精馏塔提馏段的温度控制系统

合集下载

常用串级和分程控制(介绍)

常用串级和分程控制(介绍)
结果:温度控制不稳定
概述
解决办法:再加入一个蒸汽流量控制系统,可控制 流量稳定。
FC
TC
问题:两套控制系统不能协调,甚至出现矛盾
温度控制系统要求增加或减小蒸汽流量,而流量控制 系统却只能根据事先的流量设定值进行定值控制。
概述
串级控制系统:两套控制系统的协调控制
FC
TC
特点:两个控制器,一个调节阀
- PID正反作用确定 . 先确定副控制器 调节阀选为气开型(故障关FC),特性为正作用; 流
量偏大时,阀门流通量应少, 对象特性为反作用; 所以 PID控制器应选正作用;
调节阀选为气关型(故障关FO),特性为反作用, PID控制器应选反作用;
串级控制系统
. 再确定主控制器 主控制器PID特性,不再需要考虑阀门特性和
一个控制器(主控制器)的输出送到另一个控制器 (副控制器)的给定,副控制器的输出送到控制阀ຫໍສະໝຸດ 述温度控制器流量控制器
控制阀
流量变送器
温度变送器
流量对象
温度对象
特点:两个闭环环路,内环和外环 内环:副环,副控制器、副对象、副变送器 (流量) 外环:主环,主控制器、主对象、主变送器 (温度)
概述
主环,定值控制系统,给定值由工艺设定,主控制
例:精馏塔提馏段温度控制系统 1)副环干扰 2)主环干扰
串级控制系统的特点
串级系统具有一定的自适应能力
自适应问题:控制器的参数往往是根据一定的控制对象设置的, 当控制对象特性发生变化时(非线性特性,操作条件变化、负 荷变化),原来好的控制器参数就变得不好了(不适应了) 串级系统中,副控制系统是随动系统,主控制器可根据操作条 件的变化,不断修改副控制器的给定值——自适应能力 “能力有限”,自适应控制(现代控制技术)

第七章 精馏塔的控制

第七章 精馏塔的控制

j LR x j
D,XD
F,ZF Vs y k Ls x k-1 ↑ ↓ k
VS VR , LS LR F
进料为气相,且为露点,则:
Ls B,xB
VR Vs F , LR LS
物料平衡示意图
其它情况下的进料较为复杂,
VR Vs 1 q F LS LR qF
4、节能与经济性
回收率:
Ri 组分i的产品流量 100 % 进料中组分i的流量
例如:丙烯—丙烷塔,进料流量F,丙烯含量Ei,塔顶丙烯 产品流量D,则丙烯回收率 =D/(FEi )×100% 其他的丙烯进入到塔底的丙烷产品中。
能耗-产品纯度-回收率的关系
能耗不变时,产品纯度↑,回收率↓ 保证产品纯度时,能耗↑,回收率↑,但回收率增加 到一定程度时,提高的就不明显了。 保证产品纯度的前提下,权衡回收率与能耗,选择最 佳的回收率与能耗搭配,使得产量尽量多些,能耗尽量少 些。
LR 定义回流比: R D
,则:
LR LR R VR LR D R 1
可通过回流比R和再沸器蒸汽量V→内部物料平衡→yj+1 回流比R↑,y~x斜率↑ 全回流(R=∞,D=0)时, yj+1 =xj为对角线
(3)提镏段物料平衡
再沸器物料平衡:
B LS VS
提馏段操作 线方程
个气泡时的温度称为泡点
全部变成饱和气相的温度称为露点。
精馏塔原理示意图
1、工艺流程 2、分类

板式塔 筛板塔、泡罩塔、浮阀塔
穿流塔、浮喷塔、浮舌塔

填料塔
增加气液两相的接触面积 乱堆填料,规整填料
精馏塔物料流程图
3、机理复杂、控制难度大

精馏塔的控制要求

精馏塔的控制要求

精馏塔的控制要求2.1 质量指标混合物分离的纯度是精馏塔控制的主要指标。

在精馏塔的正常操作中,产品质量指标就必须符合预定的要求,即保证在塔底或塔顶产品中至少有一种组分的纯度达到规定的要求,其他组分也应保持在规定的范围内,因此,应当取塔底或塔顶产品的纯度作为被控变量。

但是,在线实时监测产品纯度有一定的困难,因此,大多数情况下是用精馏塔内的“温度和压力”来间接反应产品纯度。

对于二元精馏塔,当塔压恒定时,温度与成分之间有一一对应的关系,因此,常用温度作为被控变量。

对于多元精馏塔,由于石油化工过程中精馏产品大多数是碳氢化合物的同系物,在一定的塔压下,温度与成分之间仍有较好的对应关系,误差较小。

因此,绝大多数精馏塔当塔压恒定时采用温度作为间接质量指标。

2.2 平稳操作为了保证精馏塔的平稳操作,首先必须尽可能克服进塔之前的主要可控扰动,同时缓和一些不可控的主要扰动,例如,对塔进料温度进行控制、进料量的均匀控制、加热剂和冷却剂的压力控制等。

此外,塔的进出物料必须维持平衡,即塔顶馏出物与塔底采出物之和应等于进料量,并且两个采出量的变化要缓慢,以保证塔的平稳操作。

另外,控制塔内的压力稳定,也是塔平衡操作的必要条件之一。

2.3 约束条件为了保证塔的正常、平稳操作,必须规定某些变量的约束条件。

例如,对塔内气体流速的限制,塔内气体流速过高易产生液泛,流速过低会降低塔板效率;再沸器的加热温差不能超过临界值的限制等。

3精馏塔的温度控制精馏塔控制最直接的质量指标是产品的组分,但产品组分分析周期长,滞后严重,因而温度参数成了最常用的控制指标,即通过灵敏板进行控制[3]。

3.1 精馏段温度控制精馏段温控灵敏板取在精馏段的某层塔板处,称为精馏段温控。

适用于对塔顶产品质量要求高或是气相进料的场合。

调节手段是根据灵敏板温度,适当调节回流比。

例如,灵敏板温度升高时,则反映塔顶产品组成XD下降,故此时发出信号适当增大回流比,使XD上升至合格值时,灵敏板温度降至规定值。

隔离壁精馏塔的简化温差控制

隔离壁精馏塔的简化温差控制
Hu a n g Ke j i n , Wu Ni n g , C h e n Ha i s h e n g , L u a n S h  ̄u n
( C o l l e g e o f I n f o r ma t i o n S c i e n c e a n d T e c h n o l o g y, B e i j i n g U n i v e r s i t y o f C h e mi c a l T e c h n o l o g y, B e i j i n g 1 0 0 0 2 9 , C h i n a )
第 8卷
第 9期 中 国 科 技 文 CH I NA S CI ENCEPAPER
Vo1 . 8 No . 9
2 0 1 3年 9月
隔 离 壁 精 馏 塔 的 简 化 温 差 控 制
黄克谨 , 吴 宁 , 陈海 胜 , 栾 淑君
( 北 京化 工 大 学 信 息 科 学与 技 术 学 院 , 北京 1 0 0 0 2 9 )
Ab s t r a c t :Al t h o u g h d i v i d i n g - wa l l d i s t i l l a t i o n c o l u m n( DW DC)c a n r e d u c e c o n s i d e r a b l y c a p i t a l i n v e s t me n t a n d u t i l i t y c o n s u mp t i o n,
c o n t r o l s t r a t e g y .By e mp l o y i n g t wo t e mp e r a t u r e c o n t r o l l o o p s i n t h e r e c t i f y i n g a n d s t r i p p i n g s e c t i o n s ,t wo t e mp e r a t u r e d i f f e r e n c e c o n t r o l l o o p s a r e u t i l i z e d t O g u a r a n t e e t h e s e p a r a t i o n o p e r a t i o n i n t h e p r e f r a c t i o n a t o r a n d ma i n t a i n t h e q u a l i t y o f t h e i n t e r me d i a t e p r o d u c t .I n t h i s c a s e ,t h e t e mp e r a t u r e d i f f e r e n c e c a n b e s i n g l e ,d o u b l e ,o r e v e n mu l t i p l e t e mp e r a t u r e d i f f e r e n c e .Th e s e p a r a t i o n o f a t e r n a r y mi x t u r e o f b e n z e n e ,t o l u e n e ,a n d o - x y l e n e i s u s e d t o e v a l u a t e t he p r o p o s e d s i mp l e t e mp e r a t u r e d i f f e r e n c e c o n t r o l s t r a t e g i e s .Th e s i mp l i f i e d d o u b l e t e mp e r a t u r e d i f f e r e n c e s c h e me a p p e a r s t o b e s u p e r i o r t o t h e s i mp l i f i e d s i n g l e t e mp e r a t u r e d i f f e r e n c e a n d c o n v e n t i o n a l t e mp e r a t u r e a n d t e mp e r a t u r e d i f f e r e n c e c o n t r o l s c h e me s ,i n n o t o n l y d y n a mi c p e r f o r ma n c e b u t a l s o t h e c a — p a b i l i t y o f s u p p r e s s i n g e x t e r n a l d i s t u r b a n c e s . Th e s e r e s u l t s d e mo n s t r a t e t h a t a p p l i c a t i o n s o f t h e s i mp l i f i e d t e mp e r a t u r e d i f f e r e n c e

串级控制系统的原理及设计

串级控制系统的原理及设计

串级控制系统的原理及设计中应注意的问题摘要:介绍了串级控制系统的基本原理,性能和设计中应注意的几个问题。

关键词:内环;外环;增益;时间常数;对象;共振现象;积分饱和现象。

1、概述1.1串级控制系统介绍单回路控制系统只用一个调节器,调节器只有一个输入信号,即只有一个闭环,在大多数情况下,这种简单系统能够满足工艺生产的要求。

但是也有一些另外的情况,譬如调节对象的动态特性决定了它很难控制,而工艺对调节质量的要求又很高;或者对调节对象的控制任务要求特殊,则单回路控制系统就无能为力了。

另外,随着生产过程向着大型、连续和强化方向发展,对操作条件要求更加严格,参数间相互关系更加复杂,对控制系统的精度和功能提出许多新的要求,为此,需要在单回路的基础上,采取其他措施,组成复杂控制系统。

串级控制是改善调节过程的一种极为有效的方法,并且在实际中得到了广泛的应用。

我厂的生产过程自动控制系统中,串级控制系统是应用最为广泛的复杂控制系统。

1.2(简单控制系统)图1.1是精馏塔底部示意图,在再沸器中,用蒸汽加热塔釜液产生蒸汽,然后在塔釜中与下降物料流进行传质传热。

为了保证生产过程顺利进行,需要把提馏段温度t保持恒定。

为此,在蒸汽管路上装一个调节阀,用它来控制加热蒸汽流量。

从调节阀动作到温度t发生变化,需要相继通过很多热容积。

实践证明,加热蒸汽压力的波动对温度t的影响很大。

此外,还有来自液相加料方面的各种扰动,包括他的流量、温度和组分等,它们通过提馏段的传质传热过程,以及再沸器中的传热条件(塔釜温度、再沸器液面等),最后也影响到温度t。

当加热蒸汽压力较大时,如果采用图1.1所示的简单控制系统,调节质量一般都不能满足生产要求。

如果采用一个附加的蒸汽压力控制系统,把蒸汽压力的干扰克服在入塔前,这样也提高了温度调节的品质,但这样就需要增加一只调节阀并增加了蒸汽管路的压力损失,在经济上很不合理。

比较好的方法是采用串级控制,如图1.2所示。

过程控制习题课

过程控制习题课

测量变送器和执行器与控制器(续)
题1:定值控制系统的过渡过程有几种形式?工程上一般要求为哪种过渡过程形式? 随动系统一般要求为哪种过渡过程形式? 答:五种,分别是:非周期发散过程、非周期衰减过程、发散振荡过程、等幅振荡 过程、衰减振荡过程等。 工程上一般要求为衰减振荡的过渡过程形式。随动系统一般要求为单调过程。 题2:一生产过程,被控对象为一阶特性,控制器为纯比例控制器,控制中还是发 生了衰减振荡过程?为什么?
Q2
R3
dh Q1 Q2 Q3 A dt R2 R3 h H s Wo ( s ) Q2 R2 Q1 s AR2 R3 s R2 R3 h Q3 R3
过程动态特性及建模(续)
R1 Q1
题2: (1) 列写过程微分方 程组;
h1 h2 Q12 R12
Q2
R2
将流量方程代入物料平衡方程, 即得到过程状态方程
过程动态特性及建模(续)
dh1 C1 Q1 Q2 Q12 , dt dh2 C2 Q12 Q3 dt h h Q2 1 , Q3 2 , R2 R3
h1 h2 Q12 R12
H1 ( s ) 1 Q1 (s) Q2 (s) Q12 (s), C1s
1 Q12 (s) Q3 (s) H 2 ( s) C2 s
H1 ( s ) H 2 ( s) Q2 ( s) , Q3 ( s) , R2 R3 H1 ( s ) H 2 ( s ) Q12 ( s) R12
5 如图所示为蒸汽加热器控制系统,若被控对象控制通道的传递函数为 Go s 7s 4 调节阀的传递函数为 GV s 1 控制器TC的传递函数为 GC s 1

精馏塔提馏段温度控制系统.doc

精馏塔提馏段温度控制系统.doc

University of South China过程控制仪表课程设计设计题目:精馏塔提馏段温度控制系统**:***班级:自动化073班学号:***********指导教师:高飞燕唐耀庚2 0 1 0年12 月31日1、系统简介精馏操作是炼油、化工生产过程中的一个十分重要的环节。

精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以来一直受到人们的高度重视。

精馏塔是一个多输入多输出的对象,它由很多级塔板组成,内在机理复杂,对控制要求又大多较高。

这些都给自动控制带来一定的困难。

同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的特点,进行自动控制方案设计和研究。

精馏塔的控制最终目标是:在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大。

在这个情况为了更好实现精馏的目标就有了提馏段温度控制系统的产生。

按提馏段指标的控制方案:当塔釜液为主要产品时,常常按提馏段指标控制。

如果是液相进料,也常采用这类方案。

这是因为在液位相进料时,进料量的变化,首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变化,所以采用提馏段控制温度比较及时。

另外如果对釜底出料的成分要求高于塔顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几倍最小回流比时,可采用提馏段控制。

提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。

2、设计方案及仪表选型2.1控制方案的确定图2-1是精馏塔底部示意图,在再沸器中,用蒸汽加热塔釜液产生蒸汽,然后在塔釜中与下降物料进行传热传质。

为了保证生产过程顺利进行,需要把提馏段温度θ。

保持恒定。

为此在蒸汽管路上装上一个调节阀,用它来控制加热蒸汽流量。

从调节阀的做到温度θ发生变化,需要相继通过很多热容积。

实践证明,加热蒸汽压力的波动对θ的影响很大。

此外,还有来自液相加料方面的各种干扰,包括它的流量、温度和组分等,它们通过提馏段的传质过程,以及再沸器中传热条件(塔釜温度、再沸器液面等),最后也影响到温度θ。

精馏塔的温度控制

精馏塔的温度控制

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计院(系):专业班级:学号:学生姓名:指导教师:(签字)起止时间:摘要随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。

采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。

将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。

所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。

由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。

影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。

采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。

使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。

关键词:提馏段;温度;串级控制;超驰控制目录第1章绪论 (1)第2章课程设计的方案 (2)2.1概述 (2)2.1.1 物料平衡关系 (2)2.1.2 能量平衡关系 (3)2.2设计方案 (3)2.2.1控制方案类型 (3)2.2.2控制方案的选择 (4)第3章系统各仪表选择 (9)3.1检测变送器的原理 (9)3.1.1 温度变送器的选择 (9)3.1.2 流量变送器的选择 (10)3.2执行器的选择 (11)3.3调节器的选择 (12)3.4调节器与执行器、检测变送器的选型 (14)电磁流量计 (14)第4章系统仿真 (15)4.1串级控制系统MATLAB仿真分析 (15)第5章课程设计总结 (18)第6章参考文献 (20)第1章绪论精馏塔是化工生产中分离互溶液体混合物的典型分离设备。

精馏塔说明书

精馏塔说明书

精馏塔说明书一、产品介绍精馏塔是一种用于分离液体混合物的设备,广泛应用于化工、石油、食品等领域。

本说明书将详细介绍精馏塔的结构、工作原理、操作方法以及注意事项。

二、结构与工作原理精馏塔主要由塔体、进料口、出料口、塔板、冷凝器、再沸器等组成。

其工作原理是基于物质的沸点差异,通过加热和冷凝的方式实现液体混合物的分离。

具体来说,精馏塔内的液体混合物经过加热后,部分组分会蒸发并随上升蒸汽进入塔顶的冷凝器,在那里被冷却液化。

而未蒸发的组分会继续留在塔内,通过再沸器加热后再次蒸发,如此反复,直至达到所需的分离效果。

三、操作方法1、开启前检查:检查精馏塔及相关设备是否完好,管道、阀门有无泄漏,冷凝器、再沸器是否正常工作。

2、开启进料口:将待分离的液体混合物加入进料口,注意流量控制,保持稳定。

3、开启加热系统:根据需要调整再沸器的加热温度,使液体混合物在塔内蒸发并上升至冷凝器。

4、开启冷凝器:调整冷凝器的冷却水流量,使上升的蒸汽在冷凝器中被液化。

5、收集产品:将冷凝器下方收集到的液体产品通过出料口导出。

6、调整操作参数:根据实际分离效果,调整加热温度、进料流量等参数,以达到最佳分离效果。

四、注意事项1、操作过程中要保持设备密封性良好,防止泄漏。

2、严格控制加热温度,防止过热引起物料分解或设备损坏。

3、定期检查设备及相关管道,发现泄漏或其他异常情况应及时处理。

4、在操作过程中要保持安全距离,避免直接接触高温设备和液体。

5、如遇紧急情况,应立即停车并采取相应措施。

五、维护与保养1、定期检查设备及相关管道的密封性,发现泄漏应及时处理。

2、定期清理设备内部杂物及沉积物,保持设备清洁。

3、定期检查加热系统和冷却系统的工作情况,确保设备正常运行。

4、根据实际使用情况,适时调整设备的操作参数,以达到最佳分离效果。

5、在停车期间,应对设备进行全面检查和维护,确保设备良好运行。

六、常见问题及解决方案1、分离效果不佳:可能是由于加热温度、进料流量等参数调整不当所致。

精馏塔的原理及控制要求

精馏塔的原理及控制要求

精馏塔的原理及控制要求一、精馏原理精馏是化工生产中分离互溶液体混合物的典型单元操作,其实质是多级蒸馏,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组分(沸点较低或饱和蒸汽压较高的组分)汽化,经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离。

精馏过程的主要设备有:精馏塔、再沸器、冷凝器、回流罐和输送设备等。

精馏塔以进料板为界,上部为精馏段,下部为提馏段。

一定温度和压力的料液进入精馏塔后,轻组分在精馏段逐渐浓缩,离开塔顶后全部冷凝进入回流罐,一部分作为塔顶产品(也叫馏出液),另一部分被送入塔内作为回流液。

回流液的目的是补充塔板上的轻组分,使塔板上的液体组成保持稳定,保证精馏操作连续稳定地进行。

而重组分在提留段中浓缩后,一部分作为塔釜产品(也叫残液),一部分则经再沸器加热后送回塔中,为精馏操作提供一定量连续上升的蒸气气流。

精馏塔从结构上分,有板式塔和填料塔两大类。

而板式塔根据塔结构不同,又有泡罩塔、浮阀塔、筛板塔、穿流板塔、浮喷塔、浮舌塔等等。

各种塔板的改进趋势是提高设备的生产能力,简化结构,降低造价,同时提高分离效率。

填科塔是另一类传质设备,它的主要特点是结构简单,易用耐蚀材料制作,阻力小等,一般适用于直径小的塔。

在实际生产过程中,精馏操作可分为间歇精馏和连续精馏两种。

对石油化工等大型生产过程,主要是采用连续精馏。

精馏塔是一个多输入多输出的多变量过程,内在机理较复杂,动态响应迟缓缓,变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题。

而且从能耗的角度来看,精馏塔是三传一反典型单元操作中能耗最大的设备,因此,精馏塔的节能控制也是十分重要的。

二、精馏塔的主要干扰因素精馏塔的主要干扰因素为进料状态,即进料流量F、进料组分zf ,进料温度Tf或热焓FE.此外,冷剂与加热剂的压力和温度及环境温度等因素也会影响精馏塔的平衡操作。

精馏塔的安全运行分析——精馏塔的温度控制

精馏塔的安全运行分析——精馏塔的温度控制

精馏塔的安全运行分析——精馏塔的温度控制
精馏塔通过灵敏板进行温度控制的方法大致有以下几种。

(1)精馏段温控灵敏板取在精馏段的某层塔板处,称为精馏段温控。

适用于对塔顶产品质量要求高或是气相进料的场合。

调节手段是根据灵敏板温度,适当调节回流比。

例如,灵敏板温度升高时,则反映塔顶产品组成zn下降,故此时发出信号适当增大回流比,使XD上升至合格值时,灵敏板温度降至规定值。

(2)提馏段温控灵敏板取在提馏段的某层塔板处,称为提馏段温控。

适用于对塔底产品要求高的场合或是液相进料时,其采用的调节手段是根据灵敏板温度,适当调节再沸器加热量。

例如,当灵敏板温度下降时,则反映釜底液相组成Xw变大,釜底产品不合格,故发出信号适当增大再沸器的加热量,使釜温上升,以便保持工w的规定值。

(3)温差控制当原料液中各组成的沸点相近,而对产品的纯度要求又较高时不宜采用一般的温控方法,而应采用温差控制方法。

温差控制是根据两板的温度变化总是比单一板上的温度变化范围要相对大得多的原理来设计的,采用此法易于保证产品纯度,又利于仪表的选择和使用。

串级调节对精馏塔塔釜温度的控制

串级调节对精馏塔塔釜温度的控制
年 1 0 1月
串 级 调 节 对 精 馏 塔 塔 釜 温 度 的 控 制
吉林 石化 公 司 丙烯腈厂 赵 晓 芹
[ 摘 要] 精馏塔的 温度是控制精馏操作分 离质量和效率 的重要 参数 。对于化工生产 中对 分离质量要求很高的精馏操作 来说 , 控制
精 馏 塔 温度 的稳 定就 显得 至 关重 要 。本 文 论 述 了应 用 串级 控 制 系统取 代 单 回路 对精 馏 塔 塔 釜 温度 的控 制 的意 义 。 [ 关键词 ] 精馏塔 温度 串级调 节
科技信息.
工 程 技 术
题。 这要求在设计之初 , 就要考虑到养护的问题 , 并使之简单化 , 以容 可 易 的实行 。例如收费站的设立 , 一定要考 虑其 可行性 , 在设计的时候不 能随意的设置 , 等公路建成后 , 却发现设计是 不合理 的 , 具体实施起来 , 寸步难行 , 这就大大地阻碍 了公路养护的实行 。 2公路 的设计和建设 , . 要考虑到当地的实际情 况以及公路建成后的 使用情况 。 如果当地经济发达 , 这就要考虑养护 的执行性 , 经济发达 , 那 么车流量 就大 , 同样 的养护起来 就困难 , 养护频 率也会加大 , 以设计 所 之初 ,一定要考虑实际情况 以及这些实际情 况给公路 养护带来 的实施 的负担。不能一味的按“ 规律” 办事 , 使设计和建设千篇 一律 , 不按实际 办事 , 必然使公路 的设计 和建设 的效率大 打折扣 。 总的来说 , 公路的设 计和建设要考虑 的因素很 多 , 中公路的养护 其 这个因素 , 是其中主要去考虑的 因素 。不管是公路 的养护 , 还是公路的 设计和建设 , 都离不开路 , 它们是相 依相存的 , 总要 在另一方看 到另一
方的影子。
1 . 公路的 日常养护给公路 的设计和建设带来实际经验的可操作性 。 设计是图纸上理论层 面, 而建设 又是基于设计 的 , 那么它们都缺乏实际 的经验的指导。如果光纸上谈兵 , 是不会有什 么进步的 , 而公路 的 日常 养护却给这些 理论层面 的东西带来可 喜的可操作 性 。我们可 以在公路

精馏塔

精馏塔

课题名称:精馏塔装置精馏工段自控系统设计专业班级:学生学号:学生姓名:学生成绩:指导教师:课题工作时间:至目录一、精馏塔装置的工艺流程二、自控方案的选择三、仪表选型说明四、节流装置或调节阀的数据计算五、总结附录:工艺管道及控制流程图仪表盘正面布置图仪表盘背面电气接线图一、精馏塔装置的工艺流程精馏操作是炼油、化工生产过程中的一个十分重要的环节。

精馏塔的控制直接影响到产品质量、产量和能量的消耗,因此精馏塔的自动控制长期以来一直受到人们的高度重视。

精馏就是将一定浓度的溶液送入精馏装置,是其反复地进行部分汽化和部分冷凝,从而得到预期的塔顶与塔底产品的操作。

文成这一操作过程的相应设备除精馏塔外,还有再沸器、冷凝器、回流罐和回流泵等辅助设备。

本次设计采用了连续精馏装置的流程详见图纸。

精馏是化工、石油化工、炼油生产中应用极为广泛的传质传热过程,其目的是将混合物中各组分分离,达到规定的纯度。

精馏过程的实质,就是利用混合物中个组分具有不同的挥发度,即在同一温度下各组分的蒸汽压不同这一性质,使液相中的轻组分转移到气相中,而气相中的重组分转移到液相中,从而实现分离的目的。

一般精馏装置由精馏塔塔身、冷凝器、回硫罐以及再沸器等设备组成。

精馏就是将一定浓度的溶液送入精馏装置,使其反复地进行部分汽化和部分冷凝,从而得到预期的塔顶与塔底产品的操作。

完成这一操作过程的相应设备除精馏塔外,还有再沸器、冷凝器、回流罐和回流泵等辅助设备。

在实际生产过程中,精馏操作可分为歇间精馏和连续精馏两种。

目前,工业上一般所采用的连续精馏装置的流程如图1.1所示。

图1.1 连续精馏装置的流程在连续精馏过程中,原料液连续不断地进入塔内,塔顶产品和塔釜产品也连续不断地分别从塔顶和塔釜取走,当操作达到稳定时,每层塔板上液体和蒸汽的浓度均保持不变,而且原料、塔顶产品和塔釜的浓度和流量也都保持定值。

精馏过程可以在常压下进行也可以在高于或低于大气压力下进行。

当所分离的溶液在常压下是气相时,则必须在加压下进行精馏;而分离高沸点的溶液,则常常在减压(真空)下、进行精馏。

精馏塔提馏段的温度控制设计

精馏塔提馏段的温度控制设计

、成绩过程控制仪表课程设计设计题目精馏塔提馏段的温度控制系统学生姓名 XX ,专业班级自动化X X X X班学号 XXXXXXXXXXX指导老师 XXX2019年XX月XX日{《过程控制仪表》课程设计评分标准表姓名:XX 学号:XXXXXXXXX课程设计的最终成绩采取“优秀”、“良好”、“中等”、“及格”和“不及格”五级记分。

100-90分(优秀)、89-80(良好)、79-70(中等)、69-60(及格)、低于60(不及格)《过程控制仪表课程设计》任务书目录1.设计任务与要求 (1)设计任务 (1)设计要求 (1)2.系统简介 (1)3.设计方案及仪表选型 (2)控制方案的确定 (2)系统原理及方框图 (3)仪表选型 (4)4.系统仿真分析 (10)5.控制系统仪表配接图及说明 (13)6.仪表型号清单 (13)7.总结 (13)参考文献 (14)1.设计任务与要求设计任务过程控制仪表课程设计,是《自动化仪表与装置》课程中的后续课程,实践教学环节,也是一次全面的专业知识的运用和实践。

⑴巩固和深化所学课程的知识:通过课程设计,要求学生初步学会运用本门课程和其它相关课程的基本知识和方法,来解决工程实际中的具体的设计问题,检验学生对本门课程及相关课程内容的掌握的程度,以进一步巩固和深化所学课程的知识。

⑵培养学生的设计、实践能力:通过课程设计,从方案选择、设计计算到绘制图纸、编写设计说明书,可以培养学生对工程设计的独立工作能力,树立正确的设计思想,掌握自动控制系统中各环节使用仪表的基本方法和步骤,为以后从事工程设计打下良好的基础。

⑶使学生能熟悉和运用设计资料,学会查阅相关文献,如有关国家标准、手册、图册等,以完成作为工程技术人员在工程设计方面所必须的基本训练。

设计要求(1)编写过程控制仪表设计说明书。

内容包括:控制系统的简单介绍,工艺流程分析;各环节仪表的选型、仪表的工作原理及性能指标;控制系统的仿真分析;仪表间的配接说明。

精馏塔提馏段温度控制方案

精馏塔提馏段温度控制方案

精馏塔提馏段温度控制方案
精馏塔的提馏段温度控制方案可以通过以下几个步骤实施:
1. 设置目标温度:根据产品的蒸汽化温度和沸点等物理性质,确定塔顶的目标温度。

这个温度应该足够高,使得目标组分能够从原料中蒸发出来。

2. 监测温度:在塔顶和其他关键位置安装温度传感器,监测塔内各个位置的温度变化,并将数据传输给温度控制系统。

3. 确定控制策略:根据温度传感器的监测数据,控制系统分析和计算,确定合适的控制策略。

常见的策略包括比例控制、比例积分控制和比例积分微分控制等。

4. 调节操作:根据控制策略的结果,控制系统会输出相应的控制信号,调节塔顶的加热或降温装置,以达到目标温度。

5. 反馈调整:监测实际温度和目标温度之间的偏差,并根据调整的结果进行反馈调整,进一步优化控制策略。

需要注意的是,精馏塔提馏段温度控制方案还需要考虑其他因素,如进料流量、冷却介质温度等。

此外,不同的塔设计和操作条件可能需要不同的控制策略,因此具体的温度控制方案应根据具体情况进行定制。

第5章 精馏塔的控制

第5章 精馏塔的控制

102

塔的正常操作 F
影响产品质量
LT 101 LC 101
LR
分 馏 c塔
Vs
FT 101 FC 101
TT 101
TC
H
101
PC 101
LT 102 LC 102
D
B
⑴ 操作压力大于大气压
① 液相采出,馏出物中含有大量不凝物
PT PC
PC
101 101
PT
101
101
LR
D
适合气体流经冷凝器的阻力变化 较小,回流罐的压力基本代表塔 顶压力。
精馏塔原理示意图
5.2 精馏塔受控变量的选择
控制的目的:保证产品质量。 研究的问题:① 检测变量的选择;
② 检测点的位置。 按质量指标:产品成分(直接变量)。 成分分析仪表的特点:周期长、反应慢、滞后大; 故常选择表征成分的间接变量。
常用的间接变量:温度
5.2 精馏塔受控变量的选择
⑴ 测温点的选择 ① 测温点尽量选择在通道滞后较小的点(压力一定)。 ② 采用塔顶回流控制温度时,选择顶部塔板液相温度。 灵敏板:在扰动作用下,达到新的稳态时,温度变化最大塔板。 灵敏板的优点:动态响应较快。 灵敏板的位置:根据分馏塔的模型逐坂计算确定。
液相采出,馏出物中含有大量不凝物
PT PC
PC
101 101
PT
101
101
LR
D
适合气体流经冷凝器的阻力变化较小, 回流罐的压力基本代表塔顶压力。
LR
D
冷凝器的阻力较大时,回流罐 压力不能代表塔顶压力。
液相采出,馏出物中含有少量不凝物
当塔顶气相中不凝性气体量小于塔顶气

精馏塔的流程

精馏塔的流程

精馏塔的具体操作方法是:通过控制塔釜的加热量来控制精馏塔的热源量;通过控制回流温度以及回流量控制塔顶的冷源量;通过温度—压力组成的对应关系,来控制产品的质量。

一、概述精馏是一种利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。

根据操作方式,可分为连续精馏和间歇精馏;根据混合物的组分数,可分为二元精馏和多元精馏;根据是否在混合物中加入影响汽液平衡的添加剂,可分为普通精馏和特殊精馏(包括萃取精馏、恒沸精馏和加盐精馏)。

若精馏过程伴有化学反应,则称为反应精馏。

二、工艺流程进料板以上称为精馏段—精制气相中的易挥发组分。

进料板以下(包括进料板)称为提馏—提浓液相中难挥发组分。

塔顶产品称为馏出液—富含易挥发组分。

塔底产品称为釜液—富含难挥发组分。

精馏段:加料板以上的塔段。

上升气相中重组分向液相传递,液相中轻组分向气相传递,完成上升蒸气轻组分精制。

提馏段:加料板及其以下的塔段。

下降液体中轻组分向气相传递,气相中重组分向液相传递,完成下降液体重组分提浓。

塔顶冷凝器的作用:获得塔顶产品及保证有适宜的液相回流。

再沸器的作用:提供一定量的上升蒸气流。

原料液经预热后,送入精馏塔内。

在进料板上与自塔上部下降的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。

在每层板上,回流液体与上升蒸气接触,进行热和质的传递过程。

操作时,连续地从再沸器取出部分液体作为塔底产品(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板。

塔顶蒸气进入冷凝器中被全部冷凝,并将部分冷凝液借助重力作用(也可用泵送)送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(馏出液)。

说明:1、精馏塔中蒸气自下而上流动,液体自上而下流动。

2、由于存在温度差和浓度差,气相就要进行冷凝,使气相中的部分难挥发组分转入液相中;而气相冷凝时放出的热传递给液相,使液相部分汽化,其中部分易挥发组分传质到气相中。

精馏塔提留段温度单回路控制 --过控专业终稿解读

精馏塔提留段温度单回路控制 --过控专业终稿解读

中北大学课程设计说明书学生姓名:学号:31学院:机械与动力工程学院专业:过程装备与控制工程题目:精馏塔提馏段温度单回路控制方案设计指导教师:刘广璞职称: 教授闫宏伟职称: 教授2014年1月10日中北大学课程设计任务书2013/2014 学年第 1 学期学院:机械与动力工程学院专业:过程装备与控制工程学生姓名:学号:31课程设计题目:精馏塔提馏段温度单回路控制方案设计起迄日期:2013年12月30日~2014年1月10日课程设计地点:中北大学指导教师:刘广璞闫宏伟系主任:黄晋英下达任务书日期: 2013年12月30日课程设计任务书目录1 精馏塔工作原理及结构特性 (7)1.1精馏原理以及工业流程 (7)1.2精馏塔的特性 (7)1.2.1精馏塔的静态特性 (7)1.2.2精馏塔的动态特性 (9)2 控制系统设计 (10)2.1 精馏塔提留段温度控制系统设计方案 (10)2.2 精馏塔提馏段被控变量的选择 (10)2.3 提馏段温度控制系统温度检测点选择 (11)3 硬件选型 (11)4 框图设计与PID参数控制 (15)4.1 精馏塔提馏段温度单回路方框图设计 (16)4.2 各环节传递函数总结 (16)4.3 调节器控制规律 (16)5 系统的Simulink仿真 (17)6 课程设计总结 (19)参考文献 (20)1. 精馏塔工作原理及结构特点1.1精馏原理以及工业流程精馏操作分为连续精馏和间歇精馏,本设计的研究对象是连续精馏的过程。

连续精馏的流程装置如下图所示。

图1.1连续精馏装置工艺流程图[7]其操作过程是:原料液经预热加热到一定温度后,进入精馏塔中的进料板,料液在进料板上与自塔上部下降的回流液体汇合后,在逐板下流,最后流入塔底再沸器中,液体在逐板下降的同时,它与上升的蒸汽在每层塔板上相互接触,同时进行部分汽化和部分冷凝的质量和能量的传递过程。

操作时,连续从再沸器中取出的部分液体作为塔底产品,部分液体汽化产生上升蒸汽,从塔底回流入塔内出塔顶蒸汽进入冷凝器中被冷凝成液体,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品。

化工仪表第6章简单控制系统

化工仪表第6章简单控制系统

第二节 简单控制系统的设计
影响提馏段灵敏板温度T灵的
因素主要有:
进料流量Q入 进料成分X入 进料温度T入 回流流量Q回 回流温度T回 不可控 不可控 不可控 可控 (不可控)
图6-8 影响提馏段温度各种 因素示意图
加热蒸汽流量QZ
冷凝器冷却温度 塔压P
可控
(不可控) 不可控
通过工艺分析,选择蒸汽流量作为操纵变量。 控制更及时,更显著。
燃料气
3. 变送器是随炉温升高,输出增大, 也是“正”方向。 4. 所以控制器必须为“反方向”, 才能当炉温升高时,使阀门关小, 炉温下降。
加热炉出口温度控制
第五节 控制系统的投运及操作中的常见问题
举例
液位控制系统
控制阀采用了气开阀 1. 当控制阀打开时,液位是下 降的,所以对象的作用方向 是“反”的。
A: 无纯滞后时的校正作用
B: 有纯滞后时的校正作用
C: 不受控下的输出曲线 D: 无纯滞后时的输出曲线 E: 有纯滞后时的输出曲线
在选择控制变量构成控制回路时,应尽量避免控制通道纯滞 后τ0的存在,无法避免时应使之尽可能小。
干扰通道时间常数 Tf
Tf越大越好,干扰对被控变量 的影响越缓慢,越有利于改善 控制质量。
概述
选择被控变量 选择控制变量
处理测量信号
选择调节阀 选择控制规律 系统投运 参数整定
第一节 简单控制系统的结构与组成
简单控制系统通常是指由一个测量元件、变送器、一个 控制器、一个控制阀和一个对象所构成的单闭环控制系统。
图6-1 液位控制系统
图6-2 温度控制系统
第一节 简单控制系统的结构与组成
1—精馏塔;2—蒸汽加热器
图6-5 苯-甲苯溶液 的T-x图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南华大学过程控制仪表课程设计设计题目精馏塔提馏段的温度控制系统学生XXX专业班级自动化X X X学号XXXXXXXXXX指导老师XXX2012年6月25日目录1.系统简介与设计目的 (2)2.控制系统工艺流程及控制要求 (3)3.设计方案及仪表选型 (4)3.1控制方案的确定 (4)3.2控制系统图、方框图 (5)4.各个环节仪表的选型,仪表的工作原理以及性能指标 (7)4.1检测元件 (7)4.1.1铠装热电偶特点 (7)4.1.2铠装热电偶主要技术参数 (7)4.2变送器 (7)4.2.1变送器主要技术指标 (7)4.3调节器 (8)4.4执行器 (8)4.4.1电/气阀门定位器作用 (8)5.绘制仪表盘电气接线图,端子接线图 (10)6.仪表型号清单 (11)7.设计总结 (12)参考文献 (13)1.系统简介与设计目的精馏操作是炼油、化工生产过程中的一个十分重要的环节。

精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以来一直受到人们的高度重视。

精馏塔是一个多输入多输出的对象,它由很多级塔板组成,在机理复杂,对控制要求又大多较高。

这些都给自动控制带来一定的困难。

同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的特点,进行自动控制方案设计和研究。

精馏塔的控制最终目标是,在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大。

在这个情况为了更好实现精馏的目标就有了提馏段温度控制系统的产生。

按提馏段指标的控制方案,当塔釜液为主要产品时,常常按提馏段指标控制。

如果是液相进料,也常采用这类方案。

这是因为在液位相进料时,进料量的变化,首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变化,所以采用提馏段控制温度比较及时。

另外如果对釜底出料的成分要求高于塔顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几倍最小回流比时,可采用提馏段控制。

提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。

精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。

2. 控制系统工艺流程及控制要求(1)控制系统的简单介绍,工艺流程分析;(2)各环节仪表的选型、仪表的工作原理及性能指标;(3)仪表间的配接说明;(4)绘制工艺流程原理框图;(5)给出仪表型号清单;(6)绘制仪表盘电气接线图,端子接线图。

3.设计方案及仪表选型3.1控制方案的确定图3-1是精馏塔底部示意图,在再沸器中,用蒸汽加热塔釜液产生蒸汽,然后在塔釜中与下降物料进行传热传质。

为了保证生产过程顺利进行,需要把提馏段温度θ。

保持恒定。

为此在蒸汽管路上装上一个调节阀,用它来控制加热蒸汽流量。

从调节阀的做到温度θ发生变化,需要相继通过很多热容积。

实践证明加热蒸汽压力的波动对θ的影响很大。

此外,还有来自液相加料方面的各种干扰包括它的流量、温度和组分等,它们通过提馏段的传质过程,以及再沸器中传热条件(塔釜温度、再沸器液面等),最后也影响到温度θ。

很明显当加热蒸汽压力波动较大时,如果采用如图3-1所示的简单单回路温度控制系统,调节品质一般不能满足生产要求。

由于存在这些扰动故考虑串级控制系统。

图3-1精馏塔提馏段单回路温度控制方案串级控制系统(如图3-2),与单回路控制系统相比有一个显著的区别,即其在结构上多了一个副回路,形成了两个闭环----双闭环或称双环。

串级控制系统在结构上与电力传动自动控制系统中的双环系统相同,就其主回路外环来看是一个定值控制系统,而副回路环则为一个随动系统。

以加热炉串级控制系统为例,在控制过程中,副回路起着对炉出口温度的“粗调”作用,而主回路则完成对炉出口温度的“细调”任务。

与单回路控制系统相比,串级控制系统多用了一个测量变送器与一个控制器(调节器),增加的投资并不多(对计算机控制系统来说仅增加了一个测量变送器),但控制效果却有显著的提高。

其原因是在串级控制系统中增加了一个包含二次扰动的副回路,使系统有如下几点的改善:①改善了被控过程的动态特性提高了系统的工作频率。

②对二次扰动有很强的克服能力。

③提高了对一次扰动的克服能力和对回路参数变化的自适应能力。

综上所述根据系统工艺要求决定在系统设计中采用闭环串级控制方式。

图3-2一般闭环串级控制系统3.2控制系统图、方框图本系统为了较好的达到控制目标采,用如图2-3所示的提馏段温度串级控制系统。

副调节器QC2根据加热蒸汽流量信号控制调节阀,这样就可以在加热蒸汽压力波动的情况下,仍能保持蒸汽流量稳定。

但副调节器QC2的给定值则受主调节器θC1的控制,后者根据温度θ改变蒸汽流量给定值Qr,从而保证在发生进料方面的扰动的情况下仍能保持温度θ满足要求。

用这个方法以非常有效地克服蒸汽压力波动对于温度θ的影响,因为流量自稳定系统的动作很快,蒸汽压力变化所引起的流量波动在2至3s以就消除了,而这样短暂时间的蒸汽流量波动对于温度θ的影响是很微小的。

进料加热蒸汽图2-3精馏塔提馏段温度控制串级控制系统图串级控制系统方块图如图2-4所示,它有俩个闭环系统:副环是流量自稳定系统,主环是温度控制系统。

图3-4提馏段温度串级控制系统框图主参数:塔底物料温度θ副参数:加热蒸汽流量Q控制量:蒸汽阀开度一次扰动D1:加热蒸汽压力的波动对θ的扰动。

二次扰动D2:来自液相加料方面的各种干扰;包括它的流量、温度和组分等,它们通过提馏段的传质过程以及再沸器中传热条件(塔釜温度、再沸器液面等)。

4.各个环节仪表的选型,仪表的工作原理以及性能指标4.1检测元件本系统选择铠装热电偶4.1.1铠装热电偶特点:1.热响应时间小,减少动态误差2.可弯曲安装使用3.测量围大4.机械强度高,耐压性能好4.1.2铠装热电偶主要技术参数:1.精度等级:I级或II级2.公称直径:Φ13.弯曲直径:R≥5D4.公称压力:常压测量500℃以上的高温,它可以直接测量各种生产过程中从0℃~800℃围的液体、蒸汽和其气体介质以及固体表面的温度,铠装热电偶响应时间τ0.5(秒)。

4.2变送器本系统的变送器用于温度的变送,故选择温度变送器。

其中较为常用的有模拟式温度变送器,一体化温度变送器以及智能式温度变送器三种。

本系统采用典型的模拟式温度变送器中的DDZ-III型热电偶温度变送器,属安全火花型防爆仪表。

还可以与检测元件热电偶相匹配。

将温度信号线性转换为统一标准信号。

本系统选择KBW-1121热电偶温度变送器4.2.1主要技术指标:1、输入信号:最小量程≥3mV最大量程<80mV(根据配用热电偶而定)2、输出信号:1~5V d.c 或4~20mA d.c3、负载电阻:0~500Ω4、精度:±0.5%(量程围≥5mV)±1.0%(5mV量程围≥3mV5、工作条件:环境温度:5~40℃相对湿度:10%-75%供电电源:24V±10%周围空气中不含有腐蚀性气体6、功耗:2W4.3调节器用DDZ-III型PID调节器TDM-400。

原理:调节器的正,反作用的选择要根据控制系统所包括的各个环节的情况而定,这样只要根据被控参数与变送器放大倍数的符号及整个控制回路开环放大倍数的符号为“负“的要求,就可以确定调节器的正,反作用,本系统,调节器因选反作用。

性能指标:输入信号:1-5V直流电压,外给定信号:4-20ma直流电流,负载电阻:250欧-750欧。

4.4执行器本系统使用电/气阀门定位器。

4.4.1电/气阀门定位器作用:1.将4~20mA或0~10mA转换为气信号,用以控制气动调节阀2.它还能够起到阀门定位的作用图4.4气源压力对应阀门开度实验图当输入I O→对主杠杆2产生向左的力F1 →主杠杆绕支点反时针偏转→挡板13靠近喷嘴15→P a↑→使阀杆向下移动→并带动反馈杆9绕支点4偏转→凸轮5也跟着逆时针偏转→从而使反馈弹簧11拉伸→最终使阀门定位器达到平衡状态。

此时,一定的信号压力就对应于一定的阀杆位移,即对应于一定的阀门开度。

本系统选用M52286系列电子式电动执行器主要技术参数:电源:AC220±50%,50HZ。

耗电功率(额定负载时):规格A型执行器50VA;规格B型执行器150VA;规格C型执行器220VA。

输入信号:DC4~20mA或DC1~5V输出信号:DC4~20mA(负载电阻500Ω以下)。

控制精度:基本误差:±1% 回差≤1% 死区≤1%工作行程调整围:“零点”±25%“行程”20%~100%阀的选择:本系统选择电/气阀门定位器:YT-1050输入信号:4~20mA DC阻抗:250 +/- 15 Ohm供给压力:1.4~7.0kgf/cm2(20~100 psi)行程:直行程:10~150mm, 角行程:0~900 5.绘制仪表盘电气接线图,端子接线图图5.1 电器接线图6给出仪表型号清单:表6-1 仪表清单7.设计总结在为期一个多星期的课程设计中,遇到过很多很多的问题,但我通过很多有效地途径,例如上网查相关资料,问身边的同学与朋友,或者请教本专业的老师,都得到了解决。

在设计过程中,从拿到题目,方案的设计到方案的确定,都经过了严谨的思考,回路的设计调节器的正反作用的确定,被控参数的选择,使系统能够达到设计目的。

通过这次设计,我对过程控制系统在工业中的运用有了深入的认识,对过程控制系统设计步骤、思路有一定的了解与认识。

我学到了控制系统的设计方法和步骤,拓展了知识面,了解了工业工程中控制系统起到的重要作用。

与此同时,在团队的协作中使我们在与人共事之中学会交流学会合作。

参考文献[1].毅,宝芬,曹丽,彭黎辉.自动检测技术及仪表控制系统[M].:化学工业,2009[2].方崇智译.过程控制系统[M].化学工业,1982[2].周泽魁.控制仪表与计算机控制装置[M].:化学工业,2007[3].金以慧.过程控制[M].:清华大学,2010[4].寿松.自动控制原理[M].:科学,2009[5]毅,宝芬,曹丽等.自动检测技术及仪表控制系统[M].:化学工业,2001年.[6] 乾斌,光斌,玲.MTALAB原理与应用[M].华中科技大学,2002[7] 楼然苗,光飞.MTALAB设计实例[M].航空航天大学,2003[8] 彭军.过程控制技术[M].电子科技大学,2003[9] 杰,黄鸿.过程控制技术[M].:高等教育,2003[10]华.石油控制理论[D].:大学,2008.。

相关文档
最新文档