第八章 函数 离散数学及其应用课件

合集下载

函数-离散数学

函数-离散数学
证明:⑴ 设f和g是满射的,因g f :XZ,任取z∈Z, 因 g:YZ是满射的,所以存在y∈Y,使得z=g(y), 又因 f:XY是满射的,所以存在x∈X,使得y=f(x), 于是有 z=g(y)=g(f(x))= g f (x), 所以 g f 是满射的。 ⑵ 设f和g是入射的,因g f :XZ,任取x1, x2∈X, x1≠x2 因f:XY是入射的,f(x1)≠f(x2) , 而 f(x1) ,f(x2)∈Y,因 g:YZ是入射的,g(f(x1))≠g(f(x2)) 即g f (x1)≠ g f (x2) 所以g f 也是入射的。 ⑶由⑴⑵可得此结论。
一、函数的概念
(1)函数的定义:
X与Y集合,f是从X到Y的关系,如果任x∈X, 都存在唯一y∈Y,使得<x,y>∈f,则称f是从X到Y的 函数, (变换、映射),记作f:X Y, 或X Y. 如果f:XX是函数, 也称f是X上的函数. 下面给出A={1,2,3}上几个关系,哪些是A到A的函数?

函数,则
(h g) f=h (g f)

证明 与关系复合可结合的证明类似,这里从略。
2.定理:f:XY, g:YZ是两个函数, 则
⑴如果f和g是 满射的,则 g f 也是满射的; ⑵如果f和g是入射的,则 g f 也是入射的;
⑶如果f和g是双射的,则 g f 也是双射的。
(2)逆函数的性质
a) 若f为双射,则(f-1)-1=f。 证明:∵(f-1).f=Ix, f.(f-1)=Iy ∴(f-1)-1=f
b) (g.f) –1= f-1.g-1 证明:设f: X→Y,g:Y→Z,则g.f:X→Z, ∵(g.f). f-1.g-1=g.Iy.g-1=g.g-1=Iz, f-1.g-1.(g.f)= f-1.Iy.f= f-1.f=Ix, ∴(g.f) –1= f-1.g-1

离散数学及应用PPT课件

离散数学及应用PPT课件
28.04.2020
引 言(续)
二、该课程的主要内容: 离散数学课程的主要内容可以分为四个部分: 数理逻辑,包括命题逻辑和谓词逻辑。(教材的第一、二章) 集合论,包括集合、关系和函数。(教材的第三、四章) 代数系统,包括代数系统的一般概念,几类典型的代数系
统和格。(教材的第五、六章) 图论,包括图的基本概念,几种特殊的图。 (教材的第七章)
数理逻辑:人工智能,数据库,形式语言及自动机, 高级程序设计语言。
集合论: 信息结构与检索,数据结构。 图论: 可计算性理论,计算机网络,数据结构。 代数结构:开关理论,逻辑设计和程序理论,语法
分析。 2. 通过学习离散数学,可以培养和提高自己的抽象思
维和逻辑推理能力,获得解决实际问题能力,为以 后的软、硬件学习和研究开发工作,打下坚实的数 学基础。
版) (美)Kenneth H.Rosen 著 机械工业出版社
28.04.2020
引 言(续)
七、考核方式: 期末考试成绩占70%, 平时成绩占30%.
28.04.2020
第一部分 数理逻辑(Mathematical Logic)
❖ 逻辑:是研究推理的科学。公元前四世纪由希腊的 哲学家亚里斯多德首创。作为一门独立科学,十七 世纪,德国的莱布尼兹(Leibniz)给逻辑学引进了符 号, 又称为数理逻辑(或符号逻辑)。
➢ 因此,离散数学是随着计算机科学的发 展而逐步建立的,它形成于七十年代初期, 是一门新兴的工具性学科。
28.04.2020
引 言(续)
➢ 离散数学是现代数学的一个重要分支, 是计算机科学与技术的理论基础,是计算机 科学与技术专业的核心、骨干课程。
➢ 它 以研究离散量的结构和相互间的关系 为主要目标,其研究对象一般是有限个或可 数个元素,因此它充分描述了计算机科学离 散性的特点。

离散数学的基础知识及其应用

离散数学的基础知识及其应用

离散数学的基础知识及其应用离散数学是数学的一门分支,它研究的是离散对象的性质及其相互关系,它主要包括离散结构、离散函数和离散过程三个方面。

离散数学在现代计算机科学和信息科学领域中有着非常广泛的应用,它为我们理解现代计算机相关技术提供了基础。

一、离散结构离散结构是离散数学研究的重要内容之一,它主要研究离散对象的结构性质及其相互关系。

离散对象包括有限集、排列组合、图论、树、关系等等。

其中,有限集是离散结构研究中的基本对象,其运算和关系是研究其他离散对象的基础。

例如,在计算机科学中,二进制位就可以看作一个有限集,其元素是“0”和“1”,用于描述数据的存储和处理等。

排列组合是离散结构研究的另一个重要分支,它主要研究有序排列和组合的问题。

排列指的是从n个不同元素中取出m个元素进行排列,按一定顺序排列的方案总数,记作A(n,m),其中n>=m>=0;组合指的是从n个不同元素中取出m个元素进行组合,不考虑顺序的方案总数,记作C(n,m),其中n>=m>=0。

排列组合的应用非常广泛,例如在计算机编程中,排列组合算法可以用于产生一些随机的数字组合,以保证计算机程序的安全和难以破解。

图论是离散数学中一个非常重要的分支,它主要研究图的性质及其算法。

图是由一些点和连接这些点的边组成的。

图分为有向图和无向图,其中有向图指的是每一条边都有方向,无向图则没有方向。

图论的研究方法主要是最短路径算法、最小生成树算法等,这些算法在网络优化、社交网络等方面都有着广泛的应用。

例如,在社交网络中,我们可以使用图论中的二分图匹配算法,将人们按照某些规则分为两部分,然后在两部分中各自进行互动。

二、离散函数离散函数是离散数学中的另一个重要研究内容,它主要研究函数和映射的性质及其相互关系。

离散函数是一个有限或可数集合和另一个有限或可数集合之间的映射,而离散函数的研究方法主要是代数方法和组合方法。

代数方法主要研究离散函数的基本性质和代数运算,例如函数的奇偶性、函数的对称性等等。

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1.1 离散数学的概念离散数学是研究离散结构及其性质的数学分支。

离散数学与连续数学相对,主要研究对象是集合、图、逻辑等。

1.2 离散数学的应用计算机科学:图论在网络设计、算法分析中的应用,集合论在数据结构设计中的应用等。

数学逻辑:计算机程序设计中的逻辑判断,布尔代数在电路设计中的应用等。

二、集合论2.1 集合的基本概念集合的定义:由明确的元素构成的整体。

集合的表示法:列举法、描述法。

2.2 集合的运算并集、交集、补集的定义及运算性质。

集合的幂集。

三、逻辑与布尔代数3.1 命题逻辑命题、联结词、复合命题的真值表。

命题逻辑的推理规则。

3.2 谓词逻辑个体、谓词、量词。

谓词逻辑的推理规则。

3.3 布尔代数布尔代数的基本运算:与、或、非。

布尔表达式的化简。

四、图论4.1 图的基本概念图的定义:节点和边的集合。

无向图、有向图、多重图、加权图等。

4.2 图的运算图的遍历:深度优先搜索、广度优先搜索。

图的连通性:强连通、弱连通。

4.3 特殊图二分图、树、路径、圈。

网络流、最短路径问题。

五、组合数学5.1 排列组合排列、组合的定义及计算公式。

分布计数原理。

5.2 计数原理鸽巢原理、包含-排除原理。

二项式定理、多项式定理。

5.3 组合设计区块设计、拉丁方、Steiner系统等。

组合设计的性质和构造方法。

《离散数学教案》课件六、数理逻辑与计算逻辑6.1 数理逻辑的基本概念命题、联结词、逻辑代数。

真值表和逻辑等价式。

6.2 计算逻辑形式语言和自动机。

编译原理中的逻辑分析。

七、组合设计与编码理论7.1 组合设计的基本概念区块设计、拉丁方、Steiner系统。

组合设计的性质和构造方法。

7.2 编码理论线性码、循环码、汉明码。

编码的纠错能力和应用。

八、图的同态与同构8.1 图的同态图的同态的定义和性质。

同态定理和同态的应用。

8.2 图的同构图的同构的定义和性质。

同构定理和同构的应用。

九、树与森林9.1 树的基本概念树的定义和性质。

离散数学及应用课件

离散数学及应用课件

离散数学及应用课件离散数学是数学的一个重要分支,它研究的是数学离散对象,如集合、图、树、数等。

它涵盖了一系列丰富而又有深度的主题,包括集合论、图论、数论、逻辑学等。

这些主题不仅在数学领域有着广泛的应用,也在计算机科学、物理学、经济学等多个领域有所涉及。

一、离散数学的主要内容1、集合论:集合论是离散数学的基础,它研究的是集合及其性质和运算。

集合论中的基本概念包括元素、集合、子集、并集、交集、补集等。

2、图论:图论是离散数学中一门研究图形和网络结构的学科。

图论中的基本概念包括节点、边、路径、环、子图等。

图论在计算机科学、电子工程、交通运输等领域都有广泛的应用。

3、数论:数论是研究整数性质和运算的学科。

数论中的基本概念包括整数、素数、合数、约数、倍数等。

数论在密码学、计算机科学等领域有着重要的应用。

4、逻辑学:逻辑学是研究推理和证明的学科。

逻辑学中的基本概念包括命题、推理、证明、反证等。

逻辑学在人工智能、哲学、法学等领域有着广泛的应用。

二、离散数学的应用1、计算机科学:离散数学在计算机科学中的应用广泛而重要。

例如,图论被用于解决计算机科学中的一些基本问题,如排序问题、旅行商问题等。

离散数学还在计算机科学的其他领域有所应用,如算法设计、数据结构、数据库系统等。

2、物理学:离散数学在物理学中的应用也十分广泛。

例如,量子力学和统计力学的理论框架中都有离散数学的影子。

离散数学还在固体物理学、分子物理学等领域有所应用。

3、经济学:离散数学在经济学中的应用也日益增多。

例如,离散数学被用于研究金融市场中的复杂行为,以及分析经济数据的模式和趋势。

离散数学还在博弈论、决策理论等领域有所应用。

三、总结离散数学作为数学的一个重要分支,其理论和应用已经渗透到科学的各个领域。

学习和研究离散数学,不仅可以增强我们的数学素养,还可以提高我们的逻辑思维能力和解决问题的能力。

因此,我们应该重视离散数学的学习和应用。

离散数学是数学的一个重要分支,它研究的是离散量的结构及其相互关系。

离散数学及应用PPT课件

离散数学及应用PPT课件
作业每星期一交,作为平时成绩。
28.04.2020
引 言(续)
六、参考教材:
1.《离散数学及其应用》魏雪丽等编著 机械工业出版社 2 .《离散数学》 左孝凌等著 上海科技文献出版社 3. 《离散数学 — 理论·分析·题解》 左孝凌等著
上海科技文献出版社 4. 《Discrete Mathematics and Its Applications》 (英文
1.1 命题及其表示方法
命题标识符又有命题常量、命题变元和原子变元 之分。 命题常量:表示确定命题的命题标识符。 命题变元:命题标识符如仅是表示任意命题的位置标
志,就称为命题变元。 原子变元:当命题变元表示原子命题时,该变元称为
原子变元。 命题变元也用A,B,…,P,Q,P1,P2,P3 , …, 表示。
1.1 命题及其表示方法
小结:本节主要介绍了命题、命题的真值、 原子命题、复合命题、命题标识符、命题常量、 命题变元和原子变元的概念。 重点理解和掌握命题、命题变元、简单(原子) 命题、复合命题四个概念。
作业:P2 1,2
28.04.2020
第一章 命题逻辑(Propositional Logic)
➢ 因此,离散数学是随着计算机科学的发 展而逐步建立的,它形成于七十年代初期, 是一门新兴的工具性学科。
28.04.2020
引 言(续)
➢ 离散数学是现代数学的一个重要分支, 是计算机科学与技术的理论基础,是计算机 科学与技术专业的核心、骨干课程。
➢ 它 以研究离散量的结构和相互间的关系 为主要目标,其研究对象一般是有限个或可 数个元素,因此它充分描述了计算机科学离 散性的特点。
展创建新的理论,就要寻找合适的数学工具。
例:为了描述新开拓的应用领域中的各

离散数学及其应用:群与编码课件

离散数学及其应用:群与编码课件

Unit of information
Message(消息) is a finite sequence of characters from a finite alphabet B = {0, l } Word(字) is a sequence of m 0's and l s.
Groups
The set B is a group under the binary operation + (mod 2 addition ) It follows that Bm = B × B × … × B (n factors) is a group under the operator ⊕ defined by
(1,0)
• (1,1)
• (0,0)
• (0,1)
Bm(0,1)->Bn(000,111)
• (0,0,1) (0,1,1)
• (1,0,1)
• (1,1,1) • (0,0,0) • (1,0,0)
• (0,1,0)
• (1,1,0)
Hamming distance – 海明距离
Let x and y be words in Bm. The Hamming distance δ(x, y) between x and y is the weight, |x⊕y|, of x ⊕ y. The distance between x = x1x2…xm and y = y1y2…ym is the number of various of i such that xi ≠ yi, that is, the number of positions in which x and y differ. Using the weight of x ⊕ y is a convenient way to count the number of different positions.

离散数学(函数)PPT课件

离散数学(函数)PPT课件

x1的素数y个2 数}
y1x 1
0
x2
0
1
0
2
1
3
2
4
2
5
3
.6
3
函数的定义
设F, G 为函数, 则 F=G FG∧GF
如果两个函数F 和 G 相等, 一定满足下面两个 条件: (1) domF=domG
(2) x∈domF=domG 都有F(x)=G(x)
函数F(x)=(x21)/(x+1), G(x)=x1不相等, 因为 domFdomG.
共有 nf7m=(|B{<||aA|,1)>个,<不b,1同>,函<c数,1>.} BA
.
函数的定义
所有从A到B的函数的集合记作BA, 表示为 BA = { f | f:A→B }
|A|=m, |B|=n, 且m, n>0, |BA|=nm A=, 则BA=B={} A≠且B=, 则BA=A=
.
第八章 函数
.
8.1 函数的定义与性质
4.1 函数的概念
❖ 函数定义 ❖ 函数与关系 ❖ 函数相等 ❖ 特殊函数: 单射
满射 双射
.
函数的定义
设 F 为二元关系, 若x∈domF 都存在唯一 的y∈ranF 使 xFy 成立, 则称 F 为函数 对于函数F, 如果有 xFy, 则记作 y=F(x), 并称 y 为F 在 x 的值.
|P(AB)|=26, 但只有 23 个子集定义为 X 到 Y 的函数.
一般地f0,= |{A<|a=,m0>,,|<Bb|,=0n>,,由<c,A0>到} B 的任 意函数f1的= 定{<a义,0域>,<是b,A0>,在<c函,1>数} 中每个

离散数学及其应用课件:特殊图

离散数学及其应用课件:特殊图

特殊图
图6-7 基于用户的协同过滤
特殊图
基于物品的协同过滤算法与基于用户的协同过滤算法类 似,只是将商品和用户互换。通过计算不同用户对不同物品 的评分获得物品间的关系,基于物品间的关系对用户进行相 似物品的推荐。举个例子:若用户A 购买了商品a 和b,那么说 明a 和b 的相关度较高。当用户B 也购买了商品a,就可以推 断用户 B 也有购买商品b 的需求。该算法可描述如图 6-8所示。
特殊图
图6-6-题设对应的二部图
特殊图
基于用户的协同过滤算法是通过用户的历史行为(如商 品购买、收藏、内容评价或分享)数据发现用户对商品或内 容的喜欢程度,并对这些喜好进行度量和打分,然后根据不同 用户对相同商品或内容的偏好程度计算用户之间的关系,在 有相同喜好的用户之间进行商品推荐。比如:若A,B 两个用户 都购买了x,y,z 三本图书,并且给出了5星好评,那么A,B 属于同 一类用户,可以将A 看过的书w 推荐给用户B,也可以将B 买过 的商品β推荐给用户A。该算法可描述如图6-7所示。
特殊图
特殊图
解 表6-1中的关系可以用一个二部图G=<V1,V2,E>表示, 如图6-6所示,其中V1={A1,A2,A3,A4,A5}表示5名应届毕业 生,V2={C1,C2,C3,C4,C5}表示五座西部城市。因为A1、A2、A3、 A4、A5 关联的边数分别为2、2、2、3、3,所以每个顶点至少 关联t=2条边,而C2、C3 关联了4条边,4>2,所以不满足t条件,于 是找不到合适的匹配,使得每个人都能去到自己想去的城市。
特殊图 例6.6-考虑图6-16,判断它们是否是欧拉图或半欧拉图,为
什么?
图6-16-有向图的欧拉图判定
特殊图

数学中的离散数学及其应用

数学中的离散数学及其应用

数学中的离散数学及其应用离散数学是一门集合论、图论、逻辑学和计算机科学等学科为基础的数学分支,其主要研究离散的、有限的和离散化的对象及其性质。

离散数学不同于传统的连续数学,它更注重离散化、离散结构的研究,因而被广泛应用于计算机科学、信息技术等领域。

一、离散数学基础1. 集合论集合是离散数学的基础,引入了集合的概念定义,以及集合的各种基本操作,如交、并、补集等,为后续的数学研究打下了基础。

2. 图论图论是离散数学中一个非常重要的分支,主要研究图及其性质。

图是一个由若干个节点和连接这些节点的边组成的结构,它在现代科学中有着广泛的应用。

图论的研究对象往往是它所表示的实体及其关系,如社交网络、交通网络、电子电路等。

通过构建图模型来描述实际问题,可以帮助我们更好地理解问题,找到最优解。

3. 逻辑学逻辑学是离散数学中另一个重要的分支,主要研究命题、谓词逻辑、命题演算等。

通过逻辑学可以学习到证明问题思考的能力,这对于人类生活中的决策非常有用。

4. 数论数论是离散数学中比较古老的一个分支,研究自然数的性质,包括素数、最大公因数、同余等。

数论的应用非常广泛,如密码学中就使用了大量数论的结论。

二、离散数学的应用离散数学不仅仅是一门纯粹的学科,它在现实生活中有着广泛的应用。

以下列举一些典型的应用场景:1. 计算机科学离散数学在计算机科学中有着极其重要的地位。

在计算机科学中,集合论主要用于描述算法数据结构的基本概念,图论被广泛应用于网络拓扑、寻路、优化算法等领域,逻辑学则是计算机科学领域中的基本工具,其使用在证明算法正确性、构造程序等方面都有很大的帮助。

2. 通信工程通信工程中需要进行的就是大量的离散问题建模和求解,比如需要处理的一些诸如边缘检测、图像压缩等的问题就可以建模为离散数学的问题。

3. 金融工程在金融工程中,离散数学主要用于衡量、处理风险,从而帮助投资者进行决策。

比如期权定价、股票波动率等问题,都离不开离散数学。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1.1 离散数学的定义:研究离散结构及其相互关系的数学分支。

1.2 离散数学的应用领域:计算机科学、信息技术、运筹学、生物学等。

1.3 离散数学的重要性:为计算机科学提供数学基础,培养逻辑思维和抽象能力。

二、逻辑基础2.1 命题逻辑:概念、命题、逻辑运算符(与、或、非、蕴含、等价)、真值表。

2.2 谓词逻辑:个体、谓词、逻辑运算符(量词、连接词)、真值表。

2.3 推理规则:演绎推理、归纳推理、反证法。

三、集合与函数3.1 集合的概念:集合、元素、集合运算(并、交、补、幂集)。

3.2 集合的表示:列举法、描述法、图示法。

3.3 函数的定义:函数、域、值域、函数运算(复合函数、反函数)。

四、图论4.1 图的基本概念:图、顶点、边、无向图、有向图、图的表示(邻接矩阵、邻接表)。

4.2 图的性质:连通性、路径、圈、树、网络流。

4.3 图的应用:最短路径问题、最小树问题、网络流问题。

五、组合数学5.1 组合的概念:组合、排列、组合数、排列数。

5.2 组合数的计算:二项式定理、组合恒等式。

5.3 组合数学的应用:计数原理、概率计算、图的着色问题。

《离散数学教案》课件六、组合数学(续)6.4 排列组合问题的解决方法:插板法、捆绑法、倒置法。

6.5 鸽巢原理:鸽巢定理及其应用。

6.6 数论基础:整数、素数、最大公约数、最小公倍数。

七、数理逻辑7.1 命题逻辑的等值关系:等价、蕴涵、矛盾。

7.2 谓词逻辑的等值关系:量词、域、谓词、逻辑等值。

7.3 逻辑推理:演绎推理、归纳推理、反证法。

八、代数结构8.1 群的概念:封闭性、结合律、单位元、逆元。

8.2 环和域的概念:加法群、乘法群、环、域。

8.3 群的作用:对称性、编码理论、密码学。

九、关系与函数9.1 关系的定义:关系、有序对、自反性、对称性、传递性。

9.2 等价关系与序关系:等价类、序关系、偏序集。

9.3 函数的性质:单射、满射、双射、复合函数。

离散数学(函数)课件

离散数学(函数)课件

02
函数的运算
函数的加法
总结词
函数的加法是一种对应关系,表示将函数$f$和$g$的每一个输出值都加上一定的量。
详细描述
函数的加法是一种二元运算,表示将函数$f$和$g$的每一个输出值都加上一定的量。具体来说,如果函数$f$和 $g$的定义域分别为$D_f$和$D_g$,那么函数$f+g$的定义域为$D_{f+g} = D_f cap D_g$,对于任意$x in D_{f+g}$,有$(f+g)(x) = f(x) + g(x)$。
详细描述
幂函数的形式为 y=x^n,其中 n 是实数。当 n>0 时,幂函数是增函数;当 n<0 时,幂函数是减函数;当 n=0 时,幂函数值为 1。幂函数在离散数学中可 用于表示一些复杂的关系。
指数函数
总结词
指数函数是指数等于输入值的函数。
详细描述
指数函数的形式为 y=a^x,其中 a 是实数且 a>0,a≠1。当 a>1 时,指数函 数是增函数;当 0<a<1 时,指数函数是减函数。指数函数在离散数学中可用于 表示概率和统计中的分布情况。
函数的三要素包括定义域、值域和对应法则。
函数的表示方法
01
02
03
解析法
通过公式来表示函数,例 如y=f(x)。
表格法
通过表格的形式列出函数 的输入和输出值。
图象法
通过绘制函数图像来表示 函数。
函数的性质
单调性
函数在某个区间内单调增 加或单调减少。
有界性
函数在某个区间内有上界 和下界。
奇偶性
函数是否关于原点对称或 关于y轴对称。
函数的复合

离散数学 函数 PPT

离散数学 函数 PPT

1 X。f 。Y g 。X 1
1。X IX 。X 1
。 。a
2
b。
。2
2。
。2
c
4.定理4,令 f:XY, g:YX是两个双射函数,则
(g f) -1 =f -1 g-1
1。
1。
1。
1。
2。
。 3
2。
。3
2。
。3 2。
。3
R1
R2
R3
R4
下面哪些是R到R的函数?
f={<x,y>|x,y∈R∧y= _1x_} g={<x,y>|x,y∈R∧x2+y2=4 } h={<x,y>|x,y∈R∧y= x2 } r ={<x,y>|x,y∈R∧y=lgx } v ={<x,y>|x,y∈R∧y= √ x }
五 .两个函数相等
设有两个函数f:AB g:AB, f=g 当且仅当 对任何x∈A,有f(x)=g(x)。
六. 函数的类型
例子:
1234X。。。。f
。Ya 。b 。c
Rf=Y
1234X。。。。g
。Ya 。b 。c
RgY
X12。。1 h 3。
Y。1 a 。b 。c
。d
RhY1 一对一
1 X。1 s 。Y a
由关系复合性质3得, f是入射的和g是 满射的。 同理由 f g = IY,得g是入射的和f 是 满射的。所 以f和g都可逆。
⑵显然f-1和g具有相同的定义域和陪域。
⑶证明它们的对应规律相同。
任取yY, f-1(y)= f-1 IY (y) = f-1 (f g) (y) = (f-1 f) g (y) =( IX g) (y) =g(y) 所以f-1 =g 注: f-1 =g 的两个条件必须同时满足,缺一不可。

离散数学中的数论及其应用

离散数学中的数论及其应用

离散数学中的数论及其应用
离散数学是一门研究离散对象的数学,它主要研究集合、结构、函数和算法等离散对象的性质。

其中,数论是离散数学的一个重要分支,它主要研究自然数、整数、有理数和有理数的性质。

数论的研究内容主要包括:质数的分解、素数的分布、
整数的分解、有理数的分解、有理数的运算、有理数的分析等。

数论的研究结果可以用来解决许多实际问题,如编码理论、密码学、数值分析、计算机科学等。

编码理论是一门应用数论的学科,它主要研究如何将信
息编码成可以传输的数据,以及如何将编码的数据解码成原始信息。

编码理论的研究结果可以用来解决许多实际问题,如数据传输、数据存储、数据安全等。

密码学是一门应用数论的学科,它主要研究如何使用数
学方法来保护信息的安全性。

密码学的研究结果可以用来解决许多实际问题,如数据加密、数据认证、数据完整性等。

数值分析是一门应用数论的学科,它主要研究如何使用
数学方法来解决实际问题。

数值分析的研究结果可以用来解决许多实际问题,如科学计算、工程计算、统计分析等。

计算机科学是一门应用数论的学科,它主要研究如何使
用计算机来解决实际问题。

计算机科学的研究结果可以用来解决许多实际问题,如计算机程序设计、计算机网络、计算机图形学等。

总之,数论是离散数学的一个重要分支,它的研究结果
可以用来解决许多实际问题,如编码理论、密码学、数值分析、计算机科学等。

第8章-函数PPT课件

第8章-函数PPT课件

例8.6
例8.6 对于给定的集合A和B构造双射函数 f:A→B。 1)A=P({1,2,3}), B={0,1}{1,2,3}
(2)A=[0,1], B=[1/4,1/2] (3)A=Z, B=N (4)A=[/2,3/2], B=[1,1]
例8.6的解答
(1)A=P({1,2,3}), B={0,1}{1,2,3}
能构成f:A→B, f 不是单射的,因为f(3)=f(5)=9, f 不是满射的,因为7ran f。 (1)A={1,2,3,4,5},B={6,7,8,9,10},
f={<1,7>,<2,6>,<4,5>,<1,9>,<5,10>} 不能构成f:A→B,因为<1,7>∈f 且<1,9>∈f 。
例8.5
对于函数F,如果有 xFy,则记作y=F(x),并称y为F在x的 值。
举例 判断下列关系是否为函数 F1={<x1,y1>,<x2,y2>,<x3,y2>} F2={<x1,y1>,<x1,y2>}
是函数 不是函数
函数是特殊的二元关系。
说明
函数的定义域为dom F,而不是它的真子集。 一个x只能对应唯一的y。
换句话说,如果对于x1、x2A有f(x1)=f(x2),则一定有
x1=x2。
不同类型的对应关系的示例
1 a
2 b
3 c
4
单射
a
1
b
2
c
3
d
4
双射
1 a
2 b
3 c
4
不是函数
a
1
b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A={,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. B={f0, f1, … , f7}, 其中 f0={<1,0>,<2,0>,<3,0>}, f1={<1,0>,<2,0>,<3,1>}, f2={<1,0>,<2,1>,<3,0>}, f3={<1,0>,<2,1>,<3,1>}, f4={<1,1>,<2,0>,<3,0>}, f5={<1,1>,<2,0>,<3,1>}, f6={<1,1>,<2,1>,<3,0>}, f7={<1,1>,<2,1>,<3,1>}.
5
函数的像和完全原像
定义8.5 设函数 f:A→B, A1A, B1B (1) A1在 f 下的像 f(A1) = { f(x) | x∈A1}, 函数的像 f(A) (2) B1在 f 下的完全原像 f 1(B1)={x|x∈A∧f(x)∈B1} 注意: 函数值与像的区别:函数值 f(x)∈B, 像f(A1)B 一般说来 f 1(f(A1))≠A1, 但是A1f 1(f(A1))
x/2 若x为偶数 例 设 f:N→N, 且 f(x)x1 若x为奇数
令A={0,1}, B={2}, f(A) = f( {0,1}) = { f(0), f(1)}={0,2} f 1(B) = f 1({2})={1,4}
6
函数的性质
定义8.6 设 f:A→B, (1) 若 ranf=B, 则称 f:A→B是满射的 (2) 若 y∈ranf 都存在唯一的 x∈A 使得 f(x)=y, 则称 f:A→B
f:P({a,b})→{0,1}, f()=f({a})=f({b})=0, f({a,b})=1, f 是单调递增的, 但不是严格单调递增的
(2) A的每一个子集 A’都对应于一个特征函数, 不同的子集对 应于不同的特征函数. 例如A={a,b,c}, 则有 ={<a,0>,<b,0>,<c,0>},{a,b}={<a,1>,<b,1>,<c,0>}
第八章 函数
主要内容 函数的定义与性质 函数定义 函数性质 函数运算 函数的逆 函数的合成 双射函数与集合的基数
1
实例
例1 设A={1,2,3}, B={a,b}, 求BA.
BA={ f0, f1, … , f7}, 其中 f0 = {<1,a>,<2,a>,<3,a>} f1 = {<1,a>,<2,a>,<3,b>} f2 = {<1,a>,<2,b>,<3,a>} f3 = {<1,a>,<2,b>,<3,b>} f4 = {<1,b>,<2,a>,<3,a>} f5 = {<1,b>,<2,a>,<3,b>} f6 = {<1,b>,<2,b>,<3,a>} f7 = {<1,b>,<2,b>,<3,b>}
是满射、单射、双射的, 因为它是单调函数并且ranf=R (5) f:R+→R+, f(x)=(x2+1)/x
有极小值 f(1)=2. 该函数既不是单射的也不是满射的
8
实例
例3 对于给定的集合A和B构造双射函数 f:A→B (1) A=P({1,2,3}), B={0,1}{1,2,3} (2) A=[0,1], B=[1/4,1/2] (3) A=Z, B=N (4) A [π , 3π] , B=[1,1]
令 f:A→B, f()=f0, f({1})=f1, f({2})=f2, f({3})=f3, f({1,2})=f4, f({1,3})=f5, f({2,3})=f6, f({1,2,3})=f7
10
解答
(2) 令 f:[0,1]→[1/4,1/2], f(x)=(x+1)/4
(3) 将Z中元素以下列顺序排列并与N中元素对应:
是单射的 (3) 若 f:A→B 既是满射又是单射的, 则称 f:A→B是双射的
例2 判断下面函数是否为单射, 满射, 双射的, 为什么? (1) f:R→R, f(x) = x2+2x1 (2) f:Z+→R, f(x) = lnx, Z+为正整数集 (3) f:R→Z, f(x) = x (4) f:R→R, f(x)=2x+1 (5) f:R+→R+, f(x)=(x2+1)/x, 其中R+为正实数集.
12
某些重要函数
(4) 设A为集合, 对于任意的A'A, A'的特征函数 A ' :A→{0,1}定义为 A'(a)=1, a∈A' A'(a)=0, a∈AA'
(5) 设R是A上的等价关系, 令 g:A→A/R g(a)=[a], a∈A
称 g 是从 A 到商集 A/R 的自然映射
13
实例
例4 (1) 偏序集<P({a,b}),R>, <{0,1},≤>, R为包含关系, ≤为 一般的小于等于关系, 令
Z: 0 1 1 2 2 3 3 …
↓ ↓↓↓↓ ↓ ↓
N: 0 1 2 3 4 5 6 …
这种对应所表示的函数是:
f: Z N ,f(x) 22xx1
0 x0
(4) 令 f :[π/2,3π/2]→[1,1] f(x) = sinx
11
某些重要函数
定义8.7 (1)设 f:A→B, 如果存在c∈B使得对所有的 x∈A都有 f(x)=c,
7
例题解答
解 (1) f:R→R, f(x)=x2+2x1
在x=1取得极大值0. 既不是单射也不是满射的 (2) f:Z+→R, f(x)=lnx
是单调上升的, 是单射的. 但不满射, ranf={ln1, ln2, …}. (3) f:R→Z, f(x)= x
是满射的, 但不是单射的, 例如f(1.5)=f(1.2)=1 (4) f:R→R, f(x)=2x+1
则称 f:A→B是常函数. (2) 称 A上的恒等关系IA为A上的恒等函数, 对所有的x∈A都
有IA(x)=x. (3) 设<A, ≼>, <B, ≼>为偏序集,f:A→B,如果对任意的 x1,
x2∈A, x1≺x2, 就有 f(x1)≼ f(x2), 则称 f 为单调递增的;如 果对任意的x1, x2∈A, x1≺x2, 就有f(x1) ≺f(x2), 则称 f 为严 格单调递增的. 类似的也可以定义单调递减和严格单调递 减的函数
相关文档
最新文档