直线的倾斜角与斜率、直线的方程

合集下载

归纳与技巧:直线的倾斜角与斜率、直线的方程

归纳与技巧:直线的倾斜角与斜率、直线的方程

归纳与技巧:直线的倾斜角与斜率、直线的方程基础知识归纳一、直线的倾斜角与斜率 1.直线的倾斜角(1)定义:x 轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为0°.(2)倾斜角的范围为[0,π)_. 2.直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1=y 1-y 2x 1-x 2.二、直线方程的形式及适用条件基础题必做1.(教材习题改编)直线x +3y +m =0(m ∈k )的倾斜角为( ) A .30° B .60° C .150°D .120°解析:选C 由k =tan α=-33,α∈[0,π)得α=150°. 2.(教材习题改编)已知直线l 过点P (-2,5),且斜率为-34,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0解析:选A 由y -5=-34(x +2),得3x +4y -14=0.3.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1B .4C .1或3D .1或4解析:选A 由1=4-mm +2,得m +2=4-m ,m =1.4. 若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________. 解析:k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4. 答案:45.若直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则直线l 的方程为________. 解析:由已知得直线l 的斜率为k =-32.所以l 的方程为y -2=-32(x +1),即3x +2y -1=0. 答案:3x +2y -1=0解题方法归纳1.求直线方程时要注意判断直线斜率是否存在,每条直线都有倾斜角,但不一定每条直线都存在斜率.2.由斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性. 3.用截距式写方程时,应先判断截距是否为0,若不确定,则需要分类讨论.直线的倾斜角与斜率典题导入[例1] (1) 经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =( )A .-1B .-3C .0D .2(2) 直线x cos θ+3y +2=0的倾斜角的范围是________.[自主解答] (1)tan 3π4=2y +1-(-3)4-2=2y +42=y +2,因此y +2=-1.y =-3.(2)由题知k =-33cos θ,故k ∈⎣⎡⎦⎤-33,33,结合正切函数的图象,当k ∈⎣⎡⎦⎤0,33时,直线倾斜角α∈⎣⎡⎦⎤0,π6,当k ∈⎣⎡⎭⎫-33,0时,直线倾斜角α∈⎣⎡⎭⎫5π6,π,故直线的倾斜角的范围是⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π. [答案] (1)B (2)⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π解题方法归纳1.求倾斜角的取值范围的一般步骤: (1)求出斜率k =tan α的取值范围;(2)利用三角函数的单调性,借助图象或单位圆数形结合,确定倾斜角α的取值范围. 2.求倾斜角时要注意斜率是否存在.以题试法1. 函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax -by +c =0的倾斜角为( )A .45°B .60°C .120°D .135°解析:选D 由函数y =f (x )=a sin x -b cos x 的一条对称轴为x =π4知,f (0)=f ⎝⎛⎭⎫π2,即-b =a ,则直线l 的斜率为-1,故倾斜角为135°.2. 已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是( )A.⎣⎡⎭⎫12,+∞B .(-∞,-2]C .(-∞,-2]∪⎣⎡⎭⎫12,+∞D.⎣⎡⎦⎤-2,12 解析:选D 由题意知直线l 恒过定点P (2,1),如右图.若l 与线段AB 相交,则k P A ≤k ≤k PB .∵k P A =-2,k PB =12,∴-2≤k ≤12.直 线 方 程典题导入[例2] (1)过点(1,0)且与直线x -2y -2=0平行的直线方程是________________. (2) 若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线的方程为______________.[自主解答] (1)设所求直线方程为x -2y +m =0,由直线经过点(1, 0),得1+m =0,m =-1.则所求直线方程为x -2y -1=0.(2)由题意得,1-01-3×k MN=-1,所以k MN =2,故弦MN 所在直线的方程为y -1=2(x-1),即2x -y -1=0.[答案] (1)x -2y -1=0 (2)2x -y -1=0解题方法归纳求直线方程的方法主要有以下两种:(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程;(2)待定系数法:先设出直线方程,再根据已知条件求出待定系数,最后代入求出直线方程.以题试法3. 已知△ABC 中,A (1,-4),B (6,6),C (-2,0).求:(1)△ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2)BC 边的中线所在直线的一般式方程,并化为截距式方程. 解:(1)平行于BC 边的中位线就是AB ,AC 中点的连线. 因为线段AB ,AC 中点坐标分别为⎝⎛⎭⎫72,1,⎝⎛⎭⎫-12,-2, 所以这条直线的方程为y +21+2=x +1272+12,整理一般式方程为得6x -8y -13=0,截距式方程为x 136-y138=1.(2)因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即一般式方程为7x -y -11=0,截距式方程为x 117-y11=1.典题导入[例3] 过点P (3,0)作一直线,使它夹在两直线l 1:2x -y -2=0与l 2:x +y +3=0之间的线段AB 恰被点P 平分,求此直线的方程.[自主解答] 法一:设点A (x ,y )在l 1上,点B (x B ,y B )在l 2上. 由题意知⎩⎨⎧x +xB 2=3,y +yB2=0,则点B (6-x ,-y ),解方程组⎩⎪⎨⎪⎧2x -y -2=0,(6-x )+(-y )+3=0,得⎩⎨⎧x =113,y =163,则k =163-0113-3=8.故所求的直线方程为y =8(x -3),即8x -y -24=0. 法二:设所求的直线方程为y =k (x -3), 点A ,B 的坐标分别为(x A ,y A ),(x B ,y B ),由⎩⎪⎨⎪⎧y =k (x -3),2x -y -2=0,解得⎩⎪⎨⎪⎧ x A =3k -2k -2,y A=4kk -2.由⎩⎪⎨⎪⎧y =k (x -3),x +y +3=0,解得⎩⎪⎨⎪⎧x B =3k -3k +1,y B=-6kk +1.∵P (3,0)是线段AB 的中点, ∴y A +y B =0,即4k k -2+-6kk +1=0,∴k 2-8k =0,解得k =0或k =8. 若k =0,则x A =1,x B =-3, 此时x A +x B 2=1-32≠3,∴k =0舍去,故所求的直线方程为y =8(x -3), 即8x -y -24=0.解题方法归纳解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.以题试法4. 已知直线l 过点M (2,1),且分别与x 轴,y 轴的正半轴交于A ,B 两点,O 为原点. (1)当△AOB 面积最小时,求直线l 的方程; (2)当|MA |·|MB |取得最小值时,求直线l 的方程. 解:(1)设直线l 的方程为y -1=k (x -2)(k <0), A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ), △AOB 的面积S =12(1-2k )⎝⎛⎭⎫2-1k =12⎣⎡⎦⎤4+(-4k )+⎝⎛⎭⎫-1k ≥12(4+4)=4. 当且仅当-4k =-1k ,即k =-12时,等号成立.故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.(2)∵|MA |= 1k2+1,|MB |=4+4k 2, ∴|MA |·|MB |=1k2+1·4+4k 2=2 k 2+1k2+2≥2×2=4,当且仅当k 2=1k 2,即k =-1时取等号,故直线方程为x +y -3=0.1.若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( ) A .(1,-2) B .(1,2) C .(-1,2)D .(-1,-2)解析:选A 因为k ,-1,b 三个数成等差数列,所以k +b =-2,即b =-2-k ,于是直线方程化为y =kx -k -2,即y +2=k (x -1),故直线必过定点(1,-2).2.直线2x +11y +16=0关于点P (0,1)对称的直线方程是( ) A .2x +11y +38=0 B .2x +11y -38=0 C .2x -11y -38=0D .2x -11y +16=0解析:选B 因为中心对称的两直线互相平行,并且对称中心到两直线的距离相等,故可设所求直线的方程为2x +11y +C =0,由点到直线的距离公式可得|0+11+16|22+112=|0+11+C |22+112,解得C =16(舍去)或C =-38.3. 直线l 1的斜率为2,l 1∥l 2,直线l 2过点(-1,1)且与y 轴交于点P ,则P 点坐标为( ) A .(3,0)B .(-3,0)C .(0,-3)D .(0,3)解析:选D ∵l 1∥l 2,且l 1斜率为2,∴l 2的斜率为2. 又l 2过(-1,1),∴l 2的方程为y -1=2(x +1), 整理即得y =2x +3.令x =0,得P (0,3).4. 直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0D .ab <0,bc <0解析:选A 由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -c b ,易知-a b <0且-cb>0,故ab >0,bc <0.5.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( ) A .y =-13x +13B .y =-13x +1C .y =3x -3D .y =13x +1解析:选A 将直线y =3x 绕原点逆时针旋转90°得到直线y =-13x ,再向右平移1个单位,所得直线的方程为y =-13(x -1),即y =-13x +13.6.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1解析:选C 线段AB 的中点⎝⎛⎭⎫1+m 2,0代入直线x +2y -2=0中,得m =3.7. 直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.解析:设直线l 的斜率为k ,则方程为y -2=k (x -1),在x 轴上的截距为1-2k ,令-3<1-2k <3,解得k <-1或k >12.答案:(-∞,-1)∪⎝⎛⎭⎫12,+∞ 8. 过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为________.解析:直线l 过原点时,l 的斜率为-32,直线方程为y =-32x ;l 不过原点时,设方程为x a +ya=1,将点(-2,3)代入,得a =1,直线方程为x +y =1. 综上,l 的方程为x +y -1=0或2y +3x =0. 答案:x +y -1=0或3x +2y =09. 不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点________. 解析:把直线方程(m -1)x -y +2m +1=0整理得 (x +2)m -(x +y -1)=0,则⎩⎪⎨⎪⎧ x +2=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3.答案:(-2,3)10.求经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程. 解:设所求直线方程为x a +yb=1,由已知可得⎩⎨⎧-2a +2b =1,12|a ||b |=1,解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧a =2,b =1.故直线l 的方程为2x +y +2=0或x +2y -2=0. 11. 已知两点A (-1,2),B (m,3). (1)求直线AB 的方程; (2)已知实数m ∈⎣⎡⎦⎤-33-1,3-1,求直线AB 的倾斜角α的取值范围.解:(1)当m =-1时,直线AB 的方程为x =-1; 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1).(2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈⎣⎡⎭⎫-33,0∪(0, 3 ], ∴k =1m +1∈(-∞,- 3 ]∪⎣⎡⎭⎫33,+∞,∴α∈⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,2π3.综合①②知,直线AB 的倾斜角α∈⎣⎡⎦⎤π6,2π3.12.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3, 3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.1.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.⎣⎡⎭⎫π6,π3B.⎝⎛⎭⎫π6,π2 C.⎝⎛⎭⎫π3,π2D.⎣⎡⎦⎤π6,π2解析:选B 由⎩⎨⎧y =kx -3,2x +3y -6=0,解得⎩⎪⎨⎪⎧x =3(2+3)2+3k ,y =6k -232+3k .∵两直线交点在第一象限,∴⎩⎪⎨⎪⎧x >0,y >0,解得k >33.∴直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.2. 当过点P (1,2)的直线l 被圆C :(x -2)2+(y -1)2=5截得的弦最短时,直线l 的方程为________________.解析:易知圆心C 的坐标为(2,1),由圆的几何性质可知,当圆心C 与点P 的连线与直线l 垂直时,直线l 被圆C 截得的弦最短.由C (2,1),P (1,2)可知直线PC 的斜率为2-11-2=-1,设直线l 的斜率为k ,则k ×(-1)=-1,得k =1,又直线l 过点P ,所以直线l 的方程为x -y +1=0.答案:x -y +1=03.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:法一:直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1).法二:设直线过定点(x 0,y 0),则kx 0-y 0+1+2k =0对任意k ∈R 恒成立,即(x 0+2)k -y 0+1=0恒成立,∴x 0+2=0,-y 0+1=0,解得x 0=-2,y 0=1,故直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是[0,+∞).(3)依题意,直线l 在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,∴A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k (1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.1. 已知直线l 1的方向向量为a =(1,3),直线l 2的方向向量为b =(-1,k ).若直线l 2经过点(0,5)且l 1⊥l 2,则直线l 2的方程为( )A .x +3y -5=0B .x +3y -15=0C .x -3y +5=0D .x -3y +15=0解析:选B ∵kl 1=3,kl 2=-k ,l 1⊥l 2,∴k =13,l 2的方程为y =-13x +5,即x +3y -15=0. 2. 若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.解析:k =tan α=2a -(1+a )3-(1-a )=a -1a +2. ∵α为钝角,∴a -1a +2<0,即(a -1)(a +2)<0, 故-2<a <1.答案:(-2,1)3.已知直线l 过点P (3,2),且与x 轴,y 轴的正半轴分别交于A ,B两点如图,求△ABO 的面积的最小值及此时直线l 的方程.解:设A (a,0),B (0,b ),(a >0,b >0),则直线l 的方程为x a +y b=1, ∵l 过点P (3,2),∴3a +2b=1. ∴1=3a +2b ≥2 6ab,即ab ≥24. ∴S △ABO =12ab ≥12.当且仅当3a =2b,即a =6,b =4时, △ABO 的面积最小,最小值为12.此时直线l 的方程为x 6+y 4=1. 即2x +3y -12=0.。

直线的倾斜角和斜率,直线方程

直线的倾斜角和斜率,直线方程

直线的倾斜角和斜率,直线方程一、直线的倾斜角和斜率1.直线的倾斜角概念的注意点:1)注意旋转方向:逆时针2)规定平行x轴(或与x轴重合)的直线倾斜角为0°3)直线倾斜角的范围是0°≤<180°2.直线的倾率:直线的倾斜角的正切值tan(倾斜角不为90°时)。

概念注意点:1)倾斜角为90°的直线无斜率2)斜率k可以是任何实数,每条直线都存在唯一的倾斜角,但不是每条直线都有斜率3)=0°时,k=0;0°<<90°时,k>0;=90°时,k不存在;90°<<180°时,k<0。

3.斜率公式:设直线l的倾斜角为(≠90°),P1(x1,y2),P2(x2,y2)(x1≠x2)是直线l上不同两点,直线l的斜率为k,则:k=tan=,当=90°时,或x1=x2时,直线l垂直于x轴,它的斜率不存在。

例1.求过A(-2,0),B(-5,3)两点的直线的斜率和倾斜角。

解:k==-1,即tan=-1,∵0°≤<180°,∴=135°。

点评:已知直线的斜率,可以直接得出直线的倾斜角,但要注意角的范围。

例2.设直线l的斜率为k,且-1<k<1,求直线倾斜角的范围。

解法1:当-1<k<0时,∈(),则,当k=0时,=0,当0<k<1时,∈(0,),则0<<解法2:作k=tan,∈[0,π)时的图形:由上图可知:-1<k<1时,∈[0,)()。

点评:1、当直线的斜率在某一区间内时,要注意对倾斜角范围的讨论。

2、利用正切函数图像中正切来表示倾斜角和斜率关系也是一种很好的方法。

二、直线方程的四种形式1.两个独立的条件确定一条直线,常见的确定直线的方法有以下两种(1)由一个定点和确定的方向可确定一条直线,这在解析几何中表现为直线的点斜式方程及其特例斜截式方程。

6.1 直线的倾斜角与斜率、直线的方程

6.1  直线的倾斜角与斜率、直线的方程

6.1 直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α(α≠π2),则斜率k=tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式考点一 直线的倾斜角与斜率基础送分型考点——自主练透例1.经过点A (2,-3),倾斜角等于直线y =x 的2倍的直线方程为________. 变式1-1.若直线的斜率k 满足-1<k <3,则该直线的倾斜角θ的取值范围是________.变式1-2.直线x sin α+y +2=0的倾斜角的取值范围是( )A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π变式1-2.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.变式1-3.若直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.1.倾斜角与斜率的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 的值由0增大到+∞.当α∈⎝⎛⎭⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的3种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率.(2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)方程法:若已知直线的方程为Ax +By +C =0(B ≠0),则l 的斜率k =-A B.考点二 直线的方程重点保分型考点——师生共研例2.(1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程;(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程.求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).变式2-1.已知点A (3,4),求满足下列条件的直线方程: (1)经过点A 且倾斜角为120°;(2)经过点A 且与两坐标轴围成一个等腰直角三角形.考点三 直线方程的综合应用题点多变型考点——多角探明直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题; (2)与导数的几何意义相结合的问题; (3)与圆相结合求直线方程的问题.角度一:与基本不等式相结合的最值问题例3.过点P (4,1)作直线l 分别交x 轴,y 轴正半轴于A ,B 两点,O 为坐标原点. (1)当△AOB 面积最小时,求直线l 的方程. (2)当|OA |+|OB |取最小值时,求直线l 的方程.角度二:与导数的几何意义相结合的问题例3.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1] D.⎣⎡⎦⎤12,1角度三:与圆相结合求直线方程的问题例4.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是____________________.处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.变式4-1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.变式4-2.(2017·衡阳一模)已知点P 在直线x +3y -2=0上,点Q 在直线x +3y +6=0上,线段PQ 的中点为M (x 0,y 0),且y 0<x 0+2,则y 0x 0的取值范围是________.《6.1直线的倾斜角与斜率、直线的方程》课后练习1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33 B. 3 C .- 3 D .-332.倾斜角为135°,在y 轴上的截距为-1的直线方程是( )A .x -y +1=0B .x -y -1=0C .x +y -1=0D .x +y +1=0 3.若直线l 的倾斜角θ满足π4≤θ≤π3,则该直线的斜率k 的取值范围是( )A .(0,3)B .[1,3]C .(1,3)D .[1,3)4.(2017·秦皇岛模拟)倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=05.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( )A .4x -3y -3=0B .3x -4y -3=0C .3x -4y -4=0D .4x -3y -4=0 6.(2015·福建高考)若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .57.(2017·菏泽模拟)若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞) 8.已知点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( ) A .8 B .2 2 C. 2 D .169.(2017·豫西五校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________.10.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不经过第________象限. 11.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为________.12.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 13.(2017·桐乡高级期初)已知点A (1,3),B (-2,-1),若直线l :y =k (x -2)+1与线段AB 相交,则实数k 的取值范围是________.14.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.。

直线的倾斜角、斜率及直线的方程ppt

直线的倾斜角、斜率及直线的方程ppt
通过斜率可以判断直线的倾斜方向,进而确定直线的位置和 走势。
点斜式方程的局限性
点斜式方程只适用于已知一点和 斜率的直线,对于其他情况需要
使用其他形式的直线方程。
当直线与x轴垂直时,斜率不存 在,点斜式方程不适用。
在实际应用中,需要根据具体情 况选择合适的直线方程形式。
05 直线的两点式方程与斜率 的关系
点斜式方程
01
点斜式方程是直线方程的一种形 式,它表示通过一个固定点(x1, y1)和斜率m的直线。
02
点斜式方程可以用来求解直线的 方程,特别是当已知直线上的一 点和斜率时。
两点式方程
两点式方程是直线方程的另一种形式, 它表示通过两点(x1, y1)和(x2, y2)的 直线。
两点式方程也可以用来验证两点是否 在同一直线上。
整理得到$y - y_1 = m(x - x_1)$,其中$m$为直线斜率。
因此,点斜式方程为$y - y_1 = m(x - x_1)$,它是通过直线上两点坐标推导出来的。
斜率在点斜式方程中的应用
斜率$m$表示直线在坐标系上的倾斜程度,当$m > 0$时, 直线从左下到右上倾斜;当$m < 0$时,直线从左上到右下 倾斜;当$m = 0$时,直线与x轴平行。
两点式方程仅适用于已知两点坐标的情 况,对于其他情况可能不适用。
当两点坐标相同时,即直线过一个点时, 另外,当直线与坐标轴平行或重合时,
两点式方程将失去意义。
斜率不存在,此时两点式方程也无法表
示直线。
06 直线的方程在实际问题中 的应用
利用直线方程解决几何问题
确定两点间的直线方程
已知两点坐标,利用直线方程求解直线方程。
推导过程中,利用了直线上两点间斜率相等的性质,即斜率是固定的值。

直线的倾斜角与斜率、直线的方程

直线的倾斜角与斜率、直线的方程

[变式探究 2] 若将本例(2)的条件改为“经过 P(0,-1)作直线 l,若直线 l 与连 接 A(1,-2),B(2,1)的线段总有公共点”,求直线 l 的倾斜角 α 的取 值范围.
解析:如图所示,
kPA=-21--0-1=-1,kPB=1-2--01=1, 由图可得,直线 l 的倾斜角 α 的取值范围是0,π4∪34π,π.
答案:2x-3y=0 或 x+y-5=0 解析:点 A、B 的中点为(3,2),当直线过原点时,方程为 y=23x, 即 2x-3y=0. 当直线不过原点时,设直线的方程为 x+y=k,把中点(3,2)代入得 k=5, 故直线方程为 x+y-5=0. 综上,所求直线的方程为 2x-3y=0 或 x+y-5=0.
解析:由题意知直线 l1,l2 恒过定点 P(2,2),直线 l1 在 y 轴上的截 距为 2-a>0,直线 l2 在 x 轴上的截距为 a2+2,所以四边形的面积 S =12×2×(2-a)+12×2×(a2+2)=a2-a+4=a-122+145,当 a=12时, 四边形的面积最小.
5.已知两点
A(-1,2),B(m,3),且
m∈-
33-1,
3-1,则直
线 AB 的倾斜角 α 的取值范围是( )
A.π6,π2 B.π2,23π C.π6,π2∪π2,23π D.π6,23π
答案:D 解析:
①当 m=-1 时,α=π2; ②当 m≠-1 时,
∵k=m+1 1∈(-∞,-
3)∪
y2-y1
(2)P1(x1,y1),P2(x2,y2)在直线 l 上且 x1≠x2,则 l 的斜率 k= x2-x1 .
3.直线方程的五种形式
名称 点斜式 斜截式
两点式

第一节 直线的倾斜角与斜率、直线的方程

第一节 直线的倾斜角与斜率、直线的方程

求倾斜角的取值范围时,常借助正切函数y=tan
x在 0, 2

和 2 ,

上的
单调性求解.应注意任何直线都有倾斜角,但不是所有直线都有斜率.当
倾斜角为 时,直线的斜率不存在.
2
1-1 (2017四川攀枝花三中月考)若直线l与直线y=1,x=7分别交于
点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为 ( )
3.直线方程的五种形式
名称 方程
适用范围
点斜式 ⑧ y-y0=k(x-x0) 斜截式 ⑨ y=kx+b
不含直线x=x0 不含垂直于x轴的直线
两点式
y y1
x x1
⑩ y2 y1 = x2 x1 (x1≠x2,y1≠y2)
不含直线x=x1和直线y=y1
截距式
x y
a + b =1 (a≠0,b≠0)
BB
∴直线Ax+By+C=0经过第一、二、四象限,故选C.
4.经过M(1,-2),N(-3,4)两点的直线方程为
.
答案 3x+2y+1=0
解析 经过M(1,-2),N(-3,4)两点的直线方程为 y 2 = x 1 ,即3x+2y+1=0.
4 2-a=0在x轴和y轴上的截距相等,则a的值为
易错警示 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的 适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表 示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直的直线和经过原 点的直线,故在解题时,若采用截距式,应先考虑截距为零的情况;若采用 点斜式,应先考虑斜率不存在的情况.
A. 1 B.- 1 C.- 3 D. 2

直线的倾斜角与斜率直线的方程

直线的倾斜角与斜率直线的方程
第八章 平面解析几何
第1节 直线的倾斜角与斜率、直 线的方程
◆考纲·了然于胸◆
1.理解直线的倾斜角和斜率的概念,掌握过两点的直线 斜率的计算公式.
2.能根据两条直线的斜率判断这两条直线平行或垂直. 3.掌握确定直线位置的几何要素. 4.掌握直线方程的几种形式(点斜式、两点式及一般式 等),了解斜截式与一次函数的关系.
即 x+4y-2=0.该切线在 x 轴上的截距为 2,在 y 轴上的截
距为12,所以该切线与两坐标轴所围成的三角形的面积 S=12
×2×12=12.
[答案]
1 2
[通关锦囊] 1.含有参数的直线方程可看作直线系方程,这时要能够整 理成过定点的直线系,即能够看出“动中有定”. 2.求解与直线方程有关的最值问题,先求出斜率或设出直 线方程,建立目标函数,再利用基本不等式求解最值.
2.直线方程的五种形式
名称 几何条件
方程
适用条件
斜截式 点斜式
纵截距、 斜率
过一点、 斜率
y=kx+b y-y0=k(x-x0)
与 x 轴不垂直 的直线
两点式
过两点
yy2--yy11=xx2--xx11
与两坐标轴均 不垂直的直线
截距式 纵、横截距
ax+by=1
不过原点且与 两坐标轴均不
垂直的直线
质疑探究 1:任意一条直线都有倾斜角和斜率吗? 提示:每一条直线都有唯一的倾斜角,但并不是每一条直 线都存在斜率.倾斜角为 90°的直线斜率不存在.
质疑探究 2:直线的倾斜角 θ 越大,斜率 k 就越大,这种 说法正确吗?
提示:这种说法不正确.由 k=tan θ(θ≠π2)知 (1)当 θ∈[0,π2 )时,k>0,θ 越大,斜率就越大; (2)当 θ∈(π2,π)时,k<0,θ 越大,斜率也越大.

第一节 直线的倾斜角与斜率、直线的方程

第一节 直线的倾斜角与斜率、直线的方程

2 3
考点突破
栏目索引
2 3 ,0 ,B(0,2-3k), 则A k
S△ABO= (2-3k) 3 k 2

1

2
= 12 ( 9k )
1 2
4 k
4 1 ≥ 12 2 (9k ) k 2 1 = ×(12+12)=12, 2 4 2 当且仅当-9k= ,即k=- 时,等号成立.此时直线l的方程为2x+3y-12=0. k 3
, .
考点突破
栏目索引
答案 (1)4 (2)[-1,1]
3 0, ∪ , 4 4
解析 (1)由题意知kAC= =1,kAB= =a-3. 由于A,B,C三点共线, 所以a-3=1, 即a=4. (2)如图所示,为使l与线段AB总有公共点,
10 10
3 10 10
1 3
1 3
因为直线过点(-3,4),
3 4 所以 + =1, a
12 a
考点突破
栏目索引
解得a=-4或a=9. 故所求直线方程为4x-y+16=0或x+3y-9=0. (3)当斜率不存在时,所求直线方程为x-5=0,满足题意; 当斜率存在时,设斜率为k,则所求直线方程为y-10=k(x-5), 即kx-y+10-5k=0. ∴ 2
b a b a a b a b
B.-
C.
D.-
答案 B 设P是直线l上任一点.直线回到原来的位置,即P向左平移a个 单位,再向上平移b个单位,到达点T,即PT所在的直线为原直线(如图),
∴斜率k=tan α=tan(180°-θ)=-tan θ=- .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线的倾斜角与斜率、直线的方程
[考纲传真] 1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
【知识通关】
1.直线的倾斜角
(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.
(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式
(1)直线l 的倾斜角为α≠90°,则斜率k =tan_α.
(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1
x 2-x 1
. 3.直线方程的五种形式
1.直线的倾斜角α和斜率k 之间的对应关系:
2.当α∈⎣⎢⎡⎭⎪⎫0,π2时,α越大,l 的斜率越大;当α∈⎝ ⎛⎭⎪⎫
π2,π时,α越大,l 的斜率越
大.
【基础自测】
1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)坐标平面内的任何一条直线均有倾斜角与斜率.( ) (2)直线的倾斜角越大,其斜率就越大.( )
(3)过定点P 0(x 0,y 0)的直线都可用方程y -y 0=k (x -x 0)表示.( )
(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( ) [答案] (1)× (2)× (3)× (4)√
2.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是( ) A .3 B .- 3 C .
33
D .-
33
D
3.过点(-1,2)且倾斜角为30°的直线方程为( ) A .3x -3y +6+3=0 B .3x -3y -6+3=0 C .3x +3y +6+3=0 D .3x +3y -6+3=0 A
4.如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
C
5.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 4x +3y =0或x +y +1=0
【题型突破】
直线的倾斜角与斜率的应用
【例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫
α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( )
A .⎣⎢⎡⎦
⎥⎤
π6,π3 B .⎣⎢⎡⎦
⎥⎤
π4,π3
C .⎣⎢⎡⎦
⎥⎤π4,π2 D .⎣⎢⎡⎦
⎥⎤
π4,2π3 (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直
线l 斜率的取值范围为________.
(1)B (2)(-∞,-3]∪[1,+∞)
[母题探究] (1)若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围.
(2)若将本例(2)中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的范围.
[解] (1)∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=1
3,
k BP =
3-0
0-(-1)
=3.
如图可知,直线l 斜率的取值范围为⎣⎢⎡⎦
⎥⎤
13,3.
(2)如图,直线PA 的倾斜角为45°,直线PB 的倾斜角为135°, 由图象知l 的倾斜角的范围为[0°,45°]∪[135°,180°). [方法总结] 1.求倾斜角的取值范围的一般步骤 (1)求出斜率k =tan α的取值范围.
(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围.,求倾斜角时要注意斜率是否存在. 2.斜率的求法
(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率.
(2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1
x 2-x 1
(x 1≠x 2)求斜率. (1)已知点(-1,2)和⎝ ⎛⎭
⎪⎫
33,0在直线l :ax -y +1=0(a ≠0)的同侧,则
直线l 倾斜角的取值范围是( ) A .⎝ ⎛⎭⎪⎫
π4,π3 B .⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫
3π4,π C .⎝ ⎛⎭
⎪⎫3π4,5π6 D .⎝ ⎛⎭
⎪⎫2π3,3π4
(2)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎢⎡⎦⎥⎤
0,π4,则点P 的横坐标的取值范围为( )
A .⎣⎢⎡⎦⎥⎤-1,-12
B .[-1,0]
C .[0,1]
D .⎣⎢⎡⎦
⎥⎤12,1 (1)D (2)A
直线方程的求法
【例2】 已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;
(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.
[解] (1)因为直线BC 经过B (2,1)和C (-2,3)两点,得BC 的方程为y -1
3-1
=x -2
-2-2
,即x +2y -4=0.
(2)设BC 边的中点D (x ,y ),则x =
2-22=0,y =1+3
2
=2. BC 边的中线AD 过A (-3,0),D (0,2)两点,所在直线方程为x -3+y
2
=1,即2x -3y +6=0.
(3)由(1)知,直线BC 的斜率k 1=-1
2,则直线BC 的垂直平分线DE 的斜率k 2=
2.
所求直线方程为y -2=2(x -0),即2x -y +2=0. [方法总结] 求直线方程应注意以下三点
(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件. (2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).
(3)截距可正、可负、可为0,因此在解与截距有关的问题时,一定要注意“截距为0”的情况,以防漏解.
(1)若直线经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距
的2倍,则该直线的方程为________.
(2)若直线经过点A(-3,3),且倾斜角为直线3x+y+1=0的倾斜角的一半,则该直线的方程为________.
(1)x+2y+1=0或2x+5y=0(2)3x-y+6=0。

相关文档
最新文档