2012年高考数学安徽卷理科(word完美解析版)

合集下载

2012年高考全国卷(大纲版)数学试题及答案(word)

2012年高考全国卷(大纲版)数学试题及答案(word)

2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第I卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,A B=A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin βcos2α=(A) -3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。

2012年普通高等学校招生全国统一考试 理科数学(安徽卷)【word精析版】

2012年普通高等学校招生全国统一考试 理科数学(安徽卷)【word精析版】

2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 务必在试题卷、答题卡自己的姓名、座位号,并认真粘贴的条形码中姓名座位号是否一致。

务必面规定的地方填写姓名和座位号后两位。

2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

4.考试结束,务必将试卷和答题卡一并上交。

参考:如果事件与互斥;则如果事件与相互独立;则如果与是事件,且;则试卷总评:安徽卷的试题在整体上题目比去年容易很多,注重了学生对基础知识、基本技能的全面考查,试题难易程度适中,布局比较合理,适合与对中等生的能力选拔应试。

但对于最后的难题(压轴题,如选择最后1题,填空最后一题,解答题压轴题)的区分度不大。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的(1)复数x满足. 则( )A. B C D(2) 下列函数中,不满足的是( )A f(x)=B f (x)=x-C f(x)=x+1D f(x)=-x3 如图所示,程序框图(算法流程图)的输出结果是( )A.3B.4C.5D.84. 公比为2的等比数列{} 的各项都是正数,且,则( )(A)4 (B)5 (C)6 (D)75.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ) (A)甲的成绩的平均数小于乙的成绩的平均数(B)甲的成绩的中位数等于乙的成绩的中位数(C)甲的成绩的方差小于乙的成绩的方差(D)甲的成绩的极差小于乙的成绩的极差(6)设平面α与平面β相交于直线m,直线a在平面α内。

2013年安徽高考数学真题(理科)解析版(word版)

 2013年安徽高考数学真题(理科)解析版(word版)

2013年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2013年安徽,理1,5分】设i 是虚数单位,z 是复数z 的共轭复数.若·i+2=2z z z ,则z =( )(A )1i + (B )1i - (C )1i -+ (D )1i -- 【答案】A【解析】设()i z a b a b =+∈R ,,则由·i+2=2z z z 得()()i i i 2i (2)a b a b a b +-+=+,即22i (2i )22a b a b ++=+, 所以22a =,222a b b +=,所以1a =,1b =,即i 1i z a b =+=+,故选A .(2)【2013年安徽,理2,5分】如图所示,程序框图(算法流程图)的输出结果是( )(A )16 (B )2524(C )34 (D )1112【答案】D【解析】开始28<,11022s =+=,224n =+=;返回,48<,113244s =+=,426n =+=;返回,68<,31114612s =+=,628n =+=;返回,88<不成立,输出1112s =,故选D .(3)【2013年安徽,理3,5分】在下列命题中,不是..公理的是( ) (A )平行于同一个平面的两个平面相互平行 (B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内(D )如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 【答案】A 【解析】由立体几何基本知识知,B 选项为公理2,C 选项为公理1,D 选项为公理3,A 选项不是公理,故选A . (4)【2013年安徽,理4,5分】“0a ≤”是“函数()1|()|f x ax x =-在区间(0)+∞,内单调递增”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】函数()f x 的图象有以下三种情形:0a = 0a > 0a < 由图象可知()f x 在区间(0)+∞,内单调递增时,0a ≤,故选C .(5)【2013年安徽,理5,5分】某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )(A )这种抽样方法是一种分层抽样 (B )这种抽样方法是一种系统抽样 (C )这五名男生成绩的方差大于这五名女生成绩的方差 (D )该班男生成绩的平均数小于该班女生成绩的平均数 【答案】C【解析】解法一:对A 选项,分层抽样要求男女生总人数之比=男女生抽样人数之比,所以A 选项错; 对B 选项,系统抽样要求先对个体进行编号再抽样,所以B 选项错; 对C 选项,男生方差为40,女生方差为30.所以C 选项正确;对D 选项,男生平均成绩为90,女生平均成绩为91.所以D 选项错,故选C . 解法二:五名男生成绩的平均数为869488920150(9)9++++=,五名女生成绩的平均数为()18893938893915++++=,五名男生成绩的方差为22222218690949088909290909085s (-)+(-)+(-)+(-)+(-)==,五名女生成绩的方差为2222288913939165s (-)+(-)==,所以2212s s >,故选C .(6)【2013年安徽,理6,5分】已知一元二次不等式()0f x <的解集为112x x x ⎧⎫<->⎨⎬⎩⎭或,则()100x f >的解集为( )(A ){|}1lg2x x x <->-或 (B )lg |}12{x x -<<- (C )l 2|g {}x x >- (D )l 2|g {}x x <- 【答案】D【解析】由题意知11012x -<<,所以1lg lg 22x =-<,故选D .(7)【2013年安徽,理7,5分】在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( )(A )()0cos 2θρρθ=∈=R 和 (B ))s (co 2θρρθ=∈=R 和(C ))s (co 1θρρθ=∈=R 和 (D )()0cos 1θρρθ=∈=R 和 【答案】B【解析】由题意可知,圆2cos ρθ=可化为普通方程为2211()x y -+=.所以圆的垂直于x 轴的两条切线方程分别为0x =和2x =,再将两条切线方程化为极坐标方程分别为()θρ=∈R 和cos 2ρθ=,故选B . (8)【2013年安徽,理8,5分】函数()y f x =的图象如图所示,在区间[]a b ,上可找到()2n n ≥个不同的数12n x x x ⋯,,,,使得1212===n nf x f x f x x x x ()()(),则n 的取值范围是( ) (A ){}3,4 (B ){}2,3,4 (C ){}3,4,5 (D ){}2,3 【答案】B【解析】1212===n n f x f x f x x x x ()()()可化为1212000===00n n f x f x f x x x x ()-()-()----,故上式可理解为()y f x =图象上一点与坐标原点连线的斜率相等,即n 可看成过原点的直线与()y f x =的交点个数. 如图所示,由数形结合知识可得,①为2n =,②为3n =,③为4n =,故选B .(9)【2013年安徽,理9,5分】在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足=2OA OB OA OB =⋅=,则点集{}=+,1,P OP OA OB λμλμμ+≤∈R 所表示的区域的面积是()(A )(B )(C ) (D ) 【答案】D【解析】以OA ,OB 为邻边作一个平行四边形,将其放置在如图平面直角坐标系中,使A ,B两点关于x 轴对称,由已知=2OA OB OA OB =⋅=,可得出60AOB ∠=︒,点)A ,点)1B -,点()D ,现设()P x y ,,则由=+OP OA OB λμ得())),1x y λμ=+-,即x y λμλμ+)=-=⎪⎩,由于1λμ+≤,λμ∈R ,,可得11x y ⎧≤⎪⎨-≤≤⎪⎩画出动点()P x y ,满足的可行域为如图阴影部分,故所求区域的面积为,故选D .(10)【2013年安徽,理10,5分】若函数()32f x x ax bx c =+++有极值点1x ,2x ,且()11f x x =,则关于x 的方程()()()2320f x af x b ++=的不同实根个数是( )(A )3 (B )4 (C )5 (D )6 【答案】A【解析】由()2320f x x ax b '=++=得,1x x =或2x x =,即()()()2320f x af x b ++=的根为()1f x x =或()2f x x =的解.如图所示12x x < 21x x <由图象可知()1f x x =有2个解,()2f x x =有1个解,因此()()()2320f x af x b ++=的不同实根个数为3, 故选A .第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2013年安徽,理11,5分】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是 . 【答案】12【解析】∵8x ⎛+ ⎝的通项为1838C ()r r r r x a x --883388=C C r rr r r r r r a x x a x ----=,∴843r r --=,解得3r =.∴338C 7a =, 得12a =.(12)【2013年安徽,理12,5分】设ABC ∆的内角A ,B ,C 所对边的长分别为a ,b ,c .若2b c a +=,3sin 5sin A B =,则角C = .【答案】2π3【解析】∵3sin 5sin A B =,∴35a b =.① 又∵2b c a +=,②∴由①②可得,53a b =,73c b =,∴22222257133cos 52223b b b b ac C ab b b ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⨯⨯,∴2π3C =.(13)【2013年安徽,理13,5分】已知直线y a =交抛物线2y x =于A ,B 两点.若该抛物线上存在点C ,使得ACB ∠为直角,则a 的取值范围为 .【答案】[1)+∞,【解析】如图,设20200()()C x x x a ≠,,()A a ,(),B a a ,则()200,CA x a x =--,()200,CB a x a x =-.∵CA CB ⊥,∴0CA CB ⋅=,即()()222000a x a x --+-=,()()2210a x a x --+-=,∴210xa =-≥,∴1a ≥.(14)【2013年安徽,理14,5分】如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O的两条边上,所有n n A B 相互平行,且所有梯形11nnn n A B B A ++的面积均相等.设n n OA a =.若11a =,22a =,则数列{}n a 的通项公式是 .【答案】n a =【解析】设11OA B S S ∆=,∵11a =,22a =,n n OA a =,∴11OA =,22OA =.又易知1122OA B OA B ∆∆∽,∴1122221221124OA B OA B S OA S OA ∆∆()⎛⎫=== ⎪()⎝⎭.∴11112233OA B A B B A S S S ∆==梯形.∵所有梯形11n n n n A B B A ++的面积 均相等,且11n n OA B OA B ∆∆∽,∴1n OA OA .∴1n a a =∴n a(15)【2013年安徽,理15,5分】如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q为线段1CC 上的动点,过点A P Q ,,的平面截该正方体所得的截面记为S .则下列命题正确的是__________(写出所有正确命题的编号).①当012CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足113C R =;④当341CQ <<时,S 为六边形;⑤当1CQ =时,S【答案】①②③⑤【解析】当12CQ =时,222111154D Q D C C Q =+=,22254AP AB BP =+=,所以1D Q AP =,又因为1//2AD PQ ,所以②正确;当012CQ <<时,截面为APQM ,且为四边形,故①也正确,如图(1)所示;如(2)图,当34CQ =时,由1QCN QC R ∆∆∽得11C Q C RCQ CN =,即114314C R =,113C R =,故③正确;如图(3)所示,当341CQ <<时,截面为五边形APQMF ,所以④错误;当1CQ =时,截面为1APC E ,可知1AC =EP =1APC E 为菱形,S四边形1APC E =,故⑤正确.图(1) 图(2) 图(3)三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内.(16)【2013年安徽,理16,12分】已知函数()4cos πsin ()4·0x f x x ωωω⎛⎫ ⎪⎝⎭=>+的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间π0,2⎡⎤⎢⎥⎣⎦上的单调性.解:(1)())2π4cos sin cos sin2c os24f x x x x x x x x ωωωωωωω=⋅⋅⎛⎫+=+ =⎝⎭+⎪+π2sin 24x ω⎛⎫=+ ⎪⎝⎭.因为()f x 的最小正周期为π,且0ω>,从而有2π=π2ω,故1ω=.(2)由(1)知,()π2sin 24f x x ⎛⎫++ ⎪⎝⎭=0π2x ≤≤,则ππ5π2444x ≤+≤.当πππ2442x ≤+≤即π08x ≤≤时,()f x 单调递增;当ππ5π2244x ≤+≤即ππ82x ≤≤时,()f x 单调递减. 综上可知,()f x 在区间π0,8⎡⎤⎢⎥⎣⎦上单调递增,在区间ππ,82⎡⎤⎢⎥⎣⎦上单调递减.(17)【2013年安徽,理17,12分】设函数()()221f x ax a x =-+,其中0a >,区间(){}|0I x f x =>.(1)求I 的长度(注:区间()αβ,的长度定义为βα-;(2)给定常数()0,1k ∈,当11k a k -≤≤+时,求I 长度的最小值. 解:(1)因为方程()()22100ax a x a -+=>有两个实根10x =,221ax a =+,故()0f x >的解集为{}12|x x x x <<. 因此区间20,1a I a ⎛⎫= ⎪+⎝⎭,I 的长度为21a a +. (2)设()21d a aa=+,则()22211a a a d -(+')=.令()0d a '=,得1a =.01k <<,故当11k a -≤<时,()0d a '>, ()d a 单调递增;当11a k <≤+时,()0d a '<,()d a 单调递减.所以当11k a k -≤≤+时,()d a 的最小 值必定在1a k =-或1a k =+处取得.而23223211211111211kd k k k k k d k k k k -(-)--+(-)==<+(+)-++(+),故()()11d k d k -<+. 因此当1a k =-时,()d a 在区间[]1,1k k -+上取得最小值2122kk k --+.(18)【2013年安徽,理18,12分】设椭圆E :2222=11x y a a +-的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设12F F ,分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线2F P 交y 轴于点Q ,并且11F P FQ ⊥.证明:当a 变化时,点P 在某定直线上. 解:(1)因为焦距为1,所以22141a -=,解得258a =.故椭圆E 的方程为2288=153x y +.(2)设00()P x y ,,()1,0F c -,()2,0F c ,其中c =.由题设知0x c ≠,则直线1F P 的斜率100F P y k x c=+, 直线2F P 的斜率200F P y k x c =-,故直线2F P 的方程为00()y y x c x c =--.当0x =时,0cy y c x =-, 即点Q 坐标为00(0,)cy c x -.因此,直线1F Q 的斜率为100F Q yk c x =-. 由于11F P FQ ⊥,所以1100001F P F Q y yk k x c c x ⋅=⋅=-+-.化简得22200(21)y x a =--.① 将①代入E 方程,由于点00()P x y ,在第一象限,解得20x a =,201y a =-,即点P 在定直线1x y +=上.(19)【2013年安徽,理19,13分】如图,圆锥顶点为P ,底面圆心为O ,其母线与底面所成的角为22.5︒,AB和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60︒. (1)证明:平面PAB 与平面PCD 的交线平行于底面; (2)求cos COD ∠. 解:(1)设面PAB 与面PCD 的交线为l .//AB CD ,AB 不在面PCD 内,所以//AB 面PCD .又因为AB 面PAB ,面PAB 与面PCD 的交线为l ,所以//AB l . 由直线AB 在底面上而l 在底面外可知,l 与底面平行.(2)设CD 的中点为F .连接OF ,PF .由圆的性质,2COD COF ∠=∠,OF CD ⊥.因为OP ⊥底面,CD ⊂底面,所以OP CD ⊥.又OP OF O =,故CD ⊥面OPF .又CD ⊂面PCD ,因此面OPF ⊥面PCD .从而直线OP 在面PCD 上的射影为直线PF , 故OPF ∠为OP 与面PCD 所成的角.60OPF ∠=︒.设OP h =,则tan tan60OF OP OPF h h =⋅∠=⋅︒=.根据题设有22.5OCP ∠=︒,得tan tan 22.5OP h OC OCP ==∠︒.由22tan 22.51tan 22.51tan45︒-=︒=︒和tan22.50︒>,得tan22.51︒,因此1)OC h ==.在Rt OCF ∆中,os c OF OC OF C ===∠,故22cos cos 22co ()2s 1=171COD COF COF ∠=∠=∠---=(20)【2013年安徽,理20,13分】设函数()2322*21()23n nf x x n x x x x n-++++∈∈+=R N ,.证明:(1)对每个*n ∈N ,存在唯一的2,13n x ⎡⎤⎢⎥⎣⎦∈,满足()0n n f x =;(2)对任意*p ∈N ,由(1)中n x 构成的数列{}n x 满足10n n p x x n+<-<.解:(1)对每个*n ∈N ,当0x >时,()11+02n n x f x x n -++'=>,故()n f x 在(0)+∞,内单调递增. 由于()110f =,当2n ≥时,()2221110231n f n=+++>,故()10n f ≥.又21122222213322112111231 ()0233343343313n k n k n n n k k f k --==⎡⎤⎛⎫⎛⎫⎛⎫-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫⎝⎭⎣⎦=-++≤-+=-+⋅=-⋅< ⎪ ⎪⎝⎭⎝⎭-∑∑,所以存在唯一的2,13n x ⎡⎤⎢⎥⎣⎦∈,满足()0n n f x =.(2)当0x >时,()()()1121n n n n f x f x x f x n ++(+)=+>,故()()()1110n n n n n n f x f x f x +++>==. 由()1n f x +在(0)+∞,内单调递增知,1n n x x +<,故{}n x 为单调递减数列,从而对任意*n p ∈N ,,n p n x x +<. 对任意*p ∈N ,由于()222102n nn n n n f x x x x n-++++==,①()2122221+021n n n pn p n p n p n p p n p n n p x x x x x n n n f x p ++++++++-++++++=(+)(+=)+.②①式减去②式并移项,利用01n p n x x +<<≤,得222211k kk k n pn pnn p n n p n n n p p k k n k n x x x x k x x k k +++++==+=++=-+≤-∑∑∑21111(1)n pn pk n k n k k k ++=+=+≤<-∑∑111n n p n =-<+.因此,对任意*p ∈N ,都有01n n p n x x +<-<.(21)【2013年安徽,理21,13分】某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责.已知该系共有n 位学生,每次活动均需该系k 位学生参加(n 和k 都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k 位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为X . (1)求该系学生甲收到李老师或张老师所发活动通知信息的概率; (2)求使()P X m =取得最大值的整数m .解:(1)因为事件A :“学生甲收到李老师所发信息”与事件B :“学生甲收到张老师所发信息”是相互独立的事件,所以A 与B 相互独立.由于()()11C C k n k n P A B k n P --===,故()()=1k P A P B n=-,因此学生甲收到活动通知信息的概率222211k kn k P n n -⎛⎫=--= ⎪⎝⎭. (2)当k n =时,m 只能取n ,有()()1P X m P X n ====.当k n <时,整数m 满足k m t ≤≤,其中t 是2k和n 中的较小者.由于“李老师和张老师各自独立、随机地发活动通知信息给k 位同学”所包含的基本事件总数为2(C )k n .当X m =时,同时收到李老师和张老师转发信息的学生人数恰为2k m -.仅收到李老师或 仅收到张老师转发信息的学生人数均为m k -.由乘法计数原理知:事件{}X m =所含基本事件数为 2C CCC CCk k m m k k m k m k nkn kn kn k------=.此时()22C C C C C (C )C k k m m k m k m k n k n k kn k k kn nP X m ------===. 当k m t ≤<时,()()1P X m P X m =≤=+⇔C C m k m k k n k ---≤11C C m k m kkn k +-+--⇔()()()212m k n m k m -+≤-- ⇔ 2(1)22k m k n +≤-+.假如2(1)22k k k t n +≤-<+成立,则当()21k +能被2n +整除时, 22(1)(1)22122k k k k k t n n ++-<≤+-≤++.故()P X m =在2(1)22k k n m +-+=和2(1)212k m k n ++-+=处达最大值; 当()21k +不能被2n +整除时,()P X m =在2(1)22m k k n ⎡⎤+-⎢⎥+⎣⎦=处达最大值.(注:[]x 表示不超过x 的最大整数),下面证明2(1)22k t n k k ≤+-<+.因为1k n ≤<,所以22(1)1222k kn k k k n n +----=++2111022k k k k n n (+)---≥=≥++.而22(1)12<022k n k k n n n +(-+)--=-++,故()2122k k n n +-<+. 显然2(1)222k k k n +-<+.因此2(1)22k t n k k ≤+-<+.祝福语祝你考试成功!。

2012年安徽高考数学(理)解答题详解

2012年安徽高考数学(理)解答题详解

平面图形 ������������������1 ������1 ������1 ������ 如图 1所示,其中 ������������1 ������1 ������ 是矩形. ������������ = 2,������������1 = 4, ������������ = AC = 2,������1 ������1 = ������1 ������1 = 5. 现将该平面图形分别沿 ������������ 和 ������1 ������1 折叠,使 Δ������������������ 与 Δ������1 ������1 ������1 所在平面都与平面 ������������1 ������1 ������ 垂直, 再分别连接 ������1 ������,������1 ������,������1 ������,得到如图 2 所示的空间图形. 对此空间图形解答下列问题。 (I) 证明:������������1 ⊥ ������������; (II) 求 ������������1 的长; (III) 求二面角 ������ − ������������ − ������1 的余弦值.
数学科学学院 王冠扬
2 ������ cos(2������ + ) + sin2 ������ . 设函数 ������ ������ = 2 4
(I) 求������ ������ 的最小正周期;
(II) 求函数 g ������ 对任意 ������ ∈ ������,有 g(������ + ) = g ������ , 且当 ������ ∈ [0, ] 时, g ������ = − ������ ������ .求 g ������ 在区间 −������,0 上的解析式.

2012年高考湖南理科数学试卷和答案(word完美解析版)

2012年高考湖南理科数学试卷和答案(word完美解析版)

2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合}1,0,1{-=M ,}{2x x x N ≤=,则=N MA .}0{B .}1,0{C .}1,1{-D .}1,0,1{- 【答案】B【解析】{}0,1N = M={-1,0,1} ∴M ∩N={0,1}. 【点评】本题考查了集合的基本运算,较简单,易得分. 先求出{}0,1N =,再利用交集定义得出M ∩N.2.命题“若4πα=,则1tan =α”的逆否命题是A .若4πα≠,则1tan ≠α B .若4πα=,则1tan ≠αC .若1tan ≠α,则4πα≠ D .若1tan ≠α,则4πα=【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”的逆否命题是 “若tan α≠1,则α≠4π”. 【点评】本题考查了“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是A B C D 【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型.4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据),(i i y x ),,2,1(n i =,用最小二乘法建立的回归方程为71.8585.0ˆ-=x y ,则下列结论中不正确...的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心),(y xC .若该大学某女生身高增加1cm ,则其体重约增加85.0kgD .若该大学某女生身高为170cm ,则可断定其体重比为79.58kg 【答案】D【解析】由回归方程为 y =0.85x-85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确. 【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是找不正确的答案,易错.5.已知双曲线1:2222=-by a x C 的焦距为10 ,点)1,2(P 在C 的渐近线上,则C 的方程为A .152022=-y x B .120522=-y x C .1208022=-y x D .1802022=-y x 【答案】A【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又 C 的渐近线为b y x a =±,点P (2,1)在C 的渐近线上,12ba∴= ,即2a b =.又222c a b =+,a ∴==∴C 的方程为220x -25y =1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型.6.函数)6cos(sin )(π+-=x x x f 的值域为A .]2,2[-B .]3,3[-C .]1,1[-D .]23,23[- 【答案】B【解析】f (x )=sinx-cos(x+6π)1sin sin )26x x x x π=+=-,[]sin()1,16x π-∈- ,()f x ∴值域为【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.7.在ABC ∆中,2=AB ,3=AC ,1=⋅BC AB ,则=BCA B C . D 【答案】A【解析】由下图知AB BC = cos()2(cos )1AB BC B BC B π-=⨯⨯-=.1cos 2B BC∴=-.又由余弦定理知222cos 2AB BC AC B AB BC+-=⋅,解得BC =【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.需要注意,AB BC的夹角为B ∠的外角.8.已知两条直线m y l =:1和)0(128:2>+=m m y l ,1l 与函数x y 2log =的图像从左至右相交于点B A ,,2l 与函数x y 2log =的图像从左至右相交于点D C ,.记线段AC 和BD 在x 轴上的投影长度分别为b a ,.当m 变化时,ba的最小值为 A. B. C .348 D .344 【答案】B【解析】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像如下图,由2log x = m ,得122,2mmx x -==,2log x = 821m +,得821821342,2m m x x +-+==.依照题意得8218218218212222,22,22m m mmmm m m b a b a++--+--+-=-=-=-821821222m m mm +++==.8141114312122222m m m m +=++-≥-=++,min ()b a ∴=【点评】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像,结合图像可C821m =+xm解得.二、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答.题卡..中对应题号后的横线上. (一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9. 在直角坐标系xOy 中,已知曲线⎩⎨⎧-=+=t y t x C 21,1:1(t 为参数)与曲线⎩⎨⎧==θθcos 3,sin :2y a x C (θ为参数,0>a )有一个公共点在x 轴上,则=a . 【答案】32【解析】曲线1C :1,12x t y t=+⎧⎨=-⎩直角坐标方程为32y x =-,与x 轴交点为3(,0)2;曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩直角坐标方程为22219x y a +=,其与x 轴交点为(,0),(,0)a a -, 由0a >,曲线1C 与曲线2C 有一个公共点在X 轴上,知32a =. 【点评】本题考查直线的参数方程、椭圆的参数方程,考查等价转化的思想方法等.曲线1C 与曲线2C 的参数方程分别等价转化为直角坐标方程,找出与x 轴交点,即可求得.10.不等式01212>--+x x 的解集为 . 【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()2121f x x x =+--,则由()f x 13,()2141,(1)23,(1)x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩得()f x 0>的解集为14x x ⎧⎫>⎨⎬⎩⎭.【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组).11.如图2,过点P 的直线与⊙O 相交于B A ,两点.若1=PA ,2=AB ,3=PO ,则⊙O 的半径等于 .【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()2121f x x x =+--,则由()f x 13,()2141,(1)23,(1)x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩得()f x 0>的解集为14x x ⎧⎫>⎨⎬⎩⎭.【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组).(二)必做题(12~16题)12.已知复数2)3(i z +=(i 为虚数单位),则=z . 【答案】10【解析】2(3)z i =+=29686i i i ++=+,10z ==.【点评】本题考查复数的运算、复数的模.把复数化成标准的(,)a bi a b R +∈形式,利用z =.13.6)12(xx -的二项展开式中的常数项为 .(用数字作答)【答案】-160 【解析】()6的展开式项公式是663166C (C 2(1)r r r r rr r r T x ---+==-.由题意知30,3r r -==,所以二项展开式中的常数项为33346C 2(1)160T =-=-.【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法.14.如果执行如图3所示的程序框图,输入3,1=-=n x ,则输出的数=S .【答案】4-【解析】输入1x =-,n =3,,执行过程如下:2:6233i S ==-++=-;1:3(1)115i S ==--++=;0:5(1)014i S ==-++=-,所以输出的是4-.【点评】本题考查算法流程图,要明白循环结构中的内容,一般解法是逐步执行,一步步将执行结果写出,特别是程序框图的执行次数不能出错.15.函数)sin()(ϕω+=x x f 的导函数)(x f y '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,C A ,为图象与x 轴的两个交点,B 为图象的最低点.(1)若6πϕ=,点P 的坐标为)233,0(,则=ω ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在ABC ∆内的概率为 .【答案】(1)3;(2)4π【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为(0)时cos362πωω=∴=; (2)由图知222T AC ππωω===,122ABC S AC πω=⋅= ,设,A B 的横坐标分别为,a b .设曲线段ABC 与x轴所围成的区域的面积为S则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC内的概率为224ABC S P S ππ=== . 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω,(2)几何概型,求出三角形面积及曲边形面积,代入公式即得.16.设*2(,)nN n N n =∈≥2,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x = .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N个位置,得到排列113124N N P x x x x x x -= ,将此操作称为C 变换.将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ;当22i n ≤≤-时,将i P 分成2i 段,每段2iN个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置. (1)当16N =时,7x 位于2P 中的第 个位置; (2)当2()nN n =≥8时,173x 位于4P 中的第 个位置. 【答案】(1)6;(2)43211n -⨯+【解析】(1)当N=16时,012345616P x x x x x x x = ,可设为(1,2,3,4,5,6,,16) ,113571524616P x x x x x x x x x = ,即为(1,3,5,7,9,2,4,6,8,,16) ,2159133711152616P x x x x x x x x x x x = ,即(1,5,9,13,3,7,11,15,2,6,,16) , x 7位于P 2中的第6个位置,;(2)方法同(1),归纳推理知x 173位于P 4中的第43211n -⨯+个位置.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率) 【解析】(1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得153303251(1),( 1.5),(2),10020100101004p X p X p X =========201101( 2.5),(3).100510010p X p X ====== X 的分布为X 的数学期望为33111()11.522.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且. 由于顾客的结算相互独立,且12,X X 的分布列都与X 的分布列相同,所以 121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=( 333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 【点评】本题考查概率统计的基础知识,考查分布列及数学期望的计算,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中的一次购物量超过8件的顾客占55%知251010055%,35,y x y ++=⨯+=从而解得,x y ,计算每一个变量对应的概率,从而求得分布列和期望;第二问,通过设事件,判断事件之间互斥关系,从而求得该顾客结算前的等候时间不超过...2.5分钟的概率.18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥平面ABCD ,4AB =,3BC =,5AD =,90DAB ABC ∠=∠=︒,E 是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD -的体积.【解析】解法1(Ⅰ如图(1)),连接AC ,由AB=4,3BC =,90 5.ABC AC ∠==,得5,AD =又E是CD的中点,所以.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂ 平面平面所以.PA CD ⊥而,PA AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE. (Ⅱ)过点B作,,,,.BG CD AE AD F G PF //分别与相交于连接由(Ⅰ)CD ⊥平面PAE 知,BG⊥平面PAE.于是BPF ∠为直线PB与平面PAE 所成的角,且BG AE ⊥.由PA ABCD ⊥平面知,PBA ∠为直线PB 与平面ABCD 所成的角.4,2,,AB AG BG AF ==⊥由题意,知,PBA BPF ∠=∠ 因为sin ,sin ,PA BF PBA BPF PB PB∠=∠=所以.PA BF = 由90//,//,DAB ABC AD BC BG CD ∠=∠= 知,又所以四边形BCDG 是平行四边形,故 3.GD BC ==于是 2.AG =在Rt ΔBAG 中,4,2,,AB AG BG AF ==⊥所以2AB BG BF BG =====于是5PA BF == 又梯形ABCD 的面积为1(53)416,2S =⨯+⨯=所以四棱锥P ABCD -的体积为111633515V S PA =⨯⨯=⨯⨯=解法2:如图(2),以A 为坐标原点,,,AB AD AP 所在直线分别为x y z 轴,轴,轴建立空间直角坐标系.设,PA h =则相关的各点坐标为:(4,0,0),(4,0,0),(4,3,0),(0,5,0),(2,4,0),(0,0,).A B C D E P h(Ⅰ)易知(4,2,0),(2,4,0),(0,0,).CD AE AP h =-== 因为8800,0,CD AE CD AP ⋅=-++=⋅= 所以,.CD AE CD AP ⊥⊥而,AP AE 是平面PAE 内的两条相交直线,所以.CD PAE ⊥平面(Ⅱ)由题设和(Ⅰ)知,,CD AP 分别是PAE 平面,ABCD 平面的法向量,而PB 与PAE 平面所成的角和PB 与ABCD 平面所成的角相等,所以cos ,cos ,.CD PB PA PB CD PB PA PB CD PB PA PB⋅⋅<>=<>=⋅⋅ ,即 由(Ⅰ)知,(4,2,0),(0,0,),CD AP h =-=- 由(4,0,),PB h =- 故=解得5h =. 又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为1151633515V S PA =⨯⨯=⨯⨯=. 【点评】本题考查空间线面垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明PA CD ⊥即可,第二问算出梯形的面积和棱锥的高,由13V S PA =⨯⨯算得体积,或者建立空间直角坐标系,求得高几体积.19.(本小题满分12分)已知数列{}n a 的各项均为正数,记12()n A n a a a =+++ ,231()n B n a a a +=+++ ,342()n C n a a a +=+++ ,1,2,.n =(Ⅰ)若121,5a a ==,且对任意*n N ∈,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式.(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意*n N ∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列.【解析】解(1)对任意N n *∈,三个数(),(),()A n B n C n 是等差数列,所以()()()(),B n A n C n B n -=-即112,n n a a a ++-=亦即2121 4.n n a a a a +--=-=故数列{}n a 是首项为1,公差为4的等差数列.于是1(1)44 3.n a n n =+-⨯=-(Ⅱ)(1)必要性:若数列{}n a 是公比为q的等比数列,则对任意N n *∈,有 1.n nq a a -=由0n a >知,(),(),()A n B n C n 均大于0,于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++ 231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++ 即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列. (2)充分性:若对于任意N n *∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列,则()(),()B n q A n C n q B n==, 于是[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即212.n n a qa a a ++-=-由1n =有(1)(1),B qA =即21a qa =,从而210n n a qa ++-=.因为0n a >,所以2211n n a a q a a ++==,故数列{}n a 是首项为1a ,公比为q 的等比数列, 综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列.【点评】本题考查等差数列、等比数列的定义、性质及充要条件的证明.第一问由等差数列定义可得;第二问要从充分性、必要性两方面来证明,利用等比数列的定义及性质易得证.20.(本小题满分13分)某企业接到生产3000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间; (Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.【解析】解:(Ⅰ)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为123(),(),(),T x T x T x 由题设有1232300010*******50(),(),(),6200(1)T x T x T x x x k x k x ⨯====-+ 期中,,200(1)x kx k x -+均为1到200之间的正整数.(Ⅱ)完成订单任务的时间为{}123()max (),(),(),f x T x T x T x =其定义域为2000,.1x x x N k *⎧⎫<<∈⎨⎬+⎩⎭易知,12(),()T x T x 为减函数,3()T x 为增函数.注意到212()(),T x T x k =于是(1)当2k =时,12()(),T x T x = 此时{}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭,由函数13(),()T x T x 的单调性知,当100015002003x x =-时()f x 取得最小值,解得4009x =.由于134002503004445,(44)(44),(45)(45),(44)(45)91113f T f T f f <<====<而.故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =.(2)当2k >时,12()(),T x T x > 由于k 为正整数,故3k ≥,此时{}1375(),()max (),()50T x x T x T x x ϕ==-易知()T x 为增函数,则{}13()max (),()f x T x T x ={}1max (),()T x T x ≥1000375()max ,50x x x ϕ⎧⎫==⎨⎬-⎩⎭. 由函数1(),()T x T x 的单调性知,当100037550x x =-时()x ϕ取得最小值,解得40011x =.由于14002502503752503637,(36)(36),(37)(37),119111311T T ϕϕ<<==>==>而 此时完成订单任务的最短时间大于25011. (3)当2k <时,12()(),T x T x < 由于k 为正整数,故1k =,此时{}232000750()max (),()max ,.100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭由函数23(),()T x T x 的单调性知, 当2000750100x x =-时()f x 取得最小值,解得80011x =.类似(1)的讨论.此时 完成订单任务的最短时间为2509,大于25011. 综上所述,当2k =时完成订单任务的时间最短,此时生产A,B,C三种部件的人数 分别为44,88,68.【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想.21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在圆222:(5)9C x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,A B ,,C D 的纵坐标之积为定值.【解析】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =.(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆 2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.于是3.=整理得2200721890.k y k y ++-= ① 设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y y k k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根,所以0112120(4).y k y y k +⋅=④ 同理可得 0234220(4).y k y y k +⋅=⑤ 于是由②,④,⑤三式得 010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦= 22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到,,,A B C D 四点纵坐标之积为定值,体现“设而不求”思想.22.(本小题满分13分)已知函数()ax f x e x =-,其中0a ≠.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合.(Ⅱ)在函数()f x 的图像上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1ax e x =-<,这与题设矛盾,又0a ≠,故0a >.而()1,ax f x ae '=-令11()0,ln .f x x a a'==得 当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a>时,()0,()f x f x '>单调递增,故当11ln x a a =时,()f x 取最小值11111(ln )ln .f a a a a a =- 于是对一切,()1x R f x ∈≥恒成立,当且仅当111ln 1a a a-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减.故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立. 综上所述,a 的取值集合为{}1. (Ⅱ)由题意知,21212121()() 1.ax ax f x f x e e k x x x x --==--- 令2121()(),ax ax axe e xf x k ae x x ϕ-'=-=--则 121()12121()()1,ax a x x e x e a x x x x ϕ-⎡⎤=----⎣⎦- 212()21221()()1.ax a x x e x e a x x x x ϕ-⎡⎤=---⎣⎦- 令()1tF t e t =--,则()1t F t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增.故当0t =,()(0)0,F t F >=即10.t e t --> 从而21()21()10a x x e a x x ---->,12()12()10,a x x e a x x ---->又1210,ax e x x >-2210,ax e x x >- 所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在),(21x x c ∈,使0)(=c ϕ,2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-.故当且仅当212211(ln ,)()ax ax e e x x a a x x -∈-时, 0()f x k '>. 综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --. 【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出()f x 取最小值11111(ln )ln .f a a a a a=-对一切x ∈R ,f(x) ≥1恒成立转化为min ()1f x ,从而得出a 的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.。

[VIP专享]2012年安徽高考数学理科试卷及答案(精美Word版_绝对值得下载)

[VIP专享]2012年安徽高考数学理科试卷及答案(精美Word版_绝对值得下载)

2
88.8918÷.12990.÷1=4214÷3922=.0034=1÷15251371=8.535.78208÷.0232173c0*0÷1=m920.30392.2c=1÷203m=2÷1202.52=3535=42314)c*5232m40341*.31252=3.*1.153.5*03134.2*920522..104455=+21*3*50202.2.0285.4850.13*50+5c8*125*12m0.2+050.+0*014.852*0051000+0+/038.T+0÷+=55*+1011+010+91÷0145405*00010200+5+0+080+40*04+***115.103910*-%*C%6(+÷*M==5M÷5)0*3*0(31÷3110**5*+*÷414.m2371e=%7)8n08%.=s8.5=77.93cc60.mc*m4*m13,101w9.9o.k24mc-.cem5nm2csp2665m*9..03-4.50c60*5.pc3m85,9cm0.5g.i50mr0l-.p.s85p/6c50bc.0om7m.yp.cs6pc5m+;c0m..m7.ckm; 1+1k+12+1+k2234=1c+m1++4+4+2
8. 【解析】选 A
【方法一】设 OP
(10 cos ,10sin )
cos
3 ,sin
4
5
5

OQ
(10
cos(
3
),10 sin(

2012年新课标数学高考试题(理科数学理科数学高考试题,word教师版【免费下载】)

2012年新课标数学高考试题(理科数学理科数学高考试题,word教师版【免费下载】)

2012年普通高等学校招生全国统一考试(新课标) 理科数学第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种()B 10种 ()C 9种()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种 (3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)iz i ii i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【解析】选C ∆21F P F 是底角为30的等腰三角形221332()224c P F F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7()B 5 ()C -5()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年高考理科数学安徽卷及答案

2012年高考理科数学安徽卷及答案

绝密★启用前2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页.全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,.在.答题卷、草稿纸上答题无效............. 4.考试结束,务必将试题卷和答题卡一并上交. 参考公式:如果事件A 与B 互斥;则()()()P A B P A P B +=+ 如果事件A 与B 相互独立;则()()()P AB P A P B =如果A 与B 是事件,且()0P B >;则()()()P AB P A B P B =第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足:(i)(2i)5z --=;则z =( )A .22i --B .22i -+C .2-2iD .2+2i2.下列函数中,不满足(2)2()f x f x =的是( )A .()||f x x =B .()||f x x x =-C .()1f x x =+D .()f x x =-3.如图所示,程序框图(算法流程图)的输出结果是( )A .3B .4C .5D .84.公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则210log =a ( )A .4B .5C .6D .75.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差6.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥则“αβ⊥”是“a b ⊥”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.2521(2)(1)x x +-的展开式的常数项是( )A .3-B .2-C .2D .38.在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 绕点O 按逆时针旋转3π4后得到向量OQ ,则点Q 的坐标是( )A.(- B.(- C.(2)--D.(-9.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,O 为是坐标原点.若3AF =,则AOB ∆的面积为 ( )A.2 BCD.10.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A .1或3B .1或4C .2或3D .2或4第Ⅱ卷(非选择题 共100分)姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.若,x y 满足约束条件:0,23,23,x x y x y ⎧⎪+⎨⎪+⎩≥≥≤则x y -的取值范围为______.12.某几何体的三视图如图所示,该几何体的表面积是______.13.在极坐标系中,圆4sin ρθ=的圆心到直线π()6R θρ=∈的距离是______. 14.若平面向量a,b 满足:|2|3-≤a b ;则⋅a b 的最小值是______.15.设ABC ∆的内角,,A B C 所对的边为,,a b c ,则下列命题正确的是______(写出所有正确命题的编号).①若2ab c >;则π3C <②若2a b c +>;则π3C <③若333a b c +=;则π2C <④若()2a b c ab +<;则π2C >⑤若22222()2a b c a b +<;则π3C >三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设函数2π())sin 4f x x x =++ (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)设函数()g x 对任意x ∈R ,有π()()2g x g x +=,且当π[0,]2x ∈时,1()()2g x f x =-.求()g x 在区间[π,0]-上的解析式.17.(本小题满分12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n m +道试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类试题的数量. (Ⅰ)求2X n =+的概率;(Ⅱ)设m n =,求X 的分布列和均值(数学期望).18.(本小题满分12分)平面图形111ABB AC C 如图1所示,其中11BB C C 是矩形,12,4BC BB ==,AB AC ==1111A B A C ==.现将该平面图形分别沿BC 和11B C 折叠,使ABC ∆与111A B C ∆所在平面都与平面11BB C C 垂直,再分别连接111,,A A A B AC ,得到如图2所示的空间图形.对此空间图形解答下列问题. (Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长;(Ⅲ)求二面角1A BC A --的余弦值.2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案解析【解析】{}n a 是等比数列,且,又等比数列4=,16a ∴=log 32=log 【解析】1(45x =甲甲的成绩的平均数等于乙的成绩的平均数;甲的成绩的中位数甲的成绩的方差为甲的成绩的极差【解析】αβ⊥,”的充分条件,m ,则a ⊥故选A .【解析】第一个因式取【解析】(0,0)O ,设(10cos OP =5,又OP 按旋转OQ,10cos OQ θ⎡=+ ⎢⎝⎭⎦∴【提示】由点,知(6,8)OP =,设(10cos OP =。

2012年高考数学(理)真题(word版)——贵州用卷(试题+答案解...

2012年高考数学(理)真题(word版)——贵州用卷(试题+答案解...

2012年普通高等学校招生全国统一考试(全国卷)数学(理科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题1.复数13i1i-+=+( ) A .2+i B .2-i C .1+2i D .1-2i2.已知集合A ={1,3},B ={1,m },A ∪B =A ,则m =( )A .0B .0或3C .1D .1或33.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 4.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,1CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A .2 BCD .15.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{11n n a a +}的前100项和为( )A .100101B .99101C .99100D .101100 6.△ABC 中,AB 边的高为CD .若CB =a ,CA =b ,a ·b =0,|a |=1,|b |=2,则AD=( )A .1133-a b B .2233-a bC .3355-a bD .4455-a b7.已知α为第二象限角,sin α+cos αcos2α=( ) A.- B. CD8.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A .14 B .35 C .34 D .459.已知x =ln π,y =log 52,12=e z -,则( )A .x <y <zB .z <x <yC.z<y<x D.y<z<x10.已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c=()A.-2或2 B.-9或3 C.-1或1 D.-3或111.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=37.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16 B.14 C.12 D.10第Ⅱ卷第Ⅱ卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.若x,y满足约束条件10,30,330,x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.14.)当函数y=sin xcos x(0≤x<2π)取得最大值时,x=__________.15.若(x+1x)n的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__________.16.三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC的内角A,B,C的对边分别为a,b,c,已知cos(A-C)+cos B=1,a=2c,求C.18.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=P A=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.19.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.设函数f(x)=ax+cos x,x∈[0,π].(1)讨论f(x)的单调性;(2)设f(x)≤1+sin x,求a的取值范围.21.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.22.函数f(x)=x2-2x-3,定义数列{x n}如下:x1=2,x n+1是过两点P(4,5),Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(1)证明:2≤x n<x n+1<3;(2)求数列{x n}的通项公式.答案解析1. C213i (13i)(1i)1+i+3i 3i 24i12i 1i (1i)(1i)22-+-+---+====+++-. 2. B ∵A ={1,3},B ={1,m },A ∪B =A , ∴m =3或m =∴m =3或m =0或m =1.当m =1时,与集合中元素的互异性不符,故选B 项. 3. C ∵焦距为4,即2c =4,∴c =2.又∵准线x =-4,∴24a c-=-. ∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184x y +=,故选C 项. 4. D 连结AC 交BD 于点O ,连结OE , ∵AB =2,∴AC =又1CC =AC =CC 1.作CH ⊥AC 1于点H ,交OE 于点M .由OE 为△ACC 1的中位线知, CM ⊥OE ,M 为C H 的中点.由BD ⊥AC ,EC ⊥BD 知,BD ⊥面EOC , ∴CM ⊥BD .∴CM ⊥面BDE .∴HM 为直线AC 1到平面BDE 的距离.又△AC C 1为等腰直角三角形,∴CH =2.∴HM =1.5. A 15155()5(5)1522a a a S ++===,∴a 1=1. ∴515115151a a d --===--.∴a n =1+(n -1)×1=n .∴111(1)n n a a n n +=+. 设11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为T n , 则1001111223100101T =+++⨯⨯⨯… =111111223100101-+-++-…=11001101101-=. 6. D ∵a ·b =0,∴a ⊥b . 又∵|a |=1,|b |=2,∴||5AB =. ∴||55CD ==. ∴2||25AD ==.∴4544445()5555AD AB AB ===-=-a b a b .7. A ∵sin α+cos α,且α为第二象限角, ∴α∈(2k π+π2,2k π+3π4)(k ∈Z ).∴2α∈(4k π+π,4k π+3π2)(k ∈Z ).由(sin α+cos α)2=1+sin2α=13,∴2sin23α-=.∴cos23α==-.9.D ∵x =ln π>1,y =log 52>1log 2=,121e 2z -==>=,且12e -<e 0=1,∴y <z <x .10. A y ′=3x 2-3=3(x +1)(x -1). 当y ′>0时,x <-1或x >1; 当y ′<0时,-1<x <1.∴函数的递增区间为(-∞,-1)和(1,+∞),递减区间为(-1,1). ∴x =-1时,取得极大值;x =1时,取得极小值. 要使函数图象与x 轴恰有两个公共点,只需:f (-1)=0或f (1)=0,即(-1)3-3×(-1)+c =0或13-3×1+c =0, ∴c =-2或c =2.11. A 如图,由于每行、每列的字母都互不相同,故只须排好1,2,3号格即可,显然1号格有3种选择,2,3号格均有两种选择,所以不同的排法共有3×2×2=12种.12. B 结合已知中的点E ,F 的位置,由反射与对称的关系,可将点P 的运动路线展开成直线,如图.当点P 碰到E 时,m 为偶数,且333477m n =+-, 即4m =3n .故m 的最小值为6,n =8,线段PE 与网格线交点的个数为(除E 点外)6+8=14个. (PE 的方程为39428y x =-,即4y =3x -97,x ,y 不能同时为整数,所以PE 不过网格交点)13.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 14.答案:5π6解析:y =sin x 3x =13π2(sin )2sin()23x x x =-. 当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6.又∵0≤x <2π,∴5π6x =.15.答案:56解析:∵26C C n n =,∴n =8.T r +1=8C rx 8-r (1x )r =8C rx 8-2r , 令8-2r =-2,解得r =5.∴系数为58C 56=.16.答案:6解析:取BC 的中点O ,连结AO ,A 1O ,BA 1,CA 1,易证BC ⊥AO ,BC ⊥A 1O ,从而BC ⊥AA 1,又BB 1∥AA 1,BB 1⊥BC .延长CB 至D ,使BD =BC ,连结B 1D ,则B 1D ∥BC 1,设BC =1,则1B D ,1AB AD ==6=. 17.解:由B =π-(A +C ),得cos B =-cos(A +C ).于是cos(A -C )+cos B =cos(A -C )-cos(A +C )=2sin A sin C ,由已知得sin A sin C =12.① 由a =2c 及正弦定理得sin A =2sin C .② 由①②得21sin 4C =,于是1sin 2C -=(舍去)或1sin 2C =. 又a =2c ,所以π6C =.18.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又P A ⊥底面ABCD , 所以PC ⊥BD . 设AC ∩BD =F ,连结EF .因为AC =P A =2,PE =2EC ,故23PC =,233EC =,2FC =, 从而6PC FC =,6ACEC =, 因为PC AC FC EC=,∠FCE =∠PCA , 所以△FCE ∽△PCA ,∠FEC =∠P AC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直, 故BC ⊥平面P AB ,于是BC ⊥AB , 所以底面ABCD 为正方形,AD =2,2222PD PA AD =+=.设D 到平面PBC 的距离为d . 因为AD ∥BC ,且AD平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG 2设PD 与平面PBC 所成的角为α,则1sin 2d PD α==. 所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (220,0),D 2,b,0),其中b >0, 则P (0,0,2),E (423,0,23),B 2,-b,0). 于是PC =(22,0,-2),BE =(23,b ,23),DE =(23,-b ,23),从而0PC BE ⋅=,0PC DE ⋅=,故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP =(0,0,2),AB =2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP =0,m ·AB =0,即2z =0-by =0,令x =b ,则m =(b ,0). 设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即20r -=且2033bq r ++=,令p =1,则r =q b =-,n =(1,b-).因为面P AB ⊥面PBC ,故m·n =0,即20b b-=,故b =,于是n =(1,-1,2),DP =(,,2),1cos ,2||||DP DP DP ⋅==n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP 〉互余,故PD 与平面PBC 所成的角为30°. 19.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先. (1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A ) =P (A 0·A )+P (A 1·A ) =P (A 0)P (A )+P (A 1)P (A )=0.16×0.4+0.48×(1-0.4)=0.352. (2)(理)P (A 2)=0.62=0.36. ξ的可能取值为0,1,2,3.P (ξ=0)=P (A 2·A )=P (A 2)P (A )=0.36×0.4=0.144, P (ξ=2)=P (B )=0.352,P (ξ=3)=P (A 0·A )=P (A 0)P (A )=0.16×0.6=0.096, P (ξ=1)=1-P (ξ=0)-P (ξ=2)-P (ξ=3) =1-0.144-0.352-0.096=0.408.Eξ=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=0.408+2×0.352+3×0.096=1.400.20.解:(1)f ′(x )=a -sin x .①当a ≥1时,f ′(x )≥0,且仅当a =1,π2x =时,f ′(x )=0,所以f (x )在[0,π]是增函数;②当a ≤0时,f ′(x )≤0,且仅当a =0,x =0或x =π时,f ′(x )=0, 所以f (x )在[0,π]是减函数;③当0<a <1时,由f ′(x )=0,解得x 1=arcsin a ,x 2=π-arcsin a . 当x ∈[0,x 1)时,sin x <a ,f ′(x )>0,f (x )是增函数; 当x ∈(x 1,x 2)时,sin x >a ,f ′(x )<0,f (x )是减函数; 当x ∈(x 2,π]时,sin x <a ,f ′(x )>0,f (x )是增函数. (2)由f (x )≤1+sin x ,得f (π)≤1,a π-1≤1, 所以2πa ≤. 令g (x )=sin x -2πx (0≤x ≤π2), 则g ′(x )=cos x -2π.当x ∈(0,arccos 2π)时,g ′(x )>0,当x ∈(arccos 2π,π2)时,g ′(x )<0.又g (0)=g (π2)=0,所以g (x )≥0,即2πx ≤sin x (0≤x ≤π2).当a ≤2π时,有f (x )≤2πx +cos x .①当0≤x ≤π2时,2πx ≤sin x ,cos x ≤1,所以f (x )≤1+sin x ;②当π2≤x ≤π时,f (x )≤2πx +cos x =1+2π(x -π2)-sin(x -π2)≤1+sin x . 综上,a 的取值范围是(-∞,2π].21.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1, 即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1),淘宝网•营丘书社-地址:/今天是:2022年4月27日星期三 淘宝网•营丘书社-地址:/ r =|MA |==,即r =. (2)设(t ,(t +1)2)为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ), 即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M到该切线的距离为2,2=, 化简得t 2(t 2-4t -6)=0,解得t 0=0,12t =22t =抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,②y =2(t 2+1)x -t 22+1,③②-③得1222t t x +==. 将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离5d ==. 22.解:(1)用数学归纳法证明:2≤x n <x n +1<3.①当n =1时,x 1=2,直线PQ 1的方程为(2)55(4)24f y x --=--, 令y =0,解得2114x =,所以2≤x 1<x 2<3. ②假设当n =k 时,结论成立,即2≤x k <x k +1<3.直线PQ k +1的方程为11()55(4)4k k f x y x x ++--=--, 令y =0,解得121342k k k x x x ++++=+, 由归纳假设知121134554432223k k k k x x x x +++++==-<-=+++; x k +2-x k +1=111(3)(1)02k k k x x x +++-+>+, 即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立.由①②知对任意的正整数n,2≤x n <x n +1<3.(2)由(1)及题意得1342n n nx x x ++=+.。

【2012年高考理科数学解析分类汇编集(word版193页)

【2012年高考理科数学解析分类汇编集(word版193页)
.(2012年高考(江苏))已知正数 满足: 则 的取值范围是____.
.(2012年高考(江苏))已知函数 的值域为 ,若关于x的不等式
的解集为 ,则实数c的值为____.
.(2012年高考(大纲理))若 满足约束条件 ,则 的最小值为_________________.
.(2012年高考(安徽理))若 满足约束条件: ;则 的取值范围为
.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)
设 其中 ,曲线 在点 处的切线垂直于 轴.
(Ⅰ)求 的值;
(Ⅱ)求函数 的极值.
.(2012年高考(陕西理))设函数
(1)设 , ,证明: 在区间 内存在唯一的零点;
(2)设 ,若对任意 ,有 ,求 的取值范围;
(3)在(1)的条件下,设 是 在 内的零点,判断数列 的增减性.
.(2012年高考(江西理))计算定积分 ___________.
.(2012年高考(广东理))曲线 在点 处的切线方程为___________________.
三、解答题
.(2012年高考(天津理))已知函数 的最小值为 ,其中 .
(Ⅰ)求 的值;
(Ⅱ)若对任意的 ,有 成立,求实数 的最小值;
(Ⅲ)证明 .
C.充分必要条件D.既不充分也不必要条件
.(2012年高考(湖北理))已知二次函数 的图象如图所示,则它与 轴所围图形的面积为( )
A. B. C. D.
.(2012年高考(福建理))如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为
( )
A. B. C. D.
.(2012年高考(大纲理))已知函数 的图像与 轴恰有两个公共点,则 ( )

2012年高考理科数学安徽卷(含详细答案)

2012年高考理科数学安徽卷(含详细答案)

数学试卷 第1页(共39页)数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2013年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页.全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、准考证号,并认真核对答题卡上所粘贴的条形码中姓名、准考证号与本人姓名、准考证号是否一致.务必在答题卡背面规定的地方填写姓名和准考证号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无............效.,在试题卷....、草稿纸上答题无效.........4.考试结束,务必将试题卷和答题卡一并上交. 参考公式:如果事件A 与B 互斥,那么 如果事件A 与B 相互独立,那么 P (A +B )=P (A )+P (B ) P (AB )=P (A )P (B )第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,z 是复数z 的共轭复数.若 i 22z z z +=,则z =( )A .1+iB .1-iC .-1+iD .-1-i2.如图所示,程序框图(算法流程图)的输出结果是 ( )A .16 B .2524 C .34D .11123.在下列命题中,不是..公理的是( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线4.“0a ≤”是“函数|()|()1f x ax x -=在区间(0)+∞,内单调递增”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数6.已知一元二次不等式()0f x <的解集为1{|1}2x x x <->或,则(10)0x f >的解集为( ) A .{|}1lg2x x x ->-<或 B .lg |}12{x x -<<- C .l 2|g {}x x -> D .l 2|g {}x x -<7.在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( )A .0()θρ∈R =和cos 2ρθ=B .π()2θρ∈R =和cos 2ρθ=C .π()2θρ∈R =和cos 1ρθ=D .0()θρ∈R =和cos 1ρθ=8.函数=()y f x 的图象如图所示,在区间[],a b 上可找到n (2n ≥)个不同的数1x ,2x ,…,n x ,使得1212===n nf x f x f x x x x ()()(),则n 的取值范围是 ( )A .{3,4}B .{2,3,4}C .{3,4,5}D .{2,3}9.在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足||=|| 2OA OB OA OB ==,则点集{|=+,||||1,}POP OA OB λμλμμ+∈R≤所表示的区域的面积是( )A.B .C .D .10.若函数32()f x x ax bx c +++=有极值点1x ,2x ,且11()f x x =,则关于x 的方程23(())f x +2()0af x b +=的不同实根个数是( )A .3B .4C .5D .6--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------姓名________________ 准考证号_____________数学试卷 第4页(共39页)数学试卷 第5页(共39页) 数学试卷 第6页(共39页)第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.......... 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.若8(x +的展开式中4x 的系数为7,则实数=a __________. 12.设ABC △的内角A ,B ,C 所对边的长分别为a ,b ,c .若=2b c a +,3sin =5sin A B ,则角=C __________.13.已知直线=y a 交抛物线2=y x 于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为__________.14.如图,互不相同的点1A ,2A ,…,n A ,…和1B ,2B ,…,n B ,…分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设=n n OA a .若1=1a ,2=2a ,则数列{}n a 的通项公式是__________.15.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题正确的是__________(写出所有正确命题的编号). ①当102CQ <<时,S 为四边形 ②当12CQ =时,S 为等腰梯形 ③当34CQ =时,S 与11C D 的交点R 满足1=C R 13④当341CQ <<时,S 为六边形⑤当CQ =1时,S三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. 16.(本小题满分12分)已知函数()4cos πsin(4)f x x x ωω+=(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)讨论()f x 在区间π[0,]2上的单调性.17.(本小题满分12分)设函数22()=(1)f x ax a x -+,其中0a >,区间=()0{|}I x f x >. (Ⅰ)求I 的长度(注:区间(,)αβ的长度定义为βα-); (Ⅱ)给定常数(0,1)k ∈,当11k a k -+≤≤时,求I 长度的最小值.18.(本小题满分12分)设椭圆E :2222=11x y a a +-的焦点在x 轴上. (Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设1F ,2F 分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线2F P 交y 轴于点Q ,并且11F P FQ ⊥.证明:当a 变化时,点P 在某定直线上.19.(本小题满分13分)如图,圆锥顶点为P ,底面圆心为O ,其母线与底面所成的角为22.5,AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60.(Ⅰ)证明:平面P AB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠.20.(本小题满分13分)设函数23222()123nn x x x f x x n =-+++++(x ∈R ,*n ∈N ).证明: (Ⅰ)对每个*n ∈N ,存在唯一的2[,1]3n x ∈,满足)0(n n f x =;(Ⅱ)对任意*p ∈N ,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n-<<+.21.(本小题满分13分)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责.已知该系共有n 位学生,每次活动均需该系k 位学生参加(n 和k 都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k 位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为X .(Ⅰ)求该系学生甲收到李老师或张老师所发活动通知信息的概率; (Ⅱ)求使()P X m =取得最大值的整数m .2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案解析3 / 13【解析】{}na是等比数列,且,又等比数列93=4(q⨯⨯【解析】1(45 x=甲甲的成绩的平均数等于乙的成绩的平均数;甲的成绩的中位数甲的成绩的方差为甲的成绩的极差【解析】αβ⊥,的充分条件,如果条件相同,.45 / 13【解析】第一个因式取【解析】(0,0)O ,设(10cos OP =,又向量OP 按逆时针后,得向量OQ ,10cos OQ θ⎡⎛= ⎢∴. (0,0),(6,8)P ,知(6,8)OP =,设(10cos OP =量OP 绕点逆时针方向旋转后得向量OQ ,由此能求出结果.【考点】平面向量的坐标运算,||3AF =,,1a ∴=【解析】2613C-=取得最小值3-.67 / 138】|2|3a b -≤,22494a b a b ∴+≤+,又2244||||4a b a b a b +≥≥-,944a b a b +∴≥-,98a b -∴≥,a b ∴的最小值是8-.【提示】由平面向量a ,b 满足|2|3a b -≤,知22494a b a b +≤+,故22224244||||4a b a b a b a b +≥=≥-,由此能求出a b 的最小值. 【考点】平面向量数量积【答案】①②③【解析】①2ab c >,②2a b c +>,cos ∴③33a b +=2cos a C =④2a b ==以例反证71082>-【提示】①利用余弦定理,将f x=(Ⅰ)()21=2(Ⅱ)当89 / 13AB AC =面ABC AO ∴⊥面共面,又1OO BC ⊥1AO O =,BC ⊥面BC ⊥;(Ⅱ)延长D OA =,连接,1AO AO ∥1O D OA ∴∥AD OO ∴∥101OO BC ⊥1OO ∴⊥面(Ⅲ)AO BC ⊥1AOA 是二面角Rt OO A ∆中,51AO O =,得到11 / 13(Ⅱ)()f x a =1)e x a a =-,2PF QF ⊥2044b a c c -⨯--又24a c=②,22(a b =-12 ,则2PF QF ⊥又2222x y a b +2y b =-过点13 / 131n n x x +-10x ∴=≤。

2012年全国高考安徽理科数学试题详细解析

2012年全国高考安徽理科数学试题详细解析

A. 甲的成绩的平均数小于乙的成绩的平均数 B. 甲的成绩的中位数等于乙的成绩的中位数 C. 甲的成绩的方差小于乙的成绩的方差
D. 甲的成绩的极差小于乙的成绩的极差
5.【答案】C 【解析】由条形图易知甲的平均数为 x甲 = 方差为 s
2 甲
4+5+6+7+8 = 6 ,中位数为 6 , 5
( −2 ) + ( −1) =
F A
x
(
)
k=
−2 2 − 0 = −2 2 , 2 −1
直线 AB 的方程为 y = −2 2 x + 2 2 , 联立直线与抛物线方程
y = −2 2 x + 2 2, y = 4 x,
2
可得 2 x − 5 x + 2 = 0 ,
2
1 , 2 1 3 3 9 可得 BF = − ( −1) = , AB = AF + BF = 3 + = , 2 2 2 2
A.3
B.4
C.5
D.6
3.【答案】B 【解析】第一次循环后: x = 2, y = 2 ;第二次循环后: x = 4, y = 3 ;第三次循环后:
x = 8, y = 4 ,跳出循环,输出 y = 4 .
【规律总结】 具有循环结构的流程图问题, 最有效的求解方法之一就是当循环次数比较少时, 把每一次循环之后每个变量的取值都一一列出, 当循环次数比较多时, 利用数列通项把每次 循环之后每个变量的取值一一列出. 4.公比为 2 的等比数列 {an } 的各项都是正数,且 a3 a11 = 16 ,则 log 2 a10 = ( )
2
1 −2 常数项,只要找 2 − 1 展开式中的常数项和含 x 项即可. x

2012年高考理科数学解析 word 版

2012年高考理科数学解析 word 版

2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。

注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:锥体的体积公式:V =13Sℎ,其中 S 是锥体的底面积,ℎ 是锥体的高。

如果事件A ,B 互斥,那么 P (A +B )=P (A )+P(B);如果事件 A ,B 独立,那么P (AB )=P (A )∙P(B)。

第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数 z 满足z (2−i )=11+7i (i 为虚数单位),则 z 为 ( ) A.3+5i B.3-5i C. -3+5i D. -3-5i 解析:A设z =x +yi , 则 (x +yi )(2−i )=11+7i , 即(2x +y )+(2y −x )i =11+7i∴{2x +y =11−x +2y =7∴{x =3y =5 ∴z =3+5i2.已知全集 U ={0,1,2,3,4} ,集合 A ={1,2,3},B ={2,4} ,则 ( U A)⋃B 为 ( ) A. {1,2,4} B. {2,3,4} C. {0,2,4} D. {0,2,3,4} 解析:C3.设 a >0,a ≠1,则“函数 f (x )=a x 在R 上是减函数 ”,是“函数 g (x )=(2−a )x 3在 R 上是增函数”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:A“函数 f (x )=a x 在R 上是减函数 ”⟺“0<a <1” “函数 g (x )=(2−a )x 3在 R 上是增函数”⇔“a <2” ∴“0<a <1”⇒ “a <2”, “0<a <1”⇍“a <2”4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号 为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为 9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750] 的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 ( ) A. 7 B. 9 C. 10 D. 15 解析:C[451,750]中是分组后的第16 ~ 255.约束条件{x +2y ≥22x +y ≤44x −y ≥−1,则目标函数 z =3x −y的取值范围是 ( )A.[−32,6]B. [−32,−1]C. [−1,6]D.[−6,32]解析:A6.执行右面的程序图,如果输入 a =4,那么输出的A. 2 B. 3 C. 4 D. 57.若 θ∈[π4,π2] ,sin2θ=3√78,则sinθ的值是( )A. 35B. 45C. √74D. 34解析:Dθ∈[π4,π2],∴√22≤sinθ≤1 ,排除A. C. 易验证D. 正确8.定义在 R上的函数 f(x)满足 f(x+6)=f(x),当−3≤x<−1时,f(x)=−(x+2)2,当−1≤x<3时,f(x)=x. 则f(1)+f(2)+f(3)+⋯+ f(2012)的值是( )A. 335B. 338C. 1678D. 2012解析:Bf(1)=1,f(2)=2,f(3)=f(3−6)=f(−3)=−(−3+2)2=−1, f(4)=f(4−6)=f(−2)=−(−2+2)2=0, f(5)=f(5−6)=f(−1)=−1,f(6)=f(6−6)=f(0)=0,f(1)+f(2)+f(3)+⋯f(6)=1f(1)+f(2)+f(3)+⋯+f(2012)函数是奇函数,x→+∞,y→0,当x>0时,x→0,y→+∞10.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32. 双曲线x2−y2=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆 C 的方程为( )A.x28+y22=1 B.x212+y26=1 C.x215+y24=1 D.x220+y25=1解析:D椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√32,∴a:b:c=2:1:√3∴C:x24b2+y2b2=1双曲线x2−y2=1的渐近线为y=±x, 设渐近线与椭圆在第一象限的交点坐标为(x1,y1)根据图形的对称性知已知四边形的面积为(2x1)2=16x12 4b2+y12b2=x124b2+x12b2=1 ∴54x12=b2∴b2=5,a2=20 ∴C:x220+y25=111.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3 张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A. 232B. 252C. 472D. 484解析:C法一:C163−4C43−C42C41C31=472法二:C41C41C41C43+C41C31C42+C31C41C21C42=47212.设函数 f(x)=1x,g(x)=ax2+bx(a,b∈R,a≠0)若 y=f(x)的图象与 y=g(x)图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是( )A. 当 a<0 时,x1+x2<0,y1+y2>0B. 当 a<0 时,x1+x2>0,y1+y2<0C. 当 a>0 时,x1+x2<0,y1+y2<0D. 当 a>0 时,x1+x2>0,y1+y2>0第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13. 若不等式 |kx −4|≤2 的解集为 {x |1≤x ≤3},则实数 k 的值是__________. 解析:2分k ≥0,k <0讨论14. 如图,正方体 ABCD −A 1B 1C 1D 1 的棱长为 1 ,E,F 分别为线段 AA 1,B 1C 上的点,则三棱锥D 1−EDF 的体积为____________. 解析:16特殊位置法:E,F 分别与A 1,B 1重合。

2012年高考理科数学安徽卷-答案

2012年高考理科数学安徽卷-答案

2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案解析【解析】{}na是等比数列,且,又等比数列93=4(q⨯⨯2=log32=log【解析】1(45 x=甲甲的成绩的平均数等于乙的成绩的平均数;甲的成绩的中位数甲的成绩的方差为甲的成绩的极差【解析】αβ⊥,的充分条件,如果.【解析】第一个因式取【解析】(0,0)O ,设(10cos OP =,又向量OP 按逆时针后,得向量OQ ,10cos OQ ⎡=⎢⎝⎣∴知(6,8)OP =设(10c o OP =OP 绕点逆时针方向旋转3π后得向量OQ ,由此能求出结果.9.【答案】,||3AF =,,1【解析】2613C-=①设仅有甲与乙,丙没交换纪念品,则甲收到取得最小值3-.8】|2|3a b -≤,22494a b a b ∴+≤+,又2244||||4a b a b a b +≥≥-,944a b a b +∴≥-,98a b -∴≥,a b ∴的最小值是8由平面向量a ,b 满足|2|3a b -≤,知22494a b a b +≤+,故22224244||||4a b a b a b a b +≥=≥-,由此能求出a b 的最小值.【考点】平面向量数量积 【答案】①②③【解析】①2ab c >,②2a b c +>,cos ∴③333a b c +=,a ∴2cos a C =④2a b ==⑤以例反证71082>-,【提示】①利用余弦定理,将f x=(Ⅰ)()1=21(Ⅱ)当AB AC =面AO ∴⊥面1AO AO ∴∥共面,又1OO BC ⊥1AO O =,BC ⊥面D OA =,连接,1AO AO ∥O D OA ∴∥AD OO ∴∥1OO BC ⊥1OO ∴⊥面AD ∴⊥面(Ⅲ)AO BC ⊥11Rt OO A ∆中,51AO O =,得到BC A -的平面角,由(Ⅱ)()f x a =)e a a =-(2)f ⎧,2PF QF ⊥44a c c ⨯--又24a c=②,(a b =-由①②③解得:,则2PF QF ⊥,解得22y =又2222x y a b+2y b =-过点11 / 111n n x x +-10x ∴=≤当1c ≤时,。

2012安徽高考数学理科试卷【含答案】

2012安徽高考数学理科试卷【含答案】

2012年安徽省普通高等学校招生统一考试试题、参考答案
(理科数学)
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.
第I 卷
考生注意: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式
()()()P A B P A P B +=+
24πS R =
如果事件A B ,相互独立,那么
其中R 表示球的半径
()()()P A B P A P B =
球的体积公式
如果事件A 在一次试验中发生的概率是P ,那么
3
4π3
V R =
n 次独立重复试验中恰好发生k 次的概率
()(1)
k k n k
n n P k C P P -=- 其中R 表示球的半径。

2012年高考湖南理科数学试卷和答案(word完美解析版)

2012年高考湖南理科数学试卷和答案(word完美解析版)

2012年湖南省高考数学卷(理科)一、选择题:本大题共8小题,每小题5分,共40分。

1.设集合}1,0,1{-=M ,}{2x x x N ≤=,则=N MA .}0{B .}1,0{C .}1,1{-D .}1,0,1{- 2.命题“若4πα=,则1tan =α”的逆否命题是A .若πα≠,则1tan ≠α B .若4πα=,则1tan ≠αD .若1tan ≠α,则4πα=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据),(i i y x ),,2,1(n i =,用最小二乘法建立的回归方程为71.8585.0ˆ-=x y ,则下列结论中不正确...的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心),(y xC .若该大学某女生身高增加1cm ,则其体重约增加85.0kgD .若该大学某女生身高为170cm ,则可断定其体重比为79.58kg【解析】由回归方程为 y =0.85x-85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确. 【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,5.已知双曲线1:2222=-by ax C 的焦距为10 ,点)1,2(P 在C 的渐近线上,则C 的方程为B .120522=-yxC .1208022=-yxD .1802022=-yx6.函数)6cos(sin )(π+-=x x x f 的值域为A .]2,2[-C .]1,1[-D .]23,23[-7.在ABC ∆中,2=AB ,3=AC ,1AB BC ⋅=,则=BCB .C .D 8.已知两条直线m y l =:1和)0(128:2>+=m m y l ,1l 与函数x y 2log=的图像从左至右相交于点B A ,,2l 与函数x y 2log=的图像从左至右相交于点D C ,.记线段AC 和BD 在x 轴上的投影长度分别为b a ,.当m 变化时,ba的最小值为A .C .348D .344 【解析】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像如下图, 由2log x = m ,得122,2mmx x -==,2log x =821m +,得821821342,2m m x x +-+==.依照题意得8218218218212222,22,22m m mmmm mm b a b a++--+--+-=-=-=-821821222m m mm +++==.8141114312122222m m m m +=++-≥-=++,m in ()ba∴=【点评】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像,结合图像可解得.821m =+xm二、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分 9.在直角坐标系xOy 中,已知曲线⎩⎨⎧-=+=ty t x C 21,1:1(t 为参数)与曲线⎩⎨⎧==θθcos 3,sin :2y a x C (θ为参数,0>a )有一个公共点在x 轴上,则=a 32.【解析】曲线1C :1,12x t y t=+⎧⎨=-⎩直角坐标方程为32y x =-,与x 轴交点为3(,0)2;曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩直角坐标方程为22219x ya +=,其与x 轴交点为(,0),(,0)a a -,由0a >,曲线1C 与曲线2C 有一个公共点在X 轴上,知32a =.【点评】本题考查直线的参数方程、椭圆的参数方程,考查等价转化的思想方法等.曲线1C 与曲线2C 的参数方程分别等价转化为直角坐标方程,找出与x 轴交点,即可求得. 10.不等式01212>--+x x 的解集为 .【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组). 11.如图2,过点P 的直线与⊙O 相交于B A ,两点.若1=PA ,2=AB ,3=PO ,则⊙O 的半径等于 .(二)必做题(12~16题)12.已知复数2)3(i z +=(i 为虚数单位),则=z 10 .【点评】本题考查复数的运算、复数的模.把复数化成标准的(,)a bi a b R +∈形式,利用z =求得.13.6)12(xx -的二项展开式中的常数项为 -160 .(用数字作答) 【解析】()6的展开式项公式是663166C (C 2(1)rrr r rr rr T x---+=-=-.由题意知30,3r r -==,所以二项展开式中的常数项为33346C 2(1)160T =-=-.【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法. 14.如果执行如图3所示的程序框图,输入3,1=-=n x ,则输出的数=S .【答案】4-【解析】输入1x =-,n =3,,执行过程如下:2:6233i S ==-++=-;1:3(1)115i S ==--++=;0:5(1)014i S ==-++=-,所以输出的是4-.【点评】本题考查算法流程图,要明白循环结构中的内容,一般解法是逐步执行,一步步将执行结果写出,特别是程序框图的执行次数不能出错.15.函数)sin()(ϕω+=x x f 的导函数)(x f y '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,C A ,为图象与x 轴的两个交点,B 为图象的最低点.(1)若6πϕ=,点P 的坐标为)233,0(,则=ω 3 ;(2)若在曲线段A B C 与x 轴所围成的区域内随机取一点,则该点在ABC ∆内的概率为4π.【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为(0,2)时cos,362πωω=∴=;(2)由图知222TAC ππωω===,122ABC S AC πω=⋅= ,设,A B 的横坐标分别为,a b . 设曲线段A B C与x轴所围成的区域的面积为S 则()()sin()sin()2b b aaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC内的概率为224ABCS P S ππ===. 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω, (2)几何概型,求出三角形面积及曲边形面积,代入公式即得.16.设*2(,)n N n N n =∈≥2,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x = .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列113124N N P x x x x x x -= ,将此操作称为C 变换.将1P 分成两段,每段2N 个数,并对每段作C 变换,得到2P ;当22i n ≤≤-时,将i P 分成2i 段,每段2iN 个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置. (1)当16N =时,7x 位于2P 中的第 6 个位置;(2)当2()n N n =≥8时,173x 位于4P 中的第43211n -⨯+个位置. 【解析】(1)当N=16时,012345616P x x x x x x x = ,可设为(1,2,3,4,5,6,,16) ,113571524616P x x x x x x x x x = ,即为(1,3,5,7,9,2,4,6,8,,16) ,2159133711152616P x x x x x x x x x x x = ,即(1,5,9,13,3,7,11,15,2,6,,16) , x 7位于P 2中的第6个位置,;(2)方法同(1),归纳推理知x 173位于P 4中的第43211n -⨯+个位置.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率) 【解析】(1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得 153303251(1),(1.5),(2),10020100101004p X p X p X =========201101(2.5),(3).100510010p X p X ====== X 的分布为X 的数学期望为33111()11.522.531.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则121212()(11)(11.5)(1.51)P A P X X P X X P X X ===+==+==且且且. 由于顾客的结算相互独立,且12,X X 的分布列都与X 的分布列相同,所以121212()(1)1)(1)(1.5)(1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=( 333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980.18.(本小题满分12分)如图5,在四棱锥P A B C D -中,P A ⊥平面ABCD ,4A B =,3BC =,5AD =,90D A B A B C ∠=∠=︒,E 是CD 的中点.(Ⅰ)证明:CD ⊥平面P A E ;(Ⅱ)若直线P B 与平面P A E 所成的角和P B 与平面ABCD 所成的角相等,求四棱锥P A B C D -的体积.19.(本小题满分12分)已知数列{}n a 的各项均为正数,记12()n A n a a a =+++ ,231()n B n a a a +=+++ ,342()n C n a a a +=+++ ,1,2,.n =(Ⅰ)若121,5a a ==,且对任意*n N ∈,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式.(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意*n N ∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列.解(1)对任意N n *∈,三个数(),(),()A n B n C n 是等差数列,所以 ()()()B n A nC n B n-=- 即112,n n a a a ++-=亦即2121 4.n n a a a a +--=-=故数列{}n a 是首项为1,公差为4的等差数列.于是1(1)44 3.n a n n =+-⨯=- (Ⅱ)(1)必要性:若数列{}n a 是公比为q的等比数列,则对任意N n *∈,有1.n nq a a -=由0n a >知,(),(),()A n B n C n 均大于0,于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列.(2)充分性:若对于任意N n *∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列, 则()(),()B n q A nC n q Bn==, 于是[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即 212.n n a qa a a ++-=-由1n =有(1)(1),B qA =即21a qa =,从而210n n a qa ++-=. 因为0n a >,所以2211n n a a q a a ++==,故数列{}n a 是首项为1a ,公比为q 的等比数列,综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间; (Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.解:(Ⅰ)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为123(),(),(),T x T x T x 由题设有12323000100020001500(),(),(),6200(1)T x T x T x x x k x k x⨯====-+ 期中,,200(1)x kx k x -+均为1到200之间的正整数.(Ⅱ)完成订单任务的时间为{}123()max (),(),(),f x T x T x T x =其定义域为2000,.1x x x N k *⎧⎫<<∈⎨⎬+⎩⎭易知,12(),()T x T x 为减函数,3()T x 为增函数.注意到212()(),T x T x k=于是(1)当2k =时,12()(),T x T x = 此时{}1310001500()max (),()max ,2003f x T x T x xx ⎧⎫==⎨⎬-⎩⎭,由函数13(),()T x T x 的单调性知,当100015002003xx=-时()f x 取得最小值,解得4009x =.由于134002503004445,(44)(44),(45)(45),(44)(45)91113f T f T f f <<====<而.故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =.(2)当2k >时,12()(),T x T x > 由于k 为正整数,故3k ≥,此时{}1375(),()m ax (),()50T x x T x T x xϕ==-易知()T x 为增函数,则{}13()max (),()f x T x T x ={}1max (),()T x T x ≥1000375()max ,50x x x ϕ⎧⎫==⎨⎬-⎩⎭.由函数1(),()T x T x 的单调性知,当100037550xx =-时()x ϕ取得最小值,解得40011x =.由于14002502503752503637,(36)(36),(37)(37),119111311T T ϕϕ<<==>==>而 此时完成订单任务的最短时间大于25011.(3)当2k <时,12()(),T x T x < 由于k 为正整数,故1k =,此时{}232000750()m ax (),()m ax ,.100f x T x T x xx ⎧⎫==⎨⎬-⎩⎭由函数23(),()T x T x 的单调性知,当2000750100xx=-时()f x 取得最小值,解得80011x =.类似(1)的讨论.此时完成订单任务的最短时间为2509,大于25011.综上所述,当2k =时完成订单任务的时间最短,此时生产A,B,C三种部件的人数分别为44,88,68.【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想. 21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在圆222:(5)9C x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值. (Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,A B ,,C D 的纵坐标之积为定值.【解析】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =. (Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.于是3.=整理得2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y y k k +=-=-②由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400. 【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到,,,A B C D 四点纵坐标之积为定值,体现“设而不求”思想. 22.(本小题满分13分) 已知函数()axf x ex =-,其中0a ≠.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合.(Ⅱ)在函数()f x 的图像上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线A B 的斜率为k .问:是否存在012(,)x x x ∈,使()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1axe x =-<,这与题设矛盾,又0a ≠,故0a >.而()1,ax f x ae '=-令11()0,ln.f x x aa'==得当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a >时,()0,()f x f x '>单调递增,故当11lnx a a=时,()f x 取最小值11111(ln)ln .f aaaa a=-于是对一切,()1x R f x ∈≥恒成立,当且仅当111l n 1a a a-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立.综上所述,a 的取值集合为{}1.(Ⅱ)由题意知,21212121()()1.ax ax f x f x eek x x x x --==---令2121()(),ax ax axeex f x k ae x x ϕ-'=-=--则121()12121()()1,ax a x x ex e a x x x x ϕ-⎡⎤=----⎣⎦-212()21221()()1.ax a x x ex e a x x x x ϕ-⎡⎤=---⎣⎦- 令()1tF t e t =--,则()1tF t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增.故当0t =,()(0)0,F t F >=即10.te t -->从而21()21()10a x x ea x x ---->,12()12()10,a x x ea x x ---->又1210,ax ex x >-2210,ax ex x >-所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在),(21x x c ∈,使0)(=c ϕ,2()0,()axx a ex ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln()ax ax eec aa x x -=-.故当且仅当212211(ln,)()ax ax e ex x aa x x -∈-时, 0()f x k '>.综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax eex a a x x --.【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出()f x 取最小值11111(ln )ln .f a a a a a=-对一切x ∈R ,f(x) ≥1恒成立转化为m in ()1f x ≥,从而得出a 的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数z 满足()()25z i i --=,则z 为A.-2-2i B -2+2i C 2-2i D 2+2i 【答案】D【解析】设(),R,R z a bi a b =+∈∈,则()()()()2512z i i a b i i --==+--⎡⎤⎣⎦[]2(1)12b a i b a =--+-+,所以()210,21 5.b a a b --=⎧⎪⎨+-=⎪⎩可得22a b =⎧⎨=⎩,故22z i =+.【规律总结】复数运算乘法是本质,除法中的分母“实化”也是乘法.同时注意小技巧,比如提取公因式,约分等的灵活运用.2.下列函数中,不满足()2f x 等于()2f x 的是( )A f(x)=xB f (x)=x-xC f(x)=x+1 D. ()f x x =- 【答案】C【解析】法一(特值验证): 令1x =,则()()221f f =,其中C 不满足,故答案为C ; 法二(直接求解):对于A ,()22f x x =,()22f x x =,可得()()2f x f x =;对于B ,()222f x x x =-,()222f x x x =-,可得()()2f x f x =;对于C ,()221f x x =+,()222f x x =+,可得()()2f x f x ≠;对于D ,()22f x x =-,()22f x x =-,可得()()2f x f x =,故答案为C.【技巧点拨】解决此类问题,不仅要解答准确,还要注意节省时间,提高解题效率,所以本题较好地处理方法是特殊值法.3.如图所示,程序框图(算法流程图)的输出结果是( ) A.3 B.4 C.5 D.8【答案】B【解析】第一次循环后:2,2x y ==;第二次循环后:4,3x y ==;第三次循环后:8,4x y ==,跳出循环,输出 4y =.【规律总结】具有循环结构的流程图问题,最有效的求解方法之一就是当循环次数比较少时,把每一次循环之后每个变量的取值都一一列出,当循环次数比较多时,利用数列通项把每次循环之后每个变量的取值一一列出.4. 公比为2的等比数列{n a } 的各项都是正数,且311a a =16,则210log a =( ) (A )4 (B )5 (C )6 (D )7 【答案】B【解析】利用等比数列性质.设等比数列的公比为q ,0n a >,则2221031171033122a a a a a q ⎛⎫==== ⎪⎝⎭,所以5102a =,故210log 5a =. 【技巧点拨】等比数列运算是注意整体运算和等比数列的运用,这样可以提高解题效率,同时还应该注意运用选择题的题型特征,广开思路采用多种方法和技巧,快速突破.5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则(A )甲的成绩的平均数小于乙的成绩的平均数 (B )甲的成绩的中位数等于乙的成绩的中位数 (C )甲的成绩的方差小于乙的成绩的方差 (D )甲的成绩的极差小于乙的成绩的极差 【答案】C【解析】由条形图易知甲的平均数为4567865x ++++==甲,中位数为6,方差为()()2222222101225s-+-+++==甲,极差为844-=;乙的平均数为35682955x ⨯++==乙,中位数为5,方差为222241163257+4830561555==2512512525s ⎛⎫⎛⎫⎛⎫⨯-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==>乙,极差为954-=,故x x >甲乙,甲乙中位数不相等且22s s >乙甲.【易错警示】本题学生很容易选择D 选项,把极差误看成频数的极差,造成误判.6.设平面α与平面β相交于直线m ,直线a 在平面α内.直线b 在平面β内,且b ⊥m ,则“αβ⊥”是“a b ⊥”的 (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件 【答案】A【解析】判断本题条件命题为“αβ⊥”条件命题,命题“a b ⊥”为结论命题,当αβ⊥时,由线面垂直的性质定理可得a b ⊥,所以条件具有充分性;但当a b ⊥时,如果a m ∥,就得不出αβ⊥,所以条件不具有必要性,故条件是结论的充分不必要条件.【技巧点拨】要判定一个命题是另外一个命题的什么条件,一是要分清哪个命题是条件命题,哪个命题是结论命题;二是要使两个命题反映的知识点尽可能的接近,才易于找到两个命题的推出或包含关系.7. (22x +)5211x ⎛⎫- ⎪⎝⎭的展开式的常数项是( )(A )-3 (B )-2 (C )2 (D)3【答案】D【解析】因为()5552222211121=1+21x x x x x ⎛⎫⎛⎫⎛⎫+--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以要找原二项式展开式中的常数项,只要找5211x ⎛⎫- ⎪⎝⎭展开式中的常数项和含2x -项即可.通项公式 ()()10452245565522112C 12C 152 3.T x T T x x x ⎛⎫⎛⎫=+=-+-=-= ⎪⎪⎝⎭⎝⎭【规律总结】二项式问题求解通法是利用通项整理出方程(组),或不等式(组)再求解,除此之外就是等价变形之后再利用,通项公式求解或直接运用二项式定理,可以更快更准确求解.8.在平面直角坐标系中,点O (0,0),点()6,8P ,将向量OP 绕点O 按逆时针方向旋转34π后得向量OQ,则点Q 的坐标是()(A)(- (B)(- (C) ()2-- (D) ()- 【答案】A【解析】三角求值和定义.设POx α∠=,因为()6,8P ,所以4t a n=3α,可得431t a n t a n 3134tan =34471tan tan 143παπαπα-+⎛⎫+== ⎪⎝⎭-⨯+,验证可知只有当Q点坐标为(-时满足条件,故答案为A ;法二:估算.设POx α∠=,因为()6,8P ,所以4t a n=3α,可得<43ππα<,313<412πππα<+,所以点Q 在第三象限,排除B ,D 选项,又30tan <24πα⎛⎫<+ ⎪⎝⎭,故答案为A.【技巧点拨】本题快速求解的办法是直接估测出角34πα+的范围,再利用三角函数定义加以排除.9.过抛物线24y x =的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若3AF =,则△AOB 的面积为() (A)2(B) (C )(D )【答案】C【解析】如图,设()000,,0A x y y <,由抛物线方程24y x =可得抛物线焦点()1,0F ,抛物线准线方程为1x =-,故()013AF x =--=.可得02x =,0y =-(2,A -,直线AB 的斜率为k ==-AB的方程为y =-+联立直线与抛物线方程24,y y x ⎧=-+⎪⎨=⎪⎩可得22520x x -+=,因为,A B 两点横坐标之积为1,所以B 点的横坐标为12,可得()13122AF =--=,39322AB AF BF =+=+=,O 点到直线AB 的距离为3d =,所以19222232AOBS ∆=⨯⨯=. 【名师点拨】本题以抛物线和直线为载体,在知识网络交汇点设计问题,其目的是加强联系、注重应用,以考查学生的应变能力以及分析问题和解决问题的能力.解析几何是高考命题的重要内容,在未来的高考中解析几何内容在题型和分值上基本保持稳定,但要注意安徽高考在淡化对直线与圆锥曲线位置关系型问题的考查.10. 6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为(A )1或3 (B )1或4 (C )2或3 (D )2或4 【答案】D【解析】任意两个同学之间交换纪念品共要交换26C 15=次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学人数有4人;如果涉及同一个人,则收到4份纪念品的同学人数有2人,答案为D. 【技巧点拨】本题其实是一个“陈题”,也就是我们在很多教辅上常见的“握手问题”,解题的关键是分析出少交换的2次,涉及几个人,恰当分类,再求解.第Ⅱ卷(非选择题 共100分)请用0.5毫米海瑟墨水签字笔在答题卡上作答.......,在试卷上答题无效.........二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11. 若x ,y 满足约束条件0,23,23,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则x y -的取值范围是______. 【答案】[]3,0-【解析】法一:画出可行域是如图所示的ABC ∆的边界及内部 ,令z x y =-.易知当直线y x z =-经过点()0,3C 时,直线在y 轴上截距最大,目标函数z 取得最小值,即min 3z =-;当直线y x z =-经过点()1,1B 时,直线在y 轴上截距最小,目标函数z 取得最大值,即max 0z =,所以()[]3,0x y -∈-.法二:界点定值,同法一先画出可行域,令z x y =-,把边界点()()30,,1,1,0,32A B C ⎛⎫ ⎪⎝⎭代入目标函数可得32A z =-,0B z =,3C z =-比较可得()[]3,0x y -∈-. 【技巧点拨】解决线性规划问题首先要明确可行域,然后搞清楚目标函数的几何意义,最后顺利求值.本题可行域是一个三角形区域,可以将目标函数先去绝对值,利用几何意义--截距来求最值.同时也可以灵活运用多种方法求解.12.某几何体的三视图如图所示,该几何体的表面积是______. 【答案】92【解析】如图,根据三视图还原的实物图为底面是直角梯形的直四棱柱,其表面积为()1254242544454922S =⨯+⨯⨯+⨯+⨯+⨯+⨯=.【点睛高考】认识三视图时,注意:长对正,高平齐,宽相等.另外要能根据三视图准确提炼出几何体中的线线关系、线面关系、面面关系,以及线的虚实和各种关键数据,找到几何侧(左)俯视25455424体的直观图.三视图是新课标新加入内容09年安徽第一年新课标高考,以求稳为主,没有考查到,2010年、2011年和今年安徽考试都做了考查,但都是基础题,以稳为主.13.在极坐标系中,圆4sin ρθ=的圆心到直线6πθ=的距离是____________.【解析】圆4sin ρθ=,即24si n ρρθ=化为直角坐标为()2224x y +-=,直线6πθ=的方程也就是直线t a nt a n 6πθ==,即为y x =,圆心到直线的距离为d ==.【规律总结】安徽高考对参数方程极坐标的考查,一般是通过一个容易的选择题或填空题来实现.由于高考对参数方程极坐标要求较低,主要是考查直角坐标和极坐标的转化公式,往往是在极坐标的背景下考查直线和圆的位置关系,所以此类问题重心是转化为一般方程求解.14.若平面向量a ,b 满足23a b -≤,则a b 的最小值是___________.【答案】98-【解析】由23a b -≤ ,有()222222449a b a ba b a b -=-=+-≤,22444a b a b a b +≥≥- ,可得944a b a b +≥-,所以98a b ≥- ,故当2a b = 且,a b 方向相反时,a b的最小值为98-. 【技巧点拨】求解时,关键是注意运用均值不等式把224a b + 放缩变为4a b -.15. 设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,则下列命题正确的是_____________(写出所有正确命题的编号). ①若2ab c >,则3C π<;②若2a b c +>,则3C π<; ③若333a b c +=,则2C π<;④若()2a b c ab +<,则2C π>;⑤若()222222a bca b +<,则3C π>.【答案】①②③【解析】对于①,由2222cos c a b ab C ab =+-<得222cos 12a b b aC ab a b++>=+≥,则1cos 2C >,因为0C π<<,所以3C π<,故①正确;对于②,由222224448cos 2c a b ab C a b ab =+-<++得()()228cos 23ab C a b +>+,即8cos 236a b C b a ⎛⎫+>+≥ ⎪⎝⎭,则1cos 2C >,因为0C π<<,所以3C π<,故②正确;对于对于③,333a b c +=可变为331a b c c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,可得01,01a b c c <<<<,所以33221a b a b c c c c ⎛⎫⎛⎫⎛⎫⎛⎫=+<+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以222c a b <+,故2C π<,③正确;对于④,()2a b c ab+<可变为1112c a b ⨯>+≥,可得c >,所以2ab c >,因为2222a b ab ab c +≥>>,所以2C π<,④错误;对于⑤,()222222a bca b +<可变为222112a b c +<,即211c ab >,所以2222a b c ab +<≤,所以2212cos 22a b C ab +>≥,所以3C π<,故⑤错误.答案为①②③答案为①②③.【高考规律】此题为数学中的多项选择问题,安徽高考在大纲版的考试中多是考查立体几何知识,但这一轮新课标的四年高考中,任何两年考查的知识点都不一样,是很多老师和学生始料不及的,但只要对概率的概念和公式理解准确,本题求解也并非不可能.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)设函数2())sin 24f x x x π=++.(I )求函数()f x 的最小正周期;(II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式. 【解题指导】本题考察两角和与差的三角函数公式,二倍角公式,三角函数的周期性,求分段函数解析式等基础知识,考查分类讨论思想和运算求解能力.【解析】2111())sin cos 2sin 2(1cos 2)24222f x x x x x x π=++=-+- 11sin 222x =-. (1)函数()f x 的最小正周期22T ππ==. (2)当[0,]2x π∈时,11()()sin 222g x f x x =-=,当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=-, 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=.得:函数()g x 在[,0]π-上的解析式为1sin 2(0),22()1sin 2().22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩【高考把脉】三角类解答题在高考中是送分题,主要考查方式有三种:一是以考查三角函数的图象和性质为主,三角恒等变换是一个主要工具;二是三角形这一背景下的三角恒等变换,正、余弦定理和三角公式是工具;三是考查解三角形的文字应用题,正、余弦定理是解决问题的主要工具.以上三种形式的考查往往命题者都是利用向量语言来叙述题目中的条件部分.安徽高考卷2008年考查了类型一,近五年只有2009年考查了类型二,2010年考查了类型三,2011年没有单独考察三角解答题,今年又重新考查类型一.考生在备考时要注意这几个特征.17.(本小题满分12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后 该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用 的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n m +道试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试 题库中A 类试题的数量. (Ⅰ)求2X n =+的概率;(Ⅱ)设m n =,求X 的分布列和均值(数学期望).【解题指导】本题考查基本事件概率,条件概率,离散型随机变量及其分布列均值等基础知识,考查分类讨论思想和应用创新意识.【解析】(I )2X n =+表示两次调题均为A 类型试题,概率为()()()1122n n n n m n m n m n m n ++⨯=++++++. (Ⅱ)m n =时,每次调用的是A 类型试题的概率为12p =,随机变量X 可取,1,2n n n ++. 21()(1)P X n p ==-=,1(1)2(1)P X n p p =+=-=,21(2)4P X n p =+==.(1)(2)1424EX n n n n =⨯++⨯++⨯=+.答:(Ⅰ)2X n =+的概率为12n n m n m n +⨯+++; (Ⅱ)X 的均值为1n +.【易错警示】本题在求解时,注意第一次取出不同试题之后,放回的试题不一样,这样在第二次取试题的时候,背景就改变了,究竟第二次取试题是在什么样的背景下,要紧密关联第一次取试题的结果,如果割裂开两次取试题之间的关系,就会出现错误.18.(本小题满分12分)平面图形111ABB AC C 如图4所示,其中11BB C C 是矩形,12,4BC BB ==,AB AC ==, 1111A B A C ==现将该平面图形分别沿BC 和11B C 折叠,使ABC ∆与111A B C ∆所在平面都与平面11BB C C 垂直,再分别连接111,,AA BA CA ,得到如图2所示的空间图形,对此空间图形解答下列问题.(Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长;(Ⅲ)求二面角1A BC A --的余弦值.【解题指导】本题考查平面图形与空间图形的转化,空间直线与直线,直线与平面,平面与平面的位置关系判定,空间线段长度和空间角的余弦值的计算等基础知识和基本技能,考察空间想象能力,推理论证能力和运算求解能力.【解析】(Ⅰ)取11,BC B C 的中点为点1,O O ,连接1111,,,AO OO AO AO , 则AB AC AO BC =⇒⊥,面ABC ⊥面11BB C C AO ⇒⊥面11BB C C . 同理:11AO ⊥面11BB C C , 得:1111//,,,AO AO A O A O ⇒共面. 又11,OO BC OO AO O ⊥=⇒ BC ⊥面111AOO A AA BC ⇒⊥. (Ⅱ)延长11A O 到D ,使1O D OA =,得:11////O D OA AD OO ⇒.1OO BC ⊥,面111A B C ⊥面11BB C C 1OO ⇒⊥面111A B C ⇒AD ⊥面111A B C ,15AA ===.(Ⅲ)11,AO BC AO BC AOA ⊥⊥⇒∠是二面角1A BC A --的平面角. 在11Rt OO A ∆中,1A O ===在1Rt OAA ∆中,2221111cos 2AO A O AA AOA AO A O +-∠==⨯得:二面角1A BC A --的余弦值为5-. 【规律总结】一般来讲,安徽高考设计的立体几何试题,多是在背景几何体这个地方进行创新. 解法上,采用同一个题目既可用传统立体几何知识求解,亦可用向量法求解,两种办法都是考查空间想象能力、分析问题解决问题的能力.而用向量的方法解决立体几何问题,使几何问题代数化,这样降低了思维的抽象性,也使逻辑性较强的证明与计算简单化,突出向量的工具性,同时也为学生进入大学进一步学习高等数学知识奠定基础.19.(本小题满分13分) 设1()(0)xxf x ae b a ae =++>.(I )求()f x 在[0,)+∞上的最小值;(II )设曲线()y f x =在点(2,(2))f 的切线方程为32y x =,求,a b 的值. 【解题指导】本题考查函数、导数的基础知识,运用导数研究函数性质等基本方法,考查分类讨论思想,代数恒等变形能力和综合运用数学知识分析问题和解决问题的能力.【解析】(I )设(1)xt e t =≥,则2222111a t y atb y a at at at -'=++⇒=-=. ①当1a ≥时,0y '>⇒1y at b at=++在1t ≥上是增函数, 得:当1(0)t x ==时,()f x 的最小值为1a b a++.②当01a <<时,12y at b b at =++≥+,当且仅当11(,ln )xat t e x a a ====-时,()f x 的最小值为2b +.(II )11()()x xx x f x ae b f x ae ae ae'=++⇒=-,由题意得:2222212(2)3,3,,3131(2),,.222f ae b a ae ef ae b ae ⎧⎧=++==⎧⎪⎪⎪⎪⎪⇔⇔⎨⎨⎨'=⎪⎪⎪-==⎩⎪⎪⎩⎩【技巧点拨】安徽高考对于函数与导数这一综合问题的命制,呈现的面目多是含有参量且以有理函数与半超越(指数、对数、三角)函数的组合复合形式,解题时要注意对数式对函数定义域的隐蔽作用,指数式可以整体换元以及三角式的周期性.这类问题重点考查函数导数公式、导数几何意义、单调性、极值最值、函数零点的判断以及不等式的转化求解和证明,解题时注重数学思想(分类与整合、数与形的结合)方法(分析法、综合法、反证法)的运用.把数学运算的“力量”与数学思维的“技巧”完美结合.20.(本小题满分13分) 如图,12(,0),(,0)F c F c -分别是椭圆2222:1(0)x y C a b a b +=>> 的左,右焦点,过点1F 作x 轴的垂线交椭圆的上半部分于点P ,过点2F 作直线2PF 的垂线交直线2a x c=于点Q ;(I )若点Q 的坐标为(4,4);求椭圆C 的方程; (II )证明:直线PQ 与椭圆C 只有一个交点.【解题指导】本题考查椭圆方程和椭圆几何性质,直线与椭圆的位置关系等基础知识和运算求解的基本技能,考查推理论证能力及数形结合思想.【解析】(I )点11(,)(0)P c y y ->代入22221x y a b +=,得:21b y a=.21204014b a PF QF c c c --⊥⇔⨯=---- .①又24a c=. ② 222(,,0)c a b a b c =->.③由①②③得:2,1,a c b ===,即椭圆C 的方程为22143x y +=.(II )设22(,)a Q y c ,则221222012b y a PF QF y a a c c c c--⊥⇔⨯=-⇔=---.得:222PQb ac a k a a c c -==+,2222221b xx y y y a b -'+=⇒==过点P 与椭圆C 相切的直线斜率x cPQ ck y k a=-'===. 得:直线PQ 与椭圆C 只有一个交点.【技巧点拨】解析几何解答题的一般命题模式就是先根据已知的关系确定一个曲线的方程,然后再结合直线方程、圆的方程等把问题引向深入,其中的热点问题有:参数范围、最值、直线或者曲线过定点、某些量为定值等.在直线与圆锥曲线交于不同两点的问题中,一般是设出点的坐标,然后确定点的坐标之间的关系(特别是直线是动直线时这个方法是必需的),再进行整体(安徽高考回避判别式、韦达定理的运用)处理,在直线与曲线相切的问题中,多运用导数求出直线斜率,再整理化简解决问题.21.(本小题满分13分)数列{}n x 满足:2*110,()n n n x x x x c n N +==-++∈.(I )证明:数列{}n x 是单调递减数列的充分必要条件是0c <; (II )求c 的取值范围,使数列{}n x 是单调递增数列.【解题指导】本题考查数列概念及其性质,不等式及其性质,充要条件的意义,数列与函数的关系等基础知识,考查综合运用知识分析问题的能力,推理论证和运算求解的能力. 【解析】(I )必要条件 当0c <时,21n n n n x x x c x +=-++<⇒数列{}n x 是单调递减数列; 充分条件数列{}n x 是单调递减数列22121110x x x x c c x ⇒>=-++⇔<=. 得:数列{}n x 是单调递减数列的充分必要条件是0c <. (II )由(I )得:0C ≥.①当0c =时,10n a a ==,不合题意;②当0c >时,22132,201x c x x c c x c c =>=-+>=⇔<<,2211010n n n n n x x c x x c x x +-=->⇔<<⇔=≤<, 22211111()()()(1)n n n n n n n n n n x x x x x x x x x x ++++++-=--+-=--+-.当14c ≤时,1211102n n n n n x x x x x +++<≤⇒+-<⇔-与1n n x x +-同号, 由212100n n n n x x c x x x x ++-=>⇒->⇔>,21lim lim()lim n n n n n n n x x x c x +→∞→∞→∞=-++⇔=当14c >时,存在N ,使121112N N N N N x x x x x +++>⇒+>⇒-与1N N x x +-异号. 与数列{}n x 是单调递减数列矛盾,得:当104c <≤时,数列{}n x 是单调递增数列.【规律总结】安徽高考理科对数列的考查一般以等差等比数列求通项、求前n 项和为主要形式,淡化递推公式的运用,有时也结合函数性质、不等式强化综合性,增加难度,运用数学归纳法解题.十分注重推理能力的考察,但推理能力不再是数列递推,而是常用逻辑中的充分必要条件,安徽高考已经不止一次这样考察了,2010年对数列的考查是这样的,今年也是,这一点要引起我们的重视.。

相关文档
最新文档