七年级数学下学期第一阶段考试试题新人教版.doc

合集下载

甘肃省定西市七年级下学期数学第一次月考试卷

甘肃省定西市七年级下学期数学第一次月考试卷

甘肃省定西市七年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)将6.18×10-3化为小数是()A . 0.000 618B . 0.00618C . 0.061 8D . 0.6182. (2分)如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A . 1B . 2C . 3D . 43. (2分) (2019八上·椒江期中) 三角形的下列线中能将三角形的面积分成相等的两部分的是()A . 高B . 中线C . 角平分线D . 垂直平分线4. (2分)等腰三角形的两边长分别为2和3,则周长为()A . 5B . 7C . 8D . 7或85. (2分)(2018·遵义模拟) 等式(x+4)0=1成立的条件是()A . x为有理数B . x≠0C . x≠4D . x≠-46. (2分) (2018八上·南安期中) 运用乘法公式计算(x+3)2的结果是()A . x2+9B . x2–6x+9C . x2+6x+9D . x2+3x+97. (2分) (2015七下·邳州期中) 如图,△ABC的边BC上的高是()A . BEB . DBC . CFD . AF8. (2分) (2016七下·吴中期中) 下列计算:①x(2x2﹣x+1)=2x3﹣x2+1;②(a﹣b)2=a2﹣b2;③(x﹣4)2=x2﹣4x+16;④(5a﹣1)(﹣5a﹣1)=25a2﹣1;⑤(﹣a﹣b)2=a2+2ab+b2 .其中正确的有()A . 1个B . 2个C . 3个D . 4个9. (2分) (2016七下·白银期中) 已知ab=﹣5,a﹣b=6,则a2+b2=()A . 13B . 19C . 26D . 3710. (2分)(2017·西湖模拟) 如图,在△ABC中,∠ACB=90°,AC=BC=2.E,F分别是射线AC、CB上的动点,且AE=BF,EF与AB交于点G,EH⊥AB于点H,设AE=x,GH=y,下面能够反映y与x之间函数关系的图象是()A .B .C .D .二、填空题 (共9题;共28分)11. (1分)已知xm=6,xn=3,则xm﹣n的值为________.12. (1分) (2017八下·胶州期末) 如图,将边长相等的一个正方形和一个正五边形叠放在一起,则∠1=________.13. (1分)已知am=8,an=2,则am+n=________.已知22×83=2n ,则n=________.14. (1分)(2017·房山模拟) 如图中的四边形均为矩形,根据图形,利用图中的字母,写出一个正确的等式:________.15. (1分)(2018·滨州模拟) 计算: =________.16. (1分) (2018八上·大石桥期末) 如图,在△ABC中,AM是中线,AN是高。

(完整版)七年级下册数学实数试卷及答案(人教版)

(完整版)七年级下册数学实数试卷及答案(人教版)

一、选择题1.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ). A .(0,21008) B .(0,-21008) C .(0,-21009) D .(0,21009)2.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12 B .24 C .27 D .30 3.若29x =,|y |=7,且0x y ->,则x +y 的值为( )A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣104.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为( ) A .5B .6C .7D .85.数轴上A ,B ,C ,D 四点中,两点之间的距离最接近于6的是( )A .点C 和点DB .点B 和点CC .点A 和点CD .点A 和点B6.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n7.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9 -17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1338.如图,点A 表示的数可能是( )A .21+B .6C .11D .179.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根. A .1B .2C .3D .410.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12-B .21-C .22-D .22-二、填空题11.请先在草稿纸上计算下列四个式子的值:①31;②3312+;③333123++;④33331234+++,观察你计算的结果,用你发现的规律直接写出下面式子的值333312326++++=__________.12.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.13.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.15.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.16.对于正整数a ,我们规定:若a 为奇数,则()f a 3a 1=+;若a 为偶数,则()af a .2=例如()f 15315146=⨯+=,()8f 842==,若1a 16=,()21a f a =,()32a f a =,()43a f a =,⋯,依此规律进行下去,得到一列数1a ,2a ,3a ,4a ,⋯,n a ,(n ⋯为正整数),则1232018a a a a +++⋯+=______.17.将1,2,3,6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,如(5,4)表示的数是2(即第5排从左向右第4个数),那么(2021,1011)所表示的数是 ___.18.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.19.已知M 是满足不等式27a <N 52M N +的平方根为__________.20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,3=2,[﹣2.56]=﹣3,[3=﹣2.按这个规定,[131]=_____.三、解答题21.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.22.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a=___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及3a-.(图中标出必要线段的长)23.阅读材料:求2320192020122222++++++的值.解:设2320192020122222S=++++++①,将等式①的两边同乘以2,得234202020212222222S=++++++②,用②-①得,2021221S S-=-即202121S=-.即2320192020202112222221++++++=-.请仿照此法计算:(1)请直接填写231222+++的值为______;(2)求231015555+++++值;(3)请直接写出202123452019202010 110101*********11-+-+-+-+-的值.24.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D 12345678910111213 F G H J K L Z X C V B N M给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN,请找出它的明文. 25.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3=-a b a 的值. 解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数, a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足2210x y -=+x+y 的值. 26.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值. 27.观察下列各式:21131222-=⨯;21241333-=⨯;21351444-=⨯;……根据上面的等式所反映的规律, (1)填空:21150-=______;2112019-=______; (2)计算:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭28.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:第一步:∵10=100,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9,39729= ∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,34<<,可得3040<<, 由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题)根据上面材料,解答下面的问题 (1)求110592的立方根,写出步骤.(2=__________.29.小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减.”如:1132321123232323236--=-===⨯⨯⨯⨯,反之,这个式子仍然成立,即:1132321162323232323-===-=-⨯⨯⨯⨯. (1)问题发现 观察下列等式: ①1212111121212122-==-=-⨯⨯⨯⨯, ②13232112323232323-==-=-⨯⨯⨯⨯, ③14343113434342334-==-=-⨯⨯⨯⨯,…, 猜想并写出第n 个式子的结果:1(1)n n =+ .(直接写出结果,不说明理由) (2)类比探究将(1)中的的三个等式左右两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯, 类比该问题的做法,请直接写出下列各式的结果: ①111112233420192020++++=⨯⨯⨯⨯ ;②1111122334(1)n n ++++=⨯⨯⨯+ ; (3)拓展延伸 计算:111113355799101++++⨯⨯⨯⨯.30.请观察下列等式,找出规律并回答以下问题. 111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯,…… (1)按照这个规律写下去,第5个等式是:______;第n 个等式是:______. (2)①计算:11111223344950⨯⨯⨯⨯++++.②若a 0=,求: ()()()()()()()()111111122339797ab a b a b a b a b +++++++++++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【解析】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2); P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2); P 3(1,-1)=P 1(P 2(2,-2))=(0,4); P 4(1,-1)=P 1(P 3(0,4))=(4,-4); P 5(1,-1)=P 1(P 4(4,-4))=(0,8); P 6(1,-1)=P 1(P 5(0,8))=(8,-8); ……P 2n-1(1,-1)=……=(0,2n ); P 2n (1,-1)=……=(2n ,-2n ). 因为2017=2×1009-1, 所以P 2017=P 2×1009-1=(0,21009). 故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.2.C解析:C 【分析】根据新定义的公式代入计算即可. 【详解】∵()*23m n m n =+⨯-, ∴()6*3-=()623(3)27+⨯--=, 故选C . 【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.3.B解析:B 【分析】先根据平方根、绝对值运算求出,x y 的值,再代入求值即可得. 【详解】解:由29x =得:3x =±, 由7y =得:7y =±,0x y ->, x y ∴>,37x y =-⎧∴⎨=-⎩或37x y =⎧⎨=-⎩, 则3(7)10x y +=-+-=-或3(7)4x y +=+-=-, 故选:B . 【点睛】本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键.4.A解析:A 【分析】根据相关知识逐项判断即可求解. 【详解】解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题. 所以真命题有5个. 故选:A 【点睛】本题考查判断真假命题、平方根、立方根、平行线的判定、无理数、实数与数轴关系、直线外一点到直线的距离、对顶角等知识,综合性较强,熟知相关知识点是解题关键.5.A解析:A【分析】的范围,结合数轴可得答案.【详解】解:∵4<6<9,∴2<3,∴的是点C和点D.故选:A.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.6.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.7.C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;第三行:239=;第四行:2416=;……第n行:2n;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132. 故选:C . 【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.8.C解析:C 【分析】先确定点A 表示的数在3、4之间,再根据夹逼法逐项判断即得答案. 【详解】解:点A 表示的数在3、4之间,A 、因为12<,所以213<<,故本选项不符合题意;B 23<<,故本选项不符合题意;C ,所以34<,故本选项符合题意;D ,所以45<<,故本选项不符合题意; 故选:C . 【点睛】本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键.9.C解析:C 【详解】4-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错; 根据立方根的意义,可知23)对;7的平方根.故(4)对; 故选C.10.D解析:D 【分析】设点C 的坐标是x ,根据题意列得12x=-,求解即可. 【详解】解:∵点A 是B ,C 的中点. ∴设点C 的坐标是x ,=-,1则2x=-∴点C表示的数是2-.故选:D.【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.二、填空题11.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】+3++=1+2+3+nn∴3+=35126++=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.12.【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.13.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011 x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达式并写出用T表示出的表达式是解题的关键.14.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.15.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.16.4728【分析】先求出,,,,寻找规律后即可解决问题.【详解】由题意,,,,,,,,从开始,出现循环:4,2,1,,,,故答案为4728.【点睛】本题考查了规律型——数字的变解析:4728【分析】先求出1a ,2a ,3a ,⋯,寻找规律后即可解决问题.【详解】由题意1a 16=,2a 8=,3a 4=,4a 2=,5a 1=,6a 4=,7a 2=,8a 1=⋯,, 从3a 开始,出现循环:4,2,1,()201823672-÷=,2018a 1∴=,1232018a a a a 16867274728∴+++⋯+=++⨯=,故答案为4728.【点睛】本题考查了规律型——数字的变化类问题,解题的关键是从一般到特殊,寻找规律,利用规律解决问题.17.1【分析】所给一系列数是4个数一循环,看是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:,表示的数是第个数,,第2021排的第1011个数为1.解析:1【分析】所给一系列数是4个数一循环,看(2021,1011)是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:(20201)20201234202020412102+⨯++++⋯⋯+==, (2021,1011)∴表示的数是第204121010112042221+=个数,204222151055541=⨯+,∴第2021排的第1011个数为1.故答案为:1.【点睛】本题考查算术平方根与规律型:数字的变化类,根据规律判断出是第几个数是解本题的关键.18.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,3,.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.19.±3【分析】先通过估算确定M、N的值,再求M+N的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20.-5【详解】∵3<<4,∴−4<−<−3,∴−5<−−1<−4,∴[−−1]=−5.故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围. 解析:-5【详解】∵,∴,∴,∴故答案为−5..三、解答题21.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.22.(1);(2)①②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可;(3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N.【详解】(1)由图1知,小正方形的对角线长是2,∴图2中点A表示的数是2-,点B表示的数是2,故答案是:2-,2;(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是5,如图所示:故答案是:5;②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.23.(1)15;(2)11514-;(3)111.【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,即可求出答案;【详解】解:(1)231248125122=++++=++;故答案为:15;(2)设231015555T=+++++①,把等式①两边同时乘以5,得112310555555T=+++++②,由②-①,得:11451T=-,∴11514T -=, ∴31121015551455++=+++-; (3)设234520192020110101010101010M =-+-+-+-+①, 把等式①乘以10,得:3456222019020202110101010101010101010M =-+-+-+-++②,把①+②,得:202111110M =+, ∴202110111M +=, ∴232452019200022111010101010110010111-+-+-+-++=, ∴20212345201920201011010101010101011-+-+-+-+- 20212021101101111+=- 111=. 【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.24.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.25.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.【详解】解:∵2210 x y-=+∴()22100x y--+-=,∴2210x y--=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.26.(1)a2=2,a3=-1,a4=1 2(2)a2016•a2017•a2018= -1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=12代入11a-中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2然后计算a2016•a2017•a2018的值;(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=12,代入11a-,得21=211-2a=;将a2=2,代入11a-,得31=-11-2a=;将a3=-1,代入11a-,得411=1--12a=().(2)根据(1)的计算结果,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2所以,a2016•a2017•a2018=(-1)×12×2= -1(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.27.(1)49515050⨯;2018202020192019⨯;(2)10102019. 【分析】(1)根据已知数据得出规律,2111111n n n ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,进而求出即可; (2)利用规律拆分,再进一步交错约分得出答案即可.【详解】解:(1)21150-=49515050⨯; 2112019-=2018202020192019⨯; (2)2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1324352018202022334420192019⨯⨯⨯⨯⨯⨯⨯⨯…… =1202022019⨯ =10102019. 【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.28.(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.【详解】解:(1)第一步:10100=,11059210100000000<<,10100∴, ∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,45,可得4050,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28,故答案为:28.【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.29.(1) 111n n -+;(2)①20192020;②1n n +;(3) 50101. 【分析】(1)根据题目中的式子可以写出第n 个式子的结果;(2)①根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值; ②根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;(3)根据题目中式子的特点,可以求得所求式子的值.【详解】解:(1)由题目中的式子可得,111(1)1n n n n =-++, 故答案为:111n n -+; (2)①111112233420192020++++⨯⨯⨯⨯ 111111112233420192020-+-+-++-= 211200=- 20192020=, 故答案为:20192020; ②1111122334(1)n n ++++⨯⨯⨯+11111111223341n n =-+-+-+⋯+-+ 111n =-+ 1n n =+, 故答案为:1n n +; (3)111113355799101++++⨯⨯⨯⨯ 11111111123355799101⎛⎫=⨯-+-+-++- ⎪⎝⎭ 1112101⎛⎫=⨯- ⎪⎝⎭ 11002101=⨯ 50101=. 【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.30.(1)1115656=-⨯,()11111n n n n =-⨯++;(2)①4950;②1465119800【分析】(1)根据规律可得第5个算式;根据规律可得第n 个算式;(2)①根据运算规律可得结果.②利用非负数的性质求出a 与b 的值,代入原式后拆项变形,抵消即可得到结果. 【详解】(1)根据规律得:第5个等式是1115656=-⨯,第n 个等式是()11111n n n n =-⨯++; (2)①11111223344950⨯⨯⨯⨯++++, 111111111223344950=-+-+-++-, 1150=-, 4950=;②a 0=,1a ,3b =, 原式111111324354698100=+++++⨯⨯⨯⨯⨯,11111111111111=⨯-+⨯-+⨯-⨯-++⨯-,(1)()()+()() 23224235246298100 1111111111(1)=⨯-+-+-+-++-,23243546981001111(1)=⨯+--,229910014651=.19800【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.。

新人教版七年级数学试题第一章《有理数》全章检测120分钟150分

新人教版七年级数学试题第一章《有理数》全章检测120分钟150分

第一章《有理数》全章检测测试题(时间120分钟 满分150分)一、选择题(每题3分,共45分)1、大于–3.5,小于2.5的整数共有( )个。

A.6B.5C.4D.32、如果一个数的相反数比它本身大,那么这个数为 ( )A 、正数B 、负数C 、整数D 、不等于零的有理数3、在有理数中,绝对值等于它本身的数有 ( )A. 1个B. 2个C. 3个D. 无穷多个4. 若ab≠0,则a/b 的取值不可能是 ( )A 0B 1C 2D -25. 在-2,0,1,3这四个数中,比0小的数是( )A 、-2B 、0C 、1D 、36、已知点A 和点B 在同一数轴上, 点A 表示数2-, 又已知点B 和点A 相距5个单位长度, 则点B 表示的数是 ( )A.3B.-7C.3或-7D.3或77、 若两个有理数的和是正数,那么一定有结论( )A . 两个加数都是正数;B .两个加数有一个是正数;C . 一个加数正数,另一个为零D .两个加数不能同为负数8. 下列说法正确的个数是 ( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的。

A 1B 2C 3D 4 2.9、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A.10米B.15米C.35米D.5米10、下列说法中正确的是 ( )A.a -一定是负数B.a 一定是负数C.a -一定不是负数D.2a -一定是负数11、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米12. 下列说法正确的是 ( )。

①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 。

最新人教版七年级数学下册期末压轴题试卷(一)

最新人教版七年级数学下册期末压轴题试卷(一)

一、解答题1.如图1,在平面直角坐标系中,(,0),(,2)A a C b ,且满足2(2)|2|0a b ++-=,过C 作CB x ⊥轴于B .(1)求ABC ∆的面积.(2)若过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,求AED ∠的度数.(3)在y 轴上存在点P 使得ABC ∆和ACP ∆的面积相等,请直接写出P 点坐标.2.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)3.已知AB ∥CD ,线段EF 分别与AB ,CD 相交于点E ,F .(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P 在线段EF 上时,已知∠A =35°,∠C =62°,求∠APC 的度数;解:过点P 作直线PH ∥AB ,所以∠A =∠APH ,依据是 ; 因为AB ∥CD ,PH ∥AB ,所以PH ∥CD ,依据是 ;所以∠C =( ),所以∠APC =( )+( )=∠A +∠C =97°.(2)当点P ,Q 在线段EF 上移动时(不包括E ,F 两点):①如图2,∠APQ +∠PQC =∠A +∠C +180°成立吗?请说明理由;②如图3,∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠M +∠MPQ +∠PQM =180°,请直接写出∠M ,∠A 与∠C 的数量关系.4.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °;(2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.5.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数. 6.已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF =β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由. 7.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 .②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.8.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<332768______位数;(2)由32768的个位上的数是8332768________,划去32768后面的三位数768得到32,因为333=27,4=64332768_____________;(3)已知13824和110592-3138249.阅读下面的文字,解答问题.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数;用{a }表示a 减去[a ]所得的差.例如:=1,[2.2]=2,1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法计算:]= {5= ;(2)若]=1,写出所有满足题意的整数x 的值: .(3)已知y 0是一个不大于280的非负数,且满足}=0.我们规定:y 1=],y 2=,y 3=],…,以此类推,直到y n 第一次等于1时停止计算.当y 0是符合条件的所有数中的最大数时,此时y 0= ,n = .10.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________;(3)已知13824和110592-11.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(110100,那么,请你猜想:59319的立方根是_______位数(2)在自然数1到9这九个数字中,33311,327,5===________,37=________,39=________.猜想:59319的个位数字是9,则59319的立方根的个位数字是________.(3)如果划去59319后面的三位“319”得到数59,而3327=,3464=,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________.(4)现在换一个数103823,你能按这种方法得出它的立方根吗?12.阅读材料:求2320192020122222++++++的值. 解:设2320192020122222S =++++++①,将等式①的两边同乘以2, 得234202020212222222S =++++++②,用②-①得,2021221S S -=-即202121S =-.即2320192020202112222221++++++=-. 请仿照此法计算:(1)请直接填写231222+++的值为______;(2)求231015555+++++值;(3)请直接写出20212345201920201011010101010101011-+-+-+-+-的值. 13.如图,在平面直角坐标系中,已知(),0A a ,(),0B b ,()0,4C ,a ,b 满足()2240a b ++-=.平移线段AB 得到线段CD ,使点A 与点C 对应,点B 与点D 对应,连接AC ,BD .(1)求a ,b 的值,并直接写出点D 的坐标;(2)点P 在射线AB (不与点A ,B 重合)上,连接PC ,PD .①若三角形PCD 的面积是三角形PBD 的面积的2倍,求点P 的坐标;②设PCA α∠=,PDB β∠=,DPC θ∠=.求α,β,θ满足的关系式.14.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答.问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.15.如图1,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,()0,C a ,(),D b a ,其中a 、b 满足关系式:24(1)0a b a ++--=.()1a =______,b =______,BCD 的面积为______;()2如图2,石AC BC ⊥于点C ,点P 是线段OC 上一点,连接BP ,延长BP 交AC 于点.Q 当CPQ CQP ∠=∠时,求证:BP 平分ABC ∠;(提示:三角形三个内角和等于180) ()3如图3,若AC BC ⊥,点E 是点A 与点B 之间上一点连接CE ,且CB 平分.ECF ∠问BEC ∠与BCO ∠有什么数量关系?请写出它们之间的数量关系并请说明理由.16.如图,数轴上两点A 、B 对应的数分别是﹣1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)﹣3,0,2.5是连动数的是 ;(2)关于x 的方程2x ﹣m =x +1的解满足是连动数,求m 的取值范围 ;(3)当不等式组11212()3x x a +⎧>-⎪⎨⎪+-⎩的解集中恰好有4个解是连动整数时,求a 的取值范围. 17.在平面直角坐标系中,点(,1)A a ,(,3)B b 满足关系式2(1)|2|0++-=a b .(1)求a ,b 的值;(2)若点(3,)P n 满足ABP △的面积等于6,求n 的值;(3)线段AB 与y 轴交于点C ,动点E 从点C 出发,在y 轴上以每秒1个单位长度的速度向下运动,动点F 从点(8,0)-M 出发,以每秒2个单位长度的速度向右运动,问t 为何值时有2ABE ABF S S =,请直接写出t 的值.18.如图,在平面直角坐标系xOy 中,对于任意两点A (x 1,y 1)与B (x 2,y 2)的“非常距离”,给出如下定义:若|x 1﹣x 2|≥|y 1﹣y 2|,则点A 与点B 的“非常距离”为|x 1﹣x 2|;若|x 1﹣x 2|<|y 1﹣y 2|,则点A 与点B 的“非常距离”为|y 1﹣y 2|.(1)填空:已知点A (3,6)与点B (5,2),则点A 与点B 的“非常距离”为 ; (2)已知点C (﹣1,2),点D 为y 轴上的一个动点.①若点C 与点D 的“非常距离”为2,求点D 的坐标;②直接写出点C 与点D 的“非常距离”的最小值.19.某工厂接受了20天内生产1200台GH 型电子产品的总任务.已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G 型装置或3个H 型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好全部配套组成GH 型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G 型装置.设原来每天安排x 名工人生产G 型装置,后来补充m 名新工人,求x 的值(用含m 的代数式表示)20.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --+-.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.21.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 22.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?23.如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为()1A m n -,,B 点的坐标为()0n -,,其中,m n 是二元一次方程组2202m n m n +=⎧⎨-=-⎩的解,过点A 作x 轴的平行线交y 轴于点C .(1)求点,A B 的坐标;(2)动点P 从点B 出发,以每秒4个单位长度的速度沿射线BO 的方向运动,连接PC ,设点P 的运动时间为t 秒,三角形OPC 的面积为()0S S ≠,请用含t 的式子表示S (不用写出相应的t 的取值范围);(3)在(2)的条件下,在动点P 从点B 出发的同时,动点Q 从点C 出发以每秒1个单位长度的速度沿线段CA 的方向运动.过点O 作直线PC 的垂线,点G 为垂足;过点Q 作直线PC 的垂线,点H 为垂足.当2OG QH =时,求t 的值.24.某数码专营店销售A ,B 两种品牌智能手机,这两种手机的进价和售价如表所示:(1)该店销售记录显示,三月份销售A 、B 两种手机共34部,且销售A 种手机的利润恰好是销售B 种手机利润的2倍,求该店三月份售出A 种手机和B 种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B 种手机数不低于A 种手机数的35,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案.25.某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A 、B 两类:A 类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B 类年票每张60元,持票者进入中心时,需再购买门票,每次2元.(1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A 类年票,请问他一年中进入该中心不低于多少次?26.对x 、y 定义了一种新运算T ,规定(),2ax by T x y x y +=+(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:()010,1201a b T ⨯+⨯=⨯+, 已知()1,12T -=-,()4,21T =.(1)求a ,b 的值;(2)求()2,2T -.(3)若关于m 的不等式组()()2,544,32T m m T m m p⎧-≤⎪⎨->⎪⎩恰好有4个整数解,求p 的取值范围. 27.请阅读求绝对值不等式3x <和3x >的解的过程. 对于绝对值不等式3x <,从图1的数轴上看:大于3-而小于3的数的绝对值小于3,所以3x <的解为33x -<<;对于绝对值不等式3x >,从图2的数轴上看:小于3-或大于3的数的绝对值大于3,所以3x >的解为3x <-或3x >.(1)求绝对值不等式32x ->的解(2)已知绝对值不等式21x a -<的解为3b x <<,求2a b -的值(3)已知关于x ,y 的二元一次方程组234461x y m x y m -=-⎧⎨+=-+⎩的解满足2x y +≤,其中m 是负整数,求m 的值.28.在平面直角坐标系xOy 中,对于任意两点()111,P x y ,()222,P x y ,如果1212x x y y d -+-=,则称1P 与2P 互为“d -距点”.例如:点1(3,6)P ,点2(1,7)P ,由|31||67|3d =-+-=,可得点1P 与2P 互为“3-距点”.(1)在点()2,2D --,(5,1)E -,(0,4)F 中,原点O 的“4-距点”是_____(填字母); (2)已知点(2,1)A ,点(0,)B b ,过点B 作平行于x 轴的直线l .①当3b =时,直线l 上点A 的“2-距点”的坐标为_____;②若直线l 上存在点A 的“2-点”,求b 的取值范围.(3)已知点(1,2)M ,(3,2)N ,(,0)C m ,C 2MN 上存在点P ,在C 上存在点Q ,使得点P 与点Q 互为“5-距点”,直接写出m 的取值范围.29.已知A (0,a )、B (b ,05a -(b ﹣4)2=0.(1)直接写出点A 、B 的坐标;(2)点C 为x 轴负半轴上一点满足S △ABC =15.①如图1,平移直线AB 经过点C ,交y 轴于点E ,求点E 的坐标;②如图2,若点F (m ,10)满足S △ACF =10,求m .(3)如图3,D 为x 轴上B 点右侧的点,把点A 沿y 轴负半轴方向平移,过点A 作x 轴的平行线l ,在直线l 上取两点G 、H (点H 在点G 右侧),满足HB =8,GD =6.当点A 平移到某一位置时,四边形BDHG 的面积有最大值,直接写出面积的最大值.30.对x ,y 定义一种新的运算A ,规定:()()(),ax by x y A x y ay bx x y ⎧+≥⎪=⎨+<⎪⎩(其中0ab ≠).(1)若已知1a =,2b =-,则()4,3A =_________. (2)已知()1,13A =,()1,20A -=.求a ,b 的值; (3)在(2)问的基础上,若关于正数p 的不等式组()()3,21413,2A p p A p p m⎧->⎪⎨---≥⎪⎩恰好有2个整数解,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)4;(2)45︒;(2)(0,3)P 或(0,1)-. 【分析】(1)根据非负数的性质易得2a =-,2b =,然后根据三角形面积公式计算; (2)过E 作//EF AC ,根据平行线性质得////BD AC EF ,且1312CAB ∠=∠=∠,1422ODB ∠=∠=∠,所以112()2AED CAB ODB ∠=∠+∠=∠+∠;然后把90CAB ODB ∠+∠=︒ 代入计算即可;(3)分类讨论:设(0,)P t ,当P 在y 轴正半轴上时,过P 作//MN x 轴,//AN y 轴,//BM y 轴,利用4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形可得到关于t 的方程,再解方程求出t ;当P 在y 轴负半轴上时,运用同样方法可计算出t . 【详解】解:(1)2(2)20a b ++-=,20a ∴+=,20b -=, 2a ∴=-,2b =,CB AB ⊥(2,0)A ∴-,(2,0)B ,(2,2)C ,ABC ∆∴的面积12442=⨯⨯=;(2)解://CB y 轴,//BD AC ,5CAB ∴∠=∠,又∵590ODB ∠+∠=︒, ∴90CAB ODB ∠+∠=︒, 过E 作//EF AC ,如图①,//BD AC ,////BD AC EF ∴,31∴∠=∠,42∠=∠AE ∵,DE 分别平分CAB ∠,ODB ∠,即:132CAB ∠=∠,142ODB ∠=∠,112()452AED CAB ODB ∴∠=∠+∠=∠+∠=︒;(3)(0,1)P -或(0,3).解:①当P 在y 轴正半轴上时,如图②,设(0,)P t ,过P 作//MN x 轴,//AN y 轴,//BM y 轴,4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形,∴4(2)(2)42t t t t -+---=,解得3t =, ②当P 在y 轴负半轴上时,如图③4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形∴4(2)(2)42t t t t -+-+--=,解得1t =-, 综上所述:(0,3)P 或(0,1)-. 【点睛】本题考查了平行线的判定与性质:两直线平行,内错角相等.也考查了非负数的性质、坐标与图形性质以及三角形面积公式.构造矩形求三角形面积是解题关键.2.(1)110°;(2)猜想:∠APB=∠DAP +∠FBP ,理由见解析;(3)①∠P =2∠P 1,理由见解析;②∠AP 2B=11802β︒-.【分析】(1)过P 作PM ∥CD ,根据两直线平行,内错角相等可得∠APM =∠DAP ,再根据平行公理求出CD ∥EF 然后根据两直线平行,内错角相等可得∠MPB =∠FBP ,最后根据∠APM +∠MPB =∠DAP +∠FBP 等量代换即可得证; (2)结论:∠APB =∠DAP +∠FBP .(3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,然后根据角平分线的定义和平角等于180°列式整理即可得解. 【详解】(1)证明:过P 作PM ∥CD ,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=12∠CAP,∠EBP2=12∠EBP,∴∠AP2B=12∠CAP+12∠EBP,= 12(180°-∠DAP)+ 12(180°-∠FBP),=180°- 12(∠DAP+∠FBP),=180°- 12∠APB,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.3.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.4.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n =120°时, ∴AB ⊥DE (GF ).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键. 5.(1)见解析;(2)见解析;(3)︒=∠105EBC . 【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答. 【详解】(1)证明:∵//AM CN , ∴C BDA ∠=∠, ∵AB BC ⊥于B , ∴90B ∠=︒, ∴90A BDA ∠+∠=︒, ∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM , ∵BD MA ⊥,∴90ABD ABH ∠+∠=︒, 又∵AB BC ⊥, ∴90ABH CBH ∠+∠=︒, ∴ABD CBH ∠=∠, ∵//BH DM ,//AM CN∴//BH NC , ∴CBH C ∠=∠, ∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a , ∵BE 平分∠ABD , ∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45° 又∵∠BFC +∠FBC +∠BCF =180°,即:3a +a +45°+∠BCF =180° ∴∠BCF =135°-4a , ∴∠AFC =∠BCF =135°-4a , 又∵AM //CN ,∴∠AFC +∠ NCF =180°,即:∠AFC +∠BCN +∠BCF =180°, ∴135°-4a +135°-4a +2a =180,解得a =15°, ∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°. 【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.6.(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q∠∠的值不变,12FPN Q=∠∠ 【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ; (2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠. 【详解】解:(1)2(402)|20|0αβ-+-=,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒,EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ; (2)180FMN GHF ∠+∠=︒; 理由:由(1)得//AB CD ,MNF PME ∴∠=∠,MGH MNF ∠=∠, PME MGH ∴∠=∠,//GH PN ∴, GHM FMN ∴∠=∠,180GHF GHM ∠+∠=︒,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠; 理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠,12PFQ PFN =∠∠,PER PFQ ∴∠=∠, //ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x Ry x EPM =+∠⎧⎨=+∠⎩,可得12EPM R ∠=∠,112EPM FQM ∴∠=∠,∴112EPM FQM ∠=∠. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.7.(1)①21,②6,m n +;(2)35b =;(3)65a = 【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得; (2)由f (10m+n )=m+n ,可求k 的值,即可求b ;(3)根据题意可列出等式,可求出x 、y 的值,即可求a 的值. 【详解】解:(1)①∵对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”. ∴“奇异数”为21;②f (15)=(15+51)÷11=6,f (10m+n )=(10m+n+10n+m )÷11=m+n ; (2)∵f (10m+n )=m+n ,且f (b )=8 ∴k+2k-1=8 ∴k=3∴b=10×3+2×3-1=35; (3)根据题意有()f a x y =+ ∵()510a f a -= ∴()10510x y x y +-+= ∴5410x y -= ∵x 、y 为正数,且x≠y ∴x=6,y=5 ∴a=6×10+5=65故答案为:(1)①21,②6,m n +;(2)35b =;(3)65a = 【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键. 8.(1)两;(2)2,3;(3)24,﹣48; 【分析】(1)由题意可得10100<,进而可得答案;(2)由只有个位数是2的数的立方的个位数是8333=27,4=64可得27<32<64,进而可确定3040<上的数,进而可得答案;(3)仿照(1)(2)两小题中的方法解答即可.【详解】解:(1)因为1000327681000000<<,所以10100<,故答案为:两;(2)因为只有个位数是2的数的立方的个位数是8,2,划去32768后面的三位数768得到32,因为333=27,4=64,27<32<64,所以3040<,3;故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100, ∴∵只有个位数是4的数的立方的个位数是4, ∴4, 划去13824后面的三位数824得到13,∵8<13<27,∴2030. ∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100, ∴∵只有个位数是8的数的立方的个位数是2, ∴8, 划去110592后面的三位数592得到110,∵64<110<125,∴4050, ∴48=; ∴﹣48.【点睛】本题考查了立方根和立方数的规律探求,具有一定的难度,正确理解题意、确定所求的数的个位数字和十位数字是解题的关键.9.(1)2;32)1、2、3;(3)256,4【分析】(1)依照定义进行计算即可;(2)由题可知,04x <<,则可得满足题意的整数的x 的值为1、2、3;(3)由0=,可知,0y 是某个整数的平方,又0y 是符合条件的所有数中最大的数,则0256y =,再依次进行计算.【详解】解:(1)由定义可得,2=,[52=,{53∴=故答案为:2;3.(2)[]1x =,2∴<,即04x <<,∴整数x 的值为1、2、3.故答案为:1、2、3.(3)0{}0y =,即0==,∴2t =,且t 是自然数,0y 是符合条件的所有数中的最大数,0256y ∴=,1[16]16y ∴===,2[4]4y ===,3[2]2y ===,41y ===,即4n =.故答案为:256,4.【点睛】本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.10.(1)两;(2)2,3;(3)24,﹣48;【分析】(1)由题意可得10100<,进而可得答案;(2)由只有个位数是2的数的立方的个位数是8333=27,4=64可得27<32<64,进而可确定3040<上的数,进而可得答案;(3)仿照(1)(2)两小题中的方法解答即可.【详解】解:(1)因为1000327681000000<<,所以10100<,故答案为:两;(2)因为只有个位数是2的数的立方的个位数是8,2,划去32768后面的三位数768得到32,因为333=27,4=64,27<32<64,所以3040<,3;故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100, ∴∵只有个位数是4的数的立方的个位数是4, ∴4, 划去13824后面的三位数824得到13,∵8<13<27,∴2030. ∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100, ∴∵只有个位数是8的数的立方的个位数是2, ∴8, 划去110592后面的三位数592得到110,∵64<110<125,∴4050, ∴48=; ∴﹣48.【点睛】本题考查了立方根和立方数的规律探求,具有一定的难度,正确理解题意、确定所求的数的个位数字和十位数字是解题的关键.11.(1)两;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根据夹逼法和立方根的定义进行解答;(2)先分别求得1至9中奇数的立方,然后根据末位数字是几进行判断即可;(3)先利用(2)中的方法判断出个数数字,然后再利用夹逼法判断出十位数字即可; (4)利用(3)中的方法确定出个位数字和十位数字即可.【详解】(1)∵1000<59319<1000000,∴59319的立方根是两位数;(2)∵3311,327,==35=125,37=343,39=729,∴59319的个位数字是9,则59319的立方根的个位数字是9;(3)∵3327=59<<3464=,且59319的立方根是两位数,∴59319的立方根的十位数字是3,又∵59319的立方根的个位数字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是两位数;∵3311,327,==35=125,37=343,39=729,∴103823的个位数字是3,则103823的立方根的个位数字是7;∵3464=3195552<<=,且103823的立方根是两位数,∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.12.(1)15;(2)11514-;(3)111. 【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,即可求出答案;【详解】解:(1)231248125122=++++=++;故答案为:15;(2)设231015555T =+++++①,把等式①两边同时乘以5,得 112310555555T =+++++②,由②-①,得:11451T =-, ∴11514T -=, ∴31121015551455++=+++-; (3)设234520192020110101010101010M =-+-+-+-+①, 把等式①乘以10,得:3456222019020202110101010101010101010M =-+-+-+-++②,把①+②,得:202111110M =+, ∴202110111M +=, ∴232452019200022111010101010110010111-+-+-+-++=, ∴20212345201920201011010101010101011-+-+-+-+-20212021101101111+=- 111=. 【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.13.(1)(6,4)D ;(2)①(1,0)P 或(7,0);②点P 在B 点左侧时,αβθ+=;点P 在B 点右侧时,αβθ-=.【分析】(1)根据非负数的性质分别求出a 、b ,根据平移规律得到平移方式,再由平移的坐标变化规律求出点D 的坐标;(2)①设PB m =,根据三角形的面积公式列出方程,解方程求出m ,得到点P 的坐标; ②分点P 点P 在B 点左侧、点P 在B 点右侧时,过点P 作//PE AC ,根据平行线的性质解答.【详解】解:(1)()220a ++, 20a ∴+=,40b -=,,解得,2a =-,4b =.(2,0)A ∴-,(4,0)B ,平移线段AB 得到线段CD ,使点(2,0)A -与点(0,4)C 对应,∴平移线段AB 向上平移4个单位,再向右平移2个单位得到线段CD ,∴(42,04)D ++,即(6,4)D ;(2)①设PB m =,∵线段AB 平移得到线段CD ,∴//AB CD ,∵6AB CD ==,4OC =∵2PCD PBD SS =, ∴11222CD OC PB OC =, ∵6AB CD ==,4OC =∴11642422m ⨯=⨯⨯ 解得3m =,当P 在B 点左侧时,坐标为(1,0),当P 在B 点右侧时,坐标为(7,0),(1,0)P ∴或(7,0);②I 、点P 在射线AB (不与点A ,B 重合)上,点P 在B 点左侧时,α,β,θ满足的关系式是αβθ+=.理由如下:如图1,过点P 作//PE AC ,,∴CPE PCA ∠=∠=α, CD 由AB 平移得到,点A 与点C 对应,点B 与点D 对应,//AC BD ∴,∴//PE BD∴DPE PDB ∠=∠=β,CPD CPE DPE αβ∴∠=∠+∠=+;即αβθ+=,II 、如图2,点P 在射线AB (不与点A ,B 重合)上,点P 在B 点右侧时,α,β,θ满足的关系式是αβθ-=.同①的方法得,CPE PCA ∠=∠=α,DPE PDB ∠=∠=β,CPD CPE DPE αβ∠=∠-∠=-;即:αβθ-=综上所述:点P 在B 点左侧时,αβθ+=.点P 在B 点右侧时,αβθ-=.【点睛】本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系,平行线的性质及三角形、平行四边形的面积公式.关键是理解平移规律,作平行线将相关角进行转化. 14.(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,。

七年级数学下册第一次月考试卷分析

七年级数学下册第一次月考试卷分析

七年级数学期中考试试卷分析第七周我们进行了第一次阶段考试,在这我就我们七年级数学考试试题和学生的答题情况以及以后的教学方向分析如下.一、试题特点试卷包括填空题、选择题、作图题、解答题四个大题,共120分,以基础知识为主,。

对于整套试题来说,容易题约占60%、中档题约占30%、难题约占10%,主要考查了七年级下册第五章《相交线与平行线》和《实数》的内容。

这次数学试卷检测的范围应该说内容全面,难易也适度,注重基础知识、基本技能的检测,比较能如实反映出学生的实际数学知识的掌握情况。

无论是试题的类型,还是试题的表达方式,都可以看出命题教师的别具匠心的独到的眼光。

试卷能从检测学生的学习能力入手,细致、灵活地来抽测每章的数学知识。

打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。

二.学生问题分析从学生作答来看,基础知识不扎实,有部分学生还不能准确的找出同位角、内错角和同旁内角,特别是证明题在解答的过程中,“平行线的判定条件”与“平行线的性质”容易混淆,证明题写的不规范,算术平方根、平方根、立方根的概念掌握和理解的不透彻,在计算和解方程的时候总是出错,失分较多。

通过这次测试,可以发现学生解题思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。

总体上来看,低分还是很多,两极分化较为严重。

同时,结合平时学生的学习情况看,发现学生只是停留在“一听就明白,一看就懂,一做就错,一考就差”状态。

这也可从中看出学生学的不扎实,主要体现课后练习做的少,平时作业习惯抄袭,勤思好问的少。

从抽查的情况看,学生对要理解记忆的知识掌握得不够好,读题、理解题意的能力弱,综合分析题目信息,确定解题思路、方法的经验不足,答题书写随意,格式不规范。

三、今后的教学注意事项:通过这次考试学生的答题情况和成绩来看,七(5)班成绩落后的同学有石梅梅、魏洁、陈爱媛,学困生有马丽兰、康强强、王风、康晓娇。

七(6)班成绩落后的同学有张阳波、赵文燕、聂继祖、乔鹏等,学困生有冯晶、罗晶晶、张琦、吴燕燕、刘亚斌、何亚娟、杨亚东。

人教版七年级第一次月考试数学试卷

人教版七年级第一次月考试数学试卷

2022-2023学年第一学期第一次月考七年级数学试卷时间:90分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.﹣2021的倒数是()A.﹣2021B .﹣C .D.20212.随着我国金融科技不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2684亿元.将数据“2684亿”用科学记数法表示()A.2.684×103B.2.684×1011C.2.684×1012 D.2.684×1073.四个数﹣1,0,1,中为负数的是()A.﹣1B.0C.1D .4.下列说法正确的是()A.整数就是正整数和负整数B.负整数的相反数就是非负整数C.有理数中不是负数就是正数D.零是自然数,但不是正整数5.下列说法正确的是()A.0.750精确到百分位B.3.079×104精确到千分位C.38万精确到个位D.2.80×105精确到千位6.下列各组数中,相等的一组是()A.(﹣3)3与﹣33B.(﹣3)2与﹣32C.(﹣3×2)3与3×(﹣2)3D.﹣32与(﹣3)+(﹣3)7.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7 8.关于零的叙述,错误的是()A.零大于一切负数B.零的绝对值和相反数都等于本身C.n为正整数,则0n=0D.零没有倒数,也没有相反数9.若|﹣x|=5,则x等于()A.﹣5B.5C .D.±510.如图,点A,B在数轴上的位置如图所示,其对应的数分别为a,b,有以下结论:甲:b﹣a<0.乙:a+b>0.丙:a<|b|.丁:ab>|ab|,其中结论正确的是()A.甲、乙B.甲、丙C.丙、丁D.乙、丁二、填空题(共10小题,满分30分,每小题3分)11.在有理数集合中,最小的正整数是,最大的负整数是.12.绝对值小于2的整数有个.13.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为.14.计算:﹣6×(﹣)=.15.数轴上与﹣1的距离等于3个单位长度的点所表示的数为.16.若a、b互为相反数,c、d互为倒数,m的绝对值是1,则3a+3b﹣mcd=.17.化简:﹣(﹣)=,﹣[﹣(+2)]=.18.化简:﹣|﹣3.6|=,|+(﹣7.2)|=,﹣(﹣0.2)=.19.按规律填数:,.20.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是.三、解答题(共6小题,满分60分)21.(8分)把下面各个数填入相应的大括号内﹣13.5,5,0,﹣10,π,3.14,,﹣15%,负数集合:(…);非负数集合:(…);整数集合:(…);正分数集合:(…).22.(16分)计算:(1)(﹣8)+(+9)﹣(﹣5)+(﹣3);(2)(+﹣)×18;(3)(﹣)÷(﹣)×;(4)﹣42+(﹣20)÷(﹣5)﹣6×(﹣2)3.23.(8分)下表是某水位站记录的潮汛期某河流一周内的水位变化情况(+号表示水位比前一天上升,﹣号表示水位比前一天下降,上周末的水位恰好达到警戒水位).星期一二三四五六日水位变化/m+0.20+0.81﹣0.35+0.13+0.28﹣0.36﹣0.01问题:(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?24.(8分)已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B 在原点右侧且距原点100个单位.(1)点A表示的数是:;点B表示的数是:.(2)A,B两点间的距离是个单位,线段AB中点表示的数是.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.25.(10分)某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+10、﹣3、+4、+2、﹣8、+13、﹣2、﹣12、+8、+5(1)问收工时距O地多远?(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?26.(10分)在学习完《有理数》后,小奇对运算产生了浓厚的兴趣.借助有理数的运算,定义了一种新运算“⊕”,规则如下:a⊕b=a×b+2×a.(1)求2⊕(﹣1)的值;(2)求﹣3⊕(﹣4⊕)的值;(3)试用学习有理数的经验和方法来探究这种新运算“⊕”是否具有交换律?请写出你的探究过程.参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 B B A D D A C D D B 11.1;﹣112.313.314.115.﹣4或216.﹣1或117.﹣818.解:负数集合:(﹣13.5,﹣10,﹣,﹣15%,…);非负数集合:(5,0,π,3.14,,…);整数集合:(5,0,﹣10,…);正分数集合:(3.14,,…).故答案为:﹣13.5,﹣10,﹣,﹣15%;5,0,π,3.14,;5,0,﹣10;3.14,.19.解:(1)原式=﹣8+9+5﹣3=1+2=3;(2)原式=×18+×18﹣×18=12+8﹣15=5;(3)原式=×(﹣)×=﹣;(4)原式=﹣16+4﹣6×(﹣8)=﹣16+4+48=36.20.解:(1)∵|a|=8,|b|=2,且a,b同号,∴a=8,b=2;a=﹣8,b=﹣2,则a+b=10或﹣10;(2)∵|a|=8,|b|=2,且a,b异号,∴a=8,b=﹣2;a=﹣8,b=2,则a+b=6或﹣6.21.解:(1)前两天的水位是上升的,周一的水位是0.20米;周二的水位是0.20+0.81=1.01米;周三的水位是0.20+0.81﹣0.35=0.66m;周四的水位是:0.66+0.13=0.79米;周五的水位是:0.79+0.28=1.07米;周六天的水位是:1.07﹣0.36=0.71米;周日的水位是:0.71﹣0.01=0.7米;则水位最低的一天是周一,高于警戒水位0.20米;水位最高的是周五,高于警戒水位1.07米(2)0.20+0.81﹣0.35+0.13+0.28﹣0.36﹣0.01=0.7m;则本周末河流的水位是上升了0.7米.22.解:(1)MN的长为3﹣(﹣1)=4.故答案为:4;(2)x=(3﹣1)÷2=1.故答案为:1;(3)①点P是点M和点N的中点.根据题意得:(3﹣2)t=3﹣1,解得:t=2.②点M和点N相遇.根据题意得:(3﹣2)t=3+1,解得:t=4.故t的值为2或4.23.解:(1)2⊕(﹣1)=2×(﹣1)+2×2=﹣2+4=2;(2)﹣3⊕(﹣4⊕)=﹣3⊕[﹣4×+2×(﹣4)]=﹣3⊕(﹣2﹣8)=﹣3⊕(﹣10)=(﹣3)×(﹣10)+2×(﹣3)=30﹣6=24;(3)不具有交换律,例如:2⊕(﹣1)=2×(﹣1)+2×2=﹣2+4=2;(﹣1)⊕2=(﹣1)×2+2×(﹣1)=﹣2﹣2=﹣4,∴2⊕(﹣1)≠(﹣1)⊕2,∴不具有交换律.。

新人教版七年级下册数学(全册)同步练习随堂练习一课一练

新人教版七年级下册数学(全册)同步练习随堂练习一课一练

新人教版七年级下册数学全册同步练习(课本配套,适合课堂小测、作业布置和知识强化训练)《相交线》同步练习如图,已知AB 是线1. 如图1所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.(1) (2) (3)2.如图1所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.3.如图2所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.4.如图3所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______.5.对顶角的性质是______________________.6.如图4所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.(4)34D CBA 12OFED CB A OED CBAODC BA 12E OE DCBA7.如图5所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°, 则∠EOB=______________. 8.如图6所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________.1.如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2.如图7所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°(7) (8) (9) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个4.如图8所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62° B.118° C.72° D.59°5.如图9所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30 C.∠1=∠3=90°,∠2=∠4=60°; D.∠1=∠3=90°,∠2=60°,∠4=30°12121221OFE D CB A O DCBA 60︒30︒34l 3l 2l 1121. 如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.2. 如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.3. 如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的 度数.4. 如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.OF EDCBA 1234l 3l 2l 112OE DCBA5. 如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.答案和解析一、填一填 1、 ∠2和∠4 ∠32、155° 25° 155°3、∠BOC ∠AOD 和∠COB 50° 130°4、 35°5、对顶角相等1,46、125° 55°ODCBAcba34127、147.5° 8、42° 二、选择 1、A 2、B 3、B 4、A 5、D 三、解答题1、∠2=60°2、∠4=36°3、∠BOD=120°,∠AOE=30°4、∠BOD=72°5、∠4=32.5°《垂线》同步练习如图,已知AB 是线1.如图所示,直线AB 与直线CD 的位置关系是_______,记作_______,此时,•∠AOD=∠_____=∠______=∠______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.O DCBA4.直线外一点到这条直线的_________,叫做点到直线的距离.1.如图1所示,下列说法不正确的是( )A.点B 到AC 的垂线段是线段AB;B.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段;D.线段BD 是点B 到AD 的垂线段(1) (2)2.如图1所示,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个4.如图2所示,AD ⊥BD,BC ⊥CD,AB=acm,BC=bcm,则BD 的范围是( ) A.大于acm B.小于bcmC.大于acm 或小于bcmD.大于bcm 且小于acm 5.到直线L 的距离等于2cm 的点有( ) A.0个 B.1个 C.无数个 D.无法确定6.点P 为直线m 外一点,点A,B,C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到 直线m 的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cmDCBADCBA1如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°, 求∠DOG 的度数.2如图所示,村庄A 要从河流L 引水入庄,需修筑一水渠,请你画出修筑水渠的路线图.3.如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.答案和解析一、填一填1、垂直 AB ⊥CD DOB BOC COA2、一条3、所在直线4、 35°5、垂线段的长度 二、选择6、C7、D8、CGOFEDCBA ODC BA9、D10、C11、D三、解答题1、∠DOG=55°2、解:如图3所示.3、解:(1)∵∠AOC+∠BOC=∠AOB=180°,∴13∠BOC+∠BOC=180°,∴43∠BOC=•1 80°,∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.《同位角内错角同旁内角》同步练习如图,已知AB是线1.如图,根据图形填空.(1)∠A和_________ 是同位角;(2)∠B和_________ 是内错角;l(3)∠A和_________ 是同旁内角.2.如图所示,与∠C构成同旁内角的有个.3.如图,与图中的∠1成内错角的角是.4.如图:△ABC中,∠A的同旁内角是.5.如图,直线MN分别交直线AB,CD于E,F,其中,∠AEF的对顶角是∠,∠BEF的同位角是∠____.6.如图:图中的∠1,∠2,∠3,∠4,∠5,∠6,∠7 中同位角有对.1.如图,∠1与∠2是()A.对顶角B.同位角C.内错角D.同旁内角2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠5 3.如图,与∠1是同位角的是()A.∠2 B.∠3 C.∠4 D.∠5 4.如图,下列各语句中,错误的语句是()A.∠ADE与∠B是同位角 B.∠BDE与∠C是同旁内角C.∠BDE与∠AED是内错角D.∠BDE与∠DEC是同旁内角5.如图,在所标识的角中,同位角是()A.∠1和∠2 B.∠1和∠3 C.∠1和∠4 D.∠2和∠36.已知:如图,直线AB、CD被直线EF所截,则∠EMB的同位角是()A.∠AMF B.∠BMF C.∠ENC D.∠END7.如图,若直线MN与△ABC的边AB、AC分别交于E、F,则图中的内错角有()A.2对B.4对C.6对D.8对8.如图,下列说法中错误的是()A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠4是内错角1 如图所示,∠1与∠2,∠3与∠4之间各是哪两条直线被哪一条直线所截而形成的什么角?2.如图所示,BF、DE相交于点A,BG交BF于点B,交AC于点C.(1)指出ED、BC被BF所截的同位角,内错角,同旁内角;(2)指出ED、BC被AC所截的内错角,同旁内角;(3)指出FB、BC被AC所截的内错角,同旁内角.答案和解析一、填一填1、(1)∠A和∠ECD,∠BCD是同位角;(2)∠B和∠BCE是内错角;(3)∠A和∠ECA,∠BCA是同旁内角;2、33、∠BDC4、∠B和∠C5、∠BEM ∠DFN6、3二、选择12、B13、D14、C15、B16、C17、D18、C19、D三、解答题1解:左图:∠1与∠2是AB与CD被直线BD所截形成的内错角,∠3与∠4是直线AD与直线BC被直线BD所截形成的内错角;右图:∠1与∠2是AB与CD被直线BD所截形成的同旁内角,∠3与∠4是直线AD与直线BC被直线AB所截形成的同位角.2、解:(1)同位角:∠FAE和∠B;内错角:∠B和∠DAB;同旁内角:∠EAB和∠B;(2)内错角:∠EAC和∠BCA,∠DAC和∠ACG;同旁内角:∠EAC和∠ACG,∠DAC和∠BCA;(3)内错角:∠BAC和∠ACG,∠FAC和∠BCA;同旁内角:∠BAC和∠BCA,∠BAC和∠ABC,∠B和∠ACB,∠FAC和∠ACG.《平行线》同步练习如图,已知AB是线1.在同一平面内,不重合的两条直线的位置关系有_______种,分别是________.2.设a,b,c为平面内三条不同直线:(1)若a∥b,c⊥a,则b与c的位置关系是______;(2)若a∥b,b∥c,则a与c的位置关系是______.3.在同一平面内L1与L2没有公共点,则L1______L2.4.在同一平面内L1和L2有一个公共点,则L1与L2______.1.下列说法不正确的是()A.过马路的斑马线是平行线B.100米跑道的跑道线是平行线C.若a∥b,b∥d,则a⊥dD.过直线外一点有且只有一条直线与已知直线平行2.下列说法正确的是()A.同一平面内不相交的两线段必平行B .同一平面内不相交的两射线必平行C .同一平面内不相交的一条线段与一条直线必平行D .同一平面内不相交的两条直线必平行3.如图所示,在这些四边形AB 不平行于CD 的是( )A . ∠1和∠2B .∠1和∠3C .∠1和∠4D .∠2和∠31.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a ∥b ∥c ,如图(1)所示. 乙:同一平面内三条直线交点个数只有1个,因为a ,b ,c 交于同一点O ,如图(2)所示.以上说法谁对谁错?为什么?2.如图所示,在5×5的网格中,AC 是网格中最长的线段,请画出两条线段与AC 平行并且过网格的格点.3.如图所示,在书写艺术字时,常常运用画“平行线段”这种基本作图方法,此图是在书写字“M”:(1)请从正面,上面,右侧三个不同方向上各找出一组平行线段,并用字母表示出来;(2)EF与A′B′有何位置关系?CC′与DH有何位置关系?答案和解析一、填一填1、2,相交,平行2、(1)b⊥C (2)a∥c3、∥4、相交二、选择20、C21、D22、D三、解答题1甲,乙说法都不对,各自少了三种情况.a∥b,c与a,b相交如图(1),a,b,•c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.2、如图所示:EF∥AC,PQ∥AC,MN∥AC,且它们都过格点.3、(1)正面:AB∥EF,AE∥MF等等;上面:A′B′∥AB,C′D′∥CD等等;右侧: DD′∥HR,DH∥D′R(2)EF∥A′B′,CC′⊥DH《平行线的判定》同步练习1.已知三条不同的直线a,b,c在同一平面内,下列四个推理:①∵∥,∥,∴⊥;②∵∥,∥,∴∥;③∵⊥,⊥,∴⊥;④∵⊥,⊥,∴∥.其中正确的是.(填写所有正确的序号)2.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.3.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.4.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断______∥______,根据是_________.(2)由∠CBE=∠C可以判断______∥______,根据是_________.1.下列四幅图中都有∠1=∠2,其中能说明AB∥CD的是( ).A B C D2.如图,下列推理错误的是( ).A.∵∠1=∠2,∴∥B.∵∠1=∠4,∴∥C.∵∠2+∠3=180?,∴∥D.∵∠1=∠5,∴∥3.如图,下列条件不能判断AD∥EF的是( ).ED CBAA.∠D=∠EFCB.∠D+∠EFD=180?C.EF ∥BC ,AD ∥BCD.∠A+∠B=180?A . ∠1和∠2B .∠1和∠3C .∠1和∠4D .∠2和∠31.如图, , . 说明:AB ∥CD.2.如图,AD 是一条直线, . .说明:BE ∥CF.3. ①如图,哪两个角相等能判定直线AB ∥CD? ②如果∠1=∠2,能判定哪两条直线平行?③如果∠3=∠4,能判定哪两条直线平行?新课 标 第 一 网答案和解析一、填一填 1、②④ 2、相交 3、互相平行◆ 三、解答题 A BCD E G H123 4 54、(1)AD BC 同位角相等,两直线平行(2)CD AB 内错角相等,两直线平行二、选择23、C24、B25、D三、解答题1、∵∠1=70°∴∠3=∠1=70°∴∠1=∠2=70°∴ AB ∥CD2、∵∠2=115°∴∠BCF=65°∴∠1=∠BCF∴BE ∥CF3、①∠2=∠3 或∠4=∠5或∠1=∠2②AB ∥CD③EF∥ GD《平行线的性质》同步练习如图,已知AB是线1.如图1所示,直线a ∥b ,且a ,b 被c 所截,若∠1=40°,则∠2=______.图1 图2 图32.如图2所示,直线a ∥b ,且a ,b 被c 所截,若∠1=60°,则∠2=_______,•∠3=________.3.如图3所示,若AB ∥CD ,∠DEF=120°,则∠B=_______.4.如图4所示,砌墙师傅用重锤线检验砌的墙体是否与地面垂直,•墙体坚直线用a 表示,重锤线用b 表示,地平线用c 表示,当a ∥b 时,因为b ⊥c ,则a______c ,•这里运用了平行线的性质是_______.图4 图55.如图5所示,一块木板,AB ∥CD ,木工师傅量得∠B=80°,∠C=65°,则∠A=______,∠D=______.1.如图6所示,DE ∥BC ,DF ∥AC ,下列结论正确的个数为( ) ①∠C=∠AED ②∠EDF=∠BFD ③∠A=∠BDF ④∠AED=∠DFBA.1个 B.2个 C.3个 D.4个图6 图72.如图7,在甲,乙两地之间修一条笔直公路,从甲地测得公路的走向是北偏东50°,甲,乙两地同时开工,若干天后,公路准确接通,则乙地所修公路走向是()A.北偏45° B.南北方向 C.南偏西50° D.以上都不对3.家住湖边的小海,帮爸爸用铁丝用网箱如图8所示,若AB∥CD,AC∥BD,•若∠1=α,则:①∠3=α;②∠2=180°-α;③∠4=α,其中正确的个数有()A.0个 B.1个 C.2个 D.3个4.如图9所示,AM平分∠BAC,AM∥EN,则与∠E•相等的角下列说法不正确的是()A.∠BAM B.∠ABC C.∠NDC D.∠MAC图8 图91.如图,已知∠AED=60°,∠2=30°,EF平分∠AED,可以判断EF∥BD吗?为什么?2.如图所示,若∠1+∠2=180°,∠3=110°,求∠4.3.(探究题)如图所示,若AB∥CD,且∠1=∠2,试判断AM与CN位置关系,•并说明理由.答案和解析一、填一填1、40°2、60°,120°3、60°4、⊥,两直线平行,同位角相等(同旁内角互补).5、115°,100°二、选择26、D27、C28、C29、B三、解答题1.可以,∵∠AED=60°,EF平分∠AED∴∠FED=30°又∵∠EDB=∠2=30°∴EF∥BD解题规律:证两直线平行,找内错角相等.2.设∠2对顶角为∠5,则∠2=∠5∵∠1+∠2=180°∴∠1+∠5=180°∴AB∥CD,∴∠3=∠4又∵∠3=110°∴∠4=110°解题规律:先判断AB∥CD,再运用平行线的性质定理. 3.因为AB∥CD所以∠EAB=∠ECD又因为∠1=∠2而∠EAM=∠EAB-∠1∠ACN=∠ACD-∠2即∠EAM=∠ACN所以AM∥CN(同位角相等,两直线平行).解题技巧:判断AM∥CN,①可证∠EAM=∠ECN,②证∠MAC+∠ACN=180°,都能达到目的.《命题定理证明》同步练习如图,已知AB是线1、每个命题都由__ __和两部分组成。

新人教版七年级数学下册期中考试

新人教版七年级数学下册期中考试

学校 原班级 考场 姓名_____________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆2013-2014第二学期第一阶段七年级数学考试试题(满分:120分,时间:100分钟)一.选择题(每小题3分,共15分) 1.如图1,∠1与∠2是( )A.同位角B.内错角C.同旁内角D.对顶角 2.下列说法错误..的是( ) A. 1的平方根是±1 B. -1的立方根是-1C. 2是2的算术平方根D.2)3(-=-33.点P (1,-3)在第( )象限。

A.一B.二C.三D.四 4.在实数:3.14159,364 ,1.010010001…, 4.2•1•,π,722中,无理数有( )A .1个B .2个C .3个D .4个5.如图2所示,下列条件中,能说明FD ∥AB 的是( ) A. ∠DCE+∠A=180° B. ∠ECB=∠B C. ∠A=∠ACD D. ∠FCA=∠A 二.填空题(每空3分,共30分)6.= ;35-______的相反数是;比较大小:。

7. 如图3,在三角形ABC 中,∠B=90°,三条边AB 、BC 、AC 中,最长的是_______, 其中,线段 长度是点C 到线段AB 的距离。

8. 如图4,AB ∥CD ∥EF ,那么∠BAC +∠ACE +∠CEF = 度。

F图2图4图39. 若()=+=++y x 04y 5-x 2,则____________10. 如图5,在平面直角坐标系中,点P 的坐标为 11. 若x 的平方根是±9,则x=______。

12.把命题“等角的补角相等”写成“如果……,那么……。

”的形式为 ,三.作图与计算 (两大题,作图题8分,计算题每小题4作图:(保留作图痕迹)(共8分)13.如图6,平移三角形ABC ,使点A 移动到点A ´, 要求:作出平移后的三角形A ´B ´C ´14.(1)2+32-52 (6分) (2)()13333--- (6分)(3)()322875--+(6分) (4)解方程: 4x 2=49 (6分)C图6四、解答题(一)(本题共三题,每小题10分,共30分)15.补充下面的推理以及依据(共10分)(1)如图7:①若∠1=∠2,则∥(________________________________)②若∠DAB+∠ABC=1800,则∥(________________________________)③若∠3=_______,则CD∥AB (________________________________)(2)如图8,EF//AD,∠1=∠2.证明:∠DGA+∠BAC=180°.证明:∵EF//AD(已知)∴∠2=_____(两直线平行,同位角相等).又∵∠1=∠2 (________)∴∠1=∠3 (等量代换).∴AB//______(内错角相等,两直线平行)∴∠DGA+∠BAC=180°(_____________________________)16. 如图9,已知:直线a、b被c所截,a∥b,∠1=65°,求:∠3,∠4各是多少度?(共10分)17.如图10,已知直线b∥c,a⊥b.求证a⊥c.(共10分)cbaC图8五、解答题(二)(本题共两大题,共13分)18. (6分)已知a的立方根是3,a-b的平方根是±7,求a+2b的值19.(7分)如图11,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°(1)求证:AB∥CD;(2)猜想∠2与∠3有什么关系,尝试求证之。

人教版七年级数学下册单元检测(含答案) :第5章《相交线与平行线》含答案

人教版七年级数学下册单元检测(含答案) :第5章《相交线与平行线》含答案

人教版数学七年级下册单元检测试卷第 5 章《相交线与平行线》班级:姓名:成绩:题号一二三四五六七八总分得分一.单项选择题。

(本大题共10 小题,每小题4 分,共40 分。

每小题只有一个正确答案,请将正确的答案的序号填入括号中。

)1.如图所示的图案分别是奔驰、宝马、大众、奥迪汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.在“同一平面”条件下,下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)平移只改变图形的位置,不改变图形的形状和大小;(4)有公共顶点且有一条公共边的两个角互为邻补角;(5)连接直线外一点与直线上各点的所有线段中,垂线段最短。

A.1 个B.2 个C.3 个D.4 个3.如图,若AB,CD 相交于点O,且AB⊥OE,则下列结论不正确的是()A.∠EOC 与∠BOC 互为余角B.∠EOC 与∠AOD 互为余角C.∠AOE 与∠EOC 互为补角D.∠AOE 与∠EOB 互为补角第3 题图第4 题图第5 题图4.下列说法错误的是()A.∠1 与∠A 是同旁内角B.∠3 与∠A 是同位角C.∠2 与∠3 是同位角D.∠3 与∠B 是内错角5.新农村建设中一项重要工程是“村村通自来水”,如图是某一段自来水管道,若经过每次拐弯后,管道保持平行(即AB∥CD∥EF,BC∥DE).若∠B=70°,则∠E 的度数为( )A.70°B.110°C.120°D.130°6.如图,直线AB、CD 相交于点O,OE 平分∠BOD,OF 平分∠COE,∠AOD:∠BOE=4:1,则∠AOF 的度数为()A.135°B.130°C.125°D.120°7.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD 的度数为()A.97°B.117°C.125°D.152°8.如图,AB⊥BD 于点B,BC⊥CD 于点C,已知AD=7,CD=4,则BD 的长可能为( )A.5 B.7 C.8 D.12第6 题图第7 题图第8 题图9.将一副三角板按如图放置,则下列结论①∠BAE+∠CAD=180°;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④第9 题图第10 题图第11 题图10.甲乙丙丁四位同学在在一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,甲说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB。

精选新版2019年七年级下册数学单元测试题《三角形的初步认识》完整考题(含答案)

精选新版2019年七年级下册数学单元测试题《三角形的初步认识》完整考题(含答案)

2019年七年级下册数学单元测试题第一单元三角形的初步认识一、选择题1.如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm 则△ADC的周长为()A.14 cm B.13 cm C.11 cm D.9 cm答案:B2.下列6组长度的线段中,可以首尾相接组成三角形的是()①3,4,5;②1,1,3;③1,2,3;④5,5,5;⑤2,2,5;⑥3,7,4A.①②③④⑤⑥B.①④⑤C.①③④D.①②③④答案:D3.下列条件中,不能作出唯一..三角形的是()A.已知两边和夹角B.已知两边和其中一边的对角C.已知两角和夹边D.已知两角和其中一角的对边答案:B4.如图所示,已知∠1=∠2,AD=CB,AC,BD相交于点0,MN经过点O,则图中全等三角形的对数为()A.4对B.5对C.6对D.7对答案:C5.如图所示,若根据“SAS”来说明△ABC≌△DBC,已知BC是公共边,需要补充的条件是()A.AB=DB,∠l=∠2 B.AB=DB,∠3=∠4C.AB=DB,∠A=∠D D.∠l=∠2,∠3=∠4答案:B6.如图所示,在Rt△ADB中,∠D=90°,C为AD上一点,则x可能是()A 10° B.20° C.30° D.40°答案:B7.如图所示是跷跷板的示意图,支柱0C与地面垂直,点0是横板AB的中点,AB可以绕着点0上下转动,当A端落地时,∠0AC=20°.跷跷板上下可转动的最大角度(即∠A′OA)是()A.800 B.60°C.40°D.20°答案:C8.三角形的三边长都是整数,并且唯一的最长边是5,则这样的三角形共有()A 1个 B.2个 C.3个 D.4个答案:D二、填空题9.如图,AF、AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF = .解析:20010.若一个三角形的两条高在这个三角形的外部,那么这个三角形的形状是___________三角形.解析:钝角11.已知:△ABC 中,∠A=100°,∠B -∠C =60°,则∠C=__________.解析:10°12.如图,在△ABC 中,AD 是BC 边上的中线,若△ABC 的周长为20,BC=11,且△ABD 的周长比△ACD 的周长大3,则AB= ,AC= . 6,313.,AC=CD ,∠ACD=60°, 则∠ACB= .解析:30°14.已知△ABC ≌△A ′B ′C ′,AB+AC=18 cm ,BC=7 cm ,则△A ′B ′C ′的周长是 .解析:25 cm15.如图所示,将两块相同的直角三角板的直角顶点重合放在一起,若∠AOD=110°,则∠BOC= .请你用符号表示图中的全等三角形: .解析:70°,△AOB ≌△COD16.如图所示,△ABC 中,∠B=∠C ,FD ⊥BC 于D ,DE ⊥AB 于E ,∠AFD=155°,则∠EDF= .解析:65°17.直角三角形的两个锐角的平分线AD ,BE 交于点0,则∠AOB= .解析:135°三、解答题18. 如图,把4×4的正方形方格图形分割成两个全等图形,请在下图中,沿虚线画出四 D B种不同的分法,把4×4的正方形分割成两个全等图形.解析:19.如图,AB⊥BD于B,DE⊥BD于D,已知AB=CD,BC=ED,求∠ACE的度数.解析:△ABC≌△CDE(SAS),则∠ACB=∠E,由于∠ACB+∠ACE =∠E+∠D, 则∠ACE=∠D=90°.20.如图,在△ABC和△DEF中,AC=DF,AE=BD,BC=EF,则∠C=∠F,请说明理由(填空).解:∵ AE=BD(已知)∴ =∴ =在△ABC和△DEF中===∴△ABC≌△DEF ( )∴∠C=∠F ( )解析:AE-BE,BD-BE,AB,DE,AC,DF,AB,DE,BC,EF,SSS,全等三角形的角相等.21.画一个三角形,使两个内角分别为45°和60°,它们的夹边为2.5cm.解析:略22.如图所示,已知AB=CD,BE=CF,E、F在直线AD上,并且AF=DE,说明△ABE≌△DCF的理由.解析:略23.如图所示,已知△ABE≌△ACE,D是BC的中点,你能说明△BDE≌△CDE吗?解析:略24.把大小为4×4的正方形方格图形分割成两个全等图形,如右图所示,请在下图中,沿着虚线再画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形解析:略25.如图所示,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°,求∠DAE的大小.解析:18°26.如图所示,在△ABC中,∠ABC=∠ACB,且∠ACB=2∠A,BD⊥AC于D,求∠DBC的度数.解析:18°27.如下表,“谢氏三角”是波兰著名数学家谢尔宾斯基在1915年~l916年期间提出的,它的作法是:第一步:取一个等边三角形(记为P 1),连结各边的中点,得到完全相同的小正三角形,挖掉中间的一个;第二步:将剩下的三个小正三角形(记为P 2),按上述办法各自取中点,各自分成4个小三角形,去掉各自中间的一个小正三角形;依次类推,不断划分出小的正三角形,同时去掉中间的一个小正三角形.试求P 4的“黑”三角形的个数,“黑”三角形的总边数,边长,周长和面积,并将结果填入下表中.解析:27,81,118a ,1818a ,12764S 28.如图所示,已知△ABC 的边AB 和BC 边上的中线AD ,请把△ABC 补画完整.解析:连结BD,并延长BD到C,使DC=BD,连结AC29.在△ABC中,∠A+∠C=120°,∠B+∠C=110°,求三角形各内角的度数.解析:∠A=70°,∠B=60°,∠C=50°30.如图,从建筑物顶端A处拉一条宣传标语条幅到地面C处,为了测量条幅AC的长,在地面另一处选一点D,使D、C、B(B为建筑物的底部)三点在同一直线上,并测得∠D=40°,∠ACB=80°,求∠DAC的度数.解析:40°AB CD。

人教版数学七年级下册《期中考试试题》及答案

人教版数学七年级下册《期中考试试题》及答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每小题3分,共30分)1.有理数223-的倒数是( ). A. 43 B. 94- C. 34- D. 942.在有理数:23,0.25,27--,12⎛⎫-- ⎪⎝⎭中,是正分数的有( )个. A. 1 B. 2 C. 3 D. 43.从金花中学驾车到天府广场大约有13千米的路程,如果用科学记数法来表示13千米则可以表示成( )米.A. 31310⨯B. 41.310⨯C. 21310⨯D. 31.310⨯ 4.下列说法中,正确的是( ).A. 有理数可分为:正整数、负整数、正分数以及负分数.B. 绝对值最小的数与任何有理数相加答案都不变.C. 两个有理数相加,和一定大于或等于这两个加数.D. 两个有理数相乘的积为正数,说明这两个数同号.5.下列计算正确是( ). A. 12()33m n m n m n ⎛⎫---=+ ⎪⎝⎭ B. 32a a -= C. 235x y xy += D.()a b c a b c --=--6.有一款服装原价元,悦悦百货商店先按原价上涨20%后标价,再按标价降价20%售出,那么最终商店卖出一件这样的服装( ).A. 赚了125a 元B. 亏了125a 元 C. 既不赚也不亏D. 无法判断是赚钱还是亏损,这和值有关 7.下列式子中,和3232x yz -次数相同的是( ).A. 64abB. 328a b π-C. 25367a b ab -+-D.8.如图是一个正方体的表面展开图,如果原正方体的相对两个面上的数和相等,那么m n +=( ).A. 4B. 3C. 2D. 19.在一次考试中,某班17名男生的平均分为分,19名女生的平均分为分,那么这个班的全体同学的平均分为( ). A. 2a b + B. 36a b + C. 17192a b + D. 171936a b + 10.根据如图所示的流程图中的程序,当输入数据为3-时,输出数值为( ).A. 0B. 2C. 4D. 6二、填空题:(每小题4分,共20分)11.若22a a -=-,且29a =,则a =__________.12.一个棱柱有12个面,它有__________个顶点,___________条棱.13.若在数轴上对应点到表示的点的距离为3,则x =__________.14.如果关于,的单项式23m n x y -与2axy -可合并为单项式0,则a m n -+的值为 _________.15.如图,正方形ABCD 的边长为2,以B 为圆心,AB 为半径在正方形内作14圆,再以CD 为直径在正方形内作半圆,得图中阴影部分,面积分别表示为1S 、2S ,则12S S -=__________.三、解答题:(共50分)16.计算(1)24111341323⎡⎤⎛⎫-+-+⨯-÷⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (2)225(2)3(0.2)013317---⨯-+÷⨯ 17.化简(1)()()332332223234x y x y x y x y -----(2)22()()3()()a b a b b a b a ---+-+-18.已知:有理数,,在数轴上的位置如图,化简:|||||||3|a c b a b c a a +---+-+.19.下图是一个由若干棱长都为2cm 的小立方块搭成的几何体,求这个几何体的表面积.20.已知2333A x xy y =--+,2343B x xy y =+-,且112x =-,537y =,求:4(2)(23)A A B A B -+--的值.21.用简便方法计算下列各式的值:(1)()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭(2)12345678979899100--++--+++--+…22.在数轴上有点,,,它们表示的数分别为,,,且满足:()24980a b c -+-++=;,,三点同时出发沿数轴向右运动,它们的速度分别为:1A V =(单位/秒),2B V =(单位/秒),3C V =(单位/秒).(1)求,,的值;(2)运动时间等于多少时,点与点、点距离相等?23.成都市的水费实行下表的收费方式:每月用水量单价 不超出310m (包括310m )2元/3m 超出310m 但不超出320m (包括320m )的部分 3元/3m(1)周老师家九月份用了316m 的水,应付多少水费? (2)如果李老师家九月份的用水量为3xm ,那么应付的水费为多少元?(3)如果曹老师家九月和十月一共用了328m 的水,且已知九月比十月少,设九月用水量为3xm ,那么曹老师这两个月一共要交多少钱的水费?(可用含的代数式表示)答案与解析一、选择题:(每小题3分,共30分)1.有理数223-的倒数是().A. 43B.94- C.34- D.94[答案]C[解析][分析]先计算原式的值,再根据倒数的定义解答即可.[详解]解:22433-=-,43-的倒数是34-.故选:C.[点睛]本题考查了有理数的乘方运算和倒数的定义,属于基础题型,熟练掌握基本知识是关键.2.在有理数:23,0.25,27--,12⎛⎫-- ⎪⎝⎭中,是正分数的有()个.A. 1B. 2C. 3D. 4 [答案]B[解析][分析]先化简27--与12⎛⎫-- ⎪⎝⎭,再找出其中的正分数即可.[详解]解:2277=---,11=22,所以在有理数:23,0.25,27--,12⎛⎫-- ⎪⎝⎭中,是正分数的有:0.25,12⎛⎫-- ⎪⎝⎭共2个.故选:B.[点睛]本题考查了有理数的分类以及有理数的绝对值等知识,属于应知应会题型,熟练掌握有理数的概念是关键.3.从金花中学驾车到天府广场大约有13千米的路程,如果用科学记数法来表示13千米则可以表示成()米.A. 31310⨯B. 41.310⨯C. 21310⨯D. 31.310⨯[答案]B[解析][分析] 先换算单位,再根据科学记数法的表示方法解答即可.[详解]解:13千米=13000米=41.310⨯米.故选:B .[点睛]此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法中,正确的是( ).A. 有理数可分为:正整数、负整数、正分数以及负分数.B. 绝对值最小的数与任何有理数相加答案都不变.C. 两个有理数相加,和一定大于或等于这两个加数.D. 两个有理数相乘的积为正数,说明这两个数同号.[答案]D[解析][分析]分别根据有理数的定义、绝对值的意义、有理数的加法法则和有理数的乘法法则逐项判断即可.[详解]解:A 、有理数可分为:正整数、负整数、0、正分数以及负分数,所以本选项说法错误,不符合题意; B 、绝对值最小的数是0,0与任何有理数相加都得这个数,所以本选项说法错误,不符合题意;C 、两个有理数相加,和不一定大于或等于这两个加数,所以本选项说法错误,不符合题意;D 、两个有理数相乘的积为正数,说明这两个数同号,所以本选项说法正确,符合题意.故选:D .[点睛]本题考查了有理数的定义、有理数绝对值的意义、有理数的加法法则和有理数的乘法法则等知识,属于基础题目,熟练掌握基本知识是解题关键.5.下列计算正确的是( ). A. 12()33m n m n m n ⎛⎫---=+ ⎪⎝⎭ B. 32a a -= C. 235x y xy += D.()a b c a b c --=--[答案]A根据整式的加减运算法则计算可判断A ,根据合并同类项的法则可判断B ,根据同类项的定义可判断C ,根据去括号法则可判断D ,进而可得答案.[详解]解:A 、12()32233m n m n m n m n m n ⎛⎫---=--+=+ ⎪⎝⎭,所以本选项计算正确;B 、32a a a -=,所以本选项计算错误;C 、2x 与3y 不是同类项,不能合并,所以本选项计算错误;D 、()a b c a b c --=-+,所以本选项计算错误.故选:A .[点睛]本题考查了整式的加减运算,属于基础题型,熟练掌握去括号的法则和合并同类项的法则是解题关键. 6.有一款服装原价元,悦悦百货商店先按原价上涨20%后标价,再按标价降价20%售出,那么最终商店卖出一件这样的服装( ).A. 赚了125a 元B. 亏了125a 元 C. 既不赚也不亏D. 无法判断是赚钱还是亏损,这和的值有关[答案]B[解析][分析] 先用含a 的代数式表示出最终该服装的售价,再减去原价a 即可进行判断.[详解]解:根据题意可得:该服装的标价为()120%a +元,降价20%后售价为()()120%120%a +-元, 所以该商店卖出一件这样的服装盈利为()()1120%120%0.960.0425a a a a a a +--=-=-=-元. 即最终该商店卖出一件这样的服装亏了125a 元. 故选:B .[点睛]本题考查了列代数式的知识和整式的加减运算,解题的关键是明确题意、正确表示出该服装的最终售价.7.下列式子中,和3232x yz -次数相同的是( ).A. 64abB. 328a b π-C. 25367a b ab -+-D. [答案]C先根据单项式次数的定义判断已知单项式的次数,再逐项判断即可.[详解]解:单项式3232x yz -的次数是6次.A 、64ab 的次数是7次,与已知式子的次数不相同,所以本选项不符合题意;B 、328a b π-的次数是5次,与已知式子的次数不相同,所以本选项不符合题意;C 、多项式25367a b ab -+-的次数是6次,与已知式子的次数相同,所以本选项符合题意;D 、的次数是0次,与已知式子的次数不相同,所以本选项不符合题意.故选:C .[点睛]本题考查了单项式和多项式的次数,属于基础概念题型,熟练掌握二者的概念是关键.8.如图是一个正方体的表面展开图,如果原正方体的相对两个面上的数和相等,那么m n +=( ).A. 4B. 3C. 2D. 1[答案]A[解析][分析] 先根据原正方体的相对两个面上的数之和相等求出m 、n 的值,再代入所求式子计算即可.[详解]解:由题意,得:()()13743m n +-=+=+-=,所以m =4,n =0,所以404m n +=+=.故选:A .[点睛]本题考查了正方体的表面展开图和有理数的加减运算,属于基本题型,解题的关键是根据题意正确确定m 、n 的值.9.在一次考试中,某班的17名男生的平均分为分,19名女生的平均分为分,那么这个班的全体同学的平均分为( ). A. 2a b + B. 36a b + C. 17192a b + D. 171936a b + [答案]D根据平均数的定义解答即可.[详解]解:由题意得:这个班的全体同学的平均分=17191719171936a b a b +++=. 故选:D .[点睛]本题考查了平均数的定义,属于基础题型,熟练掌握平均数的计算方法是解题关键.10.根据如图所示的流程图中的程序,当输入数据为3-时,输出数值为( ).A. 0B. 2C. 4D. 6[答案]A[解析][分析] 把x =﹣3代入所给出的流程图,按照程序计算即可.[详解]解:当x =﹣3时,﹣3+2=﹣1,﹣1×2=﹣2,﹣2<0; 当x =﹣2时,﹣2+2=0,0×2=0,0=0;所以输出的数值y =0.故选:A .[点睛]本题主要考查了代数式求值,属于常见题型,弄懂所给出的流程图、按照程序准确计算是解题关键.二、填空题:(每小题4分,共20分)11.若22a a -=-,且29a =,则a =__________.[答案]﹣3[解析][分析]由29a =可确定a 的值,再根据绝对值的意义确定a -2的取值范围,进而可得答案.[详解]解:因为29a =,所以3a =±, 因为22a a -=-,所以20a -≤,所以3a =-.故答案为:﹣3.[点睛]本题考查了有理数的乘方和有理数的绝对值,属于常考题型,熟练掌握基本知识是关键.12.一个棱柱有12个面,它有__________个顶点,___________条棱.[答案] (1). 20 (2). 30[解析][详解]解:一个棱柱有12个面,除上下两个底面后还有10个侧面,所以这个棱柱为10棱柱,它有20个顶点,30条棱故答案:20;30.[点睛]本题考查立体图形的认识..13.若在数轴上对应的点到表示的点的距离为3,则x =__________.[答案]﹣5或1[解析][分析]分表示数x 点在表示的点的左边和右边两种情况解答即可.[详解]解:当表示数x 的点在的点的左边时,x =﹣2-3=﹣5,当表示数x 的点在的点的右边时,x =﹣2+3=1,所以x =﹣5或1.故答案为:﹣5或1.[点睛]本题考查了数轴的有关知识,属于基本题型,正确理解数轴上两点间的距离是解题关键.14.如果关于,的单项式23m n x y -与2axy -可合并为单项式0,则a m n -+的值为 _________.[答案]2[解析][分析]由题意可得题目所给出的两项是同类项,再根据同类项的定义可得关于a 和m -n 的等式,然后把求得的a 的值和m -n 的值整体代入所求式子计算即可.[详解]解:根据题意,得:30a -=,1m n -=,所以a =3,所以()312a m n a m n -+=--=-=.故答案为:2.[点睛]本题考查了同类项的定义和合并同类项的法则,属于基础题目,熟练掌握基本知识是解题关键. 15.如图,正方形ABCD 的边长为2,以B 为圆心,AB 为半径在正方形内作14圆,再以CD 为直径在正方形内作半圆,得图中阴影部分,面积分别表示为1S 、2S ,则12S S -=__________.[答案]342π-[解析][分析]如图,可先计算13S S +,即为半圆CD 的面积,再计算23S S +,即为正方形的面积减去以AB 为半径的14圆的面积,然后再计算()13S S +与()23S S +的差即可.[详解]解:如图,记右边的空白部分的面积为S 3,则由题意得:21311112222CD S S πππ⎛⎫+=⋅=⨯= ⎪⎝⎭,2222311242444S S AB πππ+=-⋅=-⨯=-; 所以()()()121323134422S S S S S S πππ-=+-+=--=-. 故答案为:342π-.[点睛]本题考查了列代数式和阴影面积的计算等知识,弄清题意、明确()()121323S S S S S S -=+-+是解题关键.三、解答题:(共50分)16.计算(1)24111341323⎡⎤⎛⎫-+-+⨯-÷⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (2)225(2)3(0.2)013317---⨯-+÷⨯[答案](1)13-;(2)1.[解析][分析](1)先计算乘方,同时把除法转化为乘法,再计算乘法,最后计算加减;(2)前一项绝对值内先计算乘方,同时后一项计算乘除,再计算乘法即可.[详解]解:(1)24111341323⎡⎤⎛⎫-+-+⨯-÷⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ =911134433⎛⎫-+-+⨯⨯⨯ ⎪⎝⎭ =()11399-+-+⨯=1169-+⨯=213-+ =13-;(2)原式=49(0.2)0--⨯-+=5(0.2)-⨯-=1.[点睛]本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键. 17.化简(1)()()332332223234x y x y x y x y -----(2)22()()3()()a b a b b a b a ---+-+-[答案](1)322y x y --;(2)()()242a b a b ---.[解析][分析](1)先去括号,再合并同类项即可;(2)把a -b 看作一个整体,然后根据合并同类项的法则化简即可.[详解]解:(1)原式=332332246234x y x y x y x y ---++=322y x y --;(2)原式=()()()()223a b a b a b a b -+-----=()()242a b a b ---.[点睛]本题考查了整式的加减运算,属于基本题型,熟练掌握整式的加减运算法则是解题关键.18.已知:有理数,,在数轴上的位置如图,化简:|||||||3|a c b a b c a a +---+-+.[答案]2b .[解析][分析]先由a 、b 、c 在数轴上的位置可确定a >0,c <b <0,b a c <<,进而可确定,,,3a c b a b c a a +-+-的符号,再根据绝对值的性质去掉绝对值符号,然后根据整式的加减运算法则计算即可.[详解]解:由题意得:a >0,c <b <0,b a c <<,所以0,0,0,30a c b a b c a a +<-<+-<>,所以原式=()()()3a c b a b c a a -+-----+-+⎡⎤⎡⎤⎣⎦⎣⎦=3a c b a b c a a --+-++-+=2b .[点睛]本题主要考查了数轴、有理数的绝对值和整式的加减运算等知识,属于常考题型,根据点在数轴上的位置确定相关式子的符号、熟练进行绝对值的化简和整式的加减运算是解题的关键.19.下图是一个由若干棱长都为2cm 的小立方块搭成的几何体,求这个几何体的表面积.[答案]120cm 2.[解析][分析]先计算需要求的正方形的个数:可看作三个方向(正面、左面、上面)上的正方形的个数之和乘以2再加上挡住的2个正方形,所求得的结果再乘以一个正方形的面积即可.[详解]解:几何体的表面积=()425632=120⨯⨯+++⎡⎤⎣⎦cm 2.答:这个几何体的表面积是120cm 2.[点睛]本题考查了几何体的视图和表面积的计算,属于常见题型,掌握求解的方法是关键.20.已知2333A x xy y =--+,2343B x xy y =+-,且112x =-,537y =,求:4(2)(23)A A B A B -+--的值.[答案]94. [解析][分析] 先根据整式的加减运算法则化简原式,再把x 、y 的值代入化简后的式子计算即可.[详解]解:原式=4223A A B A B ---+=A B +()()23233343x xy y x xy y +=--++-23233343x xy y x xy y +=--++-2x =; 当112x =-,537y =,原式=219124⎛⎫-= ⎪⎝⎭. [点睛]本题考查了整式的加减运算与代数式求值,属于常考题型,熟练掌握整式的加减运算法则是解题的关键.21.用简便方法计算下列各式值:(1)()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭(2)12345678979899100--++--+++--+…[答案](1)-15;(2)0.[解析][分析](1)可把原式变形为()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯,再逆用乘法分配律计算;(2)可将原式变形为()()()12345678979899100--++--+++--+…,进一步即可求出结果.[详解]解:()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯-⎪⎝⎭=()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯=()1.5 2.7 4.8 2.5-⨯++= 1.510-⨯=-15;(2)12345678979899100--++--+++--+…=()()()12345678979899100--++--+++--+…=000+++=0.[点睛]本题考查了有理数的加法和乘法运算律,属于常见题型,熟练掌握有理数的运算律和混合运算法则是解题关键.22.在数轴上有点,,,它们表示的数分别为,,,且满足:()24980a b c -+-++=;,,三点同时出发沿数轴向右运动,它们的速度分别为:1A V =(单位/秒),2B V =(单位/秒),3C V =(单位/秒).(1)求,,的值;(2)运动时间等于多少时,点与点、点的距离相等?[答案](1)a =4,b =9,c =﹣8;(2)6t =.[解析][分析](1)根据非负数的性质可得关于a 、b 、c 的方程,解方程即得答案;(2)先根据数轴上两点间的距离的表示方法得出点与点、点的距离,进而可得关于t 的方程,解方程即可求出结果.[详解]解:(1)根据题意,得:a -4=0,b -9=0,c +8=0,解得a =4,b =9,c =﹣8;(2)运动t 秒时,A 、B 、C 三点运动的路程分别为:t 、2t 、3t ,此时,点与点距离为:2945t t t -+-=+,点与C 点的距离为:()239817t t t -+--=-,由题意,得:517t t +=-,所以517t t +=-,解得:6t =;或()517t t +=--,此时t 的值不存在.所以当6t =时,点与点、点的距离相等.[点睛]本题主要考查了数轴上两点间的距离和一元一次方程的知识,属于常考题型,正确理解题意、准确用含t 的关系式表示点与点、点的距离是解题的关键.23.成都市的水费实行下表的收费方式:(1)周老师家九月份用了316m 的水,应付多少水费?(2)如果李老师家九月份的用水量为3xm ,那么应付的水费为多少元?(3)如果曹老师家九月和十月一共用了328m 的水,且已知九月比十月少,设九月用水量为3xm ,那么曹老师这两个月一共要交多少钱的水费?(可用含的代数式表示)[答案](1)38元;(2)当010x <≤时,应付水费10x 元;当1020x <≤时,应付水费310x -(元);当20x >时,应付水费为430x -(元);(3)若08x <<,要交水费822x -(元);若810x ≤≤,要交水费为74x -(元);若1014x <<,要交水费为64元.[解析][分析](1)根据不超310m 的按照2元/3m 计算,超出310m 的63m 按照3元/3m 计算,据此解答即可;(2)分用水量不超出310m (包括310m )、超出310m 但不超出320m (包括320m )、超出320m 三种情况,按照应付水费的计算方法解答即可;(3)先根据九月比十月用水量少确定x 的范围是014x <<,然后分08x <<、810x ≤≤、1014x <<三种情况,再根据(2)题中的结论和计费方法解答即可.[详解]解:(1)10263=38⨯+⨯元,答:周老师家九月份应付水费38元;(2)当用水量不超出310m (包括310m )即010x <≤时,应付水费为10x 元;当用水量超出310m 但不超出320m (包括320m )即1020x <≤时,应付水费为()102310310x x ⨯+⨯-=-(元);当用水量超出320m 即20x >时,应付水费为()102103420430x x ⨯+⨯+⨯-=-(元);答:当010x <≤时,应付水费10x 元;当1020x <≤时,应付水费310x -(元);当20x >时,应付水费430x -(元);(3)因为九月比十月用水量少,所以014x <<,若08x <<,则202828x <-<,所以曹老师这两个月一共要交水费为()242830822x x x +--=-(元);若810x ≤≤,则182820x ≤-≤,所以曹老师这两个月一共要交水费为()23281074x x x +--=-(元); 若1014x <<,则142818x <-<,所以曹老师这两个月一共要交水费为()3103281064x x -+--=元. 答:若08x <<,要交水费822x -(元);若810x ≤≤,要交水费为74x -(元);若1014x <<,要交水费为64元.[点睛]本题考查的是列出实际问题中的代数式,属于常考题型,正确理解题意、灵活应用分类思想是解题的关键.。

七年级下第一阶段数学试卷(有答案)-(新课标人教版)

七年级下第一阶段数学试卷(有答案)-(新课标人教版)

七年级下第一阶段数学试卷(有答案)-(新课标人教版)一、选择题1.下列运算结果为a6的是()A.a2+a3B.a2•a3C.(﹣a2)3D.a8÷a22.如图,下列条件中,不能判定直线l1∥l2的是()A.∠1=∠3 B.∠2+∠4=180°C.∠2=∠3 D.∠4=∠53.若∠1和∠2互补,∠2与∠3互补,若∠1=68°,则∠3=()A.28°B.68°C.118° D.90°4.若4y2﹣my+25是一个完全平方式,则m的值()A.10 B.±10 C.20 D.±205.如图,点A,O,B在一条直线上,∠AOC=∠BOC,若∠1=∠2,则图中互余的角共有()种.A.2 B.3 C.4 D.56.若正数m,n满足m2+n2=10,mn=3,则m+n=()A.±4 B.4 C.﹣4 D.±167.如图,已知AB∥CO,那么∠1,∠2,∠3之间的关系是()A.∠1+∠2=∠3 B.∠1+∠3=∠2C.∠1+∠2+∠3=180°D.∠1+∠2﹣∠3=180°8.下列说法中正确的是()A.不相交的两条直线叫做平行线B.点到直线的距离是这点到直线的垂线段C.过一点有且只有一条直线与已知直线平行D.在同一平面内,垂直于同一直线的两直线平行9.已知a2+b2=,则a b=()A.﹣1 B.27 C.9 D.310.如图,已知AD∥CD,∠1=109°,∠2=120°,则∠α的度数是()A.38°B.48°C.49°D.60°二、填空题11.如图,计划把河水引到水池M中,先引MP⊥AB,垂足为P,然后沿MP开渠,能使所开的渠道最短,这样设计的依据是.12.计算的结果为.13.若代数式(x2﹣2x+1)(kx2﹣3)的展开式中不含x的二次项,则常数k=.14.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=35°时,∠BOD 的度数为.15.如图,已知AB∥CD∥EF,EH⊥CD,垂足为H,则∠A+∠CEH+∠ACE=.16.如图,下列条件中:①∠1=∠2;②∠3=∠4;③∠5=∠D;④∠1=∠6;⑤∠BAD+∠D=180°;⑥∠BCD+∠D=180°能得AD∥BC的有(只填序号)三、解答题17.计算:(1)(2)(3)(4)(2a﹣b﹣c)(b﹣2a﹣c)18.如图,已知∠1=∠2,∠4=∠5,∠3=∠E,试说明AE∥BD,AD∥BC,请完成下列证明过程.证明:∵∠4=∠5∴AB∥()∴∠3=()∵∠3=∠B∴∠E=∠BDC()∴∥BD()∴∠2=()∵∠1=∠2∴∠1=∴AD∥BC()19.先化简,再求值:[﹣(3b+a)(a﹣3b)﹣(3a﹣2b)2﹣(﹣5a+5b)(b+2a)]2,其中a,b满足﹣6b=﹣9.20.如图,∠1+∠2=180°,∠A=∠C,BC平分∠EBD(1)AE与CP会平行吗?说明理由;(2)AD与BC的位置关系是什么?说明理由;(3)DA平分∠BDP吗?为什么?七年级(下)第一阶段数学试卷参考答案与试题解析一、选择题1.下列运算结果为a6的是()A.a2+a3B.a2•a3C.(﹣a2)3D.a8÷a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项、同底数幂的乘除法以及积的乘方和幂的乘方进行计算即可.【解答】解:A、a3÷a2不能合并,故A错误;B、a2•a3=a5,故B错误;C、(﹣a2•)3=﹣a6,故C错误;D、a8÷a2=a6,故D正确;故选D.2.如图,下列条件中,不能判定直线l1∥l2的是()A.∠1=∠3 B.∠2+∠4=180°C.∠2=∠3 D.∠4=∠5【考点】平行线的判定.【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:A、∵∠1=∠3,∴直线l1∥l2,故此选项不合题意;B、∵∠2+∠4=180°,∴直线l1∥l2,故此选项不合题意;C、∠2=∠3,不能得出直线l1∥l2,故此选项符合题意;D、∵∠4=∠5,∴直线l1∥l2,故此选项不合题意;故选:C.3.若∠1和∠2互补,∠2与∠3互补,若∠1=68°,则∠3=()A.28°B.68°C.118° D.90°【考点】余角和补角.【分析】由于∠1、∠3都与∠2互补,应当联想到用“同角的补角相等”来解决.【解答】解:∵∠1+∠2=180°,∠2+∠3=180°,∴∠3=∠1=68°.故选B.4.若4y2﹣my+25是一个完全平方式,则m的值()A.10 B.±10 C.20 D.±20【考点】完全平方式.【分析】本题考查完全平方公式的灵活应用,这里首末两项是2y和5的平方,那么中间项为加上或减去2y和5的乘积的2倍.【解答】解:∵4y2﹣my+25是完全平方式,∴﹣my=±2×5•2y,解得m=±20.故选D.5.如图,点A,O,B在一条直线上,∠AOC=∠BOC,若∠1=∠2,则图中互余的角共有()种.A.2 B.3 C.4 D.5【考点】余角和补角.【分析】由∠AOC=∠BOC=90°,推出∠1+∠AOE=90°,∠2+∠FOC=90°,求出∠FOC=∠AOE,推出∠1+∠COF=90°,∠2+∠AOE=90°,根据余角的定义得出即可.【解答】解:∵∠AOC=∠BOC,∠AOC+∠BOC=180°,∴∠AOC=∠BOC=90°,∴∠1+∠AOE=90°,∠2+∠FOC=90°,∵∠1=∠2,∴∠FOC=∠AOE,∴∠1+∠COF=90°,∠2+∠AOE=90°,即图中互余的角共有4种.故选:C.6.若正数m,n满足m2+n2=10,mn=3,则m+n=()A.±4 B.4 C.﹣4 D.±16【考点】完全平方公式.【分析】根据完全平方公式求出(m+n)2,再开方即可.【解答】解:∵m2+n2=10,mn=3,∴(m+n)2=m2+n2+2mn=10+6=16,∴m+n=±4,故选A.7.如图,已知AB∥CO,那么∠1,∠2,∠3之间的关系是()A.∠1+∠2=∠3 B.∠1+∠3=∠2C.∠1+∠2+∠3=180°D.∠1+∠2﹣∠3=180°【考点】平行线的性质;三角形的外角性质.【分析】先延长AE交CO于F,则∠2是△EFO的外角,进而得出∠AFO=∠2﹣∠3,再根据平行线的性质,得到∠1+∠AFO=180°,即可得出∠1+∠2﹣∠3=180°.【解答】解:如图,延长AE交CO于F,则∠2是△EFO的外角,∴∠AFO=∠2﹣∠3,∵AB∥CO,∴∠1+∠AFO=180°,∴∠1+∠2﹣∠3=180°,故选:D.8.下列说法中正确的是()A.不相交的两条直线叫做平行线B.点到直线的距离是这点到直线的垂线段C.过一点有且只有一条直线与已知直线平行D.在同一平面内,垂直于同一直线的两直线平行【考点】平行公理及推论;点到直线的距离;平行线.【分析】分别利用平行公理以及点到直线的距离以及平行线的判定方法进而得出答案.【解答】解:A、不相交的两条直线叫做平行线,必须在同一平面内,故此选项不合题意;B、点到直线的距离是这点到直线的垂线段长度,故此选项不合题意;C、过一点有且只有一条直线与已知直线平行,必须在同一平面内,故此选项不合题意;D、在同一平面内,垂直于同一直线的两直线平行,正确,符合题意.故选:D.9.已知a2+b2=,则a b=()A.﹣1 B.27 C.9 D.3【考点】因式分解的应用;非负数的性质:偶次方.【分析】把已知条件整理得:(a﹣)2+(b+3)2=0,根据非负数的性质即可解决问题.【解答】解:∵a2+b2=,∴(a2﹣a+)+(b2+6b+9)=0,∴(a﹣)2+(b+3)2=0,∵(a﹣)2≥0,(b+3)2≥0,∴a=,b=﹣3,∴a b=()﹣3=27,故选B.10.如图,已知AD∥CD,∠1=109°,∠2=120°,则∠α的度数是()A.38°B.48°C.49°D.60°【考点】平行线的性质;三角形的外角性质.【分析】设AF与直线CD相交于E,根据两直线平行,同旁内角互补,求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得∠α的度数.【解答】解:如图,设AF与直线CD相交于E,∵AB∥CD,∴∠3=180°﹣∠1=180°﹣109°=71°,由三角形的外角性质得,∠α=∠2﹣∠3=120°﹣71°=49°.故选:C.二、填空题11.如图,计划把河水引到水池M中,先引MP⊥AB,垂足为P,然后沿MP开渠,能使所开的渠道最短,这样设计的依据是垂线段最短.【考点】垂线段最短.【分析】根据垂线段的性质,可得答案.【解答】解:计划把河水引到水池M中,先引MP⊥AB,垂足为P,然后沿MP开渠,能使所开的渠道最短,这样设计的依据是垂线段最短,故答案为:垂线段最短.12.计算的结果为π﹣4.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=π﹣3﹣2+1=π﹣4,故答案为:π﹣413.若代数式(x2﹣2x+1)(kx2﹣3)的展开式中不含x的二次项,则常数k=3.【考点】多项式乘多项式.【分析】把式子展开,合并含x2的项,令其系数为0,求出k的值.【解答】解:(x2﹣2x+1)(kx2﹣3)=kx4﹣2kx3+kx2﹣3x2+6x﹣3=kx4﹣2kx3+(k﹣3)x2+6x﹣3当k﹣3=0时,k=3.故答案为:314.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=35°时,∠BOD 的度数为55°或125°.【考点】垂线;余角和补角.【分析】此题可分两种情况,即OC,OD在AB的一边时和在AB的两边,分别求解.【解答】解:①当OC、OD在AB的一旁时,∵OC⊥OD,∴∠COD=90°,∵∠AOC=35°,∴∠BOD=180°﹣∠COD﹣∠AOC=55°;②当OC、OD在AB的两旁时,∵OC⊥OD,∠AOC=35°,∴∠AOD=55°,∴∠BOD=180°﹣∠AOD=125°.故答案为:55°或125°.15.如图,已知AB∥CD∥EF,EH⊥CD,垂足为H,则∠A+∠CEH+∠ACE=270°.【考点】平行线的性质;垂线.【分析】根据两直线平行,同旁内角互补可得∠A+∠ACD=180°,根据垂直的定义求出∠CHE=90°,然后根据直角三角形两锐角互余求出∠DCE+∠CEH=90°,最后求解即可.【解答】解:∵AB∥CD,∴∠A+∠ACD=180°,∵EH⊥CD,∴∠CHE=90°,∴∠DCE+∠CEH=90°,∴∠A+∠ACD+∠DCE+∠CEF=180°+90°=270°,即∠A+∠CEH+∠ACE=270°.故答案为:270°.16.如图,下列条件中:①∠1=∠2;②∠3=∠4;③∠5=∠D;④∠1=∠6;⑤∠BAD+∠D=180°;⑥∠BCD+∠D=180°能得AD∥BC的有①③⑥(只填序号)【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:①∵∠1=∠2,∴AD∥BC,故本条件正确;②∵∠3=∠4,∴AB∥DE,故本条件错误;③∵∠5=∠D,∴AD∥BC,故本条件正确;④∵∠1=∠6,∴不能判定任何直线平行,故本条件错误;⑤∵∠D+∠BAD=180°,∴AB∥DE,故本条件错误;⑥∵∠D+∠BCD=180°,∴AD∥BC,故本条件正确.故答案为:①③⑥.三、解答题17.计算:(1)(2)(3)(4)(2a﹣b﹣c)(b﹣2a﹣c)【考点】整式的除法;幂的乘方与积的乘方;多项式乘多项式.【分析】(1)直接利用积的乘方运算法则化简求出答案;(2)直接利用积的乘方运算法则,以及整式乘法运算法则化简求出答案;(3)直接利用整式除法运算法则求出答案;(4)直接利用平方差公式结合完全平方公式求出答案.【解答】解:(1)原式=(×1.5)2015×1.5×(﹣1)=1×1.5×(﹣1)=﹣1.5;(2)原式=x2y4•(2x2y﹣xy2+xy2)=x2y4•2x2y=x4y5;(3)原式=3m2n÷(﹣mn)﹣mn2÷(﹣mn)+mn÷(﹣mn)=﹣6m+2n﹣1;(4)(2a﹣b﹣c)(b﹣2a﹣c)=(﹣c+2a﹣b)[﹣c﹣(2a﹣b)]=c2﹣(2a﹣b)2=c2﹣4a2﹣b2+4ab.18.如图,已知∠1=∠2,∠4=∠5,∠3=∠E,试说明AE∥BD,AD∥BC,请完成下列证明过程.证明:∵∠4=∠5∴AB∥CE(内错角相等,两直线平行)∴∠3=∠E(已知)∵∠3=∠B∴∠E=∠BDC(等量代换)∴AE∥BD(同位角相等,两直线平行)∴∠2=(∠ADB)∵∠1=∠2∴∠1=∠ADB∴AD∥BC(内错角相等,两直线平行)【考点】平行线的判定与性质.【分析】首先证明AB∥CE,进而得到∠E=∠BDC,即可证明AE∥BD,再证明∠1=∠ADB,利用内错角相等,证明AD∥BC即可.【解答】证明:∵∠4=∠5,∴AB∥CE(内错角相等,两直线平行),∴∠3=∠E(已知),∵∠3=∠B,∴∠E=∠BDC(等量代换),∴AE∥BD(同位角相等,两直线平行),∴∠2=(∠ADB),∵∠1=∠2,∴∠1=∠ADB,∴AD∥BC(内错角相等,两直线平行).故答案为CE;内错角相等,两直线平行;∠E;已知;等量代换;AE;同位角相等,两直线平行;∠ADB;∠ADB;内错角相等,两直线平行19.先化简,再求值:[﹣(3b+a)(a﹣3b)﹣(3a﹣2b)2﹣(﹣5a+5b)(b+2a)]2,其中a,b满足﹣6b=﹣9.【考点】整式的混合运算—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据整式的混合运算顺序和法则化简原式,再根据非负数的性质得出a、b的值,代入计算可得.【解答】解:原式=[(9b2﹣a2)﹣9a2+12ab﹣4b2﹣(﹣5ab﹣10a2+5b2+10ab)]2=(9b2﹣a2﹣9a2+12ab﹣4b2+5ab+10a2﹣5b2﹣10ab)2=(7ab)2=49a2b2,∵﹣6b=﹣9,∴|a+|+(b﹣3)2=0,则a=﹣,b=3,∴原式=49××9=9.20.如图,∠1+∠2=180°,∠A=∠C,BC平分∠EBD(1)AE与CP会平行吗?说明理由;(2)AD与BC的位置关系是什么?说明理由;(3)DA平分∠BDP吗?为什么?【考点】平行线的判定;平行线的性质;平行线的判定与性质.【分析】(1)根据同角的余角相等,可得∠BDC=∠1,进而得出AE∥CP;(2)根据AE∥CP,可得∠C+∠ABC=180°,再根据∠A=∠C,可得∠A+∠ABC=180°,进而得出AD∥BC;(3)根据BC平分∠EBD,可得∠3=∠4,再根据平行线的性质,可得∠3=∠C=∠5,∠4=∠6,进而得到∠5=∠6,即DA平分∠BDP.【解答】解:(1)AE与CP平行.∵∠1+∠2=180°,∠2+∠CDB=180°,∴∠BDC=∠1,∴AE∥CP;(2)AD与BC平行.∵AE∥CP,∴∠C+∠ABC=180°,又∵∠A=∠C,∴∠A+∠ABC=180°,∴AD∥BC;(3)DA平分∠BDP.如图所示,∵BC平分∠EBD,∴∠3=∠4,∵AD∥BC,AB∥CD,∠3=∠C=∠5,∠4=∠6,∴∠5=∠6,∴DA平分∠BDP.2017年5月5日。

甘肃省定西市数学七年级下学期第一次月考试卷

甘肃省定西市数学七年级下学期第一次月考试卷

甘肃省定西市数学七年级下学期第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列运算中正确的是()A .B .C .D .2. (2分)下列语句正确的是()A . 相等的角是对顶角B . 不是对顶角的角都不相等.C . 不相等的角一定不是对顶角D . 有公共点且和为180°的两个角是对顶角.3. (2分)计算:2+(﹣3)的结果是()A . 1B . -1C . -5D . 54. (2分)若-|a|=-3.2,则a是()A . 3.2B . -3.2C . ±3.2D . 以上都不对5. (2分)如图,已知直线a,b被直线c所截,那么∠1的同位角是()A . ∠5B . ∠4C . ∠3D . ∠26. (2分)下列命题中正确的是()①0.027的立方根是0.3;② 不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A . ①③B . ②④C . ①④D . ③④7. (2分)估算的值在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间8. (2分)否定结论“至多有两个解”的说法中,正确的是()A . 有一个解B . 有两个解C . 至少有三个解D . 至少有两个解9. (2分)在下列图形中,∠1与∠2是同位角的是()A .B .C .D .10. (2分)过一点画已知直线的平行线,则()A . 有且只有一条B . 有两条C . 不存在D . 不存在或只有一条11. (2分)(2017·官渡模拟) 下列运算正确的是()A . (﹣)2=﹣B . (3a2)3=9a6C . 5﹣3÷5﹣5=D .12. (2分)下列说法正确的是()A . 相等的角是对顶角B . 同位角相等C . 两直线平行,同旁内角相等D . 同角的补角相等二、填空题 (共4题;共6分)13. (1分)的算术平方根是________(﹣2)2的正平方根是________立方根是本身的数有________256的四次方根是________14. (3分) (2018七上·金华期中) 已知一个数的平方根是和 ,则这个数的立方根是________.15. (1分) (2019七下·丹江口期中) 若一个正数的两个平方根是与,则这个数是________.16. (1分)如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于________,∠3的内错角等于________,∠3的同旁内角等于________.三、解答题 (共2题;共10分)17. (5分)已知3是2a﹣1的一个平方根,3a+5b﹣1的立方根是4,求a+2b的平方根.18. (5分)如图,BCD是一条直线,∠1=∠B,∠2=∠A,指出∠1的同位角,∠2的内错角,并求出∠A+∠B+∠ACB 的度数.四、综合题 (共6题;共45分)19. (2分) (2017七下·石景山期末) 如图,线段AB , AD交于点A . C为直线AD上一点(不与点A , D 重合).过点C在BC的右侧作射线CE⊥BC ,过点D作直线DF∥AB ,交CE于点G(G与D不重合).(1)如图1,若点C在线段AD上,且∠BCA为钝角.①按要求补全图形;②判断∠B与∠CGD的数量关系,并证明.(2)若点C在线段DA的延长线上,请直接写出∠B与∠CGD的数量关系________;(3)请你结合本题的题意提出一个新的拓展问题________.20. (10分)判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.(1)等角的余角相等;(2)平行线的同旁内角的平分线互相垂直;(3)和为180°的两个角叫做邻补角.21. (15分) (2017七下·顺义期末) 如图,点C在∠AOB的边OA上,过点C的直线DE∥OB , CF平分∠ACD ,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)试说明CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF?并说明理由.22. (4分) (2019七下·思明期中) 我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题,求的立方根.华罗庚脱口而出,你知道怎样迅速准确地计算出结果的吗?请按照下面的问题试一试:(1)由 ,确定的立方根是________位数;(2)由的个位数是确定的立方根的个位数是________;(3)如果划去后面的三位得到数 ,而 ,由此能确定的立方根的十位数是________;所以的立方根是________;(4)用类似的方法,请说出的立方根是________.23. (4分)(2018·秀洲模拟) 如图,动直线()分别交x轴,抛物线和于点P,E,F,设点A,B为抛物线,与x轴的一个交点,连结AE,BF.(1)求点A,B的坐标.(2)当时,判断直线AE与BF的位置关系,并说明理由.(3)连结BE,当时,求△BEF的面积.24. (10分) (2017七下·云梦期末) 如图,在平面直角坐标系中,点的坐标分别为(1,0)、(-2,0),现同时将点分别向上平移2个单位,再向左平移1个单位,分别得到点的对应点,连接、、 .(1)若在轴上存在点 ,连接,使S△ABM=S□ABDC,求出点的坐标;(2)若点在线段上运动,连接,求S=S△PCD+S△POB的取值范围;(3)若在直线上运动,请直接写出的数量关系.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共6分)13-1、14-1、15-1、16-1、三、解答题 (共2题;共10分)17-1、18-1、四、综合题 (共6题;共45分)19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、24-3、。

2022-2023学年度第一学期期中考试七年级数学试题

2022-2023学年度第一学期期中考试七年级数学试题

2021-2022学年度第一学期期中考试七年级数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分120分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分) 1.﹣2的倒数是( ▲ ) A .2B .﹣2C .21-D .212.在﹣3,﹣1,0,1这四个数中,最小的数是( ▲ ) A .﹣3B .﹣1C .0D .13.单项式﹣5ab 的系数与次数分别为( ▲ ) A .5,1B .﹣5,1C .5,2D .﹣5,24.下列各组是同类项的一组是( ▲ )A .mn 2与21-m 2nB .﹣2ab 与baC .a 3与b 3D .3a 3b 与﹣4a 2bc5.下列去括号正确的是( ▲ ) A .﹣3(b ﹣1)=﹣3b ﹣3 B .2(2﹣a )=4﹣aC .﹣3(b ﹣1)=﹣3b +3D .2(2﹣a )=2a ﹣46.某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( ▲ ) 范围内保存才合适. A .18℃~20℃B .18℃~22℃C .18℃~21℃D .20℃~22℃7.已知关于x 的方程3x +m =2的解是x =﹣1,则m 的值是( ▲ ) A .1B .﹣1C .﹣5D .58.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x 的值为( ▲ )A .1B .3C .4D .6二、填空题(本大题共8小题,每小题3分,共24分)9.预计到2025年,中国5G 用户将超过460000000,将460000000用科学记数法表示为 ▲ . 10.原价为a 元的书包,现按8折出售,则售价为 ▲ 元.11.盐都区某周四天中每天的最高气温与最低气温如表,则日温差最大的是星期 ▲ .星期一 二 三 四 最高气温 10℃ 12℃ 11℃ 8℃ 最低气温3℃0℃﹣2℃﹣3℃12.在下列代数式:2,t s ,3b -a ,yz 5-,n m +3中,是单项式的有 ▲ 个. 13.已知方程(m ﹣2)x |m |﹣1+16=0是关于x 的一元一次方程,则m 的值为 ▲ .14.若a 2+3a =﹣5,则2﹣2a 2﹣6a 的值为 ▲ .15.按照如图所示的操作步骤,若输出y 的值为11,则输入x 的值为 ▲ .16.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子.第②个图案有9个黑棋子,第③个图案有14个黑棋子,按照这样的规律,第n 个图案有199个黑棋子,则n = ▲ .学校___________ 班级____________ 姓名___________ 考试号___________………………………………密…………封…………线…………内…………不…………得…………答…………题………………………………三、解答题(本大题共有10小题,共72分.解答时应写出文字说明、推理过程或演算步骤....................) 17.(本题满分6分)请将下列各数填入相应的集合内:47-,0,π,113,﹣1.010010001…,•5.0 有理数集合:{ …}; 无理数集合:{ …}; 非负数集合:{ …}. 18.(本题满分6分)计算: (1)7﹣(﹣8)+(﹣4); (2)|﹣4|+23+3×(﹣5). 19.(本题满分6分)计算: (1)(5a +b )+6a ﹣2b ;(2)3(4a 2b ﹣2ab 2)﹣2(﹣3ab 2+a 2b ). 20.(本题满分6分)解方程: (1)2x =9﹣x ;(2)1615312=--+x x .21.(本题满分6分)先化简,再求值:3(x 2y +xy )﹣(2x 2y ﹣xy )﹣5xy ,其中x =﹣1,y =1. 22.(本题满分6分)对于任意有理数a ,b ,定义运算:a ⊙b =a (a +b )﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙213的值;(2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n = ▲ (用含m ,n 的式子表示).23.(本题满分8分)已知:A ﹣2B =3a 2﹣2ab ,且B =﹣a 2+2ab +1; (1)求A 等于多少?(2)若|a +1|+(b ﹣2)2=0,求A 的值.24.(本题满分6分)如图,点A 、B 、C 分别表示有理数a 、b 、c . (1)填空:①c ▲ 0;②|a | ▲ |b |;(填“>”、“<”或“=”)(2)化简:|a +b |﹣|c ﹣b |﹣|c ﹣a |.25.(本题满分10分)某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库): +27,﹣32,﹣18,+34,﹣38,+20.(1)经过这3天,仓库里的粮食是增加了还是减少了?变化了多少吨? (2)如果进出的装卸费都是每吨30元,那么这3天要付装卸费多少元?26.(本题满分12分)已知多项式4x 6y 2﹣3x 2y ﹣x ﹣7,次数是b ,4a 与b 互为相反数,在数轴上,点A 表示数a ,点B 表示数b . (1)a = ▲ ,b = ▲ ;(2)若小蚂蚁甲从点A 处以2个单位长度/秒的速度向右运动,同时小蚂蚁乙从点B 处以1.8个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O 处放置一颗饭粒,甲在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,乙在碰到饭粒后立即停止运动.设运动的时间为t 秒,则t = ▲ 时,甲、乙两只小蚂蚁的距离为8个单位长度.(3)若小蚂蚁甲和乙约好分别从A ,B 两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s 时一起重新回到原出发点A 和B ,设小蚂蚁们出发t (s )时的速度为v (mm /s ),v 与t 之间的关系如下图.(其中s 表示时间单位秒,mm 表示路程单位毫米)t (s ) 0<t ≤2 2<t ≤5 5<t ≤16v (mm /s )10168①当2<t ≤5时,你知道小蚂蚁甲与乙之间的距离吗?(用含有t 的代数式表示); ②当t 为 ▲ 时,小蚂蚁甲乙之间的距离是42mm .(请直接写出答案)七年级数学试卷参考答案一.选择题(共8小题)1.C 2.A 3.D 4.B 5.C 6.B 7.D 8.A二.填空题(共8小题)9.4.6×108 10.0.8a 11.三12.2 13.﹣2 14.12 15.4或﹣4 16.40三.解答题(共10小题)17.有理数集合:{﹣,0,,0.…};————2分无理数集合:{π,﹣1.010010001……};————2分非负数集合:{0,π,,0.…}.————2分18.(1)原式=7+8﹣4————2分=11;————1分(2)原式=4+8﹣15————2分=﹣3.————1分19.(1)(5a+b)+6a﹣2b=5a+b+6a﹣2b————2分=11a﹣b;————1分(2)3(4a2b﹣2ab2)﹣2(﹣3ab2+a2b)=12a2b﹣6ab2+6ab2﹣2a2b————2分=10a2b.————1分19.(1)x=3.————3分(2)x=﹣3.————3分21.3(x2y+xy)﹣(2x2y﹣xy)﹣5xy=3x2y+3xy﹣2x2y+xy﹣5xy————2分=x2y﹣xy;————1分当x=﹣1,y=1时,原式=1×1﹣(﹣1)×1————2分=2.————1分22.(1)∵a⊙b=a(a+b)﹣1,∴(﹣2)⊙3=(﹣2)×[(﹣2)+3]﹣1————1分=(﹣2)×﹣1————1分=(﹣3)﹣1————1分=﹣4;————1分(2)3m+2+n.(答案不唯一)————2分23.(1)∵A﹣2B=3a2﹣2ab,且B=﹣a2+2ab+1,∴A=3a2﹣2ab+2B————1分=3a2﹣2ab+2(﹣a2+2ab+1)————1分=3a2﹣2ab﹣2a2+4ab+2————1分=a2+2ab+2;————1分(2)∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得:a=﹣1,————1分b=2,————1分∴A=(﹣1)2+2×(﹣1)×2+2————1分=1﹣4+2=﹣1.————1分24.<;————1分>;————1分(2)由数轴可得:a<c<0<b,∴|a +b |﹣|c ﹣b |﹣|c ﹣a |=﹣a ﹣b +c ﹣b ﹣c +a ————3分 =﹣2b ————1分25.(1)+27+(﹣32)+(﹣18)+34+(﹣38)+20=﹣7(吨),————4分 答:库里的粮食是减少了,减少了7吨;————1分(2)(|+27|+|﹣32|+|﹣18|+|+34|+|﹣38|+|+20|)×30=169×30=5070(元),——4分答:这3天要付装卸费5070元.————1分26.已知多项式4x 6y 2﹣3x 2y ﹣x ﹣7,次数是b ,4a 与b 互为相反数,在数轴上,点A 表示数a ,点B 表示数b .(1)a = ﹣2 ;————2分b = 8 ;————2分 (2)t =1910或5 ;————2分 (3)①∵小蚂蚁甲和乙同时出发以相同的速度爬行,∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于: 10×2+16×3+8×11=156(mm ),∵原路返回,刚好在16s 时一起重新回到原出发点A 和B , ∴小蚂蚁甲和乙返程的路程都等于78mm ,∴甲乙之间的距离为:8﹣(﹣2)+10×2×2+16×(t ﹣2)×2=32t ﹣14;————2分 ②设a 秒时小蚂蚁甲和乙开始返程,由(3)①可知: 10×2+16×3+8(a ﹣5)=78, 解得:a =;以下分情况讨论:当8﹣(﹣2)+10t ×2=42, 解得:t =1.6;当32t ﹣14=42时,解得:t =;当t =时,小蚂蚁甲和乙还没有开始返程,故舍去t =; 当t >时,8﹣(﹣2)+78×2﹣8(t ﹣)×2=42,解得:t =14;综上所述,当t =1.6秒或14秒时,小蚂蚁甲乙之间的距离是42mm .————4分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 学年七年级数学下学期第一阶段考试试题新人教版一.选择题 ( 每小题 2 分,共20 分 )
1.点 A(3, 4 )所在象限为()
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
2.如图,若 m∥n,∠ 1 = 105 °,则∠ 2 = ()
A 、 55°
B 、 60°C、 65°D、 75°
3.下列各组数中,是二元一次方程3x y 4 的解的是()
第 2 题
x 1, x 2,
C 、x 3,
D、
x 1,
A、 B 、
2; y 1; y 1.
y 1; y
4. 在- 2,4, 2 ,3.14, 3 27 ,,这 6 个数中,无理数共有( )
5
A、 4 个 B 、 3 个C、2个D 、 1 个
5.若y轴上的P点到x轴的距离为3,则P点的坐标是()
A、( 3,0) B 、(0, 3)
C、( 3, 0)或( -3 , 0) D 、( 0, 3)或( 0, -3 )
6. 下列命题中,是真命题的是()
A、互补的角是邻补角 B 、相等的角是对顶角
C、内错角相等 D 、直角都相等
7. 在下列各式中正确的是()
A、( 2)2=- 2 B 、9 =3 C 、 16 =8 D 、22= 2
8. 如图,下列推理判断错误的是()
A、若∠ 1=∠ 2, 则 a∥ b B 、若∠ 3=∠ 4, 则 a∥b
C、若∠ 1=∠ 3, 则 a∥ b D 、若∠ 2=∠ 3, 则 c∥ d
9. 估计8 的值()
A、在 1 到 2 之间 B 、在 2 到 3 之间
C 、在 3 到 4 之间
D 、在 4 到 5 之间
10. 点 P( m+ 3, m +1)在直角坐标系的x 轴上,则点 P 坐标为()
A、( 0,- 2) B 、( 2 , 0) C 、( 4 , 0) D 、( 0,- 4)
二 . 填空题 ( 每小题 3 分,共15 分 )
11. 81 的平方根是 _____; 81 的算术平方根是 _______;27 的立方根是。

12. 已知方程2x y 1 ,请用含x的式子表示 y ,得 y 。

13. 已知点 P 的坐标为 ( - 2,3) ,则点 P 到 x 轴的距离为 _________,点 P 到 y 轴的距离为 _______ __。

14. 7 3 的相反数是;7 3 的绝对值是。

15.命题:“同角的补角相等”的题设是,
结论是。

三.解答题 ( 每小题 5 分,共25 分 )
y x 3
3 27 + 25 - 3
16.解方程组:
2x 17. 计算:
y 5
18.如图,直线AB⊥ EO,垂足为 O ,直线 CD经过点 O ,∠ 1=60°,求∠ 2 ,∠ 3 ,∠ 4 的度数。

E
D
2
O 1
A B
3 4
C
19.一个长方体的长3 米,宽 3 米,高 2 米,一个正方体的体积是这个长方体体积的
1.5 倍,求这个正方体的棱长。

20.如图,画 CE⊥ AB,BF⊥ CD,垂足分别为 E、 F。

A B
C D
四 . 解答题 ( 每小题 8 分,共 40 分 )
21. 解方程组
x 2 y 8
22. 计算: 5 5
7 :
y 1 5
2 x
23.在平面直角坐标系中,三角形ABC的
4 位置如图所示
3
5 2
y
A
(1)写出三角形 ABC各顶点的坐标;
(2)先将三角形 ABC向左平移 4 个单位,再
向下平移 3 个单位,得到三角形 A B C ;
–4 –3 –2
1 1 1
( 3) 写出三角形A1B1C1各顶点的坐标。

24. 已知:如图, 1 40 , 3 B ,求ADE 的度数.
解:∵ 1 40 ,
∴ 2 1 40 ()
又∵ 3 B ,
∴ DE ∥()
∴∠ ADE+ =180 ° ( )
∴ADE 180
∴ADE.
25.已知:如图,∠ 1+∠ 2=180°, AD∥BC,AD平分∠
BDF 求( 1) AE∥ CF
(2)BC平分∠ DBE
2
C
2
1
C B
x
–1 O123 4
–1
–2
–3
–4
C
D3 E
A2
1
B
F
D
E A。

相关文档
最新文档