核磁共振波谱分析法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概述
❖ NMR是研究原子核对射频辐射(Radio-frequency Radiation)的吸 收,它是对各种有机和无机物的成分、结构进行定性分析的最 强有力的工具之一,有时亦可进行定量分析。
❖ (测定有机化合物的结构,1HNMR──氢原子的位置、环境以 及官能团和C骨架上的H原子相对数目)
❖ 在强磁场中,原子核发生能级分裂(能级极小:在1.41T磁场中, 磁能级差约为2510-3J),当吸收外来电磁辐射(10-9-10-10nm,4900MHz)时,将发生核能级的跃迁----产生所谓NMR现象。
磁共振最常用的核是氢原子核质子(1H),因为它 的信号最强,在人体组织内也广泛存在。影响磁共振影 像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血 液和脑脊液的流动;(d)顺磁性物质;(e)蛋白质。磁共振 影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共 振的信号弱,则亮度也小,从白色、灰色到黑色。各种 组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白 色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液 体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈 黑色。
第一节 核磁共振基本原理
principles of nuclear magnetic resonance
一、原子核的自旋 atomic nuclear spin 二、核磁共振现象 nuclear magnetic resonance 三、核磁共振条件 condition of nuclear magnetic resonance 四、核磁共振波谱仪 nuclear magnetic resonance spectrometer
的位置。此位置的差异即叫化学位移。
CH3CH2OH 高分辨
吸收峰数 峰的位置 峰的面积
多少种不同化学环境质子 质子类型 每种质子数目
一、核磁共振与化学位移
nuclear magnetic resonance and chemical shift
1.屏蔽作用与化学位移
理想化的、裸露的氢核;满足共振条件:
0 = H0 / (2 )
产生单一的吸收峰; 实际上,氢核受周围不断运动着的电子影响。在外磁场作 用下,运动着的电子产生相对于外磁场方向的感应磁场,起 到屏蔽作用,使氢核实际受到的外磁场作用减小:
H=(1- )H0 :屏蔽常数。 越大,屏蔽效应越大。
0 = [ / (2 ) ](1- )H0
❖ 射频辐射─原子核(强磁场下,能级分裂)-----吸收──能级跃迁 ──NMR
❖ 与UV-vis和红外光谱法类似,NMR也属于吸收光谱,只是研究 的对象是处于强磁场中的原子核对射频辐射的吸收。
历史:
1924年Pauli预言了NMR的基本理论:有些核同时具有自旋 和磁量子数,这些核在磁场中会发生分裂;
1991年诺贝尔化学奖授予R.R. Ernst教授,以表彰他对二维 核磁共振理论及傅里叶变换核磁共振的贡献。这两次诺贝尔奖 的授予,充分地说明了核磁共振的重要性。
核磁共振在仪器、实验方法、理论和应用等方面有着飞 跃的进步。谱仪频率已从30MHz发展到900MHz。1000MHz 谱仪亦在加紧试制之中。仪器工作方式从连续波谱仪发展到 脉冲-傅里叶变换谱仪。随着多种脉冲序列的采用,所得谱图 已从一维谱到二维谱、三维谱甚至更高维谱。所应用的学科 已从化学、物理扩展到生物、医学等多个学科。核磁共振成 像技术还可以与断层扫描技术(CT)结合为临床诊断和生理学 、医学研究提供重要数据,总而言之,核磁共振已成为最重要 的仪器分析手段之一。
标样浓度(四甲基硅烷 TMS) : 1%; 溶剂:1H谱 四氯化碳,二硫化碳; 氘代溶剂:氯仿,丙酮、苯、二甲基亚砜的氘代物;
第二节 核磁共振与化学位移
nuclear magnetic resonance and chemical shift
一、核磁共振与化学位移
nuclear magnetic resonance and chemical shift
二、影响化学位移的因素
factors influenced chemical shift
化学位移
在一固定外加磁场(H0)中,有机物的1H核磁 共振谱应该只有一个峰,即在
= E / h = ·( 1/2 )·H0
乙醇的质子核磁共振谱中有三个峰, 原因?
氢原子核的外面有电子,它们对磁场的磁力线有排斥 作用。对原子核来讲,周围的电子起了屏蔽(Shielding) 效应。核周围的电子云密度越大,屏蔽效应就越大,要相 应增加磁场强度才能使之发生共振。核周围的电子云密度 是受所连基团的影响,故不同化学环境的核,它们所受的 屏蔽作用各不相同,它们的核磁共振信号亦就出现在不同
分子的磁性质
原子核 : 带正电荷的粒子 当它的质量数和原子序数有一个是奇数时,它就和电子一样 有自旋运动,产生磁矩。
例:11H, 136C,199F 和 3115P 有自旋现象。 126C 和 168O 没有自旋现象。
样ห้องสมุดไป่ตู้的制备:
试样浓度:5-10%;需要纯样品15-30 mg; 傅立叶变换核磁共振波谱仪需要纯样品1 mg ;
1946年,Harvard 大学的Purcel和Stanford大学的Bloch各自 首次发现并证实NMR现象,并于1952年分享了Nobel奖;
1953年Varian开始商用仪器开发,并于同年做出了第一台高 分辨NMR仪。1956年,Knight发现元素所处的化学环境对 NMR信号有影响,而这一影响与物质分子结构有关。
核磁共振是当前应用于诊断早期病变的临床医学影像 技术,这种检查对患者和检查者都是安全可靠的 .核磁共振 成像技术是一种非介入探测技术,相对于X-射线透视技术 和放射造影技术,MRI对人体没有辐射影响,相对于超声 探测技术,核磁共振成像更加清晰,能够显示更多细节, 此外相对于其他成像技术,核磁共振成像不仅仅能够显示 有形的实体病变,而且还能够对脑、心、肝等功能性反应 进行精确的判定。在帕金森氏症、阿尔茨海默氏症、癌症 等疾病的诊断方面,MRI技术都发挥了非常重要的作用。
❖ NMR是研究原子核对射频辐射(Radio-frequency Radiation)的吸 收,它是对各种有机和无机物的成分、结构进行定性分析的最 强有力的工具之一,有时亦可进行定量分析。
❖ (测定有机化合物的结构,1HNMR──氢原子的位置、环境以 及官能团和C骨架上的H原子相对数目)
❖ 在强磁场中,原子核发生能级分裂(能级极小:在1.41T磁场中, 磁能级差约为2510-3J),当吸收外来电磁辐射(10-9-10-10nm,4900MHz)时,将发生核能级的跃迁----产生所谓NMR现象。
磁共振最常用的核是氢原子核质子(1H),因为它 的信号最强,在人体组织内也广泛存在。影响磁共振影 像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血 液和脑脊液的流动;(d)顺磁性物质;(e)蛋白质。磁共振 影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共 振的信号弱,则亮度也小,从白色、灰色到黑色。各种 组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白 色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液 体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈 黑色。
第一节 核磁共振基本原理
principles of nuclear magnetic resonance
一、原子核的自旋 atomic nuclear spin 二、核磁共振现象 nuclear magnetic resonance 三、核磁共振条件 condition of nuclear magnetic resonance 四、核磁共振波谱仪 nuclear magnetic resonance spectrometer
的位置。此位置的差异即叫化学位移。
CH3CH2OH 高分辨
吸收峰数 峰的位置 峰的面积
多少种不同化学环境质子 质子类型 每种质子数目
一、核磁共振与化学位移
nuclear magnetic resonance and chemical shift
1.屏蔽作用与化学位移
理想化的、裸露的氢核;满足共振条件:
0 = H0 / (2 )
产生单一的吸收峰; 实际上,氢核受周围不断运动着的电子影响。在外磁场作 用下,运动着的电子产生相对于外磁场方向的感应磁场,起 到屏蔽作用,使氢核实际受到的外磁场作用减小:
H=(1- )H0 :屏蔽常数。 越大,屏蔽效应越大。
0 = [ / (2 ) ](1- )H0
❖ 射频辐射─原子核(强磁场下,能级分裂)-----吸收──能级跃迁 ──NMR
❖ 与UV-vis和红外光谱法类似,NMR也属于吸收光谱,只是研究 的对象是处于强磁场中的原子核对射频辐射的吸收。
历史:
1924年Pauli预言了NMR的基本理论:有些核同时具有自旋 和磁量子数,这些核在磁场中会发生分裂;
1991年诺贝尔化学奖授予R.R. Ernst教授,以表彰他对二维 核磁共振理论及傅里叶变换核磁共振的贡献。这两次诺贝尔奖 的授予,充分地说明了核磁共振的重要性。
核磁共振在仪器、实验方法、理论和应用等方面有着飞 跃的进步。谱仪频率已从30MHz发展到900MHz。1000MHz 谱仪亦在加紧试制之中。仪器工作方式从连续波谱仪发展到 脉冲-傅里叶变换谱仪。随着多种脉冲序列的采用,所得谱图 已从一维谱到二维谱、三维谱甚至更高维谱。所应用的学科 已从化学、物理扩展到生物、医学等多个学科。核磁共振成 像技术还可以与断层扫描技术(CT)结合为临床诊断和生理学 、医学研究提供重要数据,总而言之,核磁共振已成为最重要 的仪器分析手段之一。
标样浓度(四甲基硅烷 TMS) : 1%; 溶剂:1H谱 四氯化碳,二硫化碳; 氘代溶剂:氯仿,丙酮、苯、二甲基亚砜的氘代物;
第二节 核磁共振与化学位移
nuclear magnetic resonance and chemical shift
一、核磁共振与化学位移
nuclear magnetic resonance and chemical shift
二、影响化学位移的因素
factors influenced chemical shift
化学位移
在一固定外加磁场(H0)中,有机物的1H核磁 共振谱应该只有一个峰,即在
= E / h = ·( 1/2 )·H0
乙醇的质子核磁共振谱中有三个峰, 原因?
氢原子核的外面有电子,它们对磁场的磁力线有排斥 作用。对原子核来讲,周围的电子起了屏蔽(Shielding) 效应。核周围的电子云密度越大,屏蔽效应就越大,要相 应增加磁场强度才能使之发生共振。核周围的电子云密度 是受所连基团的影响,故不同化学环境的核,它们所受的 屏蔽作用各不相同,它们的核磁共振信号亦就出现在不同
分子的磁性质
原子核 : 带正电荷的粒子 当它的质量数和原子序数有一个是奇数时,它就和电子一样 有自旋运动,产生磁矩。
例:11H, 136C,199F 和 3115P 有自旋现象。 126C 和 168O 没有自旋现象。
样ห้องสมุดไป่ตู้的制备:
试样浓度:5-10%;需要纯样品15-30 mg; 傅立叶变换核磁共振波谱仪需要纯样品1 mg ;
1946年,Harvard 大学的Purcel和Stanford大学的Bloch各自 首次发现并证实NMR现象,并于1952年分享了Nobel奖;
1953年Varian开始商用仪器开发,并于同年做出了第一台高 分辨NMR仪。1956年,Knight发现元素所处的化学环境对 NMR信号有影响,而这一影响与物质分子结构有关。
核磁共振是当前应用于诊断早期病变的临床医学影像 技术,这种检查对患者和检查者都是安全可靠的 .核磁共振 成像技术是一种非介入探测技术,相对于X-射线透视技术 和放射造影技术,MRI对人体没有辐射影响,相对于超声 探测技术,核磁共振成像更加清晰,能够显示更多细节, 此外相对于其他成像技术,核磁共振成像不仅仅能够显示 有形的实体病变,而且还能够对脑、心、肝等功能性反应 进行精确的判定。在帕金森氏症、阿尔茨海默氏症、癌症 等疾病的诊断方面,MRI技术都发挥了非常重要的作用。