浙江高考历年真题之三角函数大题文科

合集下载

(精校版)《三角函数》高考真题文科总结及答案

(精校版)《三角函数》高考真题文科总结及答案
28.(2015·山东卷 17)△ABC 中,角 A,B,C 所对的边分别为 a,b,c. 已知 cos B=Error!,sin(A+B)= ,ac=2 ,
求 sin A 和 c 的值.
29。(2015·四川卷 19)已知 A,B,C 为△ABC 的内角,tan A,tan B 是关于 x 的方程 x2+Error!px-p+1=0(p∈R)的两个实根.
24。(2015·湖南卷 17)设△ABC 的内角 A,B,C 的对边分别为 a,b,c,a=btan A。
(1)证明:sin B=cos A; 3
(2)若 sin C-sin Acos B= ,且 B 为钝角,求 A,B,C。 4
25。(2015·新课标 I 卷 17)已知 a,b,c 分别为△ABC 内角 A,B,C 的对边, sin2B=2sin Asin C.
个单位长度后得到函数 g(x)的图象,且函数 g(x)的最大值为 2。 ①求函数 g(x)的解析式; ②证明:存在无穷多个互不相同的正整数 x0,使得 g(x0)〉0。
(直打版)《三角函数》高考真题文科总结及答案(word 版可编辑修改)
2015《三角函数》高考真题答案
1.【答案】B 2。【答案】B 3。【答案】B
4.(2015·安徽卷 4)下列函数中,既是偶函数又存在零点的是( )
A.y=ln x
B.y=x2+1
C.y=sin x
D.y=cos x
5.(2015·广东卷 3)下列函数中,既不是奇函数,也不是偶函数的是( )
A.y=x+sin 2x
B.y=x2-cos x
C.y=2x+Error!
D.y=x2+sin x
22。(2015·江苏卷 15)在△ABC 中,已知 AB=2,AC=3,A=60°。 (1)求 BC 的长; (2)求 sin 2C 的值.

2021 2021 高考全国卷三角函数解三角形真题汇编(文科)

2021 2021 高考全国卷三角函数解三角形真题汇编(文科)

2021 2021 高考全国卷三角函数解三角形真题汇编(文科)2021-2021高考全国卷三角函数、解三角形真题汇编(文科)2022-2022年全国高考卷三角函数与解三角形真题汇编(文科)学校:姓名:班级:考号:评分员得1分。

多项选择题1.[2021全国新课标卷i(文)]函数y=的部分图象大致为()-a、不列颠哥伦比亚省。

d.2.[2022年国家新课程标准第一卷(正文)]△ ABC的内角a、B和C分别是a、B和C。

已知SINB+Sina(sinc-COSC)=0,a=2,C=,然后C=()a.b.c.d.3.函数f(x)=sin的最小正周期为()a.4πB.2πC.πD4.[2021全国新课标卷iii(文)]已知sinα-cosα=,则sin2α=()a.-b.-c.d.5.[2022年国家新课程标准第三卷(文本)]函数f(x)=sin+cos-的最大值为()a.b.1c d.6。

[2022年国家新课程标准第三卷(正文)]函数y=1+X+的部分图象大致为()第1页共4页a、 b。

c.D7.[2021高考全国新课标卷ⅰ(文),4]△abc的内角a,b,c的对边分别为a,b,c.已知A=,C=2,cosa=,然后B=()a.b.c.2d.38.[2022年国家新课程标准高考第一卷(文本),6]将函数y=2Sin的图像向右移动一个周期,并生成图形象对应的函数为()a、 y=2sinb。

y=2sinc。

y=2sin-d。

y=2sin-9.[2022年国家新课程标准第一卷(正文),12]如果函数f(x)=x-sin2x+asinx单调增加(-∞, + ∞), 然后a的取值范围是()a、 [1,1]b-c-d--10.[2021高考全国新课标卷ⅱ(文),3]函数y=asin(ωx+φ)的部分图象如图所示,则()a、 y=2sin-b.y=2sin-c.y=2sind。

y=2英寸11.[2021高考全国新课标卷ⅱ(文),11]函数f(x)=cos2x+6cos-的最大值为()a.4b.5c.6d.712.[2022年国家新课程标准高考三(正文),6]若坦θ=-,则Cos2θ=()第2页共4页a、 -b.-c.d。

(完整版)近五年浙江三角函数高考真题

(完整版)近五年浙江三角函数高考真题

近五年浙江三角函数高考真题一、(2013理)4.已知函数()cos()(0,0,R)f x A x A ωφωφ=+>>∈,则“()f x 是奇函数”是“2πφ=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知R,sin 2cos ααα∈+=tan2α= A .43B .34 C .34-D .43-16.在△ABC 中,90C ∠=,M 是BC 的中点.若1sin 3BAM ∠=,则sin BAC ∠= .(2013文)3.(与理4姐妹题)若R α∈,则“0α=”是“sin cos αα<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件6.函数()sin cos f x x x x =+的最小正周期和振幅分别是 A .π,1 B .π,2 C .2π,1 D .2π,218.在锐角△ABC 中,内角,,A B C 的对边分别为,,a b c ,且2sin a B =. (Ⅰ)求角A 的大小;(Ⅱ) 若6,8a b c =+=,求△ABC 的面积.二、(2012理)4.把函数cos21y x =+的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是18.(14分)在△ABC 中,内角,,A B C 的对边分别为,,a b c .已知C B A cos 5sin ,32cos ==. (1)求tan C 的值;(2)若2a =ABC 的面积.(2012文) 6.(同理4)18.( 14分)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,且sin 3cos b A a B =. (Ⅰ)求角B 的大小;(Ⅱ)若3,sin 2sin b C A ==,求,a c 的值.三、(2011理) 6.若0,022ππαβ<<-<<,1cos()43πα+=,3cos()42πβ-=,则cos()2βα+= A 3B .3C 53D .618.(14分)在△ABC 中,角,,A B C 所对的边分别为,,a b c .已知sin sin sin (R)A C pB p +=∈,且214ac b =.(Ⅰ)当5,14p b ==时,求,a c 的值;(Ⅱ)若角B 为锐角,求p 的取值范围.(2011文)5.在ABC ∆中,角C B A ,,所对的边分别是c b a ,,,若B b A a sin cos =,则=+B A A 2cos cos sin(A )21-(B )21 (C )1- (D )118.(14分)已知函数()sin ()3f x A x πϕ=+,x R ∈,0A >,02πϕ<<.()y f x =的部分图像如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A .(Ⅰ)求()f x 的最小正周期及ϕ的值; (Ⅱ)若点R 的坐标为(1,0),23PRQ π∠=,求A 的值.三、(2010理) 4.设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件9.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 (A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4 11.函数2()sin(2)224f x x x π=--的最小正周期是__________________ .18. (l4分)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知1cos24C =-.(I)求sin C 的值;(Ⅱ)当2,2sin sin a A C ==时,求b 及c 的长. (2010文) 6.(同理4)12.(与理11姐妹题)函数2()sin (2)4f x x π=-的最小正周期是18.(本题满分)在△ABC ,角,,A B C 所对的边分别为,,a b c ,设S 为△ABC 的面积,满足2223()4S a b c =+-. (Ⅰ)求角C 的大小; (Ⅱ)求sin sin A B +的最大值.三、(2009理)8.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是D 【命题意图】此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度.18.(14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos25A =,3=⋅AC AB .(I )求ABC ∆的面积; (II )若6b c +=,求a 的值. (2009文) 10.(同理8) 18.(同理18)。

2021-2021 高考全国卷三角函数解三角形真题汇编(文科)

2021-2021 高考全国卷三角函数解三角形真题汇编(文科)

2021-2021 高考全国卷三角函数、解三角形真题汇编(文科)2021-2021 高考全国卷三角函数、解三角形真题汇编(文科)学校:姓名:班级:考号:评卷人得分一、选择题1. [2021・全国新课标卷I(文)]函数y=的部分图象大致为 ( ) -A. B. C.D.2. [2021・全国新课标卷I(文)]△ABC的内角A,B,C的对边分别为a,b,c.已知sinB+sin A(sin C-cos C)=0,a=2,c= ,则C= ( )A. B. C. D.3. [2021・全国新课标卷II(文)]函数f(x)=sin 的最小正周期为( ) A. 4πB. 2πC. πD.4. [2021・全国新课标卷III (文)]已知sin α-cos α=,则sin 2α= ( ) A. -B. -C.D.5. [2021・全国新课标卷III (文)]函数f(x)=sin +cos - 的最大值为 ( )A. B. 1 C. D. 6. [2021・全国新课标卷III (文)]函数y=1+x+的部分图象大致为( )第1页共4页A. B.C.D.7. [2021・高考全国新课标卷Ⅰ(文),4]△ABC的内角A,B,C的对边分别为a,b,c.已知a= ,c=2,cos A=,则b= ( )A. B. C. 2 D. 38. [2021・高考全国新课标卷Ⅰ(文),6]将函数y=2sin 的图象向右平移个周期后,所得图象对应的函数为 ( )A. y=2sinB. y=2sinC. y=2sin -D.y=2sin -9. [2021・高考全国新课标卷Ⅰ(文),12]若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是 ( )A. [-1,1]B. -C. -D. - -10. [2021・高考全国新课标卷Ⅱ(文),3]函数y=Asin(ωx+φ)的部分图象如图所示,则 ( )A. y=2sin -B. y=2sin -C. y=2sinD. y=2sin11. [2021・高考全国新课标卷Ⅱ(文),11]函数f(x)=cos2x+6cos - 的最大值为( )A. 4B. 5C. 6D. 712. [2021・高考全国新课标卷Ⅲ(文),6]若tan θ=-,则cos 2θ= ( )第2页共4页A. -B. -C.D.13. [2021・高考全国新课标卷Ⅲ(文),9]在△ABC中,B=,BC边上的高等于BC,则sin A= ( ) A. B. C. D.14. [2021・高考全国新课标卷Ⅰ(文),8]函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A. - ,k∈ZB. - ,k∈ZC. - ,k∈ZD. - ,k∈Z15. [2021�q高考全国新课标卷Ⅰ(文),7]在函数①y=cos|2x|,②y=|cos x|,③y=cos(2x+),④y=tan(2x-)中,最小正周期为π的所有函数为( )A. ②④B. ①③④C. ①②③D. ①③16. [2021・高考全国新课标卷I(文),9]函数f(x)=(1-cosx)sinx在[-π,π]的图象大致为( )A. B.C. D.17. [2021・高考全国新课标卷I(文),10]已知锐角△ABC的内角A,B,C的对边分别为2a,b,c,23cosA+cos2A=0,a=7,c=6,则b=( ) A. 10 B. 9 C.8 D. 5第3页共4页18. [2021・高考全国新课标卷II(文),4]△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为( )A. 2 +2B. +1C. 2 -2D. -119. [2021・高考全国新课标卷II(文),6]已知sin2α=,则cos(α+)=( ) A.B. C. D. 评卷人得分二、填空题220. [2021・全国新课标卷I(文)]已知α∈ ,tan α=2,则cos - = . 21. [2021・全国新课标卷II(文)]函数f(x)=2cos x+sin x的最大值为 . 22. [2021・全国新课标卷II(文)]△ABC的内角A,B,C的对边分别为a,b,c,若2bcos B=acos C+ccos A,则B= .23. [2021・全国新课标卷III (文)]△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b= ,c=3,则A= .24. [2021・高考全国新课标卷Ⅰ(文),14]已知θ是第四象限角,且sin ,则tan - = .25. [2021・高考全国新课标卷Ⅱ(文),15]△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b= .26. [2021・高考全国新课标卷Ⅲ(文),14]函数y=sin x- cos x的图象可由函数y=2sin x的图象至少向右平移个单位长度得到.27. [2021�q高考全国新课标卷Ⅰ(文),16]如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=________m.28. [2021�q高考全国新课标Ⅱ(文),14]函数f(x)=sin(x+φ)-2sin φcos x的最大值为________. 29. [2021・高考全国新课标卷I(文),16]设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ= .30. [2021・高考全国新课标卷II(文),16]函数y=cos(2x+φ)(-π≤φ函数y=sin(2x+)的图象重合,则φ= .第4页共4页感谢您的阅读,祝您生活愉快。

专题09 三角函数——三年(2021-2021)高考真题文科数学分项汇编(原卷版)

专题09 三角函数——三年(2021-2021)高考真题文科数学分项汇编(原卷版)

专题 09 三角函数1.【2020年高考全国Ⅲ卷文数】已知sinθ+ sin(θ+π)=1 ,则sin(θ+π)=A.12B. 333C.236D. 222.【2020 年高考全国Ⅰ卷文数】设函数f (x) = cos(ωx +π) 在[−π,π]的图像大致如下图,则f(x)的最小正6周期为A.10π9C.4π3B.7π6D.3π23.【2020 年高考全国Ⅲ卷文数】已知函数f(x)=sin x+ 1,则sin xA.f(x)的最小值为2 B.f(x)的图像关于y 轴对称C.f(x)的图像关于直线x =π对称D.f(x)的图像关于直线x =π对称24.【2020 年高考天津】已知函数f (x) = sin(x +π) .给出下列结论:3① f (x) 的最小正周期为2π;π② f ( )2是f (x) 的最大值;③把函数y = sin x 的图象上所有点向左平移π个单位长度,可得到函数y =3f (x) 的图象.其中所有正确结论的序号是A.①B.①③C.②③D.①②③5.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是33⎛ 30︒ 30︒ ⎫ ⎛ 30︒ 30︒ ⎫A. 3n sin n + tan ⎪n B. 6n sin n + tan ⎪n ⎝ ⎭⎝ ⎭⎛ 60︒ 60︒ ⎫⎛ 60︒ 60︒ ⎫ C. 3n sin n + tan ⎪n D. 6n sin n + tan ⎪n ⎝ ⎭⎝ ⎭6. 【2020 年新高考全国Ⅰ卷】下图是函数 y = sin(ωx +φ)的部分图像,则 sin(ωx +φ)=A. sin(x + π)B . sin( π - 2x )C . cos(2x + π)D . cos( 5π- 2x )33 6 67. 【2019 年高考全国Ⅰ卷文数】函数 f (x ) =sin x + xcos x + x 2在[-π, π] 的图像大致为A.B .C .D .8. 【2019 年高考全国Ⅰ卷文数】tan255°=A .−2−B .−2+C .2−D .2+ 9. 【2019 年高考全国Ⅱ卷文数】若 x 1= π ,x 2=3π是函数 f (x )= sin ωx (ω>0)两个相邻的极值点,则ω=443 A .2 B .21 C .1D .210. 【2019 年高考全国Ⅱ卷文数】已知 a ∈(0, π),2sin2α=cos2α+1,则 sin α=2A. 15 B.53 32 C.33D. 2 551. 【2019年高考全国Ⅲ卷文数】函数 f (x ) = 2sin x - sin2x 在[0,2π]的零点个数为A .2B .3C .4D .512. 【2019 年高考北京卷文数】设函数 f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A. 充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件13. 【2019 年高考天津卷文数】已知函数 f (x ) = A sin(ωx +ϕ)( A > 0,ω> 0,|ϕ|< π) 是奇函数,且 f ( x ) 的 最小正周期为π,将 y = f (x ) 的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得图象 对应的函数为 g ( x ) .若 g ⎛ π ⎫=,则 f ⎛ 3π ⎫ =4 ⎪ 8 ⎪ ⎝ ⎭ ⎝ ⎭A .−2B . -C .14. 【2018 年高考全国Ⅲ卷文数】函数 f (x )=πA .4 D .2 tan x1+ tan 2 xπB .2的最小正周期为C .π D . 2π15. 【2018 年高考全国Ⅰ卷文数】已知函数 f ( x ) = 2 c os 2 x -sin 2 x + 2 ,则 A. f ( x ) 的最小正周期为π,最大值为 3 B. f (x ) 的最小正周期为π,最大值为 4 C. f (x ) 的最小正周期为2π,最大值为 3 D. f (x ) 的最小正周期为 2π,最大值为 4 16. 【2018 年高考天津卷文数】将函数 y = sin(2x + π) 的图象向右平移 π个单位长度,所得图象对应的函数[- π π510A. 在区间, ] 上单调递增B .在区间上单调递减4 42 22 5 5π π πC .在区间[ , ] 上单调递增D .在区间[ , π] 上单调递减 4 2217. 【2018 年高考全国Ⅲ卷文数】若sin α= 1,则cos 2α= 387A.B .9 9 C . - 7 9D . - 8 918. 【2018 年高考全国Ⅰ卷文数】已知角α的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点A (1,a ) ,B (2 ,b ) ,且cos 2α= 2,则 a - b =3A. 1 B . 55 5C .D .119. 【2018 年高考全国Ⅱ卷文数】若 f (x ) = cos x - sin x 在[0, a ] 是减函数,则 a 的最大值是 π πA.B .4 2C .3π D .π 420. 【2018 年高考浙江卷】函数 y = 2 x sin2x 的图象可能是A.B .C .D .21. 【2018 年高考北京卷文数】在平面直角坐标系中, AB , C D , E F , G H 是圆x 2 + y 2 = 1 上的四段弧(如图),点 P 在其中一段上,角α以 O x 为始边,OP 为终边,若tan α< cos α< sin α,则 P 所在的圆弧是A. AB B . C D C . E FD . G H 2. 【2020年高考全国Ⅱ卷文数】若sin x = - 2,则cos 2x = . 323. 【2020 年高考江苏】已知sin 2 ( π +α) = 2,则sin 2α的值是▲.4 324. 【2020 年高考北京】若函数 f (x ) = sin(x +ϕ) + cos x 的最大值为 2,则常数ϕ的一个取值为.25. 【2020 年高考浙江】已知tan θ= 2 ,则cos 2θ=, tan(θ- π) = . 4 26. 【2020 年高考江苏】将函数 y = 3sin(2x π) 的图象向右平移 π个单位长度,则平移后的图象中与 y 轴最 ﹢ 4 6近的对称轴的方程是▲ .27. 【2020 年新高考全国Ⅰ卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧 AB 所在圆的圆心,A 是圆弧 AB 与直线 AG 的切点,B 是圆弧 AB 与直线 BC 的切点,四边 形 DEFG 为矩形,BC ⊥DG ,垂足为 C ,tan ∠ODC = 3, BH ∥DG ,EF =12 cm ,DE=2 cm ,A 到直线5 DE 和 EF 的距离均为 7 cm ,圆孔半径为 1 cm ,则图中阴影部分的面积为cm 2.28. 【2019 年高考全国Ⅰ卷文数】函数 f (x ) = sin(2x +3π) - 3cos x 的最小值为.2tan α = - 2 ⎛ π ⎫ 29. 【2019 年高考江苏卷】已知 tan ⎛α+ π ⎫ 3 ,则sin 2α+ 4 ⎪ 的值是 ▲.4 ⎪ ⎝ ⎭ ⎝ ⎭30.【2018 年高考全国Ⅱ卷文数】已知tan(α-5π) =1,则tanα=.4 531.【2018 年高考江苏卷】已知函数y = sin (2x +ϕ)(-π<ϕ<π) 的图象关于直线x =π对称,则ϕ的值2 2 3是.32.【2019 年高考浙江卷】设函数f (x) = sin x, x ∈R .(1)已知θ∈[0, 2π), 函数f (x +θ) 是偶函数,求θ的值;(2)求函数y = [ f (x +π)]2 +[ f (x +π)]2 的值域.12 43.【2018 年高考北京卷文数】已知函数f (x) = sin2x+3 sin x cos x .(1)求f (x) 的最小正周期;(2)若f (x) 在区间[-π, m] 上的最大值为3,求m 的最小值.3 234.【2018 年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(-3,-4).5 5(1)求sin(α+π)的值;5(2)若角β满足sin(α+β)=13,求cosβ的值.35.【2018年高考江苏卷】已知α,β为锐角,tanα=4,cos(α+β)=-5.3 5(1)求cos 2α的值;(2)求tan(α-β) 的值.。

三角函数历年高考题

三角函数历年高考题

三角函数历年高考题(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除三角函数题型分类总结一. 三角函数的求值、化简、证明问题常用的方法技巧有:a) 常数代换法:如:αα22cos sin 1+=b) 配角方法:ββαα-+=)(,()βαβαα-++=)(2,22βαβαα-++=,22βαβαβ--+=1、sin330︒= tan690° = o 585sin =2、(1)(10全国Ⅰ) α是第四象限角,12cos 13α=,则sin α=__________ (2)(11北京文)若4sin ,tan 05θθ=->,则cos θ= .(3) α是第三象限角,21)sin(=-πα,则αcos = )25cos(απ+=3、(1) (09陕西)已知sin ,5α=则44sin cos αα-= . (2)(12全国文)设(0,)2πα∈,若3sin 5α=)4πα+= .(3)(08福建)已知3(,),sin ,25παπα∈=则tan()4πα+=4. (1)(10福建) sin15cos75cos15sin105+= (2)(11陕西)cos 43cos77sin 43cos167o o o o += 。

(3)sin163sin 223sin 253sin313+= 。

5.(1) 若sin θ+cos θ=15,则sin 2θ=(2)已知3sin()45x π-=,则sin 2x 的值为(3) 若2tan =α ,则ααααcos sin cos sin -+=6. (10北京)若角α的终边经过点(12)P -,,则αcos = tan 2α= 7.(09浙江)已知cos()22πϕ+=,且||2πϕ<,则tan ϕ=8.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭cos sin αα+= 9.(09重庆文)下列关系式中正确的是 ( )A .000sin11cos10sin168<<B .000sin168sin11cos10<<C .000sin11sin168cos10<<D .000sin168cos10sin11<<10.已知53)2cos(=-πα,则αα22cos sin -的值为 ( ) A .257 B .2516- C .259 D .257-11.已知sin θ=-1312,θ∈(-2π,0),则cos (θ-4π)的值为 ( )A .-2627 B .2627 C .-26217 D .26217 12.已知f (cosx )=cos3x ,则f (sin30°)的值是 ( )A .1B .23C .0D .-113.已知sin x -sin y = -32,cos x -cos y = 32,且x ,y 为锐角,则tan(x -y )的值是 ( ) A .5142 B . -5142 C .±5142 D .28145±14.已知tan160o =a ,则sin2000o 的值是 ( )A.a 1+a 2B.-a 1+a 2C.11+a 2D.-11+a 215.若02,sin 3cos απαα≤≤>,则α的取值范围是: ( )(A),32ππ⎛⎫ ⎪⎝⎭ (B),3ππ⎛⎫⎪⎝⎭(C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭16.已知cos (α-6π)+sin α=的值是则)67sin(,354πα+ ( ) (A )-532 (B )532 (C)-54 (D) 5417.若,5sin 2cos -=+a a 则a tan = ( )(A )21 (B )2 (C )21- (D )2-二.最值1.(09福建)函数()sin cos f x x x =最小值是= 。

高考全国卷三角函数、解三角形真题汇编(文科)

高考全国卷三角函数、解三角形真题汇编(文科)

2013-2017 高考全国卷三角函数、解三角形真题汇编(文科)学校: 姓名: 班级: 考号:评卷人评卷人 得分得分一、选择题 1. [2017·全国新课标卷I(文)]函数y =sin2x 1-cosx 的部分图象大致为的部分图象大致为( ) A. B. C.D. 2. [2017·全国新课标卷I(文)]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知sin B +sin A (sin C -cos C )=0,a =2,c =√2,则C = ( )A. π12B. π6C. π4D. π3 3. [2017·全国新课标卷II(文)]函数f (x )=sin (2x +π3)的最小正周期为 ( ) A. 4π B. 2π C. π D. π24. [2017·全国新课标卷III (文)]已知sin α-cos α=43,则sin 2α= ( )A. -79B. -29C. 29D. 79 5. [2017·全国新课标卷III (文)]函数f (x )=15sin (x +π3)+cos (x (x--π6)的最大值为的最大值为 ( ) A. 65 B. 1 C. 35 D. 15 6. [2017·全国新课标卷III (文)]函数y=1+x+sinx x 2的部分图象大致为的部分图象大致为 ( )A. B.C. D.7. [2016·高考全国新课标卷Ⅰ(文),4]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =√5,c =2,cos A =23,则b = ( ) A. √2 B. √3C. 2D. 3 8. [2016·高考全国新课标卷Ⅰ(文),6]将函数y =2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为象对应的函数为 ( ) A. y =2sin (2x +π4) B. y =2sin (2x +π3) C. y =2sin (2x (2x--π4) D. y =2sin (2x (2x--π3) 9. [2016·高考全国新课标卷Ⅰ(文),12]若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是的取值范围是 ( ) A. [-1,1] B. [-1,13] C. [-13,13] D. [-1,1,--13] 10. [2016·高考全国新课标卷Ⅱ(文),3]函数y =A sin(ωx +φ)的部分图象如图所示,则 ( ) A. y =2sin (2x (2x--π6) B. y =2sin (2x (2x--π3) C. y =2sin (x +π6) D. y =2sin (x +π3)11. [2016·高考全国新课标卷Ⅱ(文),11]函数f (x )=cos2x +6cos (π2-x)的最大值为( ) A. 4 B. 5 C. 6 D. 7 12. [2016·高考全国新课标卷Ⅲ(文),6]若tan θ=-13,则cos 2θ= ( )A. -45B. -15C. 15 D. 45 13. [2016·高考全国新课标卷Ⅲ(文),9]在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A = ( ) A. 310 B. √1010 C. √55 D. 3√101014. [2015·高考全国新课标卷Ⅰ(文),8]函数f (x )=cos(ωx+φ)的部分图象如图所示,则f (x )的单调递减区间为( )A. (kπ(kπ--14,kπ+34),k ∈Z B. (2kπ(2kπ--14,2kπ+34),k ∈Z C. (k (k--14,k +34),k ∈Z D. (2k (2k--14,2k +34),k ∈Z 15. [2014﹒高考全国新课标卷Ⅰ(文),7]在函数①y =cos|2x |,②y =|cos x |,③y =cos(2x +π6),④y =tan(2x -π4)中,最小正周期为π的所有函数为( )A. ②④B. ①③④C. ①②③D. ①③16. [2013·高考全国新课标卷I(文),9]函数f (x )=(1-cos x )sin x 在[-π,π]的图象大致为( )A. B.C. D. 17. [2013·高考全国新课标卷I(文),10]已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( )A. 10B. 9C. 8D. 518. [2013·高考全国新课标卷II(文),4]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b=2,B=π6,C=π4,则△ABC 的面积为( )A. 2√3+2B. √3+1C. 2√3-2D. √3-1 19. [2013·高考全国新课标卷II(文),6]已知sin2α=23,则cos 2(α+π4)=( ) A. 16 B. 13 C. 12 D. 23 评卷人评卷人 得分得分 二、填空题20. [2017·全国新课标卷I(文)]已知α∈(0,π2),tan α=2,则cos (α(α--π4)= . 21. [2017·全国新课标卷II(文)]函数f (x )=2cos x+sin x 的最大值为 .22. [2017·全国新课标卷II(文)]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B=a cos C+c cos A ,则B= .23. [2017·全国新课标卷III (文)]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知C=60°60°,,b=√6,c=3,则A= .24.[2016·高考全国新课标卷Ⅰ(文),14]已知θ是第四象限角,且sin (θ+π4)=35,则tan (θ(θ--π4)= 25. [2016·高考全国新课标卷Ⅱ(文),15]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b = . 26. [2016·高考全国新课标卷Ⅲ(文),14]函数y =sin x -√3cos x 的图象可由函数y =2sin x 的图象至少向右平移 个单位长度得到.27. [2014﹒高考全国新课标卷Ⅰ(文),16]如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°60°,,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°60°..已知山高BC =100 m,则山高MN =________m.28. [2014﹒高考全国新课标Ⅱ(文),14]函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. 29. [2013·高考全国新课标卷I(文),16]设当x=θ时,函数f (x )=sin x-2cos x 取得最大值,则cos θ= .30. [2013·高考全国新课标卷II(文),16]函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y=sin(2x+π3)的图象重合,则φ= .。

历年高考数学三角函数经典试题

历年高考数学三角函数经典试题

历届高考中的“三角函数的图像与性质”试题精选(自我测试)(卷A)一、选择题:(每小题5分,计50分)题号12345678910答案1.(2009陕西理科)若3s i n c o s 0αα+=,则 21c o s s in2αα+的值为 (A )103(B ) (C )23 (D) 2-2.(2007江苏)下列函数中,周期为2π的是( )A .s in 2x y =B .s in2y x =C .co s 4xy = D .c o s4y x =3.(2007江西文)若0<x <2π,则下列命题中正确的是( ) A .sin x <x π2 B .sin x >x π2 C .sin x <x π3 D .sin x >xπ34.(2009山东)将函数y=sin2x 的图象向左平移4π个单位,再向上平移1个单位,所得图象的函数解析式是(A) y=2cos 2x(B )y=2sin 2x (C) y=1+sin(2x+4π)(D)y=cos2xi5 .(2007福建理)已知函数f(x)=sin()()的最小正周期为,则该函数的图象( )A 关于点(,0)对称B 关于直线x =对称C 关于点(,0)对称D 关于直线x =对称6(2007江苏)函数()s i n 3c o s ([,0])f x x x x π=-∈-的单调递增区间是( ) A .5[,]6ππ-- B .5[,]66ππ-- C .[,0]3π- D .[,0]6π-7.(2005福建理)函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则( ) A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==8.(2009辽宁)已知函数()s i n ()(0)f x x ωϕω-+>的图象如图所示, 则ω =9.(2009宁夏)有四个关于三角函数的命题:1p :∃x ∈R, 2s i n+2c o s =122p : ∃x 、y ∈R, sin(x-y)=sinx-siny3p : ∀x ∈[]0,π,1cos 22x -=sinx 4p : sinx=cosy ⇒x+y=2π其中假命题的是(A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,4p10.(2009宁夏)已知函数y=sin (ωx+ϕ)(ω>0, -π≤ϕ<π)的图像如图所示,则ϕ=________________4.(2009江西)若函数()f x =(1+ 3tanx )cos, 0≤x <2π,则()f x 的最大值为A .1 B. 2 C. 3+1 D. 3+25.(2010天津)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若223a b b c -=,s i n 23s i n C B =,则A=6.(2003全国理,广东)函数)cos (sin sin 2x x x y +=的最大值为( ) A .21+B .12-C .2D .27.( 2007广东文)已知简谐运动()2s i n ()(||)32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T 和初相ϕ分别为( )8.(2005浙江理)已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( )(A) 1 (B) -1 (C) 2k +1 (D) -2k +19.(2005全国Ⅰ卷文、理)当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为( )(A )2 (B )32 (C )4 (D )3410. (2002年广东、江苏、河南,全国文、理,全国新课程文、理,天津文、理)在)2,0(π内,使xx cos sin >成立的x 的取值范围是( ) (A))45,()2,4(ππππ (B)),4(ππ (C))45,4(ππ (D))23,45(),4(ππππ 二.填空题: (每小题5分,计20分)11.(2006湖南文) 若)4sin(3)4sin()(ππ-++=x x a x f 是偶函数,则a = .12.(2004全国Ⅲ卷理)函数xx y cos 3sin +=在区间]2,0[π上的最小值为 .13.(2005上海文、理)函数()[]s i n2s i n 0,2f x x x x π=+∈的图像与直线y k =有且仅有两个不同的交点,则k 的取值范围是____________14.(2007四川理)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数).2sin(π-=x y 在(0,π)上是减函数。

专题3 三角函数的图象与性质【高考文科数学】含答案

专题3 三角函数的图象与性质【高考文科数学】含答案

第一讲 三角函数的图象与性质1.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx.(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2 函数 性质 y =sin xy =cos xy =tan x定义域RR{x |x ≠k π+π2,k ∈Z}图象值域[-1,1] [-1,1]R对称性对称轴:x =k π+π2(k ∈Z);对称中心:(k π,0)(k ∈Z)对称轴:x = k π(k ∈Z);对称中心: (k π+π2,0)(k ∈Z)对称中心:⎝⎛⎭⎪⎫k π2,0(k ∈Z)周期2π2ππ单调性单调增区间[2k π-π2,2k π+π2](k ∈Z); 单调减区间[2k π+π2,2k π+3π2] (k ∈Z) 单调增区间 [2k π-π,2k π]( k ∈Z);单调增区间 (k π-π2,k π+π2)(k ∈Z)奇偶性 奇 偶 奇3. y =A sin(ωx +φ)的图象及性质(1)五点作图法:五点的取法:设X =ωx +φ,X 取0,π2,π,3π2,2π时求相应的x值、y 值,再描点作图.(2)给出图象求函数表达式的题目,比较难求的是φ,一般是从“五点法”中的第一点(-φω,0)作为突破口. (3)图象变换y =sin x ―――――――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ).1. (2013·江西)函数y =sin 2x +23sin 2x 的最小正周期T 为________.答案 π解析 y =sin 2x +3(1-cos 2x )=2sin ⎝ ⎛⎭⎪⎫2x -π3+3, ∴T =π.2. (2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( ) A.3π4 B.π4C .0D .-π4答案 B解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝ ⎛⎭⎪⎫x +φ2+π8=sin ⎝⎛⎭⎪⎫2x +φ+π4为偶函数,则φ=π4.3. (2013·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,∴ω=2,∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z .又φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=-π3,选A. 4. (2012·课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12D .(0,2]答案 A解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,排除B ,C. 取ω=2,f (x )=sin ⎝⎛⎭⎪⎫2x +π4, 其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z , 显然⎝ ⎛⎭⎪⎫π2,π⃘⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D. 5. (2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 答案 C解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6知,当x =π6时f (x )取最值,∴f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π3+φ=±1,∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝ ⎛⎭⎪⎫π2>f (π),∴sin(π+φ)>sin(2π+φ), ∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎪⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).题型一 三角函数的概念问题例1 如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(-35,45).(1)求sin 2α+cos 2α+11+tan α的值;(2)若OP →·OQ →=0,求sin(α+β).审题破题 (1)先根据三角函数的定义求sin α,cos α,代入求三角函数式子的值;(2)根据OP →⊥OQ →和β范围可求sin β,cos β.解 (1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αsin α+cos αsin α+cos αcos α=2cos 2α=2×(-35)2=1825.(2)∵OP →·OQ →=0,∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos(α-π2)=sin α=45.∴sin(α+β)=sin αcos β+cos αsin β=45×45+(-35)×35=725. 反思归纳 (1)三角函数的定义是求三角函数值的基本依据,如果已知角终边上的点,则利用三角函数的定义,可求该角的正弦、余弦、正切值.(2)同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式应用的条件.变式训练1 (1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x上,则cos 2θ等于( )A .-45B .-35C.35D.45答案 B解析 依题意得tan θ=2,∴cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.(2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos ⎝ ⎛⎭⎪⎫π2+αsin -π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值为________.答案 -34解析 原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.题型二 函数y =A sin(ωx +φ)的图象及应用 例2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)设0<x <π,且方程f (x )=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.审题破题 (1)先由函数图象确定A ,ω,再代入点⎝ ⎛⎭⎪⎫π6,2求φ;(2)利用转化思想先把方程问题转化为函数问题,再利用数形结合法求解.解 (1)由图象知:A =2,34T =11π12-π6=3π4,则T =π,所以ω=2.又图象过点⎝ ⎛⎭⎪⎫π6,2, 所以2×π6+φ=π2,即φ=π6.所以所求的函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)在同一坐标系中画出y =2sin ⎝ ⎛⎭⎪⎫2x +π6和y =m (m ∈R )的图象,如图所示,由图可知,-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,故m 的取值范围为-2<m <1或1<m <2.当-2<m <1时,两根之和为4π3; 当1<m <2时,两根之和为π3.反思归纳 (1)已知图象求函数y =A sin(ωx +φ) (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最大、最小值求出A ,由周期确定ω,由适合解析式的点的坐标来确定φ(代点时尽量选最值点,或者搞清点的对应关系);(2)利用数形结合思想从函数图象上可以清楚地看出当-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,利用图象的对称性便可求出两根之和. 变式训练2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +π4B .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4C .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π4D .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -3π4答案 B解析 由图象可知A =2,T 2=3π2-⎝ ⎛⎭⎪⎫-π2=2π,即T =4π.又T =2πω=4π,所以ω=12,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫12x +φ.又f ⎝ ⎛⎭⎪⎫-π2=2sin ⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫-π2+φ=2,即sin ⎝ ⎛⎭⎪⎫-π4+φ=1,即-π4+φ=π2+2k π,k ∈Z ,即φ=3π4+2k π,k ∈Z ,因为-π<φ<π,所以φ=3π4,所以函数为f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4,选B.题型三 三角函数的性质例3 已知函数f (x )=4sin ωx cos ⎝⎛⎭⎪⎫ωx +π3+3(ω>0)的最小正周期为π.(1)求f (x )的解析式;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π6上的最大值和最小值及取得最值时x 的值. 审题破题 利用和差公式、倍角公式将f (x )化为A sin(ωx +φ)的形式,然后求三角函数的最值.解 (1)f (x )=4sin ωx ⎝ ⎛⎭⎪⎫cos ωx cos π3-sin ωx sin π3+ 3=2sin ωx cos ωx -23sin 2ωx + 3=sin 2ωx +3cos 2ωx=2sin ⎝⎛⎭⎪⎫2ωx +π3. ∵T =2π2ω=π,∴ω=1.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3. (2)∵-π4≤x ≤π6,∴-π6≤2x +π3≤2π3,∴-12≤sin ⎝⎛⎭⎪⎫2x +π3≤1,即-1≤f (x )≤2, 当2x +π3=-π6,即x =-π4时,f (x )min =-1,当2x +π3=π2,即x =π12时,f (x )max =2.反思归纳 (1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化简三角函数式,尽量化为y =A sin(ωx +φ)+B 的形式,然后再求解. (2)对于y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2sin(ωx +φ)(cos φ=a a 2+b2,sin φ=ba 2+b 2)的形式来求.(3)讨论y =A sin(ωx +φ)+B ,可以利用换元思想设t =ωx +φ,转化成函数y =A sint +B 结合函数的图象解决.变式训练3 (1)函数y =2sin ⎝⎛⎭⎪⎫π6-2x (x ∈[0,π])为增函数的区间是( ) A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤π12,7π12C.⎣⎢⎡⎦⎥⎤π3,5π6D.⎣⎢⎡⎦⎥⎤5π6,π 答案 C解析 因为y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝ ⎛⎭⎪⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为⎣⎢⎡⎦⎥⎤π3+k π,5π6+k π(k ∈Z ),所以当k =0时,增区间为⎣⎢⎡⎦⎥⎤π3,5π6,选C.(2)设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2,且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数C .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为增函数D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数答案 B解析 f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+φ,其图象关于直线x =0对称,∴f (0)=±2,∴π3+φ=k π+π2,k ∈Z .∴φ=k π+π6,又|φ|<π2,∴φ=π6.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . ∴y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为减函数.题型四 三角函数的应用例4 已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.审题破题 (1)首先化简f (x )再根据题意求出最小正周期,然后可求ω,即可得f (x )的表达式;(2)根据图象平移求出g (x ),然后利用换元法并结合图形求解.解 (1)f (x )=12sin 2ωx +31+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx +π3, 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2, 所以f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π6的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π6的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π6. 令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数g (x )=sin t 与y =-k 在区间⎣⎢⎡⎦⎥⎤-π6,5π6上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.所以-12<k ≤12或k =-1.反思归纳 确定函数y =g (x )的解析式后,本题解法中利用两个数学思想:整体思想(设t =2x -π6,将2x -π6视为一个整体).数形结合思想,将问题转化为g (x )=sin t 与y=-k 在⎣⎢⎡⎦⎥⎤-π6,5π6上只有一个交点的实数k 的取值范围.互动探究 在例4(2)中条件不变的情况下,求函数y =g (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调区间.解 g (x )=sin ⎝⎛⎭⎪⎫2x -π6.令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z .又0≤x ≤π2,∴函数y =g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,π3.令2k π+π2≤2x -π6≤2k π+32π,k ∈Z ,得k π+π3≤x ≤k π+56π,k ∈Z .又0≤x ≤π2,∴函数g (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π3,π2. 变式训练4 (2013·天津一中高三月考)函数f (x )=sin ⎝⎛⎭⎪⎫2x -π3(x ∈R )的图象为C ,以下结论正确的是________.(写出所有正确结论的编号)①图象C 关于直线x =11π12对称;②图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称;③函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ④由y =sin 2x 的图象向右平移π3个单位长度可以得到图象C .答案 ①②③解析 当x =11π12时,f ⎝ ⎛⎭⎪⎫11π12=sin ⎝ ⎛⎭⎪⎫2×11π12-π3=sin ⎝ ⎛⎭⎪⎫11π6-π3=sin 3π2=-1,为最小值,所以图象C 关于直线x =11π12对称,所以①正确;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=sin ⎝ ⎛⎭⎪⎫2×2π3-π3=sin π=0,图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称,所以②正确;当-π12≤x≤5π12时,-π2≤2x -π3≤π2,此时函数单调递增,所以③正确;y =sin 2x 的图象向右平移π3个单位长度,得到y =sin 2⎝ ⎛⎭⎪⎫x -π3=sin ⎝ ⎛⎭⎪⎫2x -2π3,所以④错误,所以正确的是①②③.典例 (12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.规范解答解 (1)f (x )=12sin 2x sin φ+cos 2x +12cos φ-12cos φ=12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). [3分]又∵f (x )过点⎝ ⎛⎭⎪⎫π6,12, ∴12=12cos ⎝ ⎛⎭⎪⎫π3-φ,cos(π3-φ)=1. 由0<φ<π知φ=π3.[5分](2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3.[7分]将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,得到g (x )=12cos(4x -π3).[9分]∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.[12分]评分细则 (1)将点⎝ ⎛⎭⎪⎫π6,12代入解析式给1分;从cos ⎝ ⎛⎭⎪⎫π3-φ=1,由0<φ<π,得φ=π3得1分;(2)4x -π3范围计算正确,没有写出x 取何值时g (x )有最值不扣分. 阅卷老师提醒 (1)解决此类问题时,一般先将函数解析式化为f (x )=A sin(ωx +φ)或f (x )=A cos(ωx +φ)的形式,然后在此基础上把ωx +φ看作一个整体,结合题目要求进行求解.(2)解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.1. (2013·江苏)函数y =3sin ⎝⎛⎭⎪⎫2x +π4的最小正周期为 ________. 答案 π解析 ω=2,T =2π|ω|=π.2. (2013·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得sin(π3+m )=±1,∴π3+m =k π+π2,k ∈Z , ∴m =k π+π6,k ∈Z ,∵m >0,∴m 的最小值为π6.3. 若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A .-34B.34C.43D .-43答案 D 解析 cos α=39+y 2=35,∴y 2=16. ∵y <0,∴y =-4,∴tan α=-43.4. 设函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R ),则f (x )( )A .在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 B .在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数C .在区间⎣⎢⎡⎦⎥⎤π8,π4上是增函数D .在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 B解析 当2π3≤x ≤7π6时,2π3+π3≤x +π3≤7π6+π3,即π≤x +π3≤3π2,此时函数y=sin ⎝ ⎛⎭⎪⎫x +π3单调递减,所以y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数,选B.5. 已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ等于( )A.π4 B.π3C.π2D.3π4答案 A解析 由题意得周期T =2⎝⎛⎭⎪⎫5π4-π4=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=±1, ∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.6. 函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到g (x )=sin3x 的图象,则只要将f (x )的图象( )A .向右平移π4个单位长度B .向右平移π12个单位长度C .向左平移π4个单位长度D .向左平移π12个单位长度答案 B解析 由题意,得函数f (x )的周期T =4⎝⎛⎭⎪⎫5π12-π4=2π3,ω=3,所以sin ⎝ ⎛⎭⎪⎫3×5π12+φ=-1,又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4=sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π12,所以将函数f (x )的图象向右平移π12个单位长度可以得到函数g (x )=sin 3x 的图象.专题限时规范训练一、选择题1. 已知sin θ=k -1,cos θ=4-3k ,且θ是第二象限角,则k 应满足的条件是( )A .k >43B .k =1C .k =85D .k >1答案 C解析 根据已知(k -1)2+(4-3k )2=1,即5k 2-13k +8=0,解得k =1或k =85,由于sin θ>0,cos θ<0,所以k >43,可得k =85.2. 设tan α=33,π<α<3π2,则sin α-cos α的值为( )A .-12+32B .-12-32C.12+32D.12-32答案 A解析 由tan α=33,π<α<3π2,不妨在角α的终边上取点P (-3,-3),则|OP |=23,于是由定义可得sin α=-12,cos α=-32,所以sin α-cos α=-12+32,故选A. 3. 函数y =log 2sin x 在x ∈⎣⎢⎡⎦⎥⎤π6,π4时的值域为( ) A .[-1,0]B.⎣⎢⎡⎦⎥⎤-1,-12 C .[0,1)D .[0,1]答案 B解析 由x ∈⎣⎢⎡⎦⎥⎤π6,π4,得12≤sin x ≤22, ∴-1≤log 2sin x ≤-12.4. 设函数y =3sin(2x +φ) (0<φ<π,x ∈R )的图象关于直线x =π3对称,则φ等于( ) A.π6B.π3C.2π3D.5π6答案 D解析 由题意知,2×π3+φ=k π+π2(k ∈Z ),所以φ=k π-π6(k ∈Z ),又0<φ<π,故当k =1时,φ=5π6,选D.5. 将函数f (x )=-4sin ⎝⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为( )A.π8 B.38π C.34π D.π2答案 B解析 依题意可得y =f (x )⇒y =-4sin[2(x -φ)+π4]=-4sin[2x -(2φ-π4)]⇒y =g (x )=-4sin[4x -(2φ-π4)],因为所得图象关于直线x =π4对称,所以g ⎝ ⎛⎭⎪⎫π4=±4, 得φ=k 2π+38π(k ∈Z ),故选B.6. 已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .- 3B .-1 C. 3D .1答案 C解析 由图形知,T =πω=2(3π8-π8)=π2,ω=2.由2×3π8+φ=k π,k ∈Z ,得φ=k π-3π4,k ∈Z .又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π4),∴f (π24)=tan(2×π24+π4)=tan π3= 3.7. (2012·课标全国)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13B .3C .6D .9答案 C解析 由题意可知,nT =π3(n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.8. 已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A .[k π-π12,k π+5π12],k ∈ZB .[k π+5π12,k π+11π12],k ∈ZC .[k π-π3,k π+π6],k ∈ZD .[k π+π6,k π+2π3],k ∈Z答案 C解析 f (x )=3sin ωx +cos ωx =2sin (ωx +π6)(ω>0).∵f (x )的图象与直线y =2的两个相邻交点的距离等于π,恰好是f (x )的一个周期,∴2πω=π,ω=2.∴f (x )=2sin (2x +π6).故其单调增区间应满足2k π-π2≤2x +π6≤2k π+π2(k ∈Z ).解得k π-π3≤x ≤k π+π6(k ∈Z ).二、填空题9. 函数f (x )=3cos 25x +sin 25x 的图象相邻的两条对称轴之间的距离是________.答案 5π2解析 f (x )=3cos 25x +sin 25x =2sin(25x +π3),∴周期为T =2π25=5π,则相邻的对称轴间的距离为T 2=5π2.10.将函数y =sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π3个单位,所得曲线的一部分如图所示,则ω、φ的值分别为________.答案 2、-π3解析 由图可知T 4=7π12-π3=π4,∴T =π,∴ω=2.把(7π12,-1)代入y =sin (2(x +π3)+φ)得sin (7π6+2π3+φ)=-1,∴11π6+φ=2k π+3π2(k ∈Z ),φ=2k π-π3(k ∈Z ),∵|φ|<π2,∴φ=-π3.11.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是__________.答案 ⎣⎢⎡⎦⎥⎤-32,3 解析 ∵f (x )和g (x )的对称轴完全相同,∴二者的周期相同,即ω=2,f (x )=3sin ⎝⎛⎭⎪⎫2x -π6. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴f (x )∈⎣⎢⎡⎦⎥⎤-32,3. 12.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝ ⎛⎭⎪⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上). 答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π4, 得T =2π2=π,故①对;f ⎝ ⎛⎭⎪⎫π4=2sin π4≠±2,故②错; f ⎝ ⎛⎭⎪⎫π8=2sin 0=0,故③对; y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4, 故④错.故填①③. 三、解答题13.(2013·湖南)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝⎛⎭⎪⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.解 f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝ ⎛⎭⎪⎫x -π3=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎪⎫x +π6≥12.从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.14.已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0,在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎪⎫2ωx +π6. 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎪⎫4x +π6. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π3的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π3的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π3. 因为0≤x ≤π2,所以-π3≤2x -π3≤2π3.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个交点, 由正弦函数的图象可知-32≤-k <32或-k =1. 所以-32<k ≤32或k =-1.。

三角函数—高考真题文科数学分项汇编(解析版)

三角函数—高考真题文科数学分项汇编(解析版)

y
f
(x)的图象.
其中所有正确结论的序号是
A.①
B.①③
【答案】B
C.②③
D.①②③
2
【解析】因为 f (x) sin(x ),所以周期T 2 2,故①正确;
3
f ( ) sin( ) sin5 1 1,故②不正确;
2
23
62
将函数 y sin x的图象上所有点向左平移 个单位长度,得到 y sin(x )的图象,
2
D.2
【答案】C
sin x
【解析】 f (x)
tan x 1 tan2 x
cos 1(sin
x sin xcos x 1sin2x,
x) 2
2
cos x
故所求的最小正周期为T 2π π,故选 C. 2
【名师点睛】函数 y Asin(x ) B(A 0, 0)的性质:
(1) ymax=B+A,ymin B A.
对应的函数为
gx.若
g
π4
2
,则
f
3π 8
A.−2
B. 2
C. 2
D.2
【答案】C
【解析】∵ f (x)为奇函数,∴ f (0) Asin 0,=kπ,k Z,k 0, 0;
∵ f x的最小正周期为π,T

π,∴
2,
∴ g(x) Asin 1x Asin x,
2
又 g(π) 2,∴ A 2,
f x max
3
2
5 2
4,故选
B.
【名师点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质, 在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.

2012-2018年高考真题汇编:三角函数文科(带答案)

2012-2018年高考真题汇编:三角函数文科(带答案)

的值;
2

sin 2


sin 2 sin cos

cos
2
1
的值.
【答案】(1) 3 ;(2)1.
3、三角函数的图象和性质
10.(2014 大纲)设 a sin 33,b cos 55, c tan 35, 则( C ) A. a b c B. b c a C. c b a D. c a b
2x-π 4
在区间
0,π 2
上的最小值为(
B
)
A.-1 B.- 2 C. 2 D.0 22
21.(2014 浙江) 为了得到函数 y sin 3x cos 3x 的图象,可以将函数 y 2 sin 3x 的图象( C )

A.向右平移 个单位
4


B.向左平移 个单位 C.向右平移 个单位
, 7 ] 上单调递减
B.在区间 [
, 7 ] 上单调递增
12 12
12 12
C.在区间[ , ] 上单调递减 D.在区间[ , ] 上单调递增
63
63
【简解】原函数平移后得到 y=3sin(2x- 2 ),单调减区间为[kπ+ 7 ,kπ+ 13 ],增区间为[kπ+ 1 ,kπ
满足
f (x
4)
f
(x)(x R)
,且在区间
(2, 2] 上,
f (x)

cos
x 2
,
0

x 2,

|
x

1 2
|, -2

x

0,

(浙江)高考三角函数解答题专项训练含答案(最新整理)

(浙江)高考三角函数解答题专项训练含答案(最新整理)

9、在△ABC 中,角 A、B、C 的对边分别为 a、b、c.已知 a+b=5,c= 7 ,
且 4sin 2 A B cos 2C 7 .
2
2
(1)求角 C 的大小;
(2)求△ABC 的面积.
解:(1)∵A+B+C=180°
由 4sin 2 A B cos 2C 7 得4 cos2 C cos 2C 7
4
f (x) 的最小正周期为 2
(2)依题意, x0
2k
3 4
(k
Z
),
由周期性, f (x0 ) f (2x0 ) f (3x0 )
(sin 3 cos 3 ) (sin 3 cos 3 ) (sin 9 cos 9 )
4
4
2
2
4
4
2 1
2、△ABC 的内角 A、B、C 的对边分别为 a、b、c,asinA+csinC- 2asinC=bsinB.
(1)求 B;(2)若 A=75°,b=2,求 a,c.
解:(1) 由正弦定理得 a2+c2- 2ac=b2.由余弦定理得 b2=a2+c2-2accosB.
2 故 cosB= ,因此 B=45°.
2
2+ 6
(2)sinA=sin(30°+45°)=sin30°cos45°+cos30°sin45°=
ab 2
5
,
cos cos 2 sin sin 2 2 5
5
5
, ………………………………3 分
即 2 2 cos 4 , cos 3 . ……………………………6 分
5
5
(Ⅱ)0 , 0, 0 , ………………………7 分 22
cos

浙江高考历年真题之三角函数大题(文科)

浙江高考历年真题之三角函数大题(文科)

浙江历年文科高考题之三角函数大题(教师版)1、(2005年)已知函数()2sin cos cos 2f x x x x =+(Ⅰ) 求()4f π的值; (Ⅱ) 设α∈(0,π),()22f α=,求sin α的值. 解析:(Ⅰ)∵()sin 2cos 2f x x x =+∴sin cos 1422f πππ⎛⎫=+= ⎪⎝⎭(Ⅱ) cos sin 2f ααα⎛⎫=+ ⎪⎝⎭ ∴1sin ,cos 424ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭13226sin sin 442ππαα⎛⎫=+-=⨯= ⎪⎝⎭∵()0απ∈,, ∴sin 0α>, 故sin α=2、(2006年)如图,函数y=2sin(πx +φ),x ∈R,(其中0≤φ≤2π)的图象与y 轴交于点(0,1). (Ⅰ)求φ的值; (Ⅱ)设P 是图象上的最高点,M 、N 是图象与x 轴的交点,求.与PM解析:(Ⅰ)因为函数图象过点(0,1),所以 2sin 1x =,,即 1sin 2x =因为02l π≤≤,所以6l π=. (Ⅱ)由函数2sin()6y x ππ=+及其图象,得115(,0),(,2),(,0),636M P N - 所以 11(,2,)(,2)22PM PN =--=-, 从而cos ,PM PNPM PN PM PN ⋅<>=⋅1517= ,故15,arccos 17PM PN <>=.3、(2007年)已知ABC △1+,且sin sin A B C +=. (I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.解析:(I )由题意及正弦定理,得1AB BC AC ++=,BC AC +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =, 由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--==, 所以60C =.4、(2009年)在ABC ∆中,角A,B,C 所对的边分别为a,b,c,且满足cos 25A =,3AB AC ⋅=. (Ⅰ)求ABC 的面积; (Ⅱ)若c=1,求a 的值.解析:(Ⅰ)531)552(212cos 2cos 22=-⨯=-=A A又),0(π∈A ,54cos 1sin 2=-=A A ,而353cos .===bc A ,所以5=bc ,所以ABC ∆的面积为:254521sin 21=⨯⨯=A bc (Ⅱ)由(Ⅰ)知5=bc ,而1=c ,所以5=b 所以5232125cos 222=⨯-+=-+=A bc c b a5、(2010年)在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足222()4S a b c =+-。

浙江高考数学三角大题十年合集

浙江高考数学三角大题十年合集



所以

(2)由
,得
于是




及正弦定理
设△ ABC 的面积为 S,则
,得


【解析】略
5.【答案】解:(Ⅰ)∵△ABC 中,a≠b,c=√3,cos2A-cos2B=√3sinAcosA-√3sinBcosB,
1+2 1+2 √3
= sin2A-√3sin2B,
2
2
2
2

第 7 页,共 13 页
5
又由 sin(α+β)=13,
得( + ) = ±√1 − 2 ( + )
=±√1 − ( 5 )2 = ± 12,
13
13
则 cosβ=cos[(α+β)-α]
=cos(α+β)cosα+sin(α+β)sinα
12
=
13
3
5
5
13
× (− ) +
4
56
× (− ) = − ,
∴sinB=sinAcosB-cosAsinB=sin(A-B),
∵A,B 是三角形中的内角,∴0< B<,-< A-B<,
∴-B=A-B 或 B=A-B,
∴A=(不合实际)或 A=2B,
即原题得证.
2 2
(Ⅱ)解:∵△ABC 的面积 S=
4 4

第 9 页,共 13 页
∴2bcsinA=a2,sinA≠0,
1
值,从而求得△ABC 的面积为2 ⋅ ⋅ 的值.
本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题.

三角函数部分高考题(带答案)

三角函数部分高考题(带答案)

即 sin(B C) 0 ∴ B C
BC
6
A
(B
C)
2 3
由正弦定理
a sin A
b sin B
c sin C

1
b c a sin B 2 3 2 2
sin A
3
2
31.已知函数 f (t)
1 t 1 t ,
g ( x)
cos x
f
(sin
x)
sin
x
f
(cos x),
x ( ,
因此
0≤
sin
2πx 6
1 2
3≤
2
,即 f (x) 的取值范围 为320, .
25.求函数 y 7 4sin x cos x 4cos 2 x 4cos 4 x 的最大值与最小值。
【解】: y 7 4sin x cos x 4cos 2 x 4cos 4 x
7 2sin 2x 4cos2 x 1 cos2 x
26.知函数
f (x) 2cos2x 2sinxcosx 1( x R,
0 )的最小值正周期是
2.
(Ⅰ)求 的值;
(Ⅱ)求函数 f ( x) 的最大值,并且求使 f ( x) 取得最大值的 x 的集合.
(17)本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦与余弦、函数
y Asin(x ) 的性质等基础知识,考查基本运算能力.满分 12 分.
4 3
,所以
tan
2
tan tan 2 1 tan tan2
1
∵,
为锐角,∴ 0
2
3 2
,∴
2 =
3 4
30.在 ABC 中,角 A, B, C 所对应的边分别为 a, b, c , a 2

高考真题汇编2010-2011 三角函数和平面向量大题 文科

高考真题汇编2010-2011  三角函数和平面向量大题 文科

三角函数和平面向量(2011广东文)16.(本小题满分12分)已知函数1()2sin()36f x x π=-,x ∈R .(1)求(0)f 的值; (2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求sin()αβ+的值. (2011北京文)15.(本小题共13分)已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求()f x 的最小正周期: (Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. (2011四川文)18.(本小题共l2分)已知函数73()sin()cos()44f x x x ππ=++-,x ∈R .(Ⅰ)求()f x 的最小正周期和最小值;(Ⅱ)已知4cos()5βα-=,4cos()5βα+=-,02παβ<<≤.求证:2[()]20f β-=.(2011福建文)21.(本小题满分12分)设函数f (θ)cos θθ+,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x,y ),且0θπ≤≤。

(1)若点P 的坐标为1(2,求f ()θ的值; (II )若0.2πθ≤≤,求函数()f θ的最小值和最大值。

(2010上海文数19).(本题满分12分)已知02x π<<,化简:2lg(cos tan 12sin))]lg(1sin 2)22x x x x x π⋅+-+--+.(2010浙江文数18) (本题满分l4分)在△ABC 中,角A 、B 、C 所对的边分别为a,b,c ,已知1cos 24C =- (I)求sinC 的值;(Ⅱ)当a=2, 2sinA=sinC 时,求b 及c 的长.(2010北京文数15)(本小题共13分)在△ABC 中,已知B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长.(2010重庆文数18) (本小题满分13分), (Ⅰ)小问5分,(Ⅱ)小问8分.)设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c,且32b +32c -32a(Ⅰ) 求sinA 的值; (Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值.(2010浙江文数18)在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足222)4S a b c =+-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江历年文科高考题之三角函数大题
(教师版)
1、(2005年)已知函数()2sin cos cos 2f x x x x =+
(Ⅰ) 求()4
f π
的值; (Ⅱ) 设α∈(0,π),2
()2
2
f α=
,求sin α的值.
解析:(Ⅰ)∵()sin 2cos 2f x x x =+∴sin cos 1422
f πππ
⎛⎫=+= ⎪
⎝⎭
(Ⅱ) 2cos sin 2f ααα⎛⎫=+= ⎪⎝⎭ ∴13sin ,cos 424ππαα⎛⎫⎛
⎫+=+= ⎪ ⎪⎝⎭⎝

∵()0απ∈,, ∴sin 0α>, 故26
sin α+=
2、(2006年)如图,函数y=2sin(πx +φ),x ∈R,(其中0≤φ≤2
π
)的图象与y 轴交于点(0,1).
(Ⅰ)求φ的值;
(Ⅱ)设P 是图象上的最高点,M 、N 是图象与x 轴的交点,求.与PM
解析:(Ⅰ)因为函数图象过点(0,1),
所以 2sin 1x =,,即 1
sin 2
x =
?
因为02
l π
≤≤
,所以6
l π=
.
(Ⅱ)由函数2sin()6y x π
π=+
及其图象,得115
(,0),(,2),(,0),636
M P N -
所以 11
(,2,)(,2)2
2
PM PN =--=-,
从而cos ,PM PN PM PN PM PN
⋅<>=
⋅1517=
,故15,arccos 17
PM PN <>=.
3、(2007年)已知ABC △1,且sin sin A B C +=.
(I )求边AB 的长;
(II )若ABC △的面积为1
sin 6
C ,求角C 的度数.
解析:(I )由题意及正弦定理,得1AB BC AC ++=,
BC AC +=,两式相减,得1AB =.
(II )由ABC △的面积11sin sin 26BC AC C C =,得1
3
BC AC =,
由余弦定理,得222cos 2AC BC AB C AC BC +-=
22()21
22
AC BC AC BC AB AC BC +--==,
所以60C =.
4、(2009年)在ABC ∆中,角A,B,C 所对的边分别为a,b,c,且满足25
cos 25
A =,3A
B A
C ⋅=.
(Ⅰ)求ABC 的面积; (Ⅱ)若c=1,求a 的值.
解析:(Ⅰ)5
3
1)552(212cos
2cos 22=-⨯=-=A A
又),0(π∈A ,54cos 1sin 2
=-=A A ,而35
3
cos ...===bc A AC AB ,所以5=bc ,所以ABC ∆的面积为:25
4
521sin 21=⨯⨯=A bc
(Ⅱ)由(Ⅰ)知5=bc ,而1=c ,所以5=b
所以5232125cos 222=⨯-+=-+=A bc c b a
5、(2010年)在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足
2
223)S a b c =
+-。

(Ⅰ)求角C 的大小; (Ⅱ)求sin sin A B +的最大值。

解析:(Ⅰ)由题意可知
12ab 3,2ab cosC. 所以tan C 3 因为0<C <π, 所以C=π3
.
(Ⅱ)由已知sin A +sin B =sin A +sin(π-C -A )=sin A +sin(2π3-A )=sin A 3A +12sin A 3A +π
6
)3.
当△ABC 为正三角形时取等号,所以sin A +sin B 3.
6、(2011年)已知函数()sin (
)3
f x A x π
ϕ=+,x R ∈,0A >,02
π
ϕ<<
.()y f x =的部分图像,如
图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A .
(Ⅰ)求()f x 的最小正周期及ϕ的值;
(Ⅱ)若点R 的坐标为(1,0),23
PRQ π
∠=,求A 的值.
解析:(Ⅰ)由题意得,263
T π
π
=
=
因为(1,)P A 在sin()3y A x π
ϕ=+的图像上,所以sin() 1.3
π
ϕ+=
又因为0
2
πϕ
,所以6
π
ϕ=
(Ⅱ)设点Q 的坐标为(0,x A ).
由题意可知023
6
3
x π
π
π
+
=
,得04x =,所以(4,)Q A -
连接PQ,在△PRQ 中,∠PRQ=23
π
,由余弦定理得
22222221
cos 2.22 3.9RP RQ PQ PRQ RP RP A
+-∠===+,
解得A 2=3,又A >0,所以。

7、(2012年)在ABC ∆中,内角,,A B C 的对边分别为a ,b ,c ,且sin cos .b A B
(Ⅰ)求角B 的大小; (Ⅱ)若3,sin 2sin ,b C A ==求a ,c 的值。

解析:(Ⅰ)
由sin cos .b A B =及正弦定理,sin sin a b
A B
=得
(Ⅱ)
由sin 2sin ,sin sin a c
C A A C
==及得2,c a =
由3b =及余弦定理222222cos ,9.b a c ac B a c ac =+-=+-得
所以 a c ==
浙江历年文科高考题之三角函数大题
1、(2005年)已知函数()2sin cos cos 2f x x x x =+
(Ⅰ) 求()4
f π
的值; (Ⅱ) 设α∈(0,π),()2
2
f α=
sin α的值.
2、(2006年)如图,函数y=2sin(πx +φ),x ∈R,(其中0≤φ≤2
π
)的图象与y 轴交于点(0,1).
(Ⅰ)求φ的值;
(Ⅱ)设P 是图象上的最高点,M 、N 是图象与x 轴的交点,求.与PM
3、(2007年)已知ABC △的周长为21+,且sin sin 2sin A B C +=.
(I )求边AB 的长;
(II )若ABC △的面积为1
sin 6
C ,求角C 的度数.
4、(2009年)在ABC ∆中,角A,B,C 所对的边分别为a,b,c,且满足25cos 25
A =,3A
B A
C ⋅=.
(Ⅰ)求ABC 的面积; (Ⅱ)若c=1,求a 的值.
5、(2010年)在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足
2
223)S a b c =
+-。

(Ⅰ)求角C 的大小; (Ⅱ)求sin sin A B +的最大值。

6、(2011年)已知函数()sin (
)3
f x A x π
ϕ=+,x R ∈,0A >,02
π
ϕ<<
.()y f x =的部分图像,如
图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A .
(Ⅰ)求()f x 的最小正周期及ϕ的值;
(Ⅱ)若点R 的坐标为(1,0),23
PRQ π
∠=,求A 的值.
7、(2012年)在ABC ∆中,内角,,A B C 的对边分别为a ,b ,c ,且sin 3cos .b A a B (Ⅰ)求角B 的大小; (Ⅱ)若3,sin 2sin ,b C A ==求a ,c 的值。

相关文档
最新文档