一、选择题(本题有10 个小题,每小题3 分,满分30 分.下面每小题给出的四个选项中,只有一个是正确的.)1.在实数1,0 ,1, 2 中,最小的实数是(※)A. 2B.1C.0 D.12.如图1 所示的几何体的俯视图是(※)3.下列运算正确的是(※)A . 3a22a 2 1 B . a 2 a 3a 6C . a b 2a 2b 2 D . a b 2a 2 2ab b 24.如图 2,在半径为 5cm 的⊙ O 中,弦 AB 6cm , OC AB 于点 C , 则OC ( ※)A . 3cmB . 4cmC . 5cmD . 6cm5.学校抽查 30 名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成条形统计图(如图 3), 则 30 名学生参加活动的平均次数是( ※ ) A . 2B . 2.8C . 3D .3.36.菱形具有而平行四边形不.一.定.具有的性质是( ※ ) A .两组对边分别平行 B .两组对角分别相等 C .两条对角线互相平分 D .两条对角线互相垂直7.代数式有意义,则 x 的取值范围是( ※ )A . x 2B . x 2C . x 2D . x 28.如图 4, ABC 的顶点都是正方形网格中的格点,则 tan A BC ( ※ )A.B.2C.D.9.关于抛物线y x 2 2x 1,下列说法错.误.的是(※ )A.开口向上B.与x 轴只有一个交点C.对称轴是直线x 1D.当x 0 时,y 随x 的增大而增大10.如图5,直线y x 4 与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,当PC PD 最小时,点P 的坐标为(※)A.(-3,0)B.(-6,0)C.(-,0)D.(-,0)第二部分非选择题(共120 分)二、填空题(本题有6 个小题,每小题3 分,共18 分.)11.太阳半径约为696000 千米,数字696000 用科学记数法表示为※ .12.分解因式:m2 1=※ .13.分式方程 1 的解是※ .14.若关于x 的一元二次方程x 2 2x m 0 有实数根,则m 的取值范围是※ .15.如图6,圆锥的底面半径为6cm ,高为8cm ,则这个圆锥的侧面积是※ cm2 .(结果用表示)16.如图7,在正方形ABCD 中,边长为2 的等边AEF 顶点E 、F 分别在BC 和CD 上,下列结论:2①CE CF ;②AEB 75 ;③BE DF EF ;④S正方形ABCD其中正确的序号是※ (把你认为正确的都填上).三、解答题(本题有9 个小题,共102 分,解答要求写出文字说明、证明过程或计算步骤.)17.(本题满分9 分)解不等式组,并把解集在数轴上表示出来.18.(本题满分9 分)如图8,在RtABC 中,ACB 90 ,DE 、DF 是ABC 的中位线,连接EF 、CD .求证:CD EF .19.(本题满分10 分)先化简,再求值:x 22x 2 x 12x2 ,其中x20.(本题满分10 分)当前,“精准扶贫”工作已进攻坚阶段,凡贫困家庭均要“建档立卡”.某中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1、A 2 、A3、A4,现对A1 、A2 、A3 、A4 统计后,制成统计图(如图9).(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1 所在扇形的圆心角的度数;(3)现从A1 、A2 中各选出一人进行座谈,若A1 中只有一名女生,A2 中只有两名女生,请用树状图法或列表法求出恰好选出一名男生和一名女生的概率.21.(本题满分12 分)如图10,一次函数y ax b 与反比例函数y 的图象交于A 、B 两点,点A坐标为(6 ,2 ),点B 坐标为( 4 ,n ),直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连接OD 、BD .(1)分别求出一次函数与反比例函数的解析式;(2)求四边形OCBD 的面积.22.(本题满分 12 分)如图11,某一栋楼房AB 后有一假山,假山斜面CD 上有一休息亭E ,测得ABC 90 ,BCD 150 ,BC 25 米,CE 20 米,小丽从楼房顶测得E 点的俯角为45 ,求楼房AB 的高.(结果保留根号)A45°DEB C(图11)水平地面23.(本题满分12 分)如图12,在RtABC 中,C 90 , AD 是BAC 的角平分线,以AB上一点O 为圆心,AD 为弦作⊙O .A (1)尺规作图:作出⊙O ,并连接OD (不写作法与证明,保留作图痕迹);(2)求证:OBD ∽ABC .B D C(图12)24.(本题满分14 分)如图13-1,在平面直角坐标系中,直线y x m 与x 轴、y 轴分别交于点A 、点B (0 ,1),抛物线y x 2 bx c 经过点B ,交直线AB 于点C (4 ,n ).(1)分别求m 、n 的值;(2)求抛物线的解析式;(3)点D 在抛物线上,且点D 的横坐标为t (0<t <4),DE ∥y 轴交直线AB 于点E ,点F 在直线AB 上,且四边形DFEG 为矩形(如图13-2).若矩形DFEG 的周长为p ,求p 与t 的函数关系式和p的最大值.AC25.(本题满分14 分)如图14,在边长为2 的正方形ABCD 中,以点D 为圆心、DC 为半径作⌒,点E 在AB 上,且与A 、B 两点均不重合,点M 在AD 上,且ME MD ,过点E 作EFME ,交BC于点F ,连接DE 、MF .(1)求证:EF 是弧AC所在⊙D 的切线;(2)当MA时,求MF 的长;(3)试判断:MFE 能否构成等腰直角三角形?若能,请求出MF 的长度;若不能,请说明理由.。

2018年广东省广州市天河区中考数学一模试卷

2018年广东省广州市天河区中考数学一模试卷

2018年广东省广州市天河区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.).3.(3分)(2018•温州)如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是().C D..C D..D8.(3分)(2018•河池)五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数2直线二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)(2018•天河区一模)命题“如果a+b>0,那么a>0,b>0”是_________命题(填“真”或“假”).12.(3分)(2018•恩施州)9的算术平方根是_________.13.(3分)(2018•泉州)分解因式:1﹣x2=_________.14.(3分)(2018•漳州模拟)已知等腰三角形的两边长为4,8,则第三边的长度是_________.15.(3分)(2018•海陵区模拟)将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是_________.16.(3分)(2018•连云港)△ABC的顶点都在方格纸的格点上,则sinA=_________.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)(2018•天河区一模)解不等式2(x+1)>3x﹣4,并在数轴上表示它的解集.18.(9分)(2018•天河区一模)同时投掷两个正方体骰子,请用列举法求出点数的和小于5的概率.19.(10分)(2018•漳州模拟)先化简式子,然后从﹣2<x≤2中选择一个合适的整数x代入求值.20.(10分)(2018•漳州模拟)如图,△ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上.(1)在网格中画出将△ABC绕点B顺时针旋转90°后的△A′BC′的图形.(2)求点A在旋转中经过的路线的长度.(结果保留π)21.(12分)(2018•漳州模拟)如图,AE∥BF,AC平分∠BAE,且交BF于点C,在AE上取一点D,使得AD=BC,连接CD和BD,BD交AC于点O.(1)求证:△AOD≌△COB;(2)求证:四边形ABCD是菱形.22.(12分)(2018•天河区一模)某班将开展“阳光体育”活动,班长在班里募捐了80元给体育委员小明去购买体育用品.小明买了5个毽子和8根跳绳,毽子每个2元,共花了34元.买回后班长觉得用品不够,还需再次购买,下面两图是小明再次买回用品时与班长的对话情境,请根据所给的信息,解决问题:(1)试计算每根跳绳多少元?(2)试计算第二次买了毽子和跳绳各多少件?(3)请你解释:为什么不可能找回33元?23.(12分)(2018•天河区一模)如图,直线l经过点A(1,0),且与曲线(x>0)交于点B(2,1).过点P (p,p﹣1)(p≥2)作x轴的平行线分别交曲线(x>0)和(x<0)于M,N两点.(1)求m的值及直线l的解析式;(2)是否存在实数p,使得S△AMN=4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.24.(14分)(2018•天河区一模)如图(1),AB、BC、CD分别与⊙O相切于点E、F、G,且AB∥CD,若OB=6,OC=8,(1)求BC和OF的长;(2)求证:E、O、G三点共线;(3)小叶从第(1)小题的计算中发现:等式成立,于是她得到这样的结论:如图(2),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,设BC=a,AC=b,CD=h,则有等式成立.请你判断小叶的结论是否正确,若正确,请给予证明,若不正确,请说明理由.25.(14分)(2018•长沙)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.己知函数y=x2﹣2mx﹣2(m+3)(m为常数).(1)当m=0时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B 左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.2018年广东省广州市天河区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.).3.(3分)(2018•温州)如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是()C D...C D.==,是最简二次根式;故此选项正确;=5,被开方数,含能开得尽方的因数或因式,故此选项错误.D(﹣、将×﹣8.(3分)(2018•河池)五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数(2直线==0二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)(2018•天河区一模)命题“如果a+b>0,那么a>0,b>0”是假命题(填“真”或“假”).12.(3分)(2018•恩施州)9的算术平方根是3.13.(3分)(2018•泉州)分解因式:1﹣x2=(1+x)(1﹣x).14.(3分)(2018•漳州模拟)已知等腰三角形的两边长为4,8,则第三边的长度是8.15.(3分)(2018•海陵区模拟)将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是(4,1).16.(3分)(2018•连云港)△ABC的顶点都在方格纸的格点上,则sinA=.=2=故答案为三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)(2018•天河区一模)解不等式2(x+1)>3x﹣4,并在数轴上表示它的解集.18.(9分)(2018•天河区一模)同时投掷两个正方体骰子,请用列举法求出点数的和小于5的概率.=19.(10分)(2018•漳州模拟)先化简式子,然后从﹣2<x≤2中选择一个合适的整数x代入求值.=•﹣,由于﹣•﹣﹣.20.(10分)(2018•漳州模拟)如图,△ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上.(1)在网格中画出将△ABC绕点B顺时针旋转90°后的△A′BC′的图形.(2)求点A在旋转中经过的路线的长度.(结果保留π)==.21.(12分)(2018•漳州模拟)如图,AE∥BF,AC平分∠BAE,且交BF于点C,在AE上取一点D,使得AD=BC,连接CD和BD,BD交AC于点O.(1)求证:△AOD≌△COB;(2)求证:四边形ABCD是菱形.中22.(12分)(2018•天河区一模)某班将开展“阳光体育”活动,班长在班里募捐了80元给体育委员小明去购买体育用品.小明买了5个毽子和8根跳绳,毽子每个2元,共花了34元.买回后班长觉得用品不够,还需再次购买,下面两图是小明再次买回用品时与班长的对话情境,请根据所给的信息,解决问题:(1)试计算每根跳绳多少元?(2)试计算第二次买了毽子和跳绳各多少件?(3)请你解释:为什么不可能找回33元?解法二:,23.(12分)(2018•天河区一模)如图,直线l经过点A(1,0),且与曲线(x>0)交于点B(2,1).过点P (p,p﹣1)(p≥2)作x轴的平行线分别交曲线(x>0)和(x<0)于M,N两点.(1)求m的值及直线l的解析式;(2)是否存在实数p,使得S△AMN=4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.(,(﹣MN=•((不合题意,舍去).)代入中,得,解得,(﹣,MN=••(((不合题意,舍去)=的值为24.(14分)(2018•天河区一模)如图(1),AB、BC、CD分别与⊙O相切于点E、F、G,且AB∥CD,若OB=6,OC=8,(1)求BC和OF的长;(2)求证:E、O、G三点共线;(3)小叶从第(1)小题的计算中发现:等式成立,于是她得到这样的结论:如图(2),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,设BC=a,AC=b,CD=h,则有等式成立.请你判断小叶的结论是否正确,若正确,请给予证明,若不正确,请说明理由.CAB=,然后将等式两边平方变形即可得出结论.CAB=即可得:25.(14分)(2018•长沙)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.己知函数y=x2﹣2mx﹣2(m+3)(m为常数).(1)当m=0时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B 左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.和,﹣的解析式为。

(汇总3份试卷)2018年广州市某达标名校中考一模数学试题

(汇总3份试卷)2018年广州市某达标名校中考一模数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是44 3【答案】C【解析】解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.故选C.【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.2.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a6【答案】D【解析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确,故选D.【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.3.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80°B.80°或50°C.20°D.80°或20°【答案】D【解析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.4.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:2【答案】B 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD∴∠EAB=∠DEF ,∠AFB=∠DFE∴△DEF ∽△BAF∴()2DEF ABF S S DE AB ∆∆=:: ∵DEF ABF S S 425∆∆=::, ∴DE :AB=2:5∵AB=CD ,∴DE :EC=2:3故选B5.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )A .0.96×107B .9.6×106C .96×105D .9.6×102 【答案】B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B .考点:科学记数法—表示较大的数.6.下列函数中,y 随着x 的增大而减小的是( )A .y=3xB .y=﹣3xC .3y x =D .3y x=- 【答案】B【解析】试题分析:A 、y=3x ,y 随着x 的增大而增大,故此选项错误;B 、y=﹣3x ,y 随着x 的增大而减小,正确;C 、3y x =,每个象限内,y 随着x 的增大而减小,故此选项错误;D 、3y x=-,每个象限内,y 随着x 的增大而增大,故此选项错误; 故选B . 考点:反比例函数的性质;正比例函数的性质.7.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.【答案】A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A.点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.8.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为()A.60°B.65°C.70°D.75°【答案】D【解析】解:连接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故选:D9.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( ) A .1B .2C .3D .4【答案】A【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y 代入即可得. 【详解】解:∵原式=223x y y x y-•+ =()()3x y x y y x y +-•+ =33x y y- ∵3x-4y=0,∴3x=4y原式=43y y y-=1 故选:A .【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.10.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( ) A . B . C .D .【答案】B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选B .【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.二、填空题(本题包括8个小题)11.小明和小亮分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C ,小明先到达奶茶店C ,并在C 地休息了一小时,然后按原速度前往B 地,小亮从B 地直达A 地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B 地时,小亮距离A 地_____千米.【答案】1【解析】根据题意设小明的速度为akm/h ,小亮的速度为bkm/h ,求出a,b 的值,再代入方程即可解答.【详解】设小明的速度为akm/h ,小亮的速度为bkm/h ,2 3.5 2.5(3.52)(3.5 2.5)210b a b a ⎧=-⎪⎨⎪-+-=⎩ , 解得,12060a b =⎧⎨=⎩, 当小明到达B 地时,小亮距离A 地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案为1.【点睛】此题考查一次函数的应用,解题关键在于列出方程组.12.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为 .【答案】3212π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯⨯()=323 432ππ-+=3 12π+.13.如图,长方形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则△AFC的面积等于___.【答案】26 3【解析】由矩形的性质可得AB=CD=4,BC=AD=6,AD//BC,由平行线的性质和折叠的性质可得∠DAC=∠ACE,可得AF=CF ,由勾股定理可求AF 的长,即可求△AFC 的面积. 【详解】解:四边形ABCD 是矩形AB CD 4∴==,BC AD 6==,AD//BCDAC ACB ∠∠∴=,折叠ACB ACE ∠∠∴=,DAC ACE ∠∠∴=AF CF ∴=在Rt CDF 中,222CF CD DF =+,22AF 16(6AF)∴=+-, 13AF 3∴= AFC 111326S AF CD 42233∴=⨯⨯=⨯⨯=. 故答案为:263. 【点睛】本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF 的长是本题的关键.14.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .【答案】1.【解析】试题分析:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=CD=12cm ,在Rt △ACB 中,22AC BC +22512+=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm ),故答案为1.考点:旋转的性质.15.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.【答案】4610⨯【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.如果抛物线y=﹣x 2+(m ﹣1)x+3经过点(2,1),那么m 的值为_____.【答案】2【解析】把点(2,1)代入y=﹣x 2+(m ﹣1)x+3,即可求出m 的值.【详解】∵抛物线y=﹣x 2+(m ﹣1)x+3经过点(2,1),∴1= -4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式. 17.如图,在Rt △ABC 中,∠ACB =90°,AB =5,AC =3,点D 是BC 上一动点,连接AD ,将△ACD 沿AD 折叠,点C 落在点E 处,连接DE 交AB 于点F ,当△DEB 是直角三角形时,DF 的长为_____.【答案】32或34【解析】试题分析:如图4所示;点E 与点C′重合时.在Rt △ABC 中,22AB AC -.由翻折的性质可知;AE=AC=3、DC=DE .则EB=2.设DC=ED=x ,则BD=4﹣x .在Rt △DBE 中,DE 2+BE 2=DB 2,即x 2+22=(4﹣x )2.解得:x=32.∴DE=32.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC ﹣DC=4﹣3=4.∵DE ∥AC ,∴△BDE ∽△BCA .∴14DE DB AC CB ==,即134ED =.解得:DE=34.点D 在CB 上运动,∠DBC′<90°,故∠DBC′不可能为直角.考点:翻折变换(折叠问题).18.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).【答案】1.【解析】设大量角器的左端点是A ,小量角器的圆心是B ,连接AP ,BP ,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB 所对的圆心角是1°,因而P 在大量角器上对应的度数为1°.故答案为1.三、解答题(本题包括8个小题)19.如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;填空:222A B C ∆面积为 .【答案】(1)详见解析;(2)详见解析;(3)6.【解析】(1)分别画出A 、B 、C 三点的对应点即可解决问题;(2)由(1)得111A B C ∆各顶点的坐标,然后利用位似图形的性质,即可求得222A B C ∆各点的坐标,然后在图中作出位似三角形即可.(3)求得222A B C ∆所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,111A B C ∆即为所求作;(2)如图,222A B C ∆即为所求作;(3)222A B C ∆面积=4×4-12×2×4-12×2×2-12×2×4=6. 【点睛】本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.20.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同. 1()求甲、乙两种商品的每件进价;2()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】()1 甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲种商品按原销售单价至少销售20件.【解析】()1设甲种商品的每件进价为x 元,乙种商品的每件进价为(x+8))元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程进行求解即可;()2设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】()1设甲种商品的每件进价为x 元,则乙种商品的每件进价为()x 8+元, 根据题意得,20002400x x 8=+, 解得x 40=,经检验,x 40=是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲乙两种商品的销售量为20005040=, 设甲种商品按原销售单价销售a 件,则()()()()6040a 600.74050a 8848502460-+⨯--+-⨯≥,解得a 20≥,答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.21.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:求这天的温度y 与时间x (0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【答案】(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可.详解:(1)设线段AB 解析式为y=k 1x+b (k≠0)∵线段AB 过点(0,10),(2,14)代入得110214b k b ⎧⎨+⎩== 解得1210k b ⎧⎨⎩== ∴AB 解析式为:y=2x+10(0≤x <5)∵B 在线段AB 上当x=5时,y=20∴B 坐标为(5,20)∴线段BC 的解析式为:y=20(5≤x <10)设双曲线CD 解析式为:y=2k x (k 2≠0) ∵C (10,20)∴k 2=200∴双曲线CD 解析式为:y=200x(10≤x≤24) ∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=200x中,解得,x=20 ∴20-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.22.在Rt △ABC 中,∠BAC=,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE 的延长线于点F . 求证:△AEF ≌△DEB ;证明四边形ADCF 是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.【答案】(1)证明详见解析;(2)证明详见解析;(3)1.【解析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF=DB .∵AD 为BC 边上的中线∴DB=DC ,∴AF=CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点,∴AD=DC=12BC , ∴四边形ADCF 是菱形;(3)连接DF ,∵AF ∥BD ,AF=BD ,∴四边形ABDF 是平行四边形,∴DF=AB=5,∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC▪DF=12×4×5=1. 【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.23.解方程:.【答案】【解析】两边同时乘以(x-3),得到整式方程,解整式方程后进行检验即可得.【详解】两边同时乘以(x-3),得2-x-1=x-3,解得:x=2检验:当x=2时,x-3≠0,所以x=2是原方程的根,所以原方程的根是x=2.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法以及注意事项是解题的关键.24.如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB 交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG 是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)【答案】(1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC.【解析】试题分析:(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如△ABC≌△BAD,利用SAS可证明.(2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,得到△GAB为等腰三角形,▱AHBG 的两邻边相等,从而得到平行四边形AHBG是菱形.试题解析:(1)解:△ABC≌△BAD.证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)证明:∵AH∥GB,BH∥GA,∴四边形AHBG是平行四边形.∵△ABC ≌△BAD ,∴∠ABD=∠BAC .∴GA=GB .∴平行四边形AHBG 是菱形.(3)需要添加的条件是AB=BC .点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一.25.在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点M 的坐标()x,y()1画树状图列表,写出点M 所有可能的坐标;()2求点()M x,y 在函数y x 1=+的图象上的概率.【答案】()1见解析;()124. 【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x ,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【详解】()1画树状图得:共有12种等可能的结果()1,2、()1,3、()1,4、()2,1、()2,3、()2,4、()3,1、()3,2、()3,4、()4,1、()4,2、()4,3;()2在所有12种等可能结果中,在函数y x 1=+的图象上的有()1,2、()2,3、()3,4这3种结果, ∴点()M x,y 在函数y x 1=+的图象上的概率为31124=. 【点睛】 本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.26.“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【答案】(1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如果340x y -=,那么代数式23()x y y x y -⋅+的值为( ) A .1B .2C .3D .4【答案】A【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y 代入即可得. 【详解】解:∵原式=223x y y x y-•+ =()()3x y x y y x y +-•+ =33x y y- ∵3x-4y=0,∴3x=4y原式=43y y y-=1 故选:A .【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 2.如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A .13B .22C .24D .223【答案】C【解析】试题分析:连结CD ,可得CD 为直径,在Rt △OCD 中,CD=6,OC=2,根据勾股定理求得OD=4 所以tan ∠CDO=,由圆周角定理得,∠OBC=∠CDO ,则tan ∠OBC=,故答案选C .考点:圆周角定理;锐角三角函数的定义.3.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下【答案】C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.4.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.24【答案】B【解析】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,故选B.5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数【答案】D【解析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.6.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【答案】D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.7.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=42,则△CEF的面积是()A.22B2C.32D.42【答案】A【解析】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=42,∴AG=22AB BG-=2,∴AE=2AG=4;∴S△ABE=12AE•BG=1442822⨯⨯=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=14S△ABE=22.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.8.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A.CDBCB.ACABC.ADACD.CDAC【答案】D【解析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=CDBC,故A正确,不符合题意;B、在Rt△ABC中,sinα=ACAB,故B正确,不符合题意;C、在Rt△ACD中,sinα=ADAC,故C正确,不符合题意;D、在Rt△ACD中,cosα=CDAC,故D错误,符合题意,故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P 点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.【答案】C【解析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.10.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .72【答案】D【解析】设第一个数为x ,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x ,看是否存在.解:设第一个数为x ,则第二个数为x+7,第三个数为x+1 故三个数的和为x+x+7+x+1=3x+21 当x=16时,3x+21=69; 当x=10时,3x+21=51; 当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3. 故选D .“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 二、填空题(本题包括8个小题) 11.分解因式:ax 2﹣2ax+a=___________. 【答案】a (x-1)1.【解析】先提取公因式a ,再对余下的多项式利用完全平方公式继续分解. 【详解】解:ax 1-1ax+a , =a (x 1-1x+1), =a (x-1)1. 【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.如图,在ABC 中A 60∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM,PN ,则下列结论:①PM PN =,②MN AB BC AC ⋅=⋅,③PMN 为等边三角形,④当ABC 45∠=︒时,CN 2PM =.请将正确结论的序号填在横线上__.【答案】①③④【解析】①根据直角三角形斜边上的中线等于斜边的一半可判断①;②先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②;③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③;④当∠ABC=45°时,∠BCN=45°,进而判断④.【详解】①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=12BC,PN=12BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴AM ANAB AC,错误;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∵P为BC中点,可得22PC,故④正确.所以正确的选项有:①③④故答案为①③④。

广州市南沙区2018届中考一模数学试卷含答案

广州市南沙区2018届中考一模数学试卷含答案

2018 年初中毕业班综合测试(一)数学本试卷分选择题和非选择题两部分,共三大题25 小题,满分150 分.考试用时120 分钟.注意事项:1.答卷前,考生务必在答题卡第1 面、第3 面、第5 面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应的标号涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分选择题(共30分)一、选择题(每小题3分,共30分,每小题给出的四个选项中,只有一项符合题意)1.比0 小的数是( ※) 。

A.-1B.0 C.12D.12.下列事件中,属于必然事件的是( ※) 。

A.明天太阳从北边升起B.实心铅球投入水中会下沉C.篮球队员在罚球线投篮一次,投中D.抛出一枚硬币,落地后正面向上3.下列计算正确的是( ※)A.4a2 -3a2 = 1B.a8 ÷a4 =a2C.(-2x2 y)3 =-8x6 y3D.a2 +a3 =a54.下列图形中,既是轴对称图形又是中心对称图形的是( ※)5.若a <1 ,1=(※)A.-a B.C.-a D.a - 26.在平面直角坐标系中,若直线 y = kx + b 经过第一、二、四象限,则直线 y = bx + k 不经过的象限是 ( ※ ) 。

A .第一象限B .第二象限C .第三象限D .第四象限7.在一次数学检测中,某学习小组七位同学的分数分别是 73,85,94,82,71,85,56.以下说法正确的是 ( ※ ) 。

2018年广州白云区中考数学一模数学参考答案

2018年广州白云区中考数学一模数学参考答案

2018年广州白云区中考数学一模数学参考答案参考答案及评分建议(2018一模)一、选择题题号12345678910答案BACDBDCBCC二、填空题题号111213141516答案x≥3180°423-345三、解答题17.(本小题满分9分)解:22x-8=2(2x-4)=2(2x-4)…………………………………………………………3分=2(2x-2 2)…………………………………………………………5分=2(x+2)(x-2)………………………………………………9分18.(本小题满分9分)证明:∵C是BD的中点,∴BC=CD(线段中点的定义);……………2分∵AB∥EC,∴∠B=∠ECD(两直线平行,同位角相等).…………4分在△ABC和△ECD中,……………………………………………………5分∵A EB ECDBC CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ECD(AAS),……………………8分∴AC=ED(全等三角形对应边相等)……………………………………9分19.(本小题满分10分,分别为4、4、2分)解:(1)1200÷40%=3000(人), ……………………………3分3分代入反比例函数解析式,得4x=16,…………………………………………4分x∴24x=16,∴x=2或x=-2(不合题意,舍去),……………………5分即A的坐标为A(2,8),代入一次函数y=kx+1中,8=2k+1,,∴k的值为解得k=727; (2)…6分(3)四边形ABOD与△ACD面积的比为5).……………3分︰3(或53[方法一:连结OA,设△OAD的面积为1,则△ACD的面积为3,△OAB的面积为4,∴四边形ABOD面积为5;方法二:分别求出梯形ABOD和△ACD的面积,再求比]21.(本小题满分12分,分别为5、7分)解:(1)∵四边形AECF的内角和为360°,……………………………1分由AE⊥BC及AF⊥CD,得∠E=∠F=90°,………………………2分∴∠EAF+∠C=360°-2×90°=180°,……………………3分∵∠EAF=2∠C,∴2∠C+∠C=180°,…………………………4分∴∠C=60°;…………………………………………………………………5分(2)∵ABCD为平行四边形,∴∠DAB=∠C=60°,CD∥AB,……………………………………1分由已知AF⊥CD,得AF⊥AB,∴∠FAB=90°,∴∠FAD=∠FAB-∠DAB=30°.…………………………………2分由平行四边形的性质,知AB=CD,AD=BC,…………………………3分由周长为32cm,得AB+BC=16cm,由AB︰BC=5︰3,可求得BC=6cm,∴AD=BC=6cm.………4分在Rt△ADF中,∵∠FAD=30°,∴DAD=3cm.…………5分F=12把DF的长代入方程中,求得a=1,∴原方程为2x-x-6=0.………6分解该方程,得x=3,2x=-2,∴方程的另一1个根为x=-2.…………7分[方程的解法,可用公式法、因式分解法或配方法均可]22.(本小题满分12分,分别为4、8分)解:(1)过点C作CE⊥AB,垂足为点E(如图1).………………………1分=sin∠在Rt△BCE中,∵CEBC B,……………………………………………3分∴CE=BC·sin∠B≈8×0.80=6.4,………………………………4分答:C点到直线AB的距离约为6.4km;=cos∠(2)Rt△BCE中,∵BEBC B,…………………………………………1分∴BE=BC·cos∠B≈8×0.60=4.8.…………………………………2分[也可结合(1),由勾股定理,求得BE]在Rt△ACE中,∵∠A=45°,∴∠ACE=45°,∴AE=CE=6.4,………………………………………………………………3分由CEAC =sin∠A,得AC=sinCEA≈2≈9.05,…………………………5分[由勾股定理求得AC,约9.02]由AC+BC-(AE+EB)………………………………………………………6分=9.05+8-(6.4+4.8)=5.85≈5.9……………………………7分[或9.02+8-(6.4+4.8)=5.82≈5.8]答:现在从A地到B地可比原来少走5.9km路程.………………………………8分23.(本小题满分12分,分别为3、3、6分)解:(1)由tan ∠AOB=12,得BH OH =12,……………………………………1分 ∴OH=2BH,又B(65,m ),即m =2×65=125,………………………2分∴H点的坐标为H(0,125);……………………………………………………3分 A B C 图1E(2)设过点B(65,125)及点C(158,32) 的直线解析式为:y =kx +b ,……………………………………………………1分把B、C坐标分别代入,得:6125515382k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,……………………………………2分 解得434k b ⎧=-⎪⎨⎪=⎩,∴直线BC的解析式为:y =-43x +4;………………………………………3分(3)相切.…………………………………………………………………………1分理由如下:方法一:设直线BC分别与x 轴、y 轴交于点E、F,则可求得其坐标分别为E(3,0)、F(0,4).……………………………2分过圆心M作MN⊥EF,垂足为N,连结ME(如图2).……………………3分∵S△FME=12EF·MN=12FM·EO,……………………………………4分∴得EF·MN=FM·EO,MN=FM EOEF⋅=32,………………………5分即圆心M到直线BC的距离等于⊙M的半径,……………………………………6分∴直线BC是⊙M的切线.方法二:设直线BC分别与x轴交于点E,则可求得其坐标分别为E(3,0).作BK⊥x轴于点K(如图3),则点K的坐标为K(65,0),EK=3-65=95,在Rt△BEK中,由勾股定理,可求得BE=22BK EK+在Rt△MOE中,由勾股定理,可求得ME=22 OM OE+352;………3分HM=12352-=910,∵BM是⊙M的半径,∴BM=32.2BE +2BM =2233()2=454,2ME =235(2=454,………………………4分∵2BE +2BM =2ME ,……………………………………………………………5分∴△BME为直角三角形,ME为斜边,∠MBE=90°,…………………6分 ∴BC切⊙M于点B.[同样,也可运用勾股定理的逆定理,验算得△BMF为直角三角形,∠MBF=90°]方法三:yxA O图2MB CHEF N yxA O图3MB C HEFN K设直线BC分别与x轴、y轴交于点E、F,则可求得其坐标分别为E(3,0)、F(0,4),……………………………2分连结MB(如图4).在Rt△FHB中,FH=4-125=85,HB=65,22FH HB+在Rt△FOE中,由勾股定理,得EF=5.在△BFM和△OFE中,∵FBFO =24=12,……………………………………3分FM FE =FO MOFE-=12,即FBFO=FMFE,…………………………………………4分又∠BFM=∠OFE,∴△BFM∽△OFE中,………………………………5分∴∠FBM=∠FOE=90°,……………………………………………………6分即半径MB⊥直线BC,∴直线BC是⊙M的切线.yAM BCH F24.(本小题满分14分,分别为2、4、8分)解:(1)作图略;(作图正确)…………………………………………………………2分(2)FH=CH.………………………………………………………………………1分证明如下:如图5,∵FH∥BC,∴∠1=∠3,………………………………………………2分∵CE平分∠ACB,∴∠1=∠2, ∴∠2=∠3,……………………………………………………………………………3分从而FH=CH(等角对等边);………………………………………………………4分(3)∵EA⊥CA,∴∠EAC=90°, ∴∠2+∠5=90°(如图6).∵AD⊥DC,∴∠ADC=90°,∴∠1+∠6=90°,从而∠2+∠5=∠1+∠6,由∠1=∠2,得∠5=∠6,ABC D 图5EFH123AB CD 图6EFH12 3 465 78∵∠6=∠4,∴得∠5=∠4,……………………………………………………1分∴AE=AF(等角对等边).………………………………………………………2分∵FH∥BC,得△AFH∽△ADC,∴AFAD=FHDC,………………………3分由(2)知,FH=CH,∴得AEAD=CHDC.……………………………………4分∠EAD+∠DAC=90°,∠HCD+∠DAC=90°,∴∠EAD=∠HCD.………………………………………………………………5分在△EAD和△HCD中,∵AEAD =CHDC,∠EAD=∠HCD,∴△EAD∽△HCD(两边对应成比例且夹角相等的两个三角形相似),……6分∴∠7=∠8.…………………………………………………………………………7分∠8+∠HDA=90°,从而得∠7+∠HDA=90°, 即∠EDH=90°,…………………………………………………………………8分 ∴ED⊥HD25.(本小题满分14分,分别为2、4、8分)xyOABC图7xyO A BC图8P解:(1)y=-223x +43x +2………………………………………………………2分 [或y =-228(1)33x -+](2)△PAC的周长有最小值.……………………………………………………1分连结AC、BC,∵AC的长度一定,∴要使△PAC的周长最小,就是使PA+PC最小. ∵点A关于对称轴x =1的对称点是B点, ∴BC与对称轴的交点即为所求的点P(如图8).…………………………………2分 设直线BC(用BCl 表示,其他直线可用相同方式表示)的表达为BCl :y =kx b +,则有302k b b +=⎧⎨=⎩,解得232k b ⎧=-⎪⎨⎪=⎩,∴BCl :y=-23x +2.……………………………3分 把x =1代入,得y =43, 即点P的坐标为P(1,43).…………………………………………………………4分∴△PAC的周长取得最小值,取得最小值时点P的坐标为P(1,43); (3)xyO ABC图9PNF D H E Q作DE∥BC交x 轴于点E,DE交对称轴x =1于点Q(如图9).……………1分 在Rt 22CO OH +2221+5过点D作DF⊥y 轴于点F,交对称轴x =1于点N.∵Rt △CDF∽Rt △CHO,∴CF CD CO CH=, ∴CF=CO CDCH⋅5=55m ,OF=CO-CF=2-255m ;同样,FD CD OH CH =,FD=OH CD CH⋅55m∴点D的坐标为D(55m ,2-25m ),…………………………………………3分从而N(1,2-25m ).∵DE∥BC,∴可设DEl (过点D、E的直线):y=-23x +1b , 把D点坐标代入其中,得-23⋅5m 1b =2-25m ,解得1b =2-4515m ,∴DEl :y =-23x +2-4515m .………………………4分点E的纵坐标为0,代入其中,解得x =3-255m , 25m .∵点Q在对称轴x =1上,把x =1代入DEl 中,解得y =4345m , ∴Q(1,4345m . PQ=43-(43-515m )=4515m ,DN=1-55m,EH=3-55m -1=2-255m .S=S△PDE=S△PDQ+S△PEQ=12PQ·DN+12PQ·EH=12PQ(DN+EH)=1245m 5m +2-255m ), 化简得S=-225m +255m .…………………………………………………………6分可知S是关于m 的二次函数. S存在最大值.配方可得:S=-225(52m +12,由此可得,S取得最大值为12,…………7分 取得最大值时m的值为:m=5…………………………………………………8分。

广东省广州南沙区2018届初三一模数学题卷(2018.4.26)

广东省广州南沙区2018届初三一模数学题卷(2018.4.26)

2018 年初中毕业班综合测试(一)数学本试卷分选择题和非选择题两部分,共三大题25 小题,满分 150 分.考试用时 120 分钟. 注意事项:1.答卷前,考生务必在答题卡第1 面、第 3 面、第 5 面上用黑色笔迹的钢笔或署名笔填写自己的考生号、姓名;填写考场试室号、座位号,再用 2B 铅笔把对应的标号涂黑。

2.选择题每题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需变动,用橡皮擦洁净后,再选涂其余答案标号;不可以答在试卷上.3.非选择题一定用黑色笔迹的钢笔或署名笔作答,波及作图的题目,用 2B 铅笔划图.答案一定写在答题卡各题指定地区内的相应地点上;如需变动,先划掉本来的答案, 而后再写上新的答案;变动的答案也不可以高出指定的地区.禁止使用铅笔、圆珠笔和涂改 液.不按以上要求作答的答案无效。

4.考生一定保持答题卡的整齐,考试结束后,将本试卷和答题卡一并交回。

第一部分选择题 (共 30 分)一、选择题(每题3 分,共 30 分,每题给出的四个选项中,只有一项切合题意)1.比 0 小的数是 (※ ) 。

A . 1B .01D . 1C .22.以下事件中,属于必定事件的是( ※ ) 。

A .明日太阳从北边升起B . 实心铅球投入水中会下沉C .篮球队员在罚球线投篮一次,投中D . 抛出一枚硬币,落地后正面向上3.以下计算正确的选项是 ( ※ )A . 4a 23a 2 1B . a 8a 4 a 2C . ( 2x 2 y) 3 8x 6 y 3D . a 2 a 3 a 54.以下图形中,既是轴对称图形又是中心对称图形的是( ※ )5.若A .a 1 ,化简 (a 1)2 1=( ※ ) aB . aC . 2a D . a 26.在平面直角坐标系中,若直线经过的象限是(※)。

y kx b 经过第一、二、四象限,则直线 y bx k 不A .第一象限B .第二象限C .第三象限D .第四象限7.在一次数学检测中,某学习小组七位同学的分数分别是 73, 85, 94, 82, 71, 85, 56.以下说法正确的选项是 (※)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年下学期广州市一中九年级第一次模拟考试
数学
第一部分 选择题(共30分)
一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.一个数的相反数是3,则这个数是( ).
A .-13
B .13
C .﹣3
D .3
2.下列运算正确的是( ).
A .x 2·x 3=x 6
B .x 6÷x 5=x 6
C .(-x 2)4=x 6
D .x 2+x 3=x 6
3.甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差2
甲S =4,乙同学成绩的方差2乙S 等于3.1,则对他们测试成绩的稳定性判断正确的是( ).
A .甲的成绩较稳定
B .乙的成绩较稳定
C .甲、乙成绩的稳定性相同
D .甲、乙成绩的稳定性无法比较
4.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有( ).
A .1个
B .2个
C .3个
D .4个
5.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A'B',若点A'的坐标为(﹣2,2),则点B'的坐标为( ).
A .(4,3)
B .(3,4)
C .(﹣1,﹣2)
D .(﹣2,﹣1)
6.如图,是由4个相同小正方体组合而成的几何体,它的左视图是( ).
A .
B .
C .
D .
7.关于x 的二次函数y =-(x -1)2+2,下列说法正确的是( )
. A .图象的开口向上 B .图象与y 轴的交点坐标为(0,2)
C .当x >1时,y 随x 的增大而减小
D .图象的顶点坐标是(-1,2)
8.如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 沿水平方向打入木桩底下,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进6cm (如箭头所示),则木桩上升了( ).
A .6sin15°cm
B .6cos15°cm
C .6tan15°cm
D .
6 tan15°cm。

相关文档
最新文档