linux驱动的Makefile分析
linux中的make命令的详细解释
linux中的make命令的详细解释linxu下的make命令是一个GNU下的工程化编译工具。
下面由店铺为大家整理了linux的make命令的详细解释的相关知识,希望对大家有帮助!一、linux中的make命令的详细解释make命令是GNU的工程化编译工具,用于编译众多相互关联的源代码问价,以实现工程化的管理,提高开发效率。
语法make(选项)(参数)选项-f:指定“makefile”文件;-i:忽略命令执行返回的出错信息;-s:沉默模式,在执行之前不输出相应的命令行信息;-r:禁止使用build-in规则;-n:非执行模式,输出所有执行命令,但并不执行;-t:更新目标文件;-q:make操作将根据目标文件是否已经更新返回"0"或非"0"的状态信息;-p:输出所有宏定义和目标文件描述;-d:Debug模式,输出有关文件和检测时间的详细信息。
Linux下常用选项与Unix系统中稍有不同,下面是不同的部分:-c dir:在读取 makefile 之前改变到指定的目录dir;-I dir:当包含其他 makefile文件时,利用该选项指定搜索目录;-h:help文挡,显示所有的make选项;-w:在处理 makefile 之前和之后,都显示工作目录。
参数目标:指定编译目标。
二、Linux中的make命令详解实例1. 一个简单的例子为了编译整个工程,你可以简单的使用 make 或者在 make 命令后带上目标 all。
$ makegcc -c -Wall test.cgcc -c -Wall anotherTest.cgcc -Wall test.o anotherTest.o -o test你能看到 make 命令第一次创建的依赖以及实际的目标。
如果你再次查看目录内容,里面多了一些 .o 文件和执行文件:$ lsanotherTest.c anotherTest.o Makefile test test.c test.h test.o 现在,假设你对 test.c 文件做了一些修改,重新使用 make 编译工程:$ makegcc -c -Wall test.cgcc -Wall test.o anotherTest.o -o test你可以看到只有 test.o 重新编译了,然而另一个 Test.o 没有重新编译。
Linux系统的Makefile和Kconfig及模块简介
Linux系统的Makefile、Kconfig和模块1Makefile1.1Makefile组织层次Linux的Make体系由如下几部分组成:Ø顶层Makefile顶层Makefile通过读取配置文件,递归编译内核代码树的相关目录,从而产生两个重要的目标文件:vmlinux和模块。
Ø内核相关Makefile位于arch/$(ARCH) 目录下,为顶层Makefile提供与具体硬件体系结构相关的信息。
Ø公共编译规则定义文件。
包括Makefile.build 、Makefile.clean、Makefile.lib、Makefile.host等文件组成。
这些文件位于scripts目录中,定义了编译需要的公共的规则和定义。
Ø内核配置文件 .config通过调用make menuconfig或者make xconfig命令,用户可以选择需要的配置来生成期望的目标文件。
Ø其他Makefile主要为整个Makefile体系提供各自模块的目标文件定义,上层Makefile根据它所定义的目标来完成各自模块的编译。
1.2Makefile的使用在编译内核之前,用户必须首先完成必要的配置。
Linux内核提供了数不胜数的功能,支持众多的硬件体系结构,这就需要用户对将要生成的内核进行裁减。
内核提供了多种不同的工具来简化内核的配置。
make config,字符界面下命令行工具,这个工具会依次遍历内核所有的配置项,要求用户进行逐项的选择配置。
这个工具会耗费用户太多时间,除非万不得以(你的编译主机不支持其他配置工具)一般不建议使用。
make menuconfig,基于ncurse库编制的图形界面工具,一般台式机使用该工具。
make xconfig,基于X11的图形配置工具,一般用于工作站环境。
当用户完成配置后,配置工具会自动生成.config文件,它被保存在内核代码树的根目录下。
linux makefile中路径写法
linux makefile中路径写法================Makefile在Linux系统中被广泛用于编译和构建项目,它能够自动化地完成许多重复的任务,大大提高了开发效率。
在Makefile中,路径的书写是一个重要的组成部分。
下面我们将详细讨论在Linux Makefile中如何正确地书写路径。
一、绝对路径与相对路径-----------在Makefile中,路径的书写主要有两种方式:绝对路径和相对路径。
1. **绝对路径**:从文件系统的根目录开始的路径。
例如`/home/user/myfile.txt`就是一个绝对路径。
在Makefile中,绝对路径通常是从构建系统的根目录开始的。
2. **相对路径**:相对于当前工作目录的路径。
在Makefile 中,通常使用`./`表示当前目录,`../`表示上级目录。
选择使用绝对路径还是相对路径取决于你的项目结构和开发者的偏好。
一般来说,推荐使用相对路径,因为它们更灵活,可以适应不同的项目目录结构。
二、路径书写规范--------在Makefile中书写路径时,有一些规范和最佳实践需要遵循:1. **文件名**:文件名应该简洁明了,不要使用空格或其他特殊字符。
避免使用长文件名或难以理解的文件名。
2. **目录分隔符**:在Linux系统中,路径的分隔符是反斜杠(`\`)。
当路径包含多个目录时,需要使用两个反斜杠(`\\` 或`/`)。
在Makefile中,推荐使用正斜杠(`/`),因为它在所有平台上都是通用的。
3. **自动更新**:在Makefile中,可以使用`$(wildcard)`函数来匹配目录中的文件。
例如,`$(wildcard source/*.c)`将匹配source目录下的所有C源文件。
4. **构建系统根目录**:在Makefile中,通常使用构建系统的根目录作为路径的起点。
这可以通过变量来实现,例如`ROOT :=/path/to/build`。
linux make的命令行参数
linux make的命令行参数Linux make是一个非常重要的工具,用来自动构建项目和生成软件。
make命令行参数可以用来指定构建目标、编译器选项、目标平台等参数。
以下是常见的Linux make命令行参数:1. -f:指定目标文件名。
例如make -f makefile表示使用makefile文件构建项目。
2. -j:指定并行构建的进程数。
例如make -j4表示使用4个进程并行构建。
3. -C:指定目标目录。
例如make -C /usr/src/kernel表示在/usr/src/kernel目录下构建项目。
4. -k:表示忽略错误,继续构建。
例如make -k表示继续构建即使出现错误。
5. -n:表示模拟构建,不实际执行构建。
例如make -n表示打印出构建过程但不实际构建。
6. -B或--always-make:表示强制重新构建。
例如make -B表示强制重新构建所有目标文件。
7. -r或--no-builtin-rules:表示禁用内置规则。
例如make -r表示禁用内置规则,只使用自定义规则。
8. -s或--silent或--quiet:表示禁止输出构建详细信息。
例如make -s表示禁止输出构建详细信息。
9. -v或--version:表示显示make版本信息。
例如make -v表示显示make版本信息。
10. -h或--help:表示显示make命令的帮助信息。
例如make -h表示显示make命令的帮助信息。
以上命令是常见的make命令行参数,可以根据实际需求选择使用。
linux vscode makefile语法
linux vscode makefile语法在Linux 系统中,如果您想使用VSCode 编写Makefile 相关的项目,可以参考以下步骤进行安装和配置:1. 首先,确保已经正确安装了Visual Studio Code。
如果尚未安装,可以参考[1] 中的教程进行安装。
2. 安装Makefile 插件。
打开VSCode,转到“扩展”选项卡(快捷键:Ctrl+Shift+X),搜索“Makefile”,找到名为“Makefile Support”的插件,点击“安装”。
3. 创建一个新的Makefile 项目。
在VSCode 中,创建一个新的文件夹,然后在该文件夹中打开终端(快捷键:Ctrl+`)。
4. 编写Makefile 语法。
在项目根目录下创建一个名为“Makefile”的文件,然后编写相应的Makefile 语法。
以下是一个简单的示例:```make# 设置变量MY_PROJECT_NAME = MyProjectMY_PROJECT_VERSION = 1.0# 设置目标all: build# 构建目标build:echo "Building $MY_PROJECT_NAME $MY_PROJECT_VERSION"# 在这里添加您的构建命令,例如:cmake、make等# 清理目标clean:echo "Cleaning $MY_PROJECT_NAME"# 在这里添加您的清理命令,例如:rm -rf build/# 默认执行构建目标default: build```5. 保存Makefile 文件并按F5 键运行项目。
VSCode 将会自动使用内置的终端执行Makefile 中的命令。
6. 如果需要使用GPU 加速构建,可以在Makefile 中添加相应的NVIDIA CUDA 或者AMD OpenCL 命令。
例如,如果您使用的是NVIDIA GPU,可以添加以下命令:```makebuild_gpu:echo "Building $MY_PROJECT_NAME $MY_PROJECT_VERSION using GPU"# 在这里添加您的GPU 构建命令,例如:nvcc、cuda编译器等```7. 按照项目需求修改Makefile 中的命令和目标。
Linux 内核配置机制(make menuconfig、Kconfig、makefile)讲解
printk(KERN_WARNING fmt, ##arg) printk(KERN_DEBUG fmt, ##arg)
/* Module Init & Exit function */ static int __init myModule_init(void) {
/* Module init code */ PRINTK("myModule_init\n"); return 0;
图形
工具
前面我们介绍模块编程的时候介绍了驱动进入内核有两种方式:模块和直接编译进内核,并介绍 了模块的一种编译方式——在一个独立的文件夹通过makefile配合内核源码路径完成
那么如何将驱动直接编译进内核呢? 在我们实际内核的移植配置过程中经常听说的内核裁剪又是怎么麽回事呢? 我们在进行linux内核配置的时候经常会执行make menuconfig这个命令,然后屏幕上会出现以下 界面:
首页 业界 移动 云计算 研发 论坛 博客 下载 更多
process的专栏
您还未登录!| 登录 | 注册 | 帮助
个人资料
dianhuiren
访问:71424次 积分:1219分 排名:第8764名 原创:37篇 转载:127篇 译文:0篇 评论:3条
目录视图
摘要视图
订阅
《这些年,我们读过的技术经典图书》主题有奖征文 经理
这些配置工具都是使用脚本语言,如 Tcl/TK、Perl 编写的(也包含一些用 C 编写的代码)。本文
/dianhuiren/article/details/6917132
1/5
2012年04月 (6) 2012年03月 (15) 2012年02月 (16)
并不是对配置系统本身进行分析,而是介绍如何使用配置系统。所以,除非是配置系统的维护者,一般 的内核开发者无须了解它们的原理,只需要知道如何编写 Makefile 和配置文件就可以。
MakeFile详解
引用其它的Makefile-实例
有这样几个Makefile:a.mk、b.mk、c.mk,还有 一个文件叫foo.make,以及一个变量$(bar),其 包含了e.mk和f.mk,那么,下面的语句: include foo.make *.mk $(bar) 等价于: include foo.make a.mk b.mk c.mk e.mk f.mk
在大多数时候,由于源文件太多,编译生成的中间目标文 件太多,而在链接时需要明显地指出中间目标文件名,这
对于编译很不方便,所以,通常要给中间目标文件打个包,
在Windows 下这种包叫“库文件”(Library File),也就 是 .lib 文件,在UNIX 下,是Archive File,也就是 .a 文件。
定义变量和引用变量
变量的定义和应用与Linux环境变量一样,变量名 要大写,变量一旦定义后,就可以通过将变量名 用圆括号括起来,并在前面加上“$”符号来进行 引用。 变量的主要作用: 1、保存文件名列表 2、保存可执行命令名,如编译器 3、保存编译器的参数 变量一般都在makefile的头部定义。按照惯例, 所有的makefile变量都应该是大写。
者,通常是你需要告诉编译器头文件的所在位置,只要所有的语法正
确,编译器就可以编译出中间目标文件。一般来说,每个源文件都应 该对应于一个中间目标文件(O 文件或是OBJ 文件)。
孙钦东
程序的编译和链接
链接时,主要是链接函数和全局变量。链接器并不管函数
所在的源文件,只管函数的中间目标文件(Object File)。
clean: -rm -f $(EXEC) *.elf *.gdb *.o
linux 顶层makefile分析
Linux顶层Makefile文件分析分类:Linux 系列2013-05-06 17:05 585人阅读评论(0) 收藏举报1、make menuconfigVERSION = 2PATCHLEVEL = 6SUBLEVEL = 26EXTRAVERSION =NAME = Rotary Wombat# *DOCUMENTATION*# To see a list of typical targets execute "make help"# More info can be located in ./README# Comments in this file are targeted only to the developer, do not# expect to learn how to build the kernel reading this file.# Do not:# o use make's built-in rules and variables# (this increases performance and avoids hard-to-debug behaviour);# o print "Entering directory ...";MAKEFLAGS += -rR --no-print-directory#-r禁止使用build-in规则#--no-print-directory是:不要再屏幕上打印"Entering directory.."#记住变量SHELL,MAKEFLAGS在整个make的执行过程中#始终被自动的传递给所有的子make# We are using a recursive build, so we need to do a little thinking# to get the ordering right.## Most importantly: sub-Makefiles should only ever modify files in# their own directory. If in some directory we have a dependency on# a file in another dir (which doesn't happen often, but it's often# unavoidable when linking the built-in.o targets which finy# turn into vmlinux), we will call a sub make in that other dir, and# after that we are sure that everything which is in that other dir# is now up to date.## The only cases where we need to modify files which have global# effects are thus separated out and done before the recursive# descending is started. They are now explicitly listed as the# prepare rule.# To put more focus on warnings, be less verbose as default# Use 'make V=1' to see the full commandsifdef V #v=1ifeq ("$(origin V)", "command line")KBUILD_VERBOSE = $(V) #把V的值作为KBUILD_VERBOSE的值 endifendififndef KBUILD_VERBOSE #即默认我们是不回显的#回显即在命令执行前显示要执行的命令KBUILD_VERBOSE = 0endif# 函数origin并不操作变量的值,只是告诉你你的这个变量是哪里来的。
linux下makefile文件中比较大小的语法
linux下makefile文件中比较大小的语法在Linux下,Makefile是一种常用的构建工具,用于自动化编译和构建软件项目。
在Makefile中,我们经常需要比较文件的大小来判断是否需要重新编译或执行某些操作。
本文将介绍在Linux下Makefile 文件中比较大小的语法。
在Makefile中,我们可以使用shell命令来执行系统命令。
比较文件大小的常用命令是`stat`和`du`。
`stat`命令用于获取文件的详细信息,包括文件大小,而`du`命令用于计算文件或目录的大小。
首先,我们可以使用`stat`命令获取文件的大小,并将结果保存到一个变量中。
下面是一个示例:```file_size := $(shell stat -c %s file.txt)```上述命令将获取文件`file.txt`的大小,并将结果保存到变量`file_size`中。
`-c %s`选项用于指定输出文件大小的格式。
接下来,我们可以使用条件语句来比较文件大小。
常用的条件语句有`ifeq`和`ifneq`。
下面是一个示例:```ifeq ($(file_size), 0)@echo "文件为空"else@echo "文件大小为$(file_size)字节"endif```上述代码将判断文件大小是否为0,如果是,则输出"文件为空",否则输出"文件大小为$(file_size)字节"。
`@echo`命令用于输出信息,`$(file_size)`表示变量的值。
除了使用`stat`命令获取文件大小外,我们还可以使用`du`命令计算文件或目录的大小。
下面是一个示例:```file_size := $(shell du -b file.txt | cut -f1)```上述命令将使用`du`命令计算文件`file.txt`的大小,并使用`cut`命令提取文件大小。
Makefile使用总结
Makefile使⽤总结1. Makefile 简介Makefile 是和 make 命令⼀起配合使⽤的.很多⼤型项⽬的编译都是通过 Makefile 来组织的, 如果没有 Makefile, 那很多项⽬中各种库和代码之间的依赖关系不知会多复杂. Makefile的组织流程的能⼒如此之强, 不仅可以⽤来编译项⽬, 还可以⽤来组织我们平时的⼀些⽇常操作. 这个需要⼤家发挥⾃⼰的想象⼒.本篇博客是基于⽽整理的, 有些删减, 追加了⼀些⽰例.⾮常感谢 gunguymadman_cu 提供如此详尽的Makefile介绍, 这正是我⼀直寻找的Makefile中⽂⽂档.1.1 Makefile 主要的 5个部分 (显⽰规则, 隐晦规则, 变量定义, ⽂件指⽰, 注释)Makefile基本格式如下:target ... : prerequisites ...command......其中,target - ⽬标⽂件, 可以是 Object File, 也可以是可执⾏⽂件prerequisites - ⽣成 target 所需要的⽂件或者⽬标command - make需要执⾏的命令 (任意的shell命令), Makefile中的命令必须以 [tab] 开头1. 显⽰规则 :: 说明如何⽣成⼀个或多个⽬标⽂件(包括⽣成的⽂件, ⽂件的依赖⽂件, ⽣成的命令)2. 隐晦规则 :: make的⾃动推导功能所执⾏的规则3. 变量定义 :: Makefile中定义的变量4. ⽂件指⽰ :: Makefile中引⽤其他Makefile; 指定Makefile中有效部分; 定义⼀个多⾏命令5. 注释 :: Makefile只有⾏注释 "#", 如果要使⽤或者输出"#"字符, 需要进⾏转义, "\#"1.2 GNU make 的⼯作⽅式1. 读⼊主Makefile (主Makefile中可以引⽤其他Makefile)2. 读⼊被include的其他Makefile3. 初始化⽂件中的变量4. 推导隐晦规则, 并分析所有规则5. 为所有的⽬标⽂件创建依赖关系链6. 根据依赖关系, 决定哪些⽬标要重新⽣成7. 执⾏⽣成命令2. Makefile 初级语法2.1 Makefile 规则2.1.1 规则语法规则主要有2部分: 依赖关系和⽣成⽬标的⽅法.语法有以下2种:target ... : prerequisites ...command...或者target ... : prerequisites ; commandcommand...*注* command太长, 可以⽤ "\" 作为换⾏符2.1.2 规则中的通配符* :: 表⽰任意⼀个或多个字符:: 表⽰任意⼀个字符[...] :: ex. [abcd] 表⽰a,b,c,d中任意⼀个字符, [^abcd]表⽰除a,b,c,d以外的字符, [0-9]表⽰ 0~9中任意⼀个数字~ :: 表⽰⽤户的home⽬录2.1.3 路径搜索当⼀个Makefile中涉及到⼤量源⽂件时(这些源⽂件和Makefile极有可能不在同⼀个⽬录中),这时, 最好将源⽂件的路径明确在Makefile中, 便于编译时查找. Makefile中有个特殊的变量VPATH就是完成这个功能的.指定了VPATH之后, 如果当前⽬录中没有找到相应⽂件或依赖的⽂件, Makefile 回到VPATH指定的路径中再去查找.. VPATH使⽤⽅法:vpath <directories> :: 当前⽬录中找不到⽂件时, 就从<directories>中搜索vpath <pattern> <directories> :: 符合<pattern>格式的⽂件, 就从<directories>中搜索vpath <pattern> :: 清除符合<pattern>格式的⽂件搜索路径vpath :: 清除所有已经设置好的⽂件路径# ⽰例1 - 当前⽬录中找不到⽂件时, 按顺序从 src⽬录 ../parent-dir⽬录中查找⽂件VPATH src:../parent-dir# ⽰例2 - .h结尾的⽂件都从 ./header ⽬录中查找VPATH %.h ./header# ⽰例3 - 清除⽰例2中设置的规则VPATH %.h# ⽰例4 - 清除所有VPATH的设置VPATH2.2 Makefile 中的变量2.2.1 变量定义 ( = or := )OBJS = programA.o programB.oOBJS-ADD = $(OBJS) programC.o# 或者OBJS := programA.o programB.oOBJS-ADD := $(OBJS) programC.o其中 = 和 := 的区别在于, := 只能使⽤前⾯定义好的变量, = 可以使⽤后⾯定义的变量测试 =# Makefile内容OBJS2 = $(OBJS1) programC.oOBJS1 = programA.o programB.oall:@echo $(OBJS2)# bash中执⾏make, 可以看出虽然 OBJS1 是在 OBJS2 之后定义的, 但在 OBJS2中可以提前使⽤$ makeprogramA.o programB.o programC.o测试 :=# Makefile内容OBJS2 := $(OBJS1) programC.oOBJS1 := programA.o programB.oall:@echo $(OBJS2)# bash中执⾏make, 可以看出 OBJS2 中的 $(OBJS1) 为空$ makeprogramC.o2.2.2 变量替换# Makefile内容SRCS := programA.c programB.c programC.cOBJS := $(SRCS:%.c=%.o)all:@echo "SRCS: " $(SRCS)@echo "OBJS: " $(OBJS)# bash中运⾏make$ makeSRCS: programA.c programB.c programC.cOBJS: programA.o programB.o programC.o2.2.3 变量追加值 +=# Makefile内容SRCS := programA.c programB.c programC.cSRCS += programD.call:@echo "SRCS: " $(SRCS)# bash中运⾏make$ makeSRCS: programA.c programB.c programC.c programD.c2.2.4 变量覆盖 override作⽤是使 Makefile中定义的变量能够覆盖 make 命令参数中指定的变量语法:override <variable> = <value>override <variable> := <value>override <variable> += <value>下⾯通过⼀个例⼦体会 override 的作⽤:# Makefile内容 (没有⽤override)SRCS := programA.c programB.c programC.call:@echo "SRCS: " $(SRCS)# bash中运⾏make$ make SRCS=nothingSRCS: nothing################################################## Makefile内容 (⽤override)override SRCS := programA.c programB.c programC.call:@echo "SRCS: " $(SRCS)# bash中运⾏make$ make SRCS=nothingSRCS: programA.c programB.c programC.c2.2.5 ⽬标变量作⽤是使变量的作⽤域仅限于这个⽬标(target), ⽽不像之前例⼦中定义的变量, 对整个Makefile都有效.语法:<target ...> :: <variable-assignment><target ...> :: override <variable-assignment> (override作⽤参见变量覆盖的介绍)⽰例:# Makefile 内容SRCS := programA.c programB.c programC.ctarget1: TARGET1-SRCS := programD.ctarget1:@echo "SRCS: " $(SRCS)@echo "SRCS: " $(TARGET1-SRCS)target2:@echo "SRCS: " $(SRCS)@echo "SRCS: " $(TARGET1-SRCS)# bash中执⾏make$ make target1SRCS: programA.c programB.c programC.cSRCS: programD.c$ make target2 <-- target2中显⽰不了 $(TARGET1-SRCS)SRCS: programA.c programB.c programC.cSRCS:2.3 Makefile 命令前缀Makefile 中书写shell命令时可以加2种前缀 @ 和 -, 或者不⽤前缀.3种格式的shell命令区别如下:不⽤前缀 :: 输出执⾏的命令以及命令执⾏的结果, 出错的话停⽌执⾏前缀 @ :: 只输出命令执⾏的结果, 出错的话停⽌执⾏前缀 - :: 命令执⾏有错的话, 忽略错误, 继续执⾏⽰例:# Makefile 内容 (不⽤前缀)all:echo"没有前缀"cat this_file_not_existecho"错误之后的命令" <-- 这条命令不会被执⾏# bash中执⾏make$ makeecho"没有前缀" <-- 命令本⾝显⽰出来没有前缀 <-- 命令执⾏结果显⽰出来cat this_file_not_existcat: this_file_not_exist: No such file or directorymake: *** [all] Error 1############################################################ Makefile 内容 (前缀 @)all:@echo "没有前缀"@cat this_file_not_exist@echo "错误之后的命令" <-- 这条命令不会被执⾏# bash中执⾏make$ make没有前缀 <-- 只有命令执⾏的结果, 不显⽰命令本⾝cat: this_file_not_exist: No such file or directorymake: *** [all] Error 1############################################################ Makefile 内容 (前缀 -)all:-echo"没有前缀"-cat this_file_not_exist-echo"错误之后的命令" <-- 这条命令会被执⾏# bash中执⾏make$ makeecho"没有前缀" <-- 命令本⾝显⽰出来没有前缀 <-- 命令执⾏结果显⽰出来cat this_file_not_existcat: this_file_not_exist: No such file or directorymake: [all] Error 1 (ignored)echo"错误之后的命令" <-- 出错之后的命令也会显⽰错误之后的命令 <-- 出错之后的命令也会执⾏2.4 伪⽬标伪⽬标并不是⼀个"⽬标(target)", 不像真正的⽬标那样会⽣成⼀个⽬标⽂件.典型的伪⽬标是 Makefile 中⽤来清理编译过程中中间⽂件的 clean 伪⽬标, ⼀般格式如下: .PHONY: clean <-- 这句没有也⾏, 但是最好加上clean:-rm -f *.o2.5 引⽤其他的 Makefile语法: include <filename> (filename 可以包含通配符和路径)⽰例:# Makefile 内容all:@echo "主 Makefile begin"@make other-all@echo "主 Makefile end"include ./other/Makefile# ./other/Makefile 内容other-all:@echo "other makefile begin"@echo "other makefile end"# bash中执⾏make$ lltotal 20K-rw-r--r-- 1 wangyubin wangyubin 125 Sep 2316:13 Makefile-rw-r--r-- 1 wangyubin wangyubin 11K Sep 2316:15 <-- 这个⽂件不⽤管drwxr-xr-x 2 wangyubin wangyubin 4.0K Sep 2316:11 other$ ll other/total 4.0K-rw-r--r-- 1 wangyubin wangyubin 71 Sep 2316:11 Makefile$ make主 Makefile beginmake[1]: Entering directory `/path/to/test/makefile'other makefile beginother makefile endmake[1]: Leaving directory `/path/to/test/makefile'主 Makefile end2.6 查看C⽂件的依赖关系写 Makefile 的时候, 需要确定每个⽬标的依赖关系.GNU提供⼀个机制可以查看C代码⽂件依赖那些⽂件, 这样我们在写 Makefile ⽬标的时候就不⽤打开C源码来看其依赖那些⽂件了.⽐如, 下⾯命令显⽰内核源码中 virt/kvm/kvm_main.c 中的依赖关系$ cd virt/kvm/$ gcc -MM kvm_main.ckvm_main.o: kvm_main.c iodev.h coalesced_mmio.h async_pf.h <-- 这句就可以加到 Makefile 中作为编译 kvm_main.o 的依赖关系2.7 make 退出码Makefile的退出码有以下3种:0 :: 表⽰成功执⾏1 :: 表⽰make命令出现了错误2 :: 使⽤了 "-q" 选项, 并且make使得⼀些⽬标不需要更新2.8 指定 Makefile,指定特定⽬标默认执⾏ make 命令时, GNU make在当前⽬录下依次搜索下⾯3个⽂件 "GNUmakefile", "makefile", "Makefile",找到对应⽂件之后, 就开始执⾏此⽂件中的第⼀个⽬标(target). 如果找不到这3个⽂件就报错.⾮默认情况下, 可以在 make 命令中指定特定的 Makefile 和特定的⽬标.⽰例:# Makefile⽂件名改为 MyMake, 内容target1:@echo "target [1] begin"@echo "target [1] end"target2:@echo "target [2] begin"@echo "target [2] end"# bash 中执⾏make$ lsMakefile$ mv Makefile MyMake$ lsMyMake$ make <-- 找不到默认的 Makefilemake: *** No targets specified and no makefile found. Stop.$ make -f MyMake <-- 指定特定的Makefiletarget [1] begintarget [1] end$ make -f MyMake target2 <-- 指定特定的⽬标(target)target [2] begintarget [2] end2.9 make 参数介绍make 的参数有很多, 可以通过 make -h 去查看, 下⾯只介绍⼏个我认为⽐较有⽤的.参数含义--debug[=<options>]输出make的调试信息, options 可以是 a, b, v-j --jobs同时运⾏的命令的个数, 也就是多线程执⾏ Makefile-r --no-builtin-rules禁⽌使⽤任何隐含规则-R --no-builtin-variabes禁⽌使⽤任何作⽤于变量上的隐含规则-B --always-make假设所有⽬标都有更新, 即强制重编译2.10 Makefile 隐含规则这⾥只列⼀个和编译C相关的.编译C时,<n>.o 的⽬标会⾃动推导为 <n>.c# Makefile 中main : main.ogcc -o main main.o#会⾃动变为:main : main.ogcc -o main main.omain.o: main.c <-- main.o 这个⽬标是隐含⽣成的gcc -c main.c2.11 隐含规则中的命令变量和命令参数变量2.11.1 命令变量, 书写Makefile可以直接写 shell时⽤这些变量.下⾯只列出⼀些C相关的变量名含义RM rm -fAR arCC ccCXX g++⽰例:# Makefile 内容all:@echo $(RM)@echo $(AR)@echo $(CC)@echo $(CXX)# bash 中执⾏make, 显⽰各个变量的值$ makerm -farccg++2.11.2 命令参数变量变量名含义ARFLAGS AR命令的参数CFLAGS C语⾔编译器的参数CXXFLAGS C++语⾔编译器的参数⽰例: 下⾯以 CFLAGS 为例演⽰# test.c 内容#include <stdio.h>int main(int argc, char *argv[]){printf ("Hello Makefile\n");return 0;}# Makefile 内容test: test.o$(CC) -o test test.o# bash 中⽤make来测试$ lltotal 24K-rw-r--r-- 1 wangyubin wangyubin 69 Sep 2317:31 Makefile-rw-r--r-- 1 wangyubin wangyubin 14K Sep 2319:51 <-- 请忽略这个⽂件-rw-r--r-- 1 wangyubin wangyubin 392 Sep 2317:31 test.c$ makecc -c -o test.o test.ccc -o test test.o <-- 这个是⾃动推导的$ rm -f test test.o$ make CFLAGS=-Wall <-- 命令中加的编译器参数⾃动追加⼊下⾯的编译中了cc -Wall -c -o test.o test.ccc -o test test.o2.12 ⾃动变量Makefile 中很多时候通过⾃动变量来简化书写, 各个⾃动变量的含义如下:⾃动变量含义$@⽬标集合$%当⽬标是函数库⽂件时, 表⽰其中的⽬标⽂件名$<第⼀个依赖⽬标. 如果依赖⽬标是多个, 逐个表⽰依赖⽬标$?⽐⽬标新的依赖⽬标的集合$^所有依赖⽬标的集合, 会去除重复的依赖⽬标$+所有依赖⽬标的集合, 不会去除重复的依赖⽬标$*这个是GNU make特有的, 其它的make不⼀定⽀持3. Makefile ⾼级语法3.1 嵌套Makefile在 Makefile 初级语法中已经提到过引⽤其它 Makefile的⽅法. 这⾥有另⼀种写法, 并且可以向引⽤的其它 Makefile 传递参数.⽰例: (不传递参数, 只是调⽤⼦⽂件夹 other 中的Makefile)# Makefile 内容all:@echo "主 Makefile begin"@cd ./other && make@echo "主 Makefile end"# ./other/Makefile 内容other-all:@echo "other makefile begin"@echo "other makefile end"# bash中执⾏make$ lltotal 28K-rw-r--r-- 1 wangyubin wangyubin 104 Sep 2320:43 Makefile-rw-r--r-- 1 wangyubin wangyubin 17K Sep 2320:44 <-- 这个⽂件不⽤管drwxr-xr-x 2 wangyubin wangyubin 4.0K Sep 2320:42 other$ ll other/total 4.0K-rw-r--r-- 1 wangyubin wangyubin 71 Sep 2316:11 Makefile$ make主 Makefile beginmake[1]: Entering directory `/path/to/test/makefile/other'other makefile beginother makefile endmake[1]: Leaving directory `/path/to/test/makefile/other'主 Makefile end⽰例: (⽤export传递参数)# Makefile 内容export VALUE1 := export.c <-- ⽤了 export, 此变量能够传递到 ./other/Makefile 中VALUE2 := no-export.c <-- 此变量不能传递到 ./other/Makefile 中all:@echo "主 Makefile begin"@cd ./other && make@echo "主 Makefile end"# ./other/Makefile 内容other-all:@echo "other makefile begin"@echo "VALUE1: " $(VALUE1)@echo "VALUE2: " $(VALUE2)@echo "other makefile end"# bash中执⾏make$ make主 Makefile beginmake[1]: Entering directory `/path/to/test/makefile/other'other makefile beginVALUE1: export.c <-- VALUE1 传递成功VALUE2: <-- VALUE2 传递失败other makefile endmake[1]: Leaving directory `/path/to/test/makefile/other'主 Makefile end*补充* export 语法格式如下:export variable = valueexport variable := valueexport variable += value3.2 定义命令包命令包有点像是个函数, 将连续的相同的命令合成⼀条, 减少 Makefile 中的代码量, 便于以后维护.语法:define <command-name>command...endef⽰例:# Makefile 内容define run-hello-makefile@echo -n "Hello"@echo " Makefile!"@echo "这⾥可以执⾏多条 Shell 命令!"endefall:$(run-hello-makefile)# bash 中运⾏make$ makeHello Makefile!这⾥可以执⾏多条 Shell 命令!3.3 条件判断条件判断的关键字主要有 ifeq ifneq ifdef ifndef语法:<conditional-directive><text-if-true>endif# 或者<conditional-directive><text-if-true>else<text-if-false>endif⽰例: ifeq的例⼦, ifneq和ifeq的使⽤⽅法类似, 就是取反# Makefile 内容all:ifeq ("aa", "bb")@echo "equal"else@echo "not equal"endif# bash 中执⾏make$ makenot equal⽰例: ifdef的例⼦, ifndef和ifdef的使⽤⽅法类似, 就是取反# Makefile 内容SRCS := program.call:ifdef SRCS@echo $(SRCS)else@echo "no SRCS"# bash 中执⾏make$ makeprogram.c3.4 Makefile 中的函数Makefile 中⾃带了⼀些函数, 利⽤这些函数可以简化 Makefile 的编写.函数调⽤语法如下:$(<function> <arguments>)# 或者${<function> <arguments>}<function> 是函数名<arguments> 是函数参数3.4.1 字符串函数字符串替换函数: $(subst <from>,<to>,<text>)功能: 把字符串<text> 中的 <from> 替换为 <to>返回: 替换过的字符串# Makefile 内容all:@echo $(subst t,e,maktfilt) <-- 将t替换为e# bash 中执⾏make$ makemakefile模式字符串替换函数: $(patsubst <pattern>,<replacement>,<text>)功能: 查找<text>中的单词(单词以"空格", "tab", "换⾏"来分割) 是否符合 <pattern>, 符合的话, ⽤ <replacement> 替代.返回: 替换过的字符串# Makefile 内容all:@echo $(patsubst %.c,%.o,programA.c programB.c)# bash 中执⾏make$ makeprogramA.o programB.o去空格函数: $(strip <string>)功能: 去掉 <string> 字符串中开头和结尾的空字符返回: 被去掉空格的字符串值# Makefile 内容VAL := " aa bb cc "all:@echo "去除空格前: " $(VAL)@echo "去除空格后: " $(strip $(VAL))# bash 中执⾏make去除空格前: aa bb cc去除空格后: aa bb cc查找字符串函数: $(findstring <find>,<in>)功能: 在字符串 <in> 中查找 <find> 字符串返回: 如果找到, 返回 <find> 字符串, 否则返回空字符串# Makefile 内容VAL := " aa bb cc "all:@echo $(findstring aa,$(VAL))@echo $(findstring ab,$(VAL))# bash 中执⾏make$ makeaa过滤函数: $(filter <pattern...>,<text>)功能: 以 <pattern> 模式过滤字符串 <text>, *保留* 符合模式 <pattern> 的单词, 可以有多个模式返回: 符合模式 <pattern> 的字符串# Makefile 内容all:@echo $(filter %.o %.a,program.c program.o program.a)# bash 中执⾏make$ makeprogram.o program.a反过滤函数: $(filter-out <pattern...>,<text>)功能: 以 <pattern> 模式过滤字符串 <text>, *去除* 符合模式 <pattern> 的单词, 可以有多个模式返回: 不符合模式 <pattern> 的字符串# Makefile 内容all:@echo $(filter-out %.o %.a,program.c program.o program.a)# bash 中执⾏make$ makeprogram.c排序函数: $(sort <list>)功能: 给字符串 <list> 中的单词排序 (升序)返回: 排序后的字符串# Makefile 内容all:@echo $(sort bac abc acb cab)# bash 中执⾏make$ makeabc acb bac cab取单词函数: $(word <n>,<text>)功能: 取字符串 <text> 中的第<n>个单词 (n从1开始)返回: <text> 中的第<n>个单词, 如果<n> ⽐ <text> 中单词个数要⼤, 则返回空字符串# Makefile 内容all:@echo $(word 1,aa bb cc dd)@echo $(word 5,aa bb cc dd)@echo $(word 4,aa bb cc dd)# bash 中执⾏make$ makeaadd取单词串函数: $(wordlist <s>,<e>,<text>)功能: 从字符串<text>中取从<s>开始到<e>的单词串. <s>和<e>是⼀个数字.返回: 从<s>到<e>的字符串# Makefile 内容all:@echo $(wordlist 1,3,aa bb cc dd)@echo $(word 5,6,aa bb cc dd)@echo $(word 2,5,aa bb cc dd)# bash 中执⾏make$ makeaa bb ccbb单词个数统计函数: $(words <text>)功能: 统计字符串 <text> 中单词的个数返回: 单词个数# Makefile 内容all:@echo $(words aa bb cc dd)@echo $(words aabbccdd)@echo $(words )# bash 中执⾏make$ make41⾸单词函数: $(firstword <text>)功能: 取字符串 <text> 中的第⼀个单词返回: 字符串 <text> 中的第⼀个单词# Makefile 内容all:@echo $(firstword aa bb cc dd)@echo $(firstword aabbccdd)@echo $(firstword )# bash 中执⾏make$ makeaaaabbccdd3.4.2 ⽂件名函数取⽬录函数: $(dir <names...>)功能: 从⽂件名序列 <names> 中取出⽬录部分返回: ⽂件名序列 <names> 中的⽬录部分# Makefile 内容all:@echo $(dir /home/a.c ./bb.c ../c.c d.c)# bash 中执⾏make$ make/home/ ./ ../ ./取⽂件函数: $(notdir <names...>)功能: 从⽂件名序列 <names> 中取出⾮⽬录部分返回: ⽂件名序列 <names> 中的⾮⽬录部分# Makefile 内容all:@echo $(notdir /home/a.c ./bb.c ../c.c d.c)# bash 中执⾏make$ makea.c bb.cc.cd.c取后缀函数: $(suffix <names...>)功能: 从⽂件名序列 <names> 中取出各个⽂件名的后缀返回: ⽂件名序列 <names> 中各个⽂件名的后缀, 没有后缀则返回空字符串# Makefile 内容all:@echo $(suffix /home/a.c ./b.o ../c.a d)# bash 中执⾏make$ make.c .o .a取前缀函数: $(basename <names...>)功能: 从⽂件名序列 <names> 中取出各个⽂件名的前缀返回: ⽂件名序列 <names> 中各个⽂件名的前缀, 没有前缀则返回空字符串# Makefile 内容all:@echo $(basename /home/a.c ./b.o ../c.a /home/.d .e)# bash 中执⾏make$ make/home/a ./b ../c /home/加后缀函数: $(addsuffix <suffix>,<names...>)功能: 把后缀 <suffix> 加到 <names> 中的每个单词后⾯返回: 加过后缀的⽂件名序列# Makefile 内容all:@echo $(addsuffix .c,/home/a b ./c.o ../d.c)# bash 中执⾏make$ make/home/a.c b.c ./c.o.c ../d.c.c加前缀函数: $(addprefix <prefix>,<names...>)功能: 把前缀 <prefix> 加到 <names> 中的每个单词前⾯返回: 加过前缀的⽂件名序列# Makefile 内容all:@echo $(addprefix test_,/home/a.c b.c ./d.c)# bash 中执⾏make$ maketest_/home/a.c test_b.c test_./d.c连接函数: $(join <list1>,<list2>)功能: <list2> 中对应的单词加到 <list1> 后⾯返回: 连接后的字符串# Makefile 内容all:@echo $(join a b c d,1234)@echo $(join a b c d,12345)@echo $(join a b c d e,1234)# bash 中执⾏make$ makea1 b2 c3 d4a1 b2 c3 d4 5a1 b2 c3 d4 e3.4.3 foreach语法:$(foreach <var>,<list>,<text>)⽰例:# Makefile 内容targets := a b c dobjects := $(foreach i,$(targets),$(i).o)all:@echo $(targets)@echo $(objects)# bash 中执⾏make$ makea b c da.ob.oc.od.o3.4.4 if这⾥的if是个函数, 和前⾯的条件判断不⼀样, 前⾯的条件判断属于Makefile的关键字语法:$(if <condition>,<then-part>)$(if <condition>,<then-part>,<else-part>)⽰例:# Makefile 内容val := aobjects := $(if $(val),$(val).o,nothing)no-objects := $(if $(no-val),$(val).o,nothing)all:@echo $(objects)@echo $(no-objects)# bash 中执⾏make$ makea.onothing3.4.5 call - 创建新的参数化函数语法:$(call <expression>,<parm1>,<parm2>,<parm3>...)⽰例:# Makefile 内容log = "====debug====" $(1) "====end===="all:@echo $(call log,"正在 Make")# bash 中执⾏make$ make====debug==== 正在 Make ====end====3.4.6 origin - 判断变量的来源语法:$(origin <variable>)返回值有如下类型:类型含义undefined<variable> 没有定义过default<variable> 是个默认的定义, ⽐如 CC 变量environment<variable> 是个环境变量, 并且 make时没有使⽤ -e 参数file<variable> 定义在Makefile中command line<variable> 定义在命令⾏中override<variable> 被 override 重新定义过automatic<variable> 是⾃动化变量⽰例:# Makefile 内容val-in-file := test-fileoverride val-override := test-overrideall:@echo $(origin not-define) # not-define 没有定义@echo $(origin CC) # CC 是Makefile默认定义的变量@echo $(origin PATH) # PATH 是 bash 环境变量@echo $(origin val-in-file) # 此Makefile中定义的变量@echo $(origin val-in-cmd) # 这个变量会加在make的参数中@echo $(origin val-override) # 此Makefile中定义的override变量@echo $(origin @) # ⾃动变量, 具体前⾯的介绍# bash 中执⾏make$ make val-in-cmd=val-cmdundefineddefaultenvironmentfilecommand lineoverrideautomatic3.4.7 shell语法:$(shell <shell command>)它的作⽤就是执⾏⼀个shell命令, 并将shell命令的结果作为函数的返回.作⽤和 `<shell command>` ⼀样, ` 是反引号3.4.8 make 控制函数产⽣⼀个致命错误: $(error <text ...>)功能: 输出错误信息, 停⽌Makefile的运⾏# Makefile 内容all:$(error there is an error!)@echo "这⾥不会执⾏!"# bash 中执⾏make$ makeMakefile:2: *** there is an error!. Stop.输出警告: $(warning <text ...>)功能: 输出警告信息, Makefile继续运⾏# Makefile 内容all:$(warning there is an warning!)@echo "这⾥会执⾏!"# bash 中执⾏make$ makeMakefile:2: there is an warning!这⾥会执⾏!3.5 Makefile中⼀些GNU约定俗成的伪⽬标如果有过在Linux上, 从源码安装软件的经历的话, 就会对 make clean, make install ⽐较熟悉.像 clean, install 这些伪⽬标, ⼴为⼈知, 不⽤解释就⼤家知道是什么意思了.下⾯列举⼀些常⽤的伪⽬标, 如果在⾃⼰项⽬的Makefile合理使⽤这些伪⽬标的话, 可以让我们⾃⼰的Makefile看起来更专业, 呵呵 :)伪⽬标含义all所有⽬标的⽬标,其功能⼀般是编译所有的⽬标clean删除所有被make创建的⽂件install安装已编译好的程序,其实就是把⽬标可执⾏⽂件拷贝到指定的⽬录中去print列出改变过的源⽂件tar把源程序打包备份. 也就是⼀个tar⽂件dist创建⼀个压缩⽂件, ⼀般是把tar⽂件压成Z⽂件. 或是gz⽂件TAGS更新所有的⽬标, 以备完整地重编译使⽤check 或 test⼀般⽤来测试makefile的流程。
U-BOOT中MAKEFILE详解
U-BOOT详解U-BOOT是一个LINUX下的工程,在编译之前必须已经安装对应体系结构的交叉编译环境,这里只针对ARM,编译器系列软件为arm-linux-*。
U-BOOT的下载地址: /projects/u-boot我下载的是1.1.6版本,一开始在FTP上下载了一个次新版,结果编译失败。
1.1.6是没问题的。
u-boot源码结构解压就可以得到全部u-boot源程序。
在顶层目录下有18个子目录,分别存放和管理不同的源程序。
这些目录中所要存放的文件有其规则,可以分为3类。
第1类目录与处理器体系结构或者开发板硬件直接相关;第2类目录是一些通用的函数或者驱动程序;第3类目录是u-boot的应用程序、工具或者文档。
u-boot的源码顶层目录说明目录特性解释说明board 平台依赖存放电路板相关的目录文件,例如:RPXlite(mpc8xx)、smdk2410(arm920t)、sc520_cdp(x86) 等目录cpu 平台依赖存放CPU相关的目录文件例如:mpc8xx、ppc4xx、arm720t、arm920t、 xscale、i386等目录lib_ppc 平台依赖存放对PowerPC体系结构通用的文件,主要用于实现PowerPC平台通用的函数lib_arm 平台依赖存放对ARM体系结构通用的文件,主要用于实现ARM平台通用的函数lib_i386 平台依赖存放对X86体系结构通用的文件,主要用于实现X86平台通用的函数include 通用头文件和开发板配置文件,所有开发板的配置文件都在configs目录下common 通用通用的多功能函数实现lib_generic 通用通用库函数的实现net 通用存放网络的程序fs 通用存放文件系统的程序post 通用存放上电自检程序drivers 通用通用的设备驱动程序,主要有以太网接口的驱动disk 通用硬盘接口程序rtc 通用 RTC的驱动程序dtt 通用数字温度测量器或者传感器的驱动examples 应用例程一些独立运行的应用程序的例子,例如helloworldtools 工具存放制作S-Record或者u-boot格式的映像等工具,例如mkimagedoc 文档开发使用文档u-boot的源代码包含对几十种处理器、数百种开发板的支持。
makefile中make指令
文章标题:深度解析makefile中make指令的功能与作用1. 引言在软件开发过程中,makefile是一个非常重要的工具,它可以帮助程序员自动化构建和管理项目。
而make指令则是makefile中最常用的命令之一,它负责按照一定规则执行makefile中定义的任务,从而大大提高了开发效率。
本文将重点探讨makefile中make指令的功能与作用。
2. make指令的基本概念在makefile中,make指令用于执行makefile中定义的任务,比如编译、信息、生成目标文件等。
它可以根据目标文件的依赖关系和规则,自动识别需要更新的文件,并进行相应的操作。
3. make指令的使用方法在makefile中,make指令的使用方法非常简单,只需要在命令行中输入“make”即可。
当make指令被执行时,它会首先读取makefile中的规则和任务,然后根据规则执行相应的操作,如编译源文件、信息目标文件等。
4. make指令的作用和功能make指令的主要作用是帮助程序员自动构建和管理项目。
通过make 指令,程序员可以方便地对项目进行编译、信息、生成可执行文件等操作,从而减少了手动操作的繁琐和错误率。
5. make指令的深入分析make指令的深度和广度兼具,它不仅可以执行简单的编译操作,还可以根据makefile中定义的规则进行自动化构建、增量编译等高级操作。
这使得程序员能够更加高效地管理和维护项目。
6. 结语总结来说,makefile中的make指令是一个非常强大的工具,它为程序员提供了自动化构建和管理项目的便利。
通过深入探索make指令的功能与作用,我们可以更好地理解makefile的工作原理,进而提高软件开发的效率和质量。
个人观点和理解:作为我的文章写手,我深信make指令在软件开发中的重要性和价值。
它不仅帮助程序员高效地管理和维护项目,还提供了自动化构建的便利。
通过学习和使用make指令,可以更好地理解makefile的机制,从而提高软件开发的效率和质量。
linux make命令的工作原理
linux make命令的工作原理make命令是一个用于自动化编译和构建程序的工具,它通过读取Makefile 文件中的规则来确定如何构建目标文件。
Makefile文件包含了目标文件和依赖关系的描述,以及构建目标文件的命令。
Make命令的工作原理如下:1.读取Makefile文件:make命令首先会读取当前目录下的Makefile文件,该文件包含了目标文件和依赖关系的描述,以及构建目标文件的命令。
2.解析规则:make命令会解析Makefile文件中的规则,包括目标文件、依赖关系和命令。
3.检查依赖关系:make命令会检查目标文件的依赖关系,并判断是否需要重新构建目标文件。
如果目标文件不存在或者依赖的文件被修改过,则需要重新构建目标文件。
4.构建目标文件:如果需要重新构建目标文件,make命令会执行Makefile文件中对应目标文件的构建命令。
构建命令可以是编译源代码、链接目标文件等操作。
5.更新目标文件:构建完成后,make命令会更新目标文件的时间戳,以反映最新的修改时间。
6.递归构建:如果目标文件的依赖关系中还包含其他目标文件,make命令会递归地执行构建过程,以确保所有的依赖关系都得到满足。
7.完成构建:当所有的目标文件都构建完成后,make命令会输出构建成功的消息,并退出。
Make命令的优势在于它只会构建需要更新的目标文件,而不会重新构建所有的文件。
这样可以提高编译和构建的效率,尤其是在大型项目中。
另外,Make命令还支持并行构建,可以同时构建多个目标文件,进一步提高构建的效率。
总结起来,Make命令的工作原理是通过读取Makefile文件中的规则来确定如何构建目标文件,检查目标文件的依赖关系并判断是否需要重新构建,执行构建命令来生成目标文件,递归构建所有的依赖关系,最后输出构建成功的消息。
Make命令的优势在于只构建需要更新的文件,提高构建效率。
Makefile
定义
概述
Linux环境下的程序员如果不会使用GNU make来构建和管理自己的工程,应该不能算是一个合格的专业程序 员,至少不能称得上是 Unix程序员。在 Linux(unix )环境下使用GNU的make工具能够比较容易的构建一个属 于你自己的工程,整个工程的编译只需要一个命令就可以完成编译、连接以至于最后的执行。不过这需要我们投 入一些时间去完成一个或者多个称之为Makefile文件的编写。
在 UNIX系统中,习惯使用 Makefile作为 makefile文件。如果要使用其他文件作为 makefile,则可利用 类似下面的 make命令选项指定 makefile文件:
make命令
$ make -f Makefile.debug
Makefile文件工程样例例如,一个名为prog的程序由三个C源文件filea.c、fileb.c和filec.c以及库文件 LS编译生成,这三个文件还分别包含自己的头文件a.h、b.h和c.h。通常情况下,C编译器将会输出三个目标文件 filea.o、fileb.o和filec.o。假设filea.c和fileb.c都要声明用到一个名为defs的文件,但filec.c不用。即 在filea.c和fileb.
所要完成的Makefile文件描述了整个工程的编译、连接等规则。其中包括:工程中的哪些源文件需要编译以 及如何编译、需要创建哪些库文件以及如何创建这些库文件、如何最后产生我们想要的可执行文件。尽管看起来 可能是很复杂的事情,但是为工程编写Makefile的好处是能够使用一行命令来完成“自动化编译”,一旦提供一 个(通常对于一个工程来说会是多个)正确的 Makefile。编译整个工程你所要做的事就是在shell提示符下输入 make命令。整个工程完全自动编译,极大提高了效率。
linux驱动编程初级+makefile
驱动编程1 模块的概述 (2)2 source insight 加载内核源码方法 (2)3 模块makefile的编写 (3)4 模块makefile编写方法 (4)5 在X86上运行模块: (5)6 编写模块 (5)7 模块的加载进内核命令 (5)8 最简单的上层调用+ 调用驱动方法 (6)9 复杂框架上层应用+驱动调用方法 (7)10 复杂框架字符设备创建并注册过程 (7)11 file_operations常用函数 (9)12 同步互斥操作 (10)13 同步互斥函数总结 (10)14 阻塞IO编程流程 (11)15 轮询操作上层select 下层poll (12)16 信号处理 (12)17 中断 (13)18 中断新模型--上半部中断和下半部中断的实现 (14)19 内核定时器编程 (15)20 内核延时函数 (15)21 内核源代码中头文件分配方式 (15)22 linux内核管理和内核的内存管理 (16)23 设备io端口和io内存访问–如何控制led的亮灭 (16)24 * 驱动-设备分离思想编程————内核进阶 (18)25 驱动-设备分离-核心最小架构 (18)26 驱动设备分离思想- 上层架构(基于封装) (20)27 头文件总结 (24)28 设置系统自启动命令u-boot (24)第一天需要理清的东西1)模块的概念,模块与应用的区别2)模块主要的组成头文件、module_init() modoule_exit() module_lisence()3)模块的如何编辑,如何编译,如何加载到内核中运行使用makefile4)模块驱动编写,必须通过上层应用程序调用。
1模块的概述模块是内核的一部分,为了防止内核太大,把它放在文件系统里面。
也可以在编译内核的直接编译进内核。
1,存储位置可以在开始时编译进内核,也可以编译进模块,最后加载2、运行时环境在哪个内核树下编译,就对应这个运行环境3、模块的编译问题:前提条件是需要对应的内核源码树,或者必须有对应的内核版本匹配4、模块编译使用makefile 注意makefile的编写2source insight 加载内核源码方法在windows下创建工程,使用source insight查看内核代码:2.1 先将内核源码拷到对应的文件夹2.2 在source insight 里添加工程,筛选需要添加的文件注意选择按照树来添加,然后按照remove来踢出不需要的文件夹2.3 最后同步3模块makefile的编写模块的编译:1)、模块编译的核心语句:$(MAKE) -C $(KERNELDIR) M=$(PWD) modules-C :进入内核源码树M= : 返回到当前目录,再次执行该目录下的makefileeg: /tnt/abc.c -----> abc.ko1、在/tnt目录下敲make,只有/tnt目录下的Makefile被调用2、目的是要进入到内核源码树中,一进一回,-C来进,M=带着内核源码树中的makefile的功能回来了-------内核源码树中Makefile的目标:obj-y:汇集了所有编译进内核的目标文件obj-m:汇集了所有编译成模块的目标文件3、回来过后,我们只有确定obj-m变量的集合4、make modules告诉内核的makefile,只做编译模块的功能4模块makefile编写方法ifeq ($(KERNELRELEASE),)KERNELDIR := /work/linux-2.6.35-farsightPWD := $(shell pwd)modules:$(MAKE) -C $(KERNELDIR) M=$(PWD) modulesinstall:$(MAKE) -C $(KERNELDIR) M=$(PWD) modules_installclean:rm -rf .tmp_versions *.ko *.o .*.cmd *.mod.c *.order *.symvers.PHONY: modules cleanelseobj-m := ex1.oendif以上是makefile的内容,●注意原来的内核目录树不要进行make clean 或者make distclean●KERNELDIR 表示模块加载在哪个内核的文件夹(又叫内核源码树),●$(MAKE) -C $(KERNELDIR) M=$(PWD) modules 表示进入该内核文件夹,将顶层makefile 中的内容带回,再重新执行一次该makefile 将obj-m := ex1.o 编译,并执行make modules (并只编译ex1.c ,不编译其它模块)●$(MAKE) -C $(KERNELDIR) M=$(PWD) modules_install 表示执行顶层makefile的modules install 标签下的命令●安装的位置原来默认在/lib 下面,所以需要修改其到我们制作的根文件系统下/work/rootfs/在顶层Makefile位置搜索:MODLIB修改为:●obj-m := ex1.o 你需要编译的.c的文件名****************************此时简单的编译环境已经搭建完毕******************* ****************************执行make ***********************************************执行make install *******************在/work/rootfs/lib/modules/2.6.35/extra即可找到该模块.ko*****************************************************************************搭建好环境,保证虚拟机与板子与计算机网络连通,并设置板子u-boot 从nfs挂载,启动内核,并成功通过nfs 加载rootfs,此时环境完毕,进入/work/rootfs/lib/modules/2.6.35/extra ,找到模块,加载卸装模块操纵5在X86上运行模块:修改Makefile中的内核源码树的目录X86下的内核源码树:/lib/modules/2.6.35-22-generic/build如果没有在控制台上交互,默认是看不到信息的,需要dmesg这个命令去查看6编写模块模块最小组成如下:●注意:module_init module_exit 必须放在末尾●注意:函数的原型返回值●头文件7模块的加载进内核命令insmodrmmodlsmod8最简单的上层调用+ 调用驱动方法8.1 首先在module_init(abc) abc函数中注册设备register_chrdev(注册设备号,上层可见的设备名,操作封装)该函数完成设备注册,在板子上用cat /proc/devices 便可以看见该设备8.2 完成fops 操作的封装●注意格式●必须在函数后面声明该结构体●头文件#include <linux/fs.h>8.3 查看到该字符设备后,创建设备节点,则上层通过设备字符名与该设备号绑定mknod /dev/hf_char c 245 0ls /dev/ 可以查看注册的所有设备节点8.4 此时上层应用的open(”hf_char”,O_RDWR),即可完成该设备的打开,即可以完成上层应用于下层驱动相关fops 的操作。
linux makefile include用法
在 Linux 中,Makefile 是一种文本文件,用于定义项目的构建规则和依赖关系。
include是 Makefile 中的一个关键字,用于引入其他 Makefile 文件。
这对于将构建规则拆分为多个文件以提高可维护性非常有用。
以下是关于include在 Linux Makefile 中的用法的详细解释:include的基本语法:•include后面可以跟一个或多个文件名,用空格分隔。
•这些文件名可以包含通配符,例如*.mk。
示例:假设有两个 Makefile 文件,分别是main.mk和extra.mk。
main.mkextra.mk在上述例子中,main.mk包含了extra.mk。
这样,main.mk中的规则就可以使用extra.mk中定义的规则和变量。
使用场景和注意事项:1.模块化项目:–include用于将项目的不同部分拆分为独立的 Makefile,使得项目结构更加清晰和易于维护。
2.变量和规则共享:–通过include,可以在不同的 Makefile 文件中共享变量和规则,避免代码重复。
3.条件包含:–可以根据条件来选择是否包含某个 Makefile,例如基于不同的操作系统或构建类型。
1.文件名通配符:–include后面可以使用通配符,方便引入符合某个模式的多个文件。
注意事项:•文件名可以是相对路径或绝对路径。
•文件名中可以包含变量,这样可以动态地选择引入的文件。
•在引入文件时,Makefile 会在当前目录和系统的默认搜索路径中查找文件。
通过合理使用include,可以更好地组织和管理项目的构建规则,提高 Makefile 的可读性和可维护性。
linux makefile basename函数
linux makefile basename函数摘要:1.Linux Makefile 简介2.Makefile 中的函数3.basename 函数的作用4.basename 函数的参数5.basename 函数的返回值6.basename 函数在Makefile 中的应用示例正文:Linux Makefile 是一个用于管理编译过程的文件,它可以根据源文件之间的依赖关系自动编译、链接和安装软件。
在Makefile 中,可以定义一些函数来简化重复的操作,提高自动化程度。
basename 函数就是其中一个常用的函数。
basename 函数是用来获取文件名的函数,它可以从给定的路径名中提取文件名部分。
该函数的定义和使用方式类似于shell 脚本中的basename 命令。
在Makefile 中,basename 函数可以方便地提取源文件名,以便进行后续操作。
basename 函数的语法如下:```basename(prefix, suffix)```其中,`prefix` 参数表示路径名的前缀部分,`suffix` 参数表示路径名的后缀部分。
函数返回值是去掉前缀和后缀后的文件名。
basename 函数的参数都是可选的。
如果不提供`prefix` 参数,那么默认前缀为空字符串;如果不提供`suffix` 参数,那么默认后缀为空字符串。
basename 函数的返回值是一个字符串,表示去掉前缀和后缀后的文件名。
如果源路径名中不包含前缀或后缀,那么返回值将与源路径名相同。
下面举一个basename 函数在Makefile 中的应用示例。
假设我们有一个源文件`main.c`,我们想要提取文件名并生成一个名为`main` 的目标文件。
我们可以这样写Makefile:```all: mainmain: main.ct$(CC) $(CFLAGS) -o $@ $<.PHONY: cleanclean:trm -f main```在这个例子中,我们使用了`$(CC) $(CFLAGS) -o $@ $<` 命令来编译源文件。
Linux 2.6内核Makefile浅析
1 概述Makefile由五个部分组成:∙Makefile:根目录Makefile,它读取.config文件,并负责创建vmlinux(内核镜像)和modules(模块文件)。
∙.config:内核配置文件(一般由make menuconfig生成)。
∙arch/$(ARCH)/Makefile:目标处理器的Makefile。
∙scripts/Makefile.*:所有kbuild Makefile的规则,它们包含了定义/规则等。
∙kbuild Makefiles:每个子目录都有kbuild Makefile,它们负责生成built-in或模块化目标。
(注意:kbuild Makefile是指使用kbuild结构的Makefile,内核中的大多数Makefile 都是kbuild Makefile。
)2 kbuild文件2.1 obj-y和obj-m最简单的kbuild Makefile可以仅包含:$(EXTRA_LDFLAGS)和$(EXTRA_ARFLAGS)用于每个目录de$(LD)和$(AR)选项。
例如:#arch/m68k/fpsp040/MakefileEXTRA_LDFLAGS := -xCFLAGS_$@, AFLAGS_$@CFLAGS_$@和AFLAGS_$@只使用到当前makefile文件de命令中。
$(CFLAGS_$@)定义了使用$(CC)de每个文件de选项。
$@部分代表该文件。
例如:# drivers/scsi/MakefileCFLAGS_aha152x.o = -DAHA152X_STAT -DAUTOCONFCFLAGS_gdth.o = # -DDEBUG_GDTH=2 -D__SERIAL__ -D__COM2__ \-DGDTH_STATISTICS CFLAGS_seagate.o = -DARBITRATE -DPARITY-DSEAGATE_USE_ASM这三行定义了aha152x.o、gdth.o和seagate.o文件de编译选项。
makefile 条件编译
makefile 条件编译MakefileUnix/Linux译系统编写程序所必需的文件,其中包含了定义规则以及编译程序所必需的指令。
通常情况下,一个规则描述了从一个或多个源文件到一个或多个目标文件之间的变换过程。
在特定的编译环境中,定义的规则必须能够生成所有需要的目标文件及时准确的。
有时候,一个源文件或多个源文件具有不同的编译条件,此时Makefile件编译的技术就派上用场了。
这种技术可以根据指定的编译条件自动生成 Makefile则,使得编译器只有在满足编译条件时才会编译特定的源文件。
Makefile件编译基本依赖于 make令,它可以根据给定的源文件及编译条件,自动生成 Makefile则。
Make令使用 C言编写,可以从一个或多个文本文件中读取输入,比如源文件,然后根据相应的编译条件,使用 if句来生成 Makefile则。
要想理解 Makefile件编译,首先必须明白 Makefile几个基本概念。
Makefile 中有若干规则,每个规则由一个目标文件,一个或多个依赖文件,以及一系列的命令组成。
它们通常以三个元素表示: target: dependenciestcommands其中,target 代表目标文件,dependencies该目标文件的依赖文件,commands该目标文件生成所需的命令。
为了利用 Makefile件编译,可以将每个文件的编译条件定义为一个 Makefile量,这样 Make编译文件时就可以根据指定的编译条件来生成 Makefile则。
例如,对于两个源文件 A B,A编译条件为BUILD_A,B编译条件为 BUILD_B,只有当 BUILD_A 为真,A会被编译,当 BUILD_B 为真,B会被编译。
要实现 Makefile件编译,可以使用 Make 中的 if件语句:ifeq (BUILD_A,1)A: ../A.cpptg++ -o A ../A.cppendififeq (BUILD_B,1)B: ../B.cpptg++ -o B ../B.cppendif上面的 Makefile 中,对于 A B两个源文件,它们的编译条件分别是 BUILD_A BUILD_B,即 BUILD_A 为真时,A会被编译,BUILD_B 为真时,B会被编译。
linux系统中make的用法
linux系统中make的用法make是一个常用的Linux命令,用于自动化编译程序。
当有多个源文件需要编译成可执行文件时,手动一个个编译比较麻烦。
这时候,我们就可以使用make命令实现自动化编译。
make命令的基本用法为:在Makefile文件中定义编译规则和依赖关系,然后运行make命令即可自动编译程序。
Makefile是一个文本文件,可以使用vi、nano等编辑器创建和编辑。
make命令的常用参数如下:* -f 指定Makefile文件,默认为当前目录下的Makefile或makefile文件。
* -n 或 --just-print 只打印命令,而不实际执行。
* -j 指定同时执行的任务数,加快编译速度。
* clean 清除中间文件和可执行文件等生成的文件。
Makefile文件中的基本语法为:```target: prerequisitescommand```其中,target为编译目标,prerequisites为编译目标所依赖的文件,command为执行编译的命令。
例如:```hello: hello.cgcc -o hello hello.c```这个Makefile文件中定义了一个名为“hello”的编译目标,它依赖于名为“hello.c”的源文件,执行命令为“gcc -o hellohello.c”,即将hello.c编译成可执行文件hello。
使用make命令进行编译时,可以直接运行“make”(默认编译第一个目标),也可以指定要编译的目标,例如“make hello”。
当定义的目标有多个依赖时,可以使用“$^”表示所有依赖文件,“$@”表示目标文件。
例如:```main.exe: main.c module1.o module2.ogcc -o $@ $^```这个Makefile文件中定义了一个名为“main.exe”的编译目标,它依赖于名为“main.c”、“module1.o”、“module2.o”的文件,执行命令为“gcc -o $@ $^”,即将这三个文件编译成可执行文件main.exe。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6行,判断KERNELRELEASE是否为空,该变量是描述内核版本的字符串。
只有执行make命令的当前目录为内核源代码目录时,该变量才不为空字符。
第7、8行定义了KERNELDIR和PWD变量。
KERNELDIR是内核路径变量,PWD是由执行pwd命令得到的当前模块路径。
第11行make的语法是”Make –C 内核路径M=模块路径modules”,该语法会执行内核模块的编译
第13行是将模块安装到对应的路径中,当在命令执行make modules_install时,执行该命令,其他时候不执行
第24行,意思是将hello.o编译成hello.ko模块。
如果要编译其他模块时,只要将hello.o中的hello改成模块的文件名就可以了
Makefile的执行过程:
执行make命令后,将进入Makefile文件。
此时KERNELRELEASE变量为空,此时是第一次进入Makefile文件。
当执行完变量赋值代码后,会根据make参数执行不同的逻辑。
如下:
make modules_install 命令,将执行13、15行将模块安装到操作系统中。
make clean命令,会删除目录中的所有临时文件。
make命令,会执行10、11行编译模块。
首先$(MAKE) -C $(KERNELDIR) M=$(PWD) modules 中的-C $(KERNELDIR)选项,会使编译器进入内核源码目录/home/zzc/linux-2.6.31,读取Makefile文件,从中得到一些信息,例如变量KERNELRELEASE将在这里赋值。
当内核源码目录中的Makefile文件读取完成后,编译器会根据选项M=$(PWD)第二次进入模块所在的目录,并再一次执行Makefie文件。
当第二次执行Makefile文件时,变量KERNELRELEASE
的值为内核发布版本信息,也就是不为空,此时会执行23、24、25行代码。
这里的代码指明了模块源码中各文件的依赖关系,以及要生成的目标模块名,这里就正式编译模块了。