离散数学第八章教程文件

合集下载

离散数学 教案 第八章 图论

离散数学 教案  第八章 图论

西南科技大学
6
计算机科学与技术学院
Discrete Mathematics 为方便起见,在无向图中往往用字母ei表示 边。例如,在上图中,用e1表示边(v2,v2),e2 表示边(v1,v2)等。 对于一个确定的图,我们不关心顶点的位置, 边的长短与形状,因此,所画出的图的图形可 能不唯一。 定义 一个有向图G是一个二元组<V,E>,即 G=<V,E>,其中
西南科技大学
4
计算机科学与技术学院
Discrete Mathematics 定义 一个无向图G是一个二元组<V,E>,即 G=<V,E>,其中
(1). V是一个非空的集合,称为G的顶点集, V中元素称为顶点或结点;
(2). E是无序积 的一个多重子集 (元素可重复 出现的集合为多重集),称E为G的边集,E中元 素称为无向边或简称边。 在一个图G=<V,E>中,为了表示V和E分别 为G的顶点集和边集,常将V记成V(G),而将E 记成E(G)。
由于2m,
为偶数,所以
也为偶数。
可是,vV1时,d(v)为奇数,偶数个奇数之和才能 为偶数,所以|V1|为偶数。结论得证。
西南科技大学
17
计算机科学与技术学院
Discrete Mathematics 对有向图来说,还有下面的定理: 定理 设G=<V,E>为有向图, V={v1,v2,…,vn} , |E|=m,则
(5).设E´ E且E´ ≠Φ ,以E´为边集,以E´中边
关联的顶点的全体为顶点集的G的子图,则称G´是由 边集E´导出的G的子图。
西南科技大学
26
计算机科学与技术学院
Discrete Mathematics 例如,在下图中,(2),(3)均为(1)的子图;(3)是 生成子图;(2)是顶点子集{v1,v2}的导出子图,也

离散数学8-代数系统基础

离散数学8-代数系统基础
理学院
第八章 代数系统基础
第八章 代数系统基础
8.1 代数系统概念 8.2 半群与独异点 8.3 群的基本定义与性质 8.4 子群与陪集 8.5 循环群和置换群 8.6 环和域
2
一、基本概念
定义1: 设A是个非空集合且函数f:A*A→A,则称f为 A上的二元运算。
二元运算的两个重要特点: 一是运算封闭性,集合内任意两个元素都可以运算,运算后仍在同
主要包括运算所具有的算律和特殊元素 算律主要:结合律、交换律、分配律、吸收律和消去律 特殊元素:等幂元、幺元、零元和逆元。
9
1.结合律
定义3: 设代数系统<A,*>,对于A中任意元素a,b,c, (ab)c=a(bc),都称运算满足结合律,或是可结合的 。
实数集合上的加法和乘法满足结合律。幂集P(A)上的交、并和对称差 都满足结合律。矩阵的加法和乘法满足结合律。代数系统(Nk,+k)和 (Nk, ×k)中的+k和×k都满足结合律。
例设<A,*>是一个代数系统,其中*定义为a*b=a,证明运算是不可交 换的。
11
3.幂等律
定义5: 设代数系统<A,*>,对于A中任意元素有 x*x=x,则称运算*在A上满足幂等律。
设A为集合,<P(A), ∩>和<P(A), ∪>中的∩和换律、结合律和幂等律。
则称<A,*>是群。
如果<A,>是独异点且每个元素存在逆元,则称<A,>是群。 (R,+),(Z,+)都是群,幺元为零,x -1 = -x;(R-{0},×)是群,幺
元为1,x -1 =1/x ;<Q,>不是群,1是幺元,而0是无逆元。

离散数学第八章-最新版

离散数学第八章-最新版
数学归纳法是论域为自然数集合的推理规则,可形式 表达如下:
P(0) (n) ( P(n) P(n+1) ) (n) P(n)
设k是某个自然数,如果要证明谓词P(x)对所有x≥k的自 然数成立,则上述原理可写成:
P(k) (n)(nk P(n)P(n+1)) (x)(xkP(x))
第一、第二归纳法
ii) 假设Q(i) 为真(i i0),即对于任意i i0,j j0,P (i, j)为真 则对于任意j j0,P( i+1, j) 为真,即 Q (i+1)为真。
由 i) 和 ii) 可知,对于任意i i0 ,Q (i) 皆真。 所以,对于任意i i0,j j0, P (i, j) 为真。
§ 8.2 基 数
本节讨论度量和比较 两个集合大小的方法。
重点掌握 等势,有穷、无穷集合,可数无穷集合, 可数、不可数集合,无穷集合的性质, 有穷集合、N 与 R 的基数,基数的比较。
比较两个集合的大小: 1 计数法:先数出它们的元素个数,再加以比较。 2 愚人比宝法:每次各取一,看哪个最后取完。
等势关系的性质: 对于任何集合 A , B , C ,均有:
(1) A ~ A; (2) 若 A ~ B , 则 B ~ A; (3) 若 A ~ B , B ~ C , 则 A ~ C。 即 等势关系有自反性 , 对称性和传递性,因此等势是 集合族上的等价关系。
定义8.6:集合是有穷的,当且仅当 它与某个自然数 等势,否则就是无穷的。
0
0.5 1
x
例:如果 a,b R,a < b,则 (a,b) ~ R 。 证:定义 f :(a,b) → R 如下: x∈(a,b),令 f (x) = tg [ π ( x- (a+b)/2 )/(b-a) ] , 若 x∈(a,b) 时, 则π ( x- (a+b)/2 )/(b-a) (-π/2, π/2) 显然f 是双射,所以 (a,b) ~ R 。

《离散数学》图论 (上)

《离散数学》图论 (上)
12
无向图与有向图
v2
e1
e2
e3
v3
e4
v1
e5 (e1)={( v42, v24 )}
v4
(e2)={( v32, v23 )} (e3)={( v3, v4 )}
(e4)=({ v43, v34 )}
(e5)=({ v4,}v4 )
13
无向图与有向图
A B C
D E F
14
无向图与有向图
第八章 图论
第八章 图论
§8.1 基本概念
§8.1.1 无向图、有向图和握手定理 §8.1.2 图的同构与子图 §8.1.3 道路、回路与连通性 §8.1.4 图的矩阵表示
§8.2 欧拉图 §8.3 哈密尔顿图 §8.4 平面图 §8.5 顶点支配、独立与覆盖
2
无向图与有向图
3
无向图与有向图
一个无向图(undirected graph, 或graph) G 指一个三元组 (V, E, ),其中
vV
vV
24
特殊的图
假设 G=(V, E, ) 为无向图,若 G 中所有 顶点都是孤立顶点,则称 G 为零图(null graph)或离散图(discrete graph);若 |V|=n,|E|=0,则称 G 为 n 阶零图 所有顶点的度数均相等的无向图称为正 则图(regular graph),所有顶点的度数 均为 k 的正则图称为k度正则图,也记作 k-正则图 注:零图是零度正则图
19
握手定理
定理(图论基本定理/握手定理)
假设 G=(V, E, ) 为无向图,则deg(v) 2 E , vV
即所有顶点度数之和等于边数的两倍。
推论
在任何无向图中,奇数度的顶点数必是偶 数。

离散数学第8章 图论

离散数学第8章 图论
ij
为d(vi,vj)。
8.2
图的矩阵表示
一、图的邻接矩阵 二、图的连接矩阵
三、图的关联矩阵
二、图的连接矩阵 定义 8-9 设图 G= ( V , E ),其中 V={v1 ,
v2 , … , vn } , n 阶方阵 C= ( cij ),称为图 G 的连接 矩阵,其中第i行j列的元素
1 c ij 0
利用邻接矩阵,我们可以 (1)判断G中任意两个结点是否相连接;
方法是:对 l=1,2,…,n–1,依次检查Al的(i,j)
项元素
(l ( ) ij)是否为0,若都为0,那么结点v 与v 不 a ij i j
相连接,否则vi与vj有路相连接。 (2)计算结点vi与vj之间的距离。
(1) ( 2) ( n 1) 中至少有一个不为0, 若 aij , aij , , aij 则可断定vi与vj相连接,使 a (l ) 0 的最小的 l 即
若中有相同的结点,设为ur= uk(r<k),则子路ur+1…uk可以从 中删去而形成一条较短的路= viu1…ur uk+1…uh–1 vj,仍连接vi到 vj 。 若中还有相同的结点,那么重复上述过程又可形成一条 更短的路,…。这样,最后必得到一条真路,它连接vi到vj, 并短于前述任一非真路。因此,只有真路才能是短程。
非真 生成
真 生成
真 非生成
非真 非生成
真 非生成
七、路与回路 定义:图G中l条边的序列{v0,v1}{v1,v2}…{vl–1,vl}称为连
接v0到vl的一条长为 l 的路。它常简单地用结点的序列 v0v1v2…vl–1vl来表示。其中v0和vl分别称为这条路的起点和终点。 开路:若v0vl,则称路v0v1v2…vl–1vl为开路; 回路:若v0=vl,则称路v0v1v2…vl–1vl为回路; 真路:若开路v0v1v2…vl–1vl中,所有结点互不相同(此时所有 边也互不相同),则称该路为真路; 环:在回路v0v1v2…vl–1v0中,若v0,v1,v2,…,vl–1 各不相同 (此时所有边也互不相同),则称该回路为环。

离散数学 第8章 树(祝清顺版)

离散数学 第8章 树(祝清顺版)
说明
G的生成树一般不惟一. 余树不一定是树, 因为余树不一定连通, 也可能包 含回路.
离散数学
第八章

2007年8月20日
例题
例4 在下图中, 可以看到该图的绿线所示的一个生成树 T. 其中e1, e2, e3, e4, e5, e9都是T的树枝, e6, e7, e8, e10, e11都是T的弦.

2007年8月20日
例题
例4 利用破圈法求下图的生成树。
依次删去边e6,e7,e8,e10,e11, 所得到的生成树就是例
9.1.3中所给出一棵生成树T1.
e4 e2 e7 e8 e10 e9 e5 e6 e3 e11
e1 e1

e4
e2
e9

e5 e3
T的余树如右图所示, 余树是不连通的, 同时也包含回路.
e 4 e2 e7 e8 e10 e9 e5 e6 e3 e11
离散数学 第八章 树
e1

e7 e 8 e6 e10 e11
2007年8月20日
生成树的存在条件
定理3 任何无向连通图G 至少存在一棵生成树. [证] 若连通图G中无回路, 则G为自身的生成树. 若G中包含回路, 则随意地删除回路上的一条边, 而 不影响图的连通性. 若上仍有回路, 则再删除回路上的一条边, 直到无 回路为止, 最后得到的图是无回路、连通的且为G的生 成子图, 故为G的生成树.
离散数学 第八章 树 2007年8月20日
树简介
而系统地研究树,把树当成一个纯数学对象来研究的是法 国数学家约当(Jordan)。 1869年,约当(Jordan)作为一个纯数学对象独立地发现 了树,并给出了树的概念。 约当所研究的成果就是凯莱(Caylay Arthur)所要研究的,但他并不知道树

电子科技大学离散数学第8章 函数

电子科技大学离散数学第8章 函数
2019/1/31 67-6
如果关系 f 具备下列两种情况之一,那么 f 就不是函数:
例8.2.1
设 A={1,2,3,4} , B={a,b,c,d} ,试判断下列关系哪 些是函数。如果是函数,请写出它的值域。 ( 1 ) f1 = {<1,a>,<1,b>,<2,c>,<3,b>}, 其 中 A = {1,2,3},B={a,b, c}; ( 2 ) f2 = {<a,b>,<b,b>,<c,c>}, 其中 A = {a,b,c},B ={b,c}; (3)f3={<x,y>|y−x=1,x,y∈R},其中A=B=R (4)f4={<x,y>|y−x=1,x,y∈Z+},其中A=B=Z+
离散数学
电子科技大学
2019年1月31日星期四
第8章 函数
1 2
函数的概念 特殊函数
内 容 提 要
3
函数的复合运算
函数的逆运算
4
5
2019/1/31
函数的运算定理
67-2
8.1 本章学习要求
重点掌握 1 1 函数的概念 2 单射、满射 和双射函数的 概念 3 函数的复合 运算和逆运算 2019/1/31 一般掌握
(集合元素的第一个元素存在差别)
3. 每一个函数的基数都为 |A| 个 (|f|=|A|) ,但关 系的基数却为从零一直到|A|×|B|。 (集合基数的差别)
2019/1/31 67-14
8.2.2函数的类型
定义8.2.2 设f是从A到B的函数,
对任意x1,x2∈A,如果x1≠x2,有f(x1)≠f(x2),
2019/1/31 67-26

武汉大学《离散数学》课件-第8章

武汉大学《离散数学》课件-第8章

23T(n 3) 22 2 1
...
2n1T (1) 2n2 2n3 ... 2 1
2n1 2n2 2n3 ... 2 1 (代 入 初 值)
2n 1
(等比级数求和)
24
递推方程的定义
定义10.5 设序列a0, a1, …, an, …, 简记为{an}, 一 个把an与某些个ai(i<n)联系起来的等式叫做关 于序列{an}的递推方程.
实例:
Fibonacci数列: fn=fn-1+fn-2, 初值 f0=1, f1=1 阶乘数列{an},an=n!:an=nan-1, a1=1
T (n)
2
n1
T (i) O(n),
n i1
T (1) 0
n2
求解方法:迭代法
25
二分归并排序算法
算法Mergesort(A,s,t) //*排序数组A[s..t] 1. m(t-s)/2 2. AMergesort(A,s,m) //*排序前半数组 3. BMergesort(A,s+1,t) //*排序后半数组 4. Merge(A,B) //*将排好序的A,B归并
nn1 n2 ...nk 1
N
C
n1 n
C n2 n n1
...C
nk n
n1
...nk
1
n! n1!n2! ... nk !
(2) 若 r ni 时,每个位置都有 k 种选法,得 kr.
14
多重集的组合
当r ni , 多重集 S ={ n1a1, n2a2, …, nkak } 的组
合数为
28
归纳法验证解
n=1代入上述公式得 W(1)=1 log11+1=0,

离散数学离散数学第8章 一些特殊的图 PPT课件

离散数学离散数学第8章 一些特殊的图 PPT课件

在23岁时,他发表了他还是一个17岁的孩子时作出的“奇怪的发 现”,…即《光线系统理论》第一部分,这是一篇伟大的杰作,它对于 光学,就象拉格朗日的《分析力学》之于力学。
哈密尔顿最深刻的悲剧既不是酒精,也不是他的婚姻,而是他顽固地
相信,四元数是解决物质宇宙的数学关键。…从来没有一个伟大的数学
家这样毫无希望地错误过。
2
1
3
4
(2) 有限面与无限面:面积有限的区域称为有 限面(或内部面),否则为无限面(或外部面) 。 上图中,面4是无限面。
7/1/2020 9:05 PM
第四部分:图论(授课教师:向胜军)
24
(3) 面的次数等于面边界的边数(注意:悬挂边算2 次),记为deg(R).
(4) 平面图中面的次数之和等于边数m的两倍,即
d(u)+d(v)≥n-1 则G是半哈密尔顿图。
注意:
此定理条件显然不是必要条件,如n≥6的n边形,对于 任意不相邻的顶点u, v, d(u)+d(v)=4,4<n-1,而n边形显 然有哈密尔顿通路。
7/1/2020 9:05 PM
第四部分:图论(授课教师:向胜军)
18
哈密尔顿图的充分条件
❖ 设G是n(n≥3)阶无向简单图,若G中 任意不相邻的顶点对u,v均满足: d(u)+d(v)≥n 则G是哈密尔顿图。
a
bc
d
e
f g
h
i j
k
l
ba
d
g
e j
f
l
b
a
c
d
g
j
i
e
h
f
k
7/1/2020 9:05 PM

离散数学第八章

离散数学第八章

这个位置上能且仅能出现相应集合中的某个元素。
另外,按照推导,也就是句子的产生过程来说,这些
“符号”在形成一个句子的过程中逐渐地被替换掉,
而不是在最终的句子中出现。所以称这些符号为非终 结符号。
(2)<句子> 作为一个“符号”,具有特殊的意义。
语言中的所有句子都是从这个“符号”出发经过推导
得到的。称这个符号为开始符。
是句型,称 是 的直接派生,记 作 。如果 1 , 2 ,, n 是一串句型,其 中 1 2 3 n ,称 n 可由 1 派生得到或 * 称n 是1 的派生,记作 1 n。
定义8-2.3 文法G生成的语言记作 生得到的所有终结符串集,即
用开始符标识树根,派生过程中的非终结符标识 树的分枝点,最后得到的终结符串中的字母标识树叶, 这样得到的树称为派生树。派生树的构造是按照派生 A 过程逐步得到,如果已有 ,其中 , , (VN VT )* 它的派生树如356页图8-2.4(a)所示接着使用生成式 A ,其中 B1B2 Bn , , 并用图8-2.4(b)所示的子树代替标识为A的叶,得到 A VN Bi (VN VT ),(1 i n) 新的派生树,如图8-2.4(c)所示。按照这种方法构造下 去,直到所有叶都是以终结符标识为止。
所有的生成式 A 中, 且 , 即它的生成式形为
A
( )
在此文法中,所有生成式左端是一个非终结符。 与上下文有关文法一样, G 当且仅当G包含生成 式 。由上下文无关文法产生的语言称为上下 文无关语言(CFL)或2型语言。
生,那么,| || | ,这种规则称为缩减规则。
只有0型文法能缩减。由0型文法产生的语言称为0型语

离散数学及其应用课件第8章第2-3节

离散数学及其应用课件第8章第2-3节

二分图
完全二分图
二分图的判断
定理8.3.2 一个无向简单图G=(V,E)是二分图,当且仅 当G中无奇数长度的回路。
证明 (必要性) 设无向简单图G=(V,E)是二分图,V1V2=V,V1V2=。对于G中任一长度为n的 回路可表示为v1e1v2e2vnenv1。设v1V1,则v2V2,v3V1,v4V2 vnV2。所以n 必为偶数。 (充分性) 设无向简单图G=(V,E)的所有回路的长度都是偶数。u是图G的任一结点,d(v, u)表示结点v到结点u的距离。二分图的结点集V的两个子集可以表示为:V1={v| d(v, u) 为偶数},V2=V-V1。如果存在一条边e的两端点vi和vj都在结点集V1中,则从vi到vj存在一 条有偶数条边的通路L。通路L和边e可以构成一条回路,回路的长度为奇数。和假设矛 盾。同理可证,没有一条边的两端点都在结点集V2中。由此可见,图G的每条边的端点, 必定一个在结点集V1中,另一个在结点集V2中,而且V1和V2是G的互补结点集。所以图G 是二分图。
例题
判断图8.3.6中的图是否是二分图。
a
b
a
b
d
c
e
e
c
d
a
b
f
c
e
d
完全匹配和完美匹配
定义8.3.5 设G=(V,E)是二分图,V1和V2是G的互补结点 集,若G的一个匹配M使得|M|=min{| V1|,| V2|},称匹配M是G 的完全匹配。这时,若| V1|| V2|,称M是从V1到V2的一个完全 匹配。如果| V1|=| V2|,称M是G的完美匹配。
完全匹配
完美匹配
没有完全匹配
完全匹配
定理8.3.3(Hall定理) 设二分图G = (V,E ),V1和V2 是G的 互补结点集,存在从V1到V2的完全匹配, 当且仅当对于V1中的 任意k个结点(k=1,2, ,|V1|)至少邻接V2的k个结点。

离散数学第八章(第1讲)

离散数学第八章(第1讲)

(2)无向图,有向图
a
d
每一条边都是无向边的图称无向图。
b
c
每一条边都是有向边的图称有向图。 a
d
b
c
例:将右图用二元组表示为: G=〈V,E〉 其中V={a,b,c,d} E={<a,b>,<b,a>,<b,d>,<d,a>,<d,d>,<c,c>} 则:G=〈V,E〉= 〈 {a,b,c,d} , {<a,b>,<b,a>,<b,d>,<d,a>,<d,d>,<c,c>} 〉
A
最大度,记为:△(G)=max{d(v)| vV} B
E
最小度,记为:δ(G)=min{d(v)| vV}
D
C
定理1 (握手定理) :每个图中,结点度数的总和等于边 数的两倍。即
deg(v) 2 E
vV
证:∵每条边必关联两个结点,而一条边给于关联的每 个结点的度数为1。 故上述定理成立。
例:在一次10周年同学聚会上,想统计所有人握手的 次数之和,应该如何建立该问题的图论模
a
h
b
c
g
d h
b
c
g
d
a
h
f (a)
f e
e
(b)
f (c)
(13)生成子图:如果G的子图包含G的所有结点,则称 该子图为G的生成子图。
如下图,(b)、(c)都是(a)的生成子图。
v1
v4
v1
v4
v1
v4
v2
v3
(a)
v2
v3
v2
(b)

离散数学第八章布尔代数

离散数学第八章布尔代数
答案4
对于一个具体的逻辑电路,我们可以使用布尔代数进行化简。首先,将电路中的逻辑门表示为相应的布尔表达式,然后利用布尔代数的性质和定理进行化简,最终得到最简的布尔表达式。
答案部分
THANKS
定理
在布尔代数中,定理是经过证明的数学命题,可以用于证明其他命题或解决特定问题。
公式与定理
逻辑推理
逻辑推理
在布尔代数中,逻辑推理是一种基于已知命题推导出新命题的推理过程。它使用逻辑规则和已知事实来得出结论。
推理规则
在逻辑推理中,常用的推理规则包括析取三段论、合取三段论、假言推理等。这些规则用于从已知事实推导出新的事实或结论。
在电路设计中的应用
计算机的内部工作原理是基于逻辑运算的。布尔代数是计算机逻辑设计的基础,用于描述计算机中的各种逻辑关系和运算。例如,计算机中的指令集、指令编码、指令执行等都涉及到布尔代数的应用。
计算机逻辑设计
在数据压缩和加密算法中,布尔代数也发挥了重要作用。通过利用布尔代数的性质和运算,可以实现高效的压缩算法和安全的加密算法。
变量
在布尔代数中,常量表示一个固定的值,通常用于表示逻辑上的“真”或“假”。
常量
变量与常量
函数
在布尔代数中,函数是一种将输入映射到输出的规则。对于每个输入,函数都有一个确定的输出。
运算
布尔代数中的运算包括逻辑与、逻辑或、逻辑非等基本运算。这些运算用于组合变量的值以产生新的输出。
常量、函数和运算符组成的数学表达式。
逻辑电路设计
逻辑函数的优化准则
逻辑函数的优化准则包括最小化使用的最小项数量、减少最大项的个数、减少最大项的复杂度等。这些准则有助于简化逻辑函数的表示和实现,提高电路的性能。
逻辑函数的优化方法

离散数学 第8章 树(祝清顺版)88页PPT文档

离散数学 第8章 树(祝清顺版)88页PPT文档

e6
e5
e3
e10
e9 e11
e6
e7 e8
e10

e11
离散数学
第八章 树
2007年8月20日
生成树的存在条件
定理3 任何无向连通图G 至少存在一棵生成树.
[证] 若连通图G中无回路, 则G为自身的生成树. 若G中包含回路, 则随意地删除回路上的一条边, 而
vVdeg(vi) =2m =2(n1). 另一方面, 设T有x片树叶, 可得
2(n1)= vVdeg(vi) ≥x+2(nx) 由上式解出x≥2.
离散数学
第八章 树
2007年8月20日
例题
例2 设T为6条边的树, 其顶点度为1, 2, 3. 如果T恰有3个 度为2的顶点,那么T有多少片树叶?并画出满足要求的 非同构的无向树. [解] 设T有x片树叶, 于是结点总数为
本章将对树进行详细的讨论,主要包括:
树的基本性质和生成树,
根树、有向树中的n元树、有序树和搜索树等。
离散数学
第八章 树
2007年8月20日
Discrete Mathematics
科学出版社
第1节 树
主讲:祝清顺 教授
树的概念
定义1 连通而无简单回路的无向图称为无向树, 简称树, 常用T表示树. 在树中度数为1的结点称为树叶, 度数大于1的结点称为分支结点.
e1

e4 e2 e7 e8
e6
e5 e3Fra biblioteke10
e9 e11
e1 e4 e2 e5
e3

e9
生成树T1
离散数学
第八章 树

离散数学(chapter8)

离散数学(chapter8)
20112011-3-6 离散数学 21
二、平面图的判定(续)
一个图是平面图当且仅当它不含与K 判定 一个图是平面图当且仅当它不含与K5同胚 定理 子图,也不含与K 同胚子图。 子图,也不含与K 同胚子图。
3,3
判定 一个图是平面图当且仅当它没有可以收缩 定理 到K 的子图,也没有收缩到K 的子图。 的子图,也没有收缩到K 的子图。
20112011-3-6
离散数学
7
欧拉图(续)
欧拉图的判定定理: 欧拉图的判定定理: (3) 有向图D具有欧拉通路当且仅当D是连通图,且 有向图D具有欧拉通路当且仅当D是连通图, 欧拉通路当且仅当 除了两个顶点外,其余顶点的入度均等于出度 除了两个顶点外,其余顶点的入度均等于出度。 入度均等于出度。 这两个特殊的顶点中,一个顶点的入度比出度 这两个特殊的顶点中, 大1,另一个顶点的出度比入度大1。 另一个顶点的出度比入度大1 (4) 有向图D是欧拉图(具有欧拉回路)当且仅当D是 有向图D 欧拉图(具有欧拉回路)当且仅当D 入度等于出度。 连通图,且所有顶点的入度等于出度。 连通图,且所有顶点的入度等于出度
20112011-3-6 离散数学 18
一、平面图的基本概念及性质(续)
欧拉 则有n 2成立 成立。 公式 则有n – m + r = 2成立。
设G是任意的连通的平面图, 是任意的连通的平面图,
其中:n为顶点数,m为边数,r为面数。 其中: 为顶点数, 为边数, 为面数。 设G是任意的连通分支为p(p ≥ 2)的平面图, 是任意的连通分支为p 的平面图,
定理
设G是简单平面图,则m ≤ 3n – 6。 是简单平面图, 设G是极大平面图,则m = 3n – 6。 是极大平面图,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
函数复合与函数性质
定理8.2 设f:A→B, g:B→C (1) 如果 f:A→B, g:B→C是满射的, 则 fg:A→C也是满射的 (2) 如果 f:A→B, g:B→C是单射的, 则 fg:A→C也是单射的 (3) 如果 f:A→B, g:B→C是双射的, 则 fg:A→C也是双射的
证 (1) 任取c∈C, 由g:B→C的满射性, b∈B使得 g(b)=c. 对于这个b, 由 f:A→B的满射性,a∈A使得 f(a)=b. 由合成定理有
x∈domF∧F(x)∈domG <x,F(x)>∈F∧<F(x),G(F(x))>∈G <x,G(F(x))>∈FG x∈dom(FG)∧FG(x)=G(F(x)) 所以(1) 和(2) 得证
16
推论
推论1 设F, G, H为函数, 则(FG)H和F(GH)都是函数, 且 (FG)H=F(GH)
(3)由(1)和(2)得证.
注意:定理逆命题不为真, 即如果f g:A→C是单射(或满射、双
射)的, 不一定有 f:A→B 和 g:B→C都是单射(或满射、双射)的.
定理8.3 设 f:AB, 则 f = f IB = IAf (证明略)
19
实例
考虑集合A={a1,a2,a3}, B={b1,b2,b3,b4}, C={c1,c2,c3}. 令 f={<a1,b1>,<a2,b2>,<a3,b3>} g={<b1,c1>,<b2,c2>,<b3,c3>,<b4,c3>}
f g={<a1,c1>,<a2,c2>,<a3,c3>} 那么 f:A→B和f g:A→C是单射的, 但g:B→C不是单射的.
考虑集合A={a1,a2,a3}, B={b1,b2,b3}, C={c1,c2}. 令 f={<a1,b1>,<a2,b2>,<a3,b2>} g={<b1,c1>,<b2,c2>,<b3,c2>}
fg(a) = g(f(a)) = g(b) = c 从而证明了fg:A→C是满射的
18
证明
(2) 假设存在x1, x2∈A使得
f g(x1)=f g(x2)
由合成定理有 g(f(x1))=g(f(x2))
因为g:B→C是单射的, 故 f(x1)=f(x2). 又由于f:A→B是单射的, 所
以x1=x2. 从而证明f g:A→C是单射的.
射函数, 但不一定是从B到A的双射函数 (3) 对于双射函数 f:A→B, f 1:B→A是从B到A的双射函数.
定理8.4 设 f:A→B是双射的, 则f 1:B→A也是双射的. 证明思路: 先证明 f 1:B→A,即f 1是函数,且domf 1=B, ranf 1=A. 再证明f 1:B→A的双射性质.
f:P({a,b})→{0,1}, f()=f({a})=f({b})=0, f({a,b})=1, f 是单调递增的, 但不是严格单调递增的
(2) A的每一个子集 A’都对应于一个特征函数, 不同的子集对 应于不同的特征函数. 例如A={a,b,c}, 则有 ={<a,0>,<b,0>,<c,0>},{a,b}={<a,1>,<b,1>,<c,0>}
4
函数的像和完全原像
定义8.5 设函数 f:A→B, A1A, B1B (1) A1在 f 下的像 f(A1) = { f(x) | x∈A1}, 函数的像 f(A) (2) B1在 f 下的完全原像 f 1(B1)={x|x∈A∧f(x)∈B1} 注意: 函数值与像的区别:函数值 f(x)∈B, 像f(A1)B 一般说来 f 1(f(A1))≠A1, 但是A1f 1(f(A1))
f g={<a1,c1>,<a2,c2>,<a3,c2>} 那么g:B→C 和 f g:A→C是满射的, 但 f:A→B不是满射的.
20
反函数
反函数存在的条件 (1) 任给函数F, 它的逆F 1不一定是函数, 只是一个二元关系. (2) 任给单射函数 f:A→B, 则f 1是函数, 且是从ranf 到A的双
定义8.2 设F, G 为函数, 则 F=G FG∧GF
如果两个函数F 和 G 相等, 一定满足下面两个条件: (1) domF=domG (2) x∈domF=domG 都有F(x)=G(x) 函数F(x)=(x21)/(x+1), G(x)=x1不相等, 因为 domFdomG.
2
从A到B的函数
则称 f:A→B是常函数. (2) 称 A上的恒等关系IA为A上的恒等函数, 对所有的x∈A都
有IA(x)=x. (3) 设<A, ≼>, <B, ≼>为偏序集,f:A→B,如果对任意的 x1,
x2∈A, x1≺x2, 就有 f(x1)≼ f(x2), 则称 f 为单调递增的;如 果对任意的x1, x2∈A, x1≺x2, 就有f(x1) ≺f(x2), 则称 f 为严 格单调递增的. 类似的也可以定义单调递减和严格单调递 减的函数
Z: 0 1 1 2 2 3 3 … ↓ ↓↓↓ ↓ ↓ ↓
N: 0 1 2 3 4 5 6 … 这种对应所表示的函数是:
f: Z N ,f(x ) 2 2 x x 1x 0 0 (4) 令 f:[π/2,3π/2]→[1,1]
f(x) = sinx
10
某些重要函数
定义8.7 (1)设 f:A→B, 如果存在c∈B使得对所有的 x∈A都有 f(x)=c,
x/2 若x为偶数 例 设 f:N→N, 且 f(x)x1 若x为奇数
令A={0,1}, B={2}, f(A) = f( {0,1}) = { f(0), f(1)}={0,2} f 1(B) = f 1({2})={1,4}
5
函数的性质
定义8.6 设 f:A→B, (1) 若 ranf=B, 则称 f:A→B是满射的 (2) 若 y∈ranf 都存在唯一的 x∈A 使得 f(x)=y, 则称 f:A→B
6
例题解答
解 (1) f:R→R, f(x)=x2+2x1
在x=1取得极大值0. 既不是单射也不是满射的 (2) f:Z+→R, f(x)=lnx
是单调上升的, 是单射的. 但不满射, ranf={ln1, ln2, …}. (3) f:R→Z, f(x)= x
是满射的, 但不是单射的, 例如f(1.5)=f(1.2)=1 (4) f:R→R, f(x)=2x+1
是单射的 (3) 若 f:A→B 既是满射又是单射的, 则称 f:A→B是双射的
例2 判断下面函数是否为单射, 满射, 双射的, 为什么? (1) f:R→R, f(x) = x2+2x1 (2) f:Z+→R, f(x) = lnx, Z+为正整数集 (3) f:R→Z, f(x) = x (4) f:R→R, f(x)=2x+1 (5) f:R+→R+, f(x)=(x2+1)/x, 其中R+为正实数集.
11
某些重要函数
(4) 设A为集合, 对于任意的A'A, A'的特征函数 A ' :A→{0,1}定义为 A'(a)=1, a∈A' A'(a)=0, a∈AA'
(5) 设R是A上的等价关系, 令 g:A→A/R g(a)=[a], a∈A
称 g 是从 A 到序集<P({a,b}),R>, <{0,1},≤>, R为包含关系, ≤为 一般的小于等于关系, 令
<x, y1>∈FG∧<x, y2>∈FG
t1(<x,t1>∈F∧<t1,y1>∈G)∧t2(<x,t2>∈F∧<t2,y2>∈G)
t1t2(t1=t2∧<t1,y1>∈G∧<t2,y2>∈G (F为函数)
y1=y2
(G为函数)
所以 FG 为函数
15
证明
任取x, x∈dom(FG)
t y(<x,t>∈F∧<t,y>∈G) t (x∈domF∧t=F(x)∧t∈domG) x∈{ x | x∈domF∧F(x)∈domG } 任取x,
定义8.3 设A, B为集合, 如果 f 为函数, domf=A, ranfB,
则称 f 为从A到B的函数, 记作 f:A→B. 例 f:N→N, f(x)=2x 是从N到N的函数,
g:N→N, g(x)=2 也是从N到N的函数.
定义8.4 所有从A到B的函数的集合记作BA, 符号化表示为 BA = { f | f:A→B }
(3) 不同的等价关系确定不同的自然映射, 恒等关系确定的自 然映射是双射, 其他自然映射一般来说只是满射. 例如 A={1,2,3}, R={<1,2>,<2,1>}∪IA g: A→A/R, g(1)=g(2)={1,2}, g(3)={3}
13
8.2 函数的复合与反函数
主要内容 复合函数基本定理 函数的复合运算与函数性质 反函数的存在条件 反函数的性质
|A|=m, |B|=n, 且m, n>0, |BA|=nm A=, 则BA=B={} A≠且B=, 则BA=A=
3
实例
例1 设A={1,2,3}, B={a,b}, 求BA.
BA={ f0, f1, … , f7}, 其中 f0 = {<1,a>,<2,a>,<3,a>} f1 = {<1,a>,<2,a>,<3,b>} f2 = {<1,a>,<2,b>,<3,a>} f3 = {<1,a>,<2,b>,<3,b>} f4 = {<1,b>,<2,a>,<3,a>} f5 = {<1,b>,<2,a>,<3,b>} f6 = {<1,b>,<2,b>,<3,a>} f7 = {<1,b>,<2,b>,<3,b>}
相关文档
最新文档