初中数学三角函数PPT教学课件(推荐)

合集下载

三角函数 ppt课件

三角函数  ppt课件
ppt课件
1
数学教育方法的核心是学生的再创 造. 教师不应该把数学当作一个已经完 成了的形式理论来教,不应该将各种定 义、规则、算法灌输给学生,而是应该 创造合适的条件,让学生在学习数学的 过程中,用自己的体验,用自己的思维 方式,重新创造有关的数学知识.
ppt课件
2
课堂教学内容组织主要形式为: 问题情境 →学生活动 →意义建构 →数学理论→数学运用 →回顾反思
教学时应当把握好这种变化,遵循 “标准”所规 定的内容和要求,不要随意补充已被删减的知识 点.也不要引进那些繁琐的、技巧性高的变换题 目.
例如:求定义域、值域; 已知 sin a=m 求的其他三角函数值; 用诱导公式进行复杂变换的问题等.
ppt课件
35
(4)但是也不能放松基本的技能训练,应该让学生 记牢并熟练地使用诱导公式,同角三角函数关系
(2)求该物体在t=5s时的位置.
用什么模型描述物体的运动?
如何确定模型中的参数?
已知条件“物体向右运到到距离平衡位置最远处时开始计时1.在图1中,点O为做简谐运动的物体的平衡位置, 取向右的方向为物体位移的正方向,若已知振幅为3cm, 周期为3s,且物体向右运到到距离平衡位置最远处时开 始计时.
tan(+k)=tan,k∈Z
ppt课件
26
例 求下列函数的周期:

f(x)=sin
1 2
x;

g(x)=sin(
1 2
x-
4
);

h(x)=2sin(
1 2
x-
4
);
T=4 T=4 T=4
④ f(x)=Asin(x+),其中A≠0,
T=
2 ||
>0.

《三角函数的概念》PPT教学课件(第1课时三角函数的概念)

《三角函数的概念》PPT教学课件(第1课时三角函数的概念)

象限.
(2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最
后判断乘积的符号.
栏目导航
25
(1)C
[因为点P在第四象限,所以有tan cos
α>0, α<0,
由此可判断角α终边
在第三象限.]
(2)[解] ①∵145°是第二象限角,
∴sin 145°>0,
∵-210°=-360°+150°,
终边关于
x
轴对称,若
sin
α=15,则
交于点P(x,y), 则角β的终边与单位圆相交于点
sin β=________.
Q(x,-y),
由题意知y=sin α=15,所以sin β
=-y=-15.]
栏目导航
4.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos253π+tan-154π. [解] (1)sin 180°+cos 90°+tan 0°=0+0+0=0. (2)cos253π+tan-154π =cos8π+π3+tan-4π+π4 =cosπ3+tanπ4=12+1=32.
栏目导航
24
三角函数值符号的运用
【例 2】 (1)已知点 P(tan α,cos α)在第四象限,则角 α 终边在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
(2)判断下列各式的符号:
①sin 145°cos(-210°);②sin 3·cos 4·tan 5.
[思路点拨] (1)先判断 tan α,cos α 的符号,再判断角 α 终边在第几
5.公式一
sin α cos α tan α
8
栏目导航
1.sin(-315°)的值是( )

三角函数的概念课件

三角函数的概念课件

x
x
三角函数的概念
设α是一个任意角,α∈R,它的终边与单位圆相交于点P(x,y),
那么 y sin,x cos,y tan (x 0).
x
可以看出,当 k ,k Z 时,α的终边始终在y轴上,这时P点的横
坐标x等于0,所以
y
2
tan无意义.除此之外,正切tanα与实数α是一一对应
么z1与y1相等吗?对于余弦、正切也有相同的结论吗?
y
利用锐角三角函数概念可得:
P(x,y)
sin MP y y; cos OM x x; tan MP y
OP 1
OP 1
OM x
α
O M 1x
与按本节三角函数定义求得的结论是相同的.
三角函数的概念
【例1】求 5 的正弦、余弦和正切值.
三角函数的概念
锐角α的正弦、余弦和正切叫做角α的锐角三角函数,分别记作sinα, cosα,tanα.
sin
对边 BC
斜边 AB
B
cos
邻边 斜边
=
AC AB
α
tan
对边 BC 邻边 AC
A
C
02
新知探索
New Knowledge explore
三角函数的概念
角的概念推广后,在弧度制下,角的集合与实数集R之间建立了一一 对应的关系,下面借助这些知识研究上一节开头提出的问题,即研究单位 圆上点的运动.
所有与角α终边相同的角,连同角α在内,可构成一个集合
S { | k 360 o, k Z}
象限角与轴线角:
把角的顶点固定在原点,角的终边始终与x轴的非负半轴重合.那么,角α的终边在第
几象限,就说这个角是第几象限的角. 如果角的终边落在坐标轴上,这个角称轴线角.

三角函数解三角形三角函数的图象与性质课件文ppt

三角函数解三角形三角函数的图象与性质课件文ppt
正弦函数的定义
对于任意角x,正弦函数sin(x)的值是角的对边与斜边的比,记为sin(x)=y/r,其中r是斜边长。
三角函数的正弦曲线ห้องสมุดไป่ตู้绘制
要点一
确定正弦函数的定义 域
正弦函数的定义域是所有实数,但在 绘制图像时通常只取一部分。
要点二
确定正弦函数的值域
正弦函数在[-π/2,π/2]区间内的值域 是[-1,1],在其他区间类比得到。
$\tan x \in \mathbf{R}$。
三角函数的正切曲线的绘制
利用单位圆中的正切线进行绘制。 将正切线按照相同的比例映射到单位圆上。 通过旋转单位圆得到正切曲线。
三角函数的变化趋势
01
在区间$(k\pi - \frac{\pi}{2}, k\pi), k \in \mathbf{Z}$上,$\tan x$单调递增。
04
解三角形的应用
解三角形的定义
定义1
在三角形ABC中,角A、B、C的对边分别为a、b、c,若已知角A、B、C和边a、 b、c中,至少有一个,则解三角形就是求角A、B、C和边a、b、c的数学过程。
定义2
解三角形也叫解直角三角形,是三角形中角和边关系的一种应用,包括解直角三 角形和斜三角形。
解三角形的方法
常见题型解析
三角函数的化简和求值
01
02
利用三角函数基本关系式进行化简和求值
利用三角函数图象求值域、最值等
03
04
解三角形问题的求解
利用正弦定理、余弦定理等求解三角形中的 边、角、高
05
06
利用解三角形的方法解决实际问题
THANKS
谢谢您的观看
解三角形的应用举例
应用1

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

,解
得 ω=32 .
法二:由题意,得 f(x)max=fπ3
2.(必修 4P35 例 2 改编)若函数 y=2sin 2x-1 的最小正周期为 T,最大
值为 A,则( )
A.T=π,A=1
B.T=2π,A=1
C.T=π,A=2
D.T=2π,A=2
A [T=22π =π,A=2-1=1.]
3.(必修 4P40 练习 T4 改编)下列关于函数 y=4cos x,x∈[-π,π]的单 调性的叙述,正确的是( )
求三角函数单调区间的两种方法 (1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个 角 u(或 t),利用复合函数的单调性列不等式求解.(如本例(1)) (2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间. [注意] 要注意求函数 y=A sin (ωx+φ)的单调区间时 ω 的符号,若 ω<0, 那么一定先借助诱导公式将 ω 化为正数.同时切莫漏掉考虑函数自身的定义 域.
又当 x∈[0,π2
]时,f(x)∈[-
2 2
,1],所以π2
≤ω2π
-π4
≤5π4
,解得
3 2
≤ω≤3,故选 B.
π
π
π
优解:当 ω=2 时,f(x)=sin (2x- 4 ).因为 x∈[0,2 ],所以 2x- 4 ∈
π [- 4
,3π4
π ],所以 sin (2x- 4
)∈[-
2 2
,1],满足题意,故排除 A,C,
B.[kπ,kπ+π2 ](k∈Z)
C.[kπ+π6 ,kπ+23π ](k∈Z)
D.[kπ-π2 ,kπ](k∈Z)
(2)函数 y=tan x 在-π2,32π 上的单调减区间为__________.

三角函数的概念 课件(39张)

三角函数的概念 课件(39张)







tan cos = × +1× = .



数学
方法总结
诱导公式一的实质是:终边相同的角,其同名三角函数的值相等.因为这些
角的终边都是同一条射线,根据三角函数的定义可知这些角的三角函数值
相等.其作用是可以把任意角转化为0°~360°之间的角.






因为 a<0,所以 a=- ,所以 P 点的坐标为( ,- ),



所以 sin α=- ,cos α= ,






所以 sin α+2cos α=- +2× = .
数学
[变式训练1-1] 若将本例中“a<0”删掉,其他条件不变,结果又是什么?



解:因为点 P 在单位圆上,则|OP|=1,即 (-) + () =1,解得 a=± .
②若 a<0,则 r=-5a,且 sin α=
-





-

-
=- ,cos α=
所以 sin α+2cos α=- +2× = .
= .
数学
方法总结
由角α终边上任意一点的坐标求其三角函数值
(1)已知角α的终边在直线上时,常用的解题方法有以下两种:
①先利用直线与单位圆相交,求出交点坐标,然后再利用正弦函数、余
弦函数、正切函数的定义求出相应三角函数值.

②在α的终边上任选一点 P(x,y),P 到原点的距离为 r(r>0),则 sin α= ,

5.2.1 三角函数的概念课件ppt

5.2.1 三角函数的概念课件ppt

轴于点N,则点M,N分别是点P在x轴、y轴上的正射影,简称射影.
由三角函数的定义可知,点P的坐标为(cos α,sin α),其中cos α=OM,sin
α=ON.
这就是说,角α的余弦和正弦分别等于角α终边与单位圆交点的横坐标和纵
坐标.
π
典例 若 α∈(0,2 ),试证明:sin α+cos α>1.
轮直径为110米,轮外装挂48个360度透明座舱,可同时供384个人观光,摩天
轮旋转一周所需时间为28分钟.
若你现在坐在座舱里,从某初始位置出发,过2分钟后,你离地面的高度是多
少?过5分钟呢?过t分钟呢?这是一个函数关系吗?有什么特点?
[知识点拨]
知识点一:三角函数的概念
1.概念
前 如图,设α是一个任意角,它的终边
或坐标的比值为函数值的函数,将它们统称为三角函数
2.三角函数的解析式和定义域如下表所示.
三角函数
解析式
定义域
正弦函数
y=sin x
R
余弦函数
y=cos x
R
正切函数
y=tan x
微练习1
3 1
已知角 α 的终边与单位圆交于点(- 2 ,-2),则 sin α=(
3
1
A.- 2
B.-2
C. 2
D.2
提 OP与单位圆相交于点P(x,y)
正弦
把点P的纵坐标y叫做α的正弦函数,记作sin α,即y=sin α
余弦
把点P的横坐标x叫做α的余弦函数,记作cos α,即x=cos α
定 正切
把点P的纵坐标与横坐标的比值叫做α的正切函数,记为tan α,



《三角函数——三角函数的概念》数学教学PPT课件(5篇)

《三角函数——三角函数的概念》数学教学PPT课件(5篇)




提示:sin α=y,cos α=x,tan α= .这一结论可以推广到α是任意角.



2.填空如图,α是任意角,以α的顶点O为坐标原点,以α的始边为x轴的正半轴,建立平面直角坐标系.设P(x,y)是α的终边与单位圆的交点.(1)把点P的纵坐标y叫做α的正弦函数,记作sin α,即y=sin α;(2)把点P的横坐标x叫做α的余弦函数,记作cos α,即x=cos α;(3)把点P的纵坐标与横坐标的比值 叫做α的正切,记作tan α,即 =tan α(x≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.3.填空
探究一
探究二
探究三
思维辨析
随堂演练
判断三角函数值的符号A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角(2)判断下列各式的符号:分析:(1)由已知条件确定出sin α,cos α的符号即可确定角α的象限;(2)先判断每个因式的符号,再确定积的符号.
探究一
探究二
探究三
思维辨析
随堂演练
(1)解析:由sin αtan α<0可知sin α,tan α异号,从而α为第二、第三象限角.由 可知cos α,tan α异号,从而α为第三、第四象限角.综上可知,α为第三象限角,故选C.答案:C(2)解:①∵105°,230°分别为第二、第三象限角,∴sin 105°>0,cos 230°<0.于是sin 105°·cos 230°<0.
探究一
探究二
探究三
思维辨析
随堂演练
反思感悟 三角函数符号的判定:对三角函数符号的判定,首先要判断角是第几象限角,然后根据规律:“一全正、二正弦、三正切、四余弦”,即可确定三角函数的符号.

三角函数的定义ppt课件

三角函数的定义ppt课件
(2) 熟 记 几 组 常 用 的 勾 股 数 组 , 如 (3,4,5) , (5,12,13) , (7,24,25),(8,15,17),(9,40,41)等,会给我们解题带来很多方便.
(3)若角 α 已经给定,不论点 P 选择在 α 的终边上的什么 位置,角 α 的三角函数值都是确定的;另一方面,如果角 α 终 边上一点坐标已经确定,那么根据三角函数定义,角 α 的三角 函数值也都是确定的.
∴角 2α 的终边在第一或第二象限或 y 轴的非负半轴上. (2)在(0,π)内终边在直线 y= 3x 上的角是π3, ∴终边在直线 y= 3x 上的角的集合为 α|α=π3+kπ,k∈Z.
(3)∵θ=67π+2kπ(k∈Z),∴θ3=27π+2k3π(k∈Z). 依题意 0≤27π+2k3π<2π(k∈Z)⇒-37≤k<178(k∈Z). ∴k=0,1,2,即在[0,2π)内终边与θ3角的终边相同的角为27π, 2201π,3241π.
1.了解任意角的概念和弧度制,能进行弧度与角度的互 化.
2.理解任意角的三角函数(正弦、余弦、正切)的含义. 3.借助单位圆中理解三角函数线。
一.角及有关概念
1.角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到
另一个位置所成的图形.旋转开始时的射线 OA 叫做角的 始边 ,旋转终止时的射线 OB 叫做角的终边 ,按逆 时针 方向旋转所形成的角叫做正角,按顺 时针方向旋转所形成的 角叫做负角.若一条射线没作任何旋转,称它形成了一个零
(2)若 θ 是第二象限角,则csoinsscions2θθ的符号是什么? [分析] (1)由点 P 所在的象限,知道 sinθ·cosθ,2cosθ 的 符号,从而可求 sinθ 与 cosθ 的符号. (2)由 θ 是第二象限角,可求 cosθ,sin2θ 的范围,进而把 cosθ,sin2θ 看作一个用弧度制的形式表示的角,并判断其所在 的象限,从而 sin(cosθ),cos(sin2θ)的符号可定.

1 5.2.1三角函数的概念(共46张PPT)

1 5.2.1三角函数的概念(共46张PPT)

A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析:选 B.由-π2<α<0 知 α 为第四象限角,
则 tan α<0,cos α>0,点在第二象限.
()
2.已知 sin θcos θ<0,且|cos θ|=cos θ,则角 θ 是 A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角
解得 b=3(b=-3 舍去).
4.sin 780°=________,cos94π=________.
答案:
3 2
2 2
探究点 1 求任意角的三角函数值 (1)已知角 α 的终边与单位圆的交点为 P35,y(y<0),求 tan α 的值.
(2)已知角 α 的终边落在射线 y=2x(x≥0)上,求 sin α,cos α 的值.
第五章 三角函数
5.2 三角函数的概念 5.2.1 三角函数的概念
数学
01
预习案 自主学习
02
探究案 讲练互动
03
测评案 达标反馈
04
应用案 巩固提升
教材考点
学习目标
三角函数的概念
理解三角函数的概念,会求 给定角的三角函数值
掌握各象限角的三角函数值 三角函数值的符号判断
的符号规律
诱导公式一及应用
正弦、余弦、正切都是以角为自变量,以单位圆上点的纵 三角
坐标与横坐标的比值为函数值的函数,将正弦函数、余弦 函数
函数和正切函数统称为三角函数
■微思考 1 (1)初中学习的锐角三角函数的定义是什么? 提示:如图,在 Rt△ABC 中,∠A,∠B,∠C 的对边分别为 a,b,c,则: sin B=bc=对 斜边 边, cos B=ac=斜 邻边 边, tan B=ba=邻 对边 边.

三角函数课件

三角函数课件
详细描述
总结词
积化和差公式是三角函数中另一个重要的公式,用于将两角之积的正弦、余弦表示为其他三角函数的和差形式。
详细描述
积化和差公式包括sin(x*y)、cos(x*y)分别等于sin x cos y - cos x sin y、cos x cos y + sin x sin y等。这些公式在解决涉及三角函数乘积的问题时非常有用,能够将问题转化为更容易处理的形式。
正切函数具有奇函数性质,即$tan(-x) = -tan(x)$。
余切函数的图象也是一个无界函数,其定义域为$x neq frac{kpi}{2}, k in Z$。
余切函数的值域也为全体实数,即其值可以无限大或无限小。
余切函数在每个区间$(frac{kpi}{2}, frac{(k+1)pi}{2})$上是单调递减的。
三角函数ppt课件
目录
三角函数概述三角函数的基本公式三角函数的图象与性质三角函数的实际应用三角函数的扩展知识
01
CHAPTER
三角函数概述
三角函数具有明显的周期性,正弦和余弦函数的周期为360度或2π弧度。
周期性
奇偶性
有界性
正弦函数是奇函数,余弦函数是偶函数,它们的图象分别关于原点对称和y轴对称。
正切函数图象
02
CHAPTER
三角函数的基本公式
角度与弧度是两种不同的角度度量单位,其中角度适用于平面角,弧度适用于立体角。
1弧度等于180/π度,且在单位圆中,弧度与半径成正比,随着半径的增大,弧度也会相应增大。
在三角函数的应用中,需要根据实际情况选择合适的角度单位,以确保计算的准确性。
对于这些特殊角,三角函数具有特定的值,例如sin(0度)=0,cos(0度)=1,tan(0度)=0等。

三角函数的图象PPT课件

三角函数的图象PPT课件


6
)
2. (04全国高考)
为了得到函数 y sin( 2 x

6
) 的图象,可以将
函数y cos 2 x 的图象( B )
A.向右平移

B.向右平移

6
个单位长度 个单位长度
3
C.向左平移
D.向左平移

6 3
个单位长度
个单位长度
3.将函数 y=f(x)sinx 的图象向右平移
则f(x) 可以是( B ) A. cosx B. 2cosx C. sinx

3
)
y=sin(x+


3
)
6
1
o
12

3

3
7 12
5 6

-1 -2
y=sin(2x+

3
)
3 5 2 2 3 y=sinx
x
评注: 作出正弦型函数的图象以五点法最为方便, 但必须清楚它的图象与正弦函数图象间的关系,
即弄清正弦型函数的图象是怎样由正弦函数的图
象经过几种变换得到的。要注意虽然各种变换的
例2.已知下图是 y
Asin( x )( A 0, 0, )
y
2
的图象,试确定该函数的解析式。 解:由图知A=2, 即函数 y
7 ,0)与点(0,1) 又函数图象过点 P( -2 12 7 7 sin( ) 0 2 12 12 解得 : 1 sin 6 6 2
A.关于直线 x 对称
6
B.关于直线 x 对称 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


余弦函数图像


正切函数的图像
五点法画图
在Rt△ABC中,∠C为直角,若sinA= 3 ,则cosB=___53_____
5
B


sinA=BBCA
=3 5
cosB=BBCA
=3 5

A
C
△ABC中,∠C=90°,斜边上的中线CD=6,sinA=1,则 一天要整理好学习生活用具。首 先是准 考证; 其次是 钢笔、 铅笔、 圆规、 直尺、 量角器 、三角 板、橡 皮等; 再次是 必要的 如手绢 、清凉 油和生 活用品 。 2、考前心理准备 成绩优秀的考生应记住:“没有常胜 将军”、 “不以 一次成 败论英 雄”;成 绩不太 好的考 生要有 “破釜 沉舟”的 决心。 3、高考当天早晨,应有良好的心理暗示 如“我很放松,今天一定能正常发挥”、“ 今天我 很冷静 ,会考 好的”等 。 4、注意早餐 早晨一定要吃丰盛的早饭,但不能过于 油腻。 5、浏览笔记、公式、定理和知识结构 主要是浏览一下重要的概念、公式 和定理 ,或记 一些必 须强记 的数据 。 6、进考室前10分钟 在考室外最好是一人平静地度过,可 就近找 个地方 坐一会 儿,或 看一下 笔记, 再次浏 览知识 结构。设 法 避 开 聊 天 。
早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。 他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不 同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。 喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与 古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面 的梅涅劳斯定理。古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在 《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算 和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的 正弦值。
正弦函数 sin a/c 余弦函数 cos b/c 正切函数 tan a/b 余切函数 cot b/a 正割函数 sec c/b 余割函数 csc c/a
∠A的对边比斜边 ∠A的邻边比斜边 ∠A的对边比邻边 ∠A的邻边比对边 ∠A的斜边比邻边 ∠A的斜边比对边
特殊的三角函数值

正弦函数图像
古希腊文化传播到古印度后,古印度人对三角术进行了进一步的研究。公元5世纪末的数学家 阿耶波多提出用弧对应的弦长的一半来对应半弧的正弦,这个做法被后来的古印度数学家使用, 和现代的正弦定义一致了。阿耶波多的计算中也使用了余弦和正割。他在计算弦长时使用了不 同的单位,重新计算了0到90度中间隔三又四分之三度(3.75°)的三角函数值表。然而古印度 的数学与当时的中国一样,停留在计算方面,缺乏系统的定义和演绎的证明。阿拉伯人也采用 了古印度人的正弦定义,但他们的三角学是直接继承于古希腊。阿拉伯天文学家引入了正切和 余切、正割和余割的概念,并计算了间隔10分(10′)的正弦和正切数值表。到了公元14世纪, 阿拉伯人将三角计算重新以算术方式代数化(古希腊人采用的是建立在几何上的推导方式)的 努力为后来三角学从天文学中独立出来,成为了有更广泛应用的学科奠定了基础。
相关文档
最新文档