最小二乘一次完成算法(程序)
各类最小二乘算法
β N −1 H* = N 0
β N −2
β 2( N −1) WN = 0
β 2( N −2)
0 ⋱ 1
三、递推算法 ∵
k θ(k ) = ∑ β i =1
∧
2(k −i) h (i )h T (i )
2随着采样次数的增多数据量不断增加ls估计有可能出现所谓的数据饱和现象导致递推算法不能接近参数真二关于数据饱和现象的分析所谓数据饱和现象就是随着时间的推移采集到的数据越来越多新数据所提供的信息被淹没在老数据的海洋之中
Ⅴ 各种最小二乘类参数辨识算法 §1 概 述
最小二乘类参数辨识算法(一次完成算法、递推算法) 最小二乘类参数辨识算法 (一次完成算法 、 递推算法 ) 是一种 最基本和常用的参数估计方法。但研究和应用表明, 最基本和常用的参数估计方法。 但研究和应用表明, 这一算 法仍存在明显的不足。 法仍存在明显的不足。 一、LS 算法的主要不足之处 1、当模型噪声为有色噪声时,LS 估计不再是无偏估计、一致 、当模型噪声为有色噪声时, 估计不再是无偏估计、 估计。 估计。 2、随着采样次数的增多,数据量不断增加,LS估计有可能出 、随着采样次数的增多,数据量不断增加, 估计有可能出 现所谓的“数据饱和”现象, 现所谓的“数据饱和”现象,导致递推算法不能接近参数真 值。
于是有: 于是有:
α P ( k ) P − 1 ( k − 1) = I − P ( k ) h ( k ) h T ( k )
则:
ˆ θ ( k ) = P ( k ) H * T Z * = P ( k ) α H * −1T Z * −1 + h ( k ) z ( k ) k k k k
白噪声
-0.0156 0.9219 0.5703 0.4531 -0.2500 -0.4844
0.1016 -0.3672 0.8047 -0.1328 0.2188 0.3359
-0.9531 -0.7188 0.6875 -0.8359
0.0234 0.1406 0.8438 0.0820 0.4922 0.9609
0.7852 0.7266 0.3750 0.2578 0.5508 0.3164
0.9023 0.4336 0.6094 0.6680 0.0234 0.1406
0.8438 0.0820 0.4922 0.9609 0.7852 0.7266
0.0234 0.1406 0.8438 0.0820
。
1编程如下:
A=6;x0=1;M=255;f=2; N=100;%初始化;
x0=1;M=255;
fork=1:N %乘同余法递推100次;
x2=A*x0;%分别用x2和x0表示xi+1和xi-1;
x1=mod (x2,M);%取x2存储器的数除以M的余数放x1(xi)中;
白噪声
如果一个零均值、平稳随机过程的谱密度为常数,我们称之为白噪声(由白色光联想∞,τ=0
0,τ≠0
3 ,其中, 为Dirac函数,即 =
且
4 无记忆性,即t时刻的数值与t时刻以前的过去值无关,也不影响t时刻以后的将来值。从另一意义上说,即不同时刻的随机信号互不相关。
Columns 31 through 40
-1 1 -1 1 1 1 1 -1 -1 -1
Columns 41 through 50
_最小二乘法
,
• 线性模型 y = X θ + e 线性模型: 式中: 维输出向量; 维噪声向量; 式中: y 为n维输出向量;e 为n维噪声向量;θ 为m 维输出向量 维噪声向量 维参数向量; 维测量矩阵。 维参数向量;X 为 n × m 维测量矩阵。
足够大,当 只要 α 足够大 当 k > m 后,初值 P (0)、 0) 初值 θ ( 对估计的影响可以忽略. 对估计的影响可以忽略
LS法和 法和RLS法的比较 法和 法的比较
• • • LS法是一次完成算法,适于离线辩识,要记忆全部测 法是一次完成算法,适于离线辩识, 法是一次完成算法 量数据; 量数据; RLS法是递推算法,适于在线辩识和时变过程,只需 法是递推算法, 法是递推算法 适于在线辩识和时变过程, 要记忆n+1步数据; 步数据; 要记忆 步数据 RLS 法用粗糙初值时,如若 N 较小时,估计精度不 法用粗糙初值时, 较小时, 如 LS 法。
以上三式构成一组递推最小二乘估计算式 ^ ^ • 物理意义:新的参数估计 θ N +1是对上次老的估计 θ N 进行 物理意义: 修正而得出的。 修正而得出的。
初值选取方式
• 初值选取一般有两种方法可以考虑 初值选取一般有两种方法可以考虑: 1、先取一批数据,求取 θ ( N ) , P(N)做初值 、先取一批数据 求取 做初值,N>m 做初值
第四章线性系统参数估计的最小二乘法
下面讨论更为一般的情况。 假设在t1, t2, …, tm时刻对Y及X的观测值序列已经被我们获得,并且用
y(i), x1(i), x2(i), x3(i), … i = 1,2, …, m 来表示这些观测数据。显然,可以用 m 个方程组来表示量测数据与估计值之间的关系
⎧ y(1) = θ1x1(1) +θ 2 x2 (1) +L+θ n xn (1)
从图中可看到,前两条线都仅能满足两个点的要求,而对其它点的误差都很大,其 6 个点的 误差平方累计分别为 0.49 和 0.42。第三条线能满足三个点的要求,但误差平方累计更大,为 1.58。 显然我们需要找到一条更为理想的直线来取得较小的误差。例如图中的红色短划线,它的方程 为 y=1.697 + 0.294x,误差平方累计为 0.25。这条线是怎样得到的呢?它是用最小二乘法得到的。
z
−2
,在其输入端加入 M 序列输入后
所得到的输出输入数据见下表,请利用这些数据辨识出系统的传递函数的系数。
k
1
2
3
4
5
6
7
8
9
10
输入 u
1
0
1
1
0
0
1
1
1
0
输出 y -0.45 -0.01
1.15
2.56
1.92
-0.30 -0.80 0.91 2.92 2.40
解: 已知系统阶数 n=2,有 4 个未知数。将式(4.4)展开 y(k) = −a1 y(k −1) − a2 y(k − 2) + b0u(k) + b1u(k −1) 根据要求,观测次数 N>2n+1,取 N 为 6,k=3
桥梁颤振导数自由振动识别的分段扩阶最小二乘迭代算法
道位移 和速 度 的时 程及 初 始信 息。Sra 基 于 ID a r k T
(ba i i e D ma ) Irhm Tm o i 法 , 出 了 MID( df dJ利用模型 自由振动 的位移 b h T m i 法 , am m D n 响应 , 可以一次识别 出全部的颤振导数 。Bo n h r j n和 wo Jkb e a o sn对 C H C vr n eBokHak l tx B M( oai c l n e Mar )法 a c i 和 C S Co o e S et m) P ( rs Pw r pc u 法进行 了考证 , B M法 s r CH 识别精度较 高。 。项海 帆 、 明、 顾 陈艾 荣 、 张若雪 、 丁泉 顺等 发展 了用 于识别 1 8个颤振导数 的总体最小二乘 法¨ , 利用跟踪技术将结构模态从 噪声模态 中检 出, 有效地提高了抗噪能力 。文献[ 1 在文献[0 的基础 1] 1] 上提出了加权整体最 小二乘法 , 同一 风速下 多次 自 将 由振动记录作为一个 整体 , 在整体残差 平方 和最小 的 意 义上 , 同时 对 该 风 速 下 多 次 竖 向 和扭 转 振 动 响应 时 程 进行 非线 性最 小二 乘拟 合 。文 献 [2 建 立 一个 联 系 1] 复模态与物理坐标 的二次泛 函, 泛 函以颤 振导数为 该 自变量, 通过使泛函极小 , 自动搜索到颤振导数 的正确 值, 避免了复模 态参数识别误差 的进 一步扩大 。文献 [3 提出了一种识别 颤振 导数的迭代法 , 用模态参 】] 先 数将 自由振动响应 以解析解形式表达 , 利用迭代法 , 使 准则 函数极 小 , 获得 模 态 参 数 的最 优 估 计 值 , 由模 态 再 参数提取颤振导数 , 可称为解析解拟合法¨ 。
最小二乘法
第3章 线性动态模型参数辨识-最小二乘法3.1 辨识方法分类根据不同的辨识原理,参数模型辨识方法可归纳成三类: ① 最小二乘类参数辨识方法,其基本思想是通过极小化如下准则函数来估计模型参数:min )()ˆ(ˆ==∑=θθLk k J 12ε 其中)(k ε代表模型输出与系统输出的偏差。
典型的方法有最小二乘法、增广最小二乘法、辅助变量法、广义最小二乘法等。
② 梯度校正参数辨识方法,其基本思想是沿着准则函数负梯度方向逐步修正模型参数,使准则函数达到最小,如随机逼近法。
③ 概率密度逼近参数辨识方法,其基本思想是使输出z 的条件概率密度)|(θz p 最大限度地逼近条件0θ下的概率密度)|(0θz p ,即)|()ˆ|(0m a x θθz p z p −−→−。
典型的方法是极大似然法。
3.2 最小二乘法的基本概念● 两种算法形式 ① 批处理算法:利用一批观测数据,一次计算或经反复迭代,以获得模型参数的估计值。
② 递推算法:在上次模型参数估计值)(ˆ1-k θ的基础上,根据当前获得的数据提出修正,进而获得本次模型参数估计值)(ˆk θ,广泛采用的递推算法形式为() ()()()~()θθk k k k d z k =-+-1K h其中)(ˆk θ表示k 时刻的模型参数估计值,K (k )为算法的增益,h (k -d ) 是由观测数据组成的输入数据向量,d 为整数,)(~k z 表示新息。
● 最小二乘原理定义:设一个随机序列)},,,(),({L k k z 21∈的均值是参数θ 的线性函数E{()}()T z k k θ=h其中h (k )是可测的数据向量,那么利用随机序列的一个实现,使准则函数21()[()()]LT k J z k k θθ==-∑h达到极小的参数估计值θˆ称作θ的最小二乘估计。
● 最小二乘原理表明,未知参数估计问题,就是求参数估计值θˆ,使序列的估计值尽可能地接近实际序列,两者的接近程度用实际序列与序列估计值之差的平方和来度量。
系统辨识方法之最小二乘法
综述最小二乘法的系统辨识姓名:费冬妹学号:2010108102 专业:控制理论与控制工程摘要:在研究一个控制系统过程中,建立系统的模型十分必要。
因此,系统辨识在控制系统的研究中起到了至关重要的作用。
本文主要介绍了系统辨识的最小二乘方法,最小二乘法的一次完成过程进行了推导,最小二乘法的一次完成的缺陷在于对于有色噪声并没有很好的辨识效果。
其中系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小二乘法是一种应用极其广泛的系统辨识方法,阐述了动态系统模型的建立及其最小二乘法在系统辨识中的应用,并通过实例分析说明了最小二乘法应用于系统辨识中的重要意义。
关键词:系统辨识、最小二乘法一、系统辨识的定义系统辨识、状态估计和控制理论是现代控制理论三个相互渗透的环节。
1962年,L.A.zadeh给出“辨识”的定义为:系统辨识是在对输入和输出观测的基础上,在指定的一类系统中,确定一个与被识别的系统等价的系统。
[1]最先提出了系统辨识的定义。
随着科技的发展,数学建模对科学研究及指导及生产都有非常重要的意义。
给一个系统建立数学模型是一个比较复杂的工作,其中关键的一个环节是系统辨识。
系统辨识就是研究如何利用系统的输入、输出信号建立系统的数学模型。
[7]系统数学模型是系统输入、输出及其相关变量间的数学关系式,它描述系统输入、输出及相关变量之间相互影响、变化的规律性。
换句话说,系统辨识就是从系统的运算和实验数据建立系统的模型(模型结构和参数)。
系统辨识的三要素:数据、模型类和准则。
系统辨识的基本原理:在输入输出的基础上,从一类系统中确定一个与所测系统等价的系统。
[2]二、最小二乘法的引出最小二乘法是1795年高斯在预测星体运行轨道最先提出的,它奠定了最小二乘估计理论的基础.到了20世纪60年代瑞典学者Austron把这个方法用于动态系统的辨识中,在这种辨识方法中,首先给出模型类型,在该类型下确定系统模型的最优参数。
我们可以将所研究的对象按照对其了解的程度分成白箱、灰箱和黑箱。
基于matlab的最小二乘法仿真
基于Matlab的最小二乘法的仿真摘要:任何待研究的对象都可以看成是一个系统。
系统的数学模型是系统本质特征的数学抽象,是建立系统状态参数之间以及与外作用之间最主要的相互作用、相互制约的数学表达式。
系统辨识是研究建立系统数学模型的理论与方法它研究的领域非常广阔,包括自动控制、航天、航空、天文学、海洋、医学、生物学、生态学以及省会经济学等众多领域。
本文主要介绍了系统辨识中最经典的数据处理方法最小二乘法,并将matlab用在最小二乘法的数据处理中。
The Simulation Of Least Square Method Using Matlab关键字:最小二乘法 matlabAbstract:the object of study for any can be as a system. Themathematical model of the system is the system of mathematics abstract nature, it is to establish the system state between the parameters of the function and between the most main, the interaction between a restraint mathematical expressions.System identification is research to establish a system of mathematical model theory and method of the field of study it is very wide, including automatic control, aerospace, aviation,astronomy, Marine, medicine, biology, ecology and provincial capital economics, etc. This paper mainly introduces the identification of the most classic of system data processing method, and the least square method with matlab in least square method of data processing.Key word:Least square method matlab引言最小二乘法是一种以选用误差平方和最小为准则,来最佳拟合出符合实验数据约最优参数估计的数学方法。
系统辨识最小二乘法
课 程 设 计 报 告学 院: 自动化学院 专业名称: 自动化 学生姓名: ** 指导教师: *** 时 间:2010年7月课程设计任务书一、设计内容SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+参数取真值为:[]0.35 0.39 0.715 1.642=T θ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。
二、主要技术要求用参数的真值及差分方程求出)(k z 作为测量值,)(k υ是均值为0,方差为0.1、0.5和0.01的不相关随机序列。
选取一种最小二乘算法利用MATLAB 的M 语言辨识参数。
三、进度要求2周(6月28日-7月11日)完成设计任务,撰写设计报告3000字以上,应包含设计过程、 计算结果、 图表等内容。
具体进度安排:◆ 6月28日,选好题目,查阅系统辨识相关最小二乘法原理的资料。
◆ 6月29日,掌握最小二乘原理,用MATLAB 编程实现最小二乘一次完成算法。
◆ 6月30日,掌握以最小二乘算法为基础的广义最小二乘递推算法。
◆ 7月1日,用MATLAB 编程实现广义最小二乘递推算法。
◆ 7月2日,针对题目要求进行参数辨识,并记录观察相关数据。
◆ 7月3日-7月5日,对参数辨识结果进行分析,找出存在的问题,提出改进方案,验证改进优化结果。
◆ 7月6日-7月7日,撰写课程设计报告。
◆ 7月8日,对课程设计报告进行校对。
◆ 7月9日,打印出报告上交。
学 生王景 指导教师 邢小军1. 设计内容设SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+ 式(1-1)参数取真值为:[]0.35 0.39 0.715 1.642=Tθ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。
最小二乘法拟合fai0 fai1 fai2
最小二乘法拟合fai0 fai1 fai2
最小二乘法是一种常用的数据拟合方法,可以用于拟合各种函数形式。
如果你要用最小二乘法来拟合一个二次函数 y = fai0 + fai1 * x + fai2 * x^2,其中 fai0、fai1、fai2 是待求的系数,可以按照以下步骤进行拟合:
1.收集数据:收集一组包含自变量 x 和因变量 y 的数据点。
2.建立方程:将二次函数的形式代入拟合方程,得到拟合方
程为 y = fai0 + fai1 * x + fai2 * x^2。
3.设定目标函数:定义一个目标函数,表示实际观测值与拟
合值之间误差的平方和。
4.最小化目标函数:使用最小二乘法的思想,通过最小化目
标函数来确定未知系数 fai0、fai1、fai2 的值。
可以使用数值计算方法(如迭代法)或解析解法(如求导)来求解最小化目标函数的过程。
5.拟合结果:根据求解得到的 fai0、fai1、fai2 的值,得
到最佳拟合的二次函数模型。
需要注意的是,在实际应用中,可能会遇到数据噪声、非线性问题等,此时需要对数据进行预处理、选择合适的拟合模型,并评估拟合结果的准确性和可靠性。
最小二乘法是一种经典的拟合方法,可以应用于不同类型的数据拟合问题。
希望以上步骤能帮助你进行二次函数的最小二乘法拟合。
递推最小二乘辨识
M序列
白噪声
系统输出
辨识参数
2.递推最小二乘法的应用
基于相关函数的递推最小二乘算法在回波消除中的 应用 更新系统模型 变压器微机差动保护中的应用研究 感应电动机参数的离线辨识
1. 基于相关函数的递推最小二乘算法在回波消除中的应用 克服了常规自适应滤波算法在出现双方对讲的情况下需要 停止调节自适应滤波器系数这一不足。该算法在双方对讲 的情况下,可以继续更新自适应滤波器的系数,具有良好 的收敛性能。 2.更新系统模型 该算法利用遗忘因子法对旧参数矩阵进行加权,再和新数 据矩阵组合构成输入输出的数据矩阵,然后利用PLS核算 法得到模型。可以有效的更新模型,使模型适应过程的变 化,并能提高模型的预测功能。该算法可以根据新的数据 和旧的PLS模型参数更新模型而无需采用全部数据。然而 ,在建立模型时所确定的特征向量个数不一定是最优的。 因此,在线更新模型时,如何确定用于预测的最优特征向 量数,还有待进一步研究。
即
利用公式
ˆ (k ) ΦY (k ) P -1 (k )θ k
ˆ (k ) P(k )[Φ (k -1)][Y (k -1) y(k )] θ k 1
P(k )[Φ k 1Y (k -1) (k -1) y(k )] ˆ (k -1) (k -1) y(k )] P(k )[P 1 (k -1)θ ˆ (k -1) (k -1) y(k )} P(k ){[P 1 (k ) - (k -1) (k -1)]θ
ˆ (k ) 的递推计算. 下面讨论参数估计值θ
由上一讲的一般LS估计式 该乘积为标量
ˆ (k ) (ΦΦ )-1 ΦY P(k )ΦY θ k k k k k k
有
ˆ (k ) ΦY (k ) P -1 (k )θ k
《过程控制与自动化仪表(第3版)》第4章 思考题与习题
第4章思考题与习题1.基本练习题(1)什么是被控过程的特性?什么是被控过程的数学模型?为什么要研究过程的数学模型?目前研究过程数学模型的主要方法有哪几种?答:1)过程控制特性指被控过程输入量发生变化时,过程输出量的变化规律。
2)被控过程的数学模型是描述被控过程在输入(控制输入与扰动输入)作用下,其状态和输出(被控参数)变化的数学表达式。
3)目的:○1设计过程控制系统及整定控制参数;○2指导生产工艺及其设备的设计与操作;○3对被控过程进行仿真研究;○4培训运行操作人员;○5工业过程的故障检测与诊断。
4)机理演绎法和实验辨识法。
(2)响应曲线法辨识过程数学模型时,一般应注意哪些问题?答:1)合理地选择阶跃输入信号的幅度,幅值不能过大以免对生产的正常进行产生不利影响。
但也不能太小,以防其他干扰影响的比重相对较大而影响试验结果。
一般取正常输入信号最大幅值的10%;2)试验时被控过程应处于相对稳定的工况;3)在相同条件下进行多次测试,消除非线性;4)分别做正、反方向的阶跃输入信号试验,并将两次结果进行比较,以衡量过程的非线性程度;5)每完成一次试验后,应将被控过程恢复到原来的工况并稳定一段时间再做第二次试验。
(3)怎样用最小二乘法估计模型参数,最小二乘的一次完成算法与递推算法有何区别?答:1)最小二乘法可以将待辨识过程看作“黑箱”。
利用输入输出数据来确定多项式的系数利用)hke=θ来确定模型参数。
k T+)((y k()2)区别:一次完成要知道所有的输入输出数据才能辨识参数,即只能离线辨识。
递推算法可以只知道一部分数据即进行辨识,可用于在线辨识。
(4)图4-1所示液位过程的输入量为1q ,流出量为2q 、3q ,液位为h 被控参数,C 为容量系数,并设1R 、2R 、3R 均为线性液阻。
要求:1)列写过程的微分方程组; 2)画出过程的方框图;3)求过程的传递函数01()()/()G s H s Q s =。
系统辨识与建模智慧树知到课后章节答案2023年下湘潭大学
系统辨识与建模智慧树知到课后章节答案2023年下湘潭大学湘潭大学第一章测试1. A system is a unity composed of various parts that are interconnectedconstrained and interacted with each other and have certain overallfunctions and comprehensive behaviors.()A:对 B:错答案:对2.Which one is not belong to modern control theory system?().A:System identification B:Modern control theory C:State estimationD:Automatic control答案:Automatic control3.建立数学模型的方法可大体分为:().A:观测法 B:理论分析法 C:测试法 D:实验法答案:理论分析法;测试法4.下列哪些属于非参数模型?()A:权序列模型 B:输入输出模型 C:状态空间模型 D:脉冲响应模型答案:权序列模型;脉冲响应模型5.针对水箱进行机理建模时,我们应该凭借哪种关系建立公式?().A:水箱流入量和流出量之差为流入水流量的增量 B:水箱流入量和流出量之差为液位的增量 C:水箱流入量和流出量之差为液体存储量的变化率 D:水箱流入量和流出量之差为流出水流量的增量答案:水箱流入量和流出量之差为液体存储量的变化率第二章测试1.下面哪些内容不属于系统辨识的基本内容?()A:观测数据 B:模型结构辨识 C:模型验证 D:模型参数辨识答案:观测数据2.白噪声过程没有“记忆性”,也就是说t时刻的数值与t时刻以前的值无关,也不影响t时刻以后的将来值。
()A:对 B:错答案:对3.关于白噪声的均匀分布计算问题,将产生的(0,1)均匀分布的随机数通通减去0.5,然后乘以存储器f中预置的系数,这里取f=2,从而得到新的分布()。
最小二乘问题的法方程
最小二乘问题的法方程
我们要解决最小二乘问题,并求出法方程。
最小二乘问题通常用于线性回归,其目标是找到一条线,使得所有数据点到这条线的垂直距离之和最小。
假设我们有一组数据点 (x1, y1), (x2, y2), ..., (xn, yn)。
我们的目标是找到一条线 y = mx + b,使得所有数据点到这条线的垂直距离之和最小。
最小二乘问题的数学模型可以表示为:
最小化Σ[(yi - (mx_i + b))^2]
其中,Σ 表示求和,m 是斜率,b 是截距。
法方程是求解最小二乘问题的关键步骤。
法方程的求解过程涉及到矩阵运算,特别是矩阵的转置和逆。
法方程的求解公式为:
(X'X)b = X'y
其中,X 是n × (k+1) 的矩阵,每一行是一个数据点的坐标 (x1, x2, ..., xk, 1)。
y 是n × 1 的矩阵,每一行是一个数据点的 y 值。
b 是我们要找的截距。
现在我们来解这个问题,找出法方程的解。
计算结果为: [{b: , m: -}]
所以,最小二乘问题的法方程解为:
m = -
b =。
《过程控制与自动化仪表(第2版)》课后答案2
5.4
(5s −1)(2.5s +1)
5.4
1.48 ⋅
Y (s) = kd ⋅T =
(5s −1)(2.5s +1) =
7.992
F(s) 1+ kc ⋅T
1
+
kc
⋅
(5s
5.4 −1)(2.5s
+1)
(5s −1)(2.5s +1) + 5.4 ⋅kc
(1)
a)
当
∆F
=
10 ,
Kc
=
2.4 时,则(1)式为: G(s)
测量变送LT
控制器输入输出分别为:液位设定值与反馈值之差 e(t )、控制量 u(t ); 执行器输入输出分别为:控制量 u(t )、进水流量 q1(t ); 被控对象的输入输出为:进水流量 q1 (t )、出水扰动量 q2 (t),被控量液位 h ;
2-(3) 某化学反应过程规定操作温度为 800℃,最大超调量小于等于 5﹪,要求设计的 定值控制系统,在设定值作阶跃干扰时的过渡过程曲线如下图所示。要求:
数
G0
(s)
=
H
(s)
Q1
(s)。
R1 q1
h
R2
R3
q2
q3
解:假设容器 1 和 2 中的高度分别为 h1 、 h2 ,
根据动态平衡关系,可得如下方程组:
⎧⎪∆q1 ⎪
−
∆q2
=
C
d ∆h1 dt
(1)
⎪⎪∆q2
−
∆q3
=
C
d
∆h2 dt
(2)
⎪⎪⎨∆q2 ⎪
=
∆h R2
(3)
信号检测与处理实验报告
Harbin Institute of Technology信号检测与处理实验报告2016年01月问题:最小二乘估计一次完成算法1.问题描述考虑仿真对象)()2(5.0)1()2(7.0)1(5.1)(k v k u k u k z k z k z +-+-=-+-- 其中,)(k v 是服从正态分布的白噪声N )1,0(。
输入信号采用4阶M 序列(伪随机序列模拟白噪声),幅度为1。
试对模型参数进行估计。
2.问题分析设输入信号的取值是从k =1到k =16的M 序列,由最小二乘估计原理可知,待估计参数LS θˆ为LS θˆ=L τL 1L τL z H )H H -(。
其中,被估计参数LSθˆ、观测矩阵z L 、H L 的表达式为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2121ˆb b a a LSθ , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)16()4()3(z z z L z ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=)14()2()1()15()3()2()14()2()1()15()3()2(u u u u u u z z z z z z L H通过matlab 对系统进行仿真,仿真算法程序流程图如图1所示。
程序代码如下:%二阶系统的最小二乘一次完成算法估计程序u=[-1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,1,1]; %系统估计的输入信号为一个周期的M序列z=zeros(1,16); %定义输出观测值的长度for k=3:16z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2); %用理想输出值作为观测值endsubplot(3,1,1) %画三行一列图形窗口中的第一个图形stem(u) %画输入信号u的径线图形subplot(3,1,2) %画三行一列图形窗口中的第二个图形i=1:1:16; %横坐标范围是1到16,步长为1plot(i,z) %图形的横坐标是采样时刻i, 纵坐标是输出观测值z, 图形格式为连续曲线subplot(3,1,3) %画三行一列图形窗口中的第三个图形stem(z),grid on %画出输出观测值z的径线图形,并显示坐标网格u,z %显示输入信号和输出观测信号%L=14 %数据长度HL=[-z(2) -z(1) u(2) u(1);-z(3) -z(2) u(3) u(2);-z(4) -z(3) u(4) u(3);-z(5) -z(4) u(5) u(4);-z(6) -z(5) u(6) u(5);-z(7) -z(6) u(7) u(6);-z(8) -z(7) u(8) u(7);-z(9) -z(8) u(9) u(8);-z(10) -z(9) u(10) u(9);-z(11) -z(10) u(11) u(10);-z(12) -z(11) u(12) u(11);-z(13) -z(12) u(13) u(12);-z(14) -z(13) u(14) u(13);-z(15) -z(14) u(15) u(14)] %给样本矩阵HL赋值ZL=[z(3);z(4);z(5);z(6);z(7);z(8);z(9);z(10);z(11);z(12);z(13);z(14);z(15);z(16)] % 给样本矩阵z L赋值%Calculating Parametersc1=HL'*HL; c2=inv(c1); c3=HL'*ZL; c=c2*c3 %计算并显示%Display Parametersa1=c(1), a2=c(2), b1=c(3),b2=c(4) %从中分离出并显示a1 、a2、b1、b2%End实验运行结果如下:>>u =[ -1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,1,1]z =[ 0,0,0.5000,0.2500,0.5250,2.1125, 4.3012,6.4731,6.1988,3.2670,-0.9386, -3.1949,-4.6352,6.2165,-5.5800,-2.5185]HL =0 1.0000 -1.0000-0.5000 0 -1.0000 1.0000-0.2500 -0.5000 1.0000 -1.0000-0.5250 -0.2500 1.0000 1.0000-2.1125 -0.5250 1.0000 1.0000-4.3012 -2.1125 1.0000 1.0000-6.4731 -4.3012 -1.0000 1.0000-6.1988 -6.4731 -1.0000 -1.0000-3.2670 -6.1988 -1.0000 -1.00000.9386 -3.2670 1.0000 -1.00003.1949 0.9386 -1.0000 1.00004.6352 3.1949 -1.0000 -1.00006.2165 4.6352 1.0000 -1.00005.58006.2165 1.0000 1.0000ZL =[ 0.5000,0.2500,0.5250,2.1125,4.3012,6.4731,6.1988,3.2670,-0.9386,-3.1949, -4.6352,-6.2165,-5.5800,-2.5185]Tc =[ -1.5000,0.7000,1.0000,0.5000]Ta1 = -1.5000a2 = 0.7000b1 = 1.0000b2 =0.5000输入信号与输出观测值波形如图2所示。
应用最小二乘一次完成法和递推最小二乘法算法的系统辨识
目录1引言 (2)1.1概述 (2)1.2辨识的基本步骤 (2)2系统辨识输入信号的产生方法和理论依据 (3)2.1白噪声序列 (3)2.1.1白噪声序列的产生方法 (3)2.2 M序列的产生 (4)2.2..1 伪随机噪声 (4)2.2.2 M序列的产生方法 (4)3应用经典辨识方法的辨识方案。
(6)3.1经典辨识方法概述 (6)3.2经典辨识方法的实现 (6)4最小二乘法的理论基础 (7)4.1最小二乘法 (7)4.1.1最小二乘法估计中的输入信号 (9)4.1.2最小二乘估计的概率性质 (9)4.2递推最小二乘法 (10)5两种算法的实现方案 (11)5.1最小二乘法一次完成算法实现 (11)5.1.1最小二乘一次完成算法程序框图 (11)5.1.2一次完成法程序 (11)5.1.3一次完成算法程序运行结果 (11)5.1.4辨识数据比较 (12)5.1.5程序运行曲线 (12)5.2递推最小二乘法的实现 (12)5.2.1递推算法实现步骤 (12)5.2.2程序编制思路: (13)5.2.3递推最小二乘法程序框图 (14)5.2.4程序运行曲线 (15)5.2.5测试结果 (16)5.2.6递推数据表 (16)6结论 (16)7参考文献 (17)8附录 (17)应用最小二乘一次完成法和递推最小二乘法算法的系统辨识摘要:本题针对一个单输入单输出系统的便是问题,辨识的输入信号采用的是伪随机二位式序列(M序列),系统噪声为独立同分布高斯随机向量序列(白噪声),辨识的算法是递推最小二乘法和广义最小二乘法,本文简单描述应用经典辨识方法的辨识方案,详细描述了输入信号、噪声的产生方法及matlab程序,阐述了用两种不同算法的辨识原理并对它们的推导过程及辨识程序编制思路做了详细的描述。
最后结合真值与估计值对不同辨识算法的优劣进行了比较。
关键词:系统辨识M序列最小二乘法1引言1.1概述系统辨识是现代控制理论中的一个分支,它是根据系统的输入输出时间函数来确定描述系统行为的数学模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《系统辨识与建模》(MATLAB编程)
信研0701 孙娅萍2007000694
编程第四次作业
仿真模型参数为:a=[-1.5 0.7];b=[1.0 0.5],由下式递推产生502组数据,并形成如下矩阵:
z(k)=1.5z(k–1)-0.7z(k–2)+1.0u(k–1)+0.5u(k–2)+v(k)
试用一次完成最小二乘法辨识系统模型。
程序部分:
%************************************************************%
% ***** 二阶系统的最小二乘一次完成算法辨识程序*****%
% 系统辨识的输入信号u是6阶的M序列,长度是500;
L = 500;
u = load('u.txt'); u2 = load('u2.txt'); u1 = load('u1.txt');
z = zeros(1,L+1);
for k = 3 : (L+1)
% 理想输出作为系统观测值
z(k) = 1.5 * z(k-1) - 0.7 * z(k-2) + u(k-1) + 0.5 * u(k-2);
end
% 绘制输入信号和输出观测值的图形
figure(1)
i = 1 : 1 : L;
subplot(2,1,1)
plot(i,u)
k = 1 : 1 : (L+1);
subplot(2,1,2)
plot(k,z)
z = z'
z1 = load('z1.txt'); z2 = load('z2.txt'); z3 = load('z3.txt');
Na = 2; Nb = 2; % 定义Na、Nb;
for i = 1 : (Na+Nb)
if ((i == 1))
H = -1 * z2;
end
if (i == 2)
H = -1 * z1;
end
if (i == (Na+1))
H = u2;
end
if (i ==(Na+2))
H = u1;
end
if ( i == 1)
HL = H;
else
HL = [HL,H];
end
end% 给样本矩阵HL赋值;
ZL = z3; % 给样本矩阵ZL赋值;
HL
% 计算参数Cita
C1 = HL'* HL;
C2 = inv(C1);
C3 = HL' * ZL
C = C2 * C3;
Cita = C'
程序运行结果:
估计值:Cita = -1.5000 0.7000 1.0004 0.4995
真值:Cita = -1.5 0.7 1 0.5。