一种新的多种群竞争粒子群优化算法及高密度聚乙烯装置操作优化

合集下载

遗传算法与粒子群优化算法比较

遗传算法与粒子群优化算法比较

遗传算法与粒子群优化算法比较遗传算法和粒子群优化算法都是优化算法的方法,旨在通过搜索算法来找到问题的最优解。

虽然它们都属于进化算法的范畴,但是其基本思想和具体实现方式存在一定的区别。

首先,遗传算法是以生物进化的理论为基础的一种优化算法。

其基本思想是通过模拟生物的繁殖、竞争和进化过程,以求得问题的最优解。

遗传算法的基本流程如下:初始化种群→选择操作→交叉操作→变异操作→合并原始种群与新种群→评价操作→判断终止条件。

在选择操作中,优秀的个体有更高的概率被选为父代个体,而交叉操作和变异操作则用于创造新的个体。

通过多代的进化,种群中的个体逐渐趋向于最优解。

相比之下,粒子群优化算法(Particle Swarm Optimization, PSO)是一种群体智能算法,受到鸟类群体行为的启发。

其基本思想是通过模拟鸟群中个体之间的协作与信息交流,以求得问题的最优解。

每个个体在搜索空间中以一个粒子的形式进行搜索,通过不断地更新速度和位置,最终找到全局最优解。

粒子群优化算法的基本流程如下:初始化粒子群→更新粒子速度→更新粒子位置→更新粒子的pbest和gbest→判断终止条件。

在更新速度和位置的过程中,粒子受到个体历史最优解(pbest)和全局历史最优解(gbest)的影响,通过不断地调整自身状态来达到优化目标。

从算法特点上来看,遗传算法和粒子群优化算法有一些明显的区别。

首先,遗传算法是通过不断地进化种群来寻找最优解,而粒子群优化算法是通过个体之间的协作与信息交流来寻找最优解。

遗传算法强调种群的交叉和变异操作,个体之间的信息交流比较有限;而粒子群优化算法则强调个体之间的协作和信息交流,并通过速度和位置的更新来进行搜索。

其次,遗传算法在选择操作中通常采用轮盘赌选择、锦标赛选择等方式选取优秀个体作为父代个体,而粒子群优化算法不需要选择操作,通过个体的历史最优位置和全局最优位置来进行搜索。

此外,遗传算法的编码方式通常是二进制编码、浮点数编码等离散或连续的编码方式,粒子群优化算法对搜索空间没有硬性要求,可以适应各种编码方式。

多目标优化算法综述

多目标优化算法综述

多目标优化算法综述随着科技的发展和社会进步,人们不断地提出更高的科学技术要求,其中许多问题都可以用多目标优化算法得到解决。

多目标优化算法的发展非常迅速,当前已经有各种综合性比较全面的算法,如:遗传算法、粒子群算法、蚁群算法、模拟退火算法等。

本文将进一步介绍这些算法及其应用情况。

一、遗传算法遗传算法(Genetic Algorithm,简称GA)是一种源于生物学进化思想的优化算法,它通过自然选择、交叉和变异等方法来产生新的解,并逐步优化最终的解。

过程中,解又称为个体,个体又组成种群,种群中的个体通过遗传操作产生新的个体。

遗传算法的主要应用领域为工程优化问题,如:智能控制、机器学习、数据分类等。

在实际应用上,遗传算法具有较好的鲁棒性和可靠性,能够为人们解决实际问题提供很好的帮助。

二、粒子群算法粒子群算法(Particle Swarm Optimization,简称PSO)是一种基于群体智能的优化算法,其核心思想是通过群体中的个体相互协作,不断搜索目标函数的最优解。

粒子群算法适用于连续和离散函数优化问题。

和遗传算法不同,粒子群算法在每次迭代中对整个种群进行更新,通过粒子间的信息交流,误差及速度的修改,产生更好的解。

因此粒子群算法收敛速度快,对于动态环境的优化问题有着比较突出的优势。

三、蚁群算法蚁群算法(Ant Colony Optimization,简称ACO)是一种仿生学启发式算法,采用“蚂蚁寻路”策略,模仿蚂蚁寻找食物的行为,通过“信息素”的引导和更新,粗略地搜索解空间。

在实际问题中,这些target可以是要寻找的最优解(minimum或maximum)。

蚁群算法通常用于组合优化问题,如:旅行商问题、资源分配问题、调度问题等。

和其他优化算法相比,蚁群算法在处理组合优化问题时得到的结果更为准确,已经被广泛应用于各个领域。

四、模拟退火算法模拟退火算法(Simulated Annealing,简称SA)是一种启发式优化算法,通过随机搜索来寻找最优解。

AI人工智能的几种常用算法概念

AI人工智能的几种常用算法概念

一、粒子群算法粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为PSO,是近年来发展起来的一种新的进化算法((Evolu2tionary Algorithm - EA)。

PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的交叉(Crossover) 和变异(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。

这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。

优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题.为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度.爬山法精度较高,但是易于陷入局部极小.遗传算法属于进化算法(EvolutionaryAlgorithms)的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解.遗传算法有三个基本算子:选择、交叉和变异.但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995年Eberhart博士和kennedy博士提出了一种新的算法;粒子群优化(ParticalSwarmOptimization-PSO)算法.这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.粒子群优化(ParticalSwarmOptimization-PSO)算法是近年来发展起来的一种新的进化算法(Evolu2tionaryAlgorithm-EA).PSO算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质.但是它比遗传算法规则更为简单,它没有遗传算法的交叉(Crossover)和变异(Mutation)操作.它通过追随当前搜索到的最优值来寻找全局最优二、遗传算法遗传算法是计算数学中用于解决最佳化的,是进化算法的一种。

多种群粒子群算法-概述说明以及解释

多种群粒子群算法-概述说明以及解释

多种群粒子群算法-概述说明以及解释1.引言1.1 概述多种群粒子群算法是一种基于粒子群算法的优化算法,其通过引入多个种群的概念来提高算法的收敛性和搜索能力。

在传统的粒子群算法中,所有粒子共同形成一个群体,通过互相协作和信息交流来搜索最优解。

然而,随着问题规模的增大和复杂性的增加,传统的粒子群算法往往面临着收敛速度慢和易陷入局部最优的问题。

为了克服这些限制,多种群粒子群算法引入了多个种群的概念。

每个种群都有自己的粒子群,通过不同的搜索策略和参数设置来进行搜索。

同时,不同种群之间也进行信息交流和合作,从而促进全局最优解的搜索。

通过引入多种群的思想,多种群粒子群算法能够更好地平衡全局搜索和局部搜索的能力,提高算法的性能和效果。

多种群粒子群算法具有以下几个特点和优势:1. 提高全局搜索能力:通过引入多个种群并且每个种群都采用不同的搜索策略,多种群粒子群算法能够同时从多个方向进行搜索,更好地覆盖搜索空间,提高全局搜索能力。

2. 加速收敛速度:多种群粒子群算法中的群体之间进行信息交流和合作,可以有效地提供更多的搜索方向和经验,从而加速搜索过程并提高算法的收敛速度。

3. 提高搜索精度:通过不同种群之间的信息交流和合作,多种群粒子群算法能够避免陷入局部最优解,从而提高搜索的精度和效果。

4. 适应多样性问题:多种群粒子群算法可以通过不同种群的设置和搜索策略适应不同的问题特性和多样性需求,具有较高的灵活性和适应性。

总之,多种群粒子群算法是一种强大的优化算法,通过引入多个种群的概念,可以克服传统粒子群算法的一些限制,提高算法的搜索能力和效果。

在接下来的文章中,我们将详细介绍多种群粒子群算法的定义和原理,以及其在各个应用领域中的优势和应用案例。

1.2文章结构文章结构部分的内容可以包括以下内容:文章结构:本文主要按照以下结构进行组织和分析:第一部分是引言部分,主要介绍多种群粒子群算法的概述、文章结构以及目的。

第二部分是正文部分,主要包括多种群粒子群算法的定义和原理以及其在应用领域中的优势。

粒子群优化算法的改进研究及在石油工程中的应用

粒子群优化算法的改进研究及在石油工程中的应用

粒子群优化算法在多个工程领域中得到了成功的应用,以下是一些典型的例 子:
1、优化问题:粒子群优化算法在函数优化、多目标优化等优化问题中发挥 出色,如旅行商问题、生产调度问题等。
2、控制问题:粒子群优化算法在控制系统设计和优化中也有广泛的应用, 如无人机路径规划、机器人动作控制等。
3、机器学习问题:粒子群优化算法在机器学习领域中用于参数优化、模型 选择等问题,如支持向量机、神经网络等模型的优化。
粒子群优化算法的基本原理
粒子群优化算法是一种基于种群的随机优化技术,通过模拟鸟群、鱼群等群 体的社会行为而设计的。在粒子群优化算法中,每个优化问题的解都被看作是在 搜索空间中的一只鸟(或鱼),称为“粒子”。每个粒子都有一个位置和速度, 通过不断更新粒子的位置和速度来搜索最优解。
粒子群优化算法的实现步骤
粒子群优化算法在石油工程中的 应用
石油工程中经常遇到各种优化问题,例如钻井轨迹优化、生产计划优化、储 层参数反演等。粒子群优化算法在解决这些优化问题中具有广泛的应用前景。以 下是一些具体的应用案例:
1、钻井轨迹优化:在石油钻井过程中,需要确定钻头的钻进轨迹以最大限 度地提高油气资源的采收率。粒子群优化算法可以用于优化钻井轨迹,以降低钻 井成本和提高采收率。
遗传算法与粒子群优化算法的改 进
遗传算法的改进主要包括增加基因突变概率、采用不同的编码方式、调整交 叉和突变操作、增加选择策略的多样性等。这些改进能够提高遗传算法的搜索能 力和收敛速度,使得其更加适用于求解各种复杂的优化问题。
粒子群优化算法的改进主要包括增加惯性权重、调整速度和位置更新公式、 增加约束条件、引入随机因素等。这些改进能够提高粒子群优化算法的全局搜索 能力和收敛速度,使得其更加适用于求解各种非线性优化问题。

遗传粒子群优化算法混合

遗传粒子群优化算法混合

遗传粒子群优化算法混合遗传算法(Genetic Algorithm,GA)和粒子群优化算法(Particle Swarm Optimization,PSO)是两种常见的进化优化算法,它们各自有着优点和不足。

为了充分发挥它们的优势并弥补其不足之处,研究者们对这两种算法进行了混合。

本文将详细介绍遗传粒子群优化算法混合的相关内容。

首先,我们来了解一下遗传算法和粒子群优化算法的原理和特点。

遗传算法是一种模拟生物进化过程的优化算法,其基本思想是通过生物进化中的遗传、变异和选择等算子来最优解。

遗传算法通常由编码、适应度评价、选择、交叉和变异等步骤组成。

编码将待优化问题的解表示为染色体,适应度评价函数用于度量染色体的优劣,选择算子根据适应度选择个体进行繁殖,交叉算子和变异算子模拟生物的遗传和变异操作。

粒子群优化算法是一种模拟鸟群觅食行为的优化算法,其基本思想是通过多个粒子在解空间中的和迭代来找到最优解。

每个粒子都有自己的位置和速度,通过更新速度和位置来不断调整方向和距离。

粒子群优化算法主要包括初始化粒子群、更新速度和位置、更新最优个体和全局最优个体等步骤。

遗传粒子群优化算法混合的基本思想是将粒子群优化算法的能力和遗传算法的全局优化能力结合起来,形成一种新的混合优化算法。

具体来说,在遗传算法的基础上引入粒子群优化算法的思想和操作,使得算法能够更好地在空间中寻找到全局最优解。

将遗传算法和粒子群优化算法进行混合有以下几种常见的方式:1.遗传算法与粒子群优化算法交替使用:先使用遗传算法进行初始化种群和进行交叉变异操作,然后再使用粒子群优化算法进行和更新操作。

通过交替使用这两种算法,可以综合利用它们的优点,提高算法的效率和精度。

2.遗传算子和粒子群优化算法算子的融合:将遗传算法和粒子群优化算法的算子进行融合,形成一种新的算子。

例如,可以将遗传算法的交叉操作与粒子群优化算法的速度更新操作相结合,形成一种新的交叉操作方式;或者将遗传算法的变异操作与粒子群优化算法的位置更新操作相结合,形成一种新的变异操作方式。

遗传算法与粒子群算法的组合在多目标优化中的应用

遗传算法与粒子群算法的组合在多目标优化中的应用

遗传算法与粒子群算法的组合在多目标优化中的应用多目标优化是现实世界中许多复杂问题的核心挑战之一。

在解决这些问题时,我们通常需要权衡多个目标之间的矛盾,以找到一组最优解,而不是单一的最优解。

遗传算法和粒子群算法是两种常见的优化算法,它们分别基于生物进化和群体智能的原理。

将这两种算法组合起来,可以充分发挥它们的优势,提高多目标优化的效果。

遗传算法是一种模拟生物进化过程的优化算法。

它通过模拟自然选择、交叉和变异等操作,逐代地演化出一组优秀的解。

在多目标优化中,遗传算法可以用来生成一组解的种群,并通过适应度函数来评估每个解的适应度。

然后,通过选择、交叉和变异等操作,不断更新种群,使其逐渐收敛到一组较优解。

遗传算法的优势在于能够在解空间中进行全局搜索,并且能够处理非线性、非凸等复杂问题。

粒子群算法是一种基于群体智能的优化算法。

它模拟了鸟群或鱼群等群体行为,通过不断调整每个个体的位置和速度,来搜索解空间中的最优解。

在多目标优化中,粒子群算法可以用来生成一组解的群体,并通过适应度函数来评估每个解的适应度。

然后,通过更新每个个体的位置和速度,使得整个群体逐渐收敛到一组较优解。

粒子群算法的优势在于能够在解空间中进行局部搜索,并且能够处理连续、离散等不同类型的问题。

将遗传算法和粒子群算法组合起来,可以充分发挥它们的优势,提高多目标优化的效果。

一种常见的组合方法是将遗传算法和粒子群算法交替使用。

首先,使用遗传算法生成一组解的种群,并通过适应度函数评估每个解的适应度。

然后,使用粒子群算法对种群进行局部搜索,更新每个个体的位置和速度。

接着,再次使用遗传算法对种群进行全局搜索,更新种群。

如此循环迭代,直到找到一组较优解。

另一种组合方法是将遗传算法和粒子群算法进行融合。

在这种方法中,遗传算法和粒子群算法的操作可以同时进行。

每个个体既可以通过遗传算法的选择、交叉和变异操作进行更新,也可以通过粒子群算法的位置和速度更新进行调整。

多目标优化的粒子群算法及其应用研究共3篇

多目标优化的粒子群算法及其应用研究共3篇

多目标优化的粒子群算法及其应用研究共3篇多目标优化的粒子群算法及其应用研究1多目标优化的粒子群算法及其应用研究随着科技的发展,人们对于优化问题的求解需求越来越高。

在工程实践中,很多问题都涉及到多个优化目标,比如说在物流方面,安全、效率、成本等指标都需要被考虑到。

传统的单目标优化算法已不能满足这些需求,因为单目标算法中只考虑单一的优化目标,在解决多目标问题时会失效。

因此,多目标优化算法应运而生。

其中,粒子群算法是一种被广泛应用的多目标优化算法,本文将对这种算法进行介绍,并展示其在实际应用中的成功案例。

1. 算法原理粒子群算法(Particle Swarm Optimization,PSO)是一种仿生智能算法,源自对鸟群的群体行为的研究。

在算法中,将待优化的问题抽象成一个高维的空间,然后在空间中随机生成一定数量的粒子,每个粒子都代表了一个潜在解。

每个粒子在空间中移动,并根据适应度函数对自身位置进行优化,以期找到最好的解。

粒子的移动和优化过程可以通过以下公式表示:$$v_{i,j} = \omega v_{i,j} + c_1r_1(p_{i,j} - x_{i,j}) + c_2r_2(g_j - x_{i,j})$$$$x_{i,j} = x_{i,j} + v_{i,j}$$其中,$i$ 表示粒子的编号,$j$ 表示该粒子在搜索空间中的第 $j$ 个维度,$v_{i,j}$ 表示粒子在该维度上的速度,$x_{i,j}$ 表示粒子在该维度上的位置,$p_{i,j}$ 表示粒子当前的最佳位置,$g_j$ 表示整个种群中最好的位置,$\omega$ 表示惯性权重,$c_1$ 和 $c_2$ 分别为粒子向自己最优点和全局最优点移动的加速度系数,$r_1$ 和 $r_2$ 为两个 $[0,1]$ 之间的随机值。

通过粒子群的迭代过程,粒子逐渐找到最优解。

2. 多目标优化问题多目标优化问题的具体表述为:给出一个目标函数集 $f(x) = \{f_1(x), f_2(x),...,f_m(x)\}$,其中 $x$ 为决策向量,包含 $n$ 个变量,优化过程中需求出 $f(x)$ 的所有最佳解。

粒子群优化算法及其应用

粒子群优化算法及其应用
近几十年来面对信息时代海量数据的出现数据挖掘技术应运而生并得到迅猛发展其中关联规则挖掘作为数据挖掘的重要模式之一它所得到的知识能为支持决策提供依据有着极其重要的研究价值
华中科技大学 硕士学位论文 粒子群优化算法及其应用 姓名:王雁飞 申请学位级别:硕士 专业:软件工程 指导教师:陆永忠 20081024
1.2
1.2.1
课题研究现状
粒子群优化研究现状 粒子群优化算法是 1995 年由 Kennedy 和 Eberhart 源于对鸟群和鱼群捕食行为的
1
华 中 科 技 大 学 硕 士 学 位 论 文
简化社会模型的模拟而提出的一种基于群集智能的演化计算技术[1,2]。该算法具有并 行处理、鲁棒性好等特点,能以较大的概率找到问题的全局最优解,且计算效率比 传统随机方法高,其最大的优势在于实现容易、收敛速度快,而且有深刻的智能背 景,既适合科学研究,又适合工程应用。因此,PSO 一经提出立刻引起了演化计算 领域研究者的广泛关注,并在短短几年时间里涌现出大量的研究成果,在函数优化、 神经网络训练、模糊系统控制、分类、模式识别、信号处理、机器人技术等领域获 得了成功应用。 PSO 算法是基于群集智能理论的优化算法,通过群体中粒子间的合作与竞争产 生的群体智能指导优化搜索。与进化算法比较,粒子群优化算法不仅保留了基于种 群的全局搜索策略,而且又避免了复杂的遗传操作,它特有的记忆使其可以动态跟 踪当前的搜索情况调整其搜索策略。与进化算法比较,PSO 算法是一种更高效的并 行搜索算法,但其不足之处是在某些初始化条件下易陷入局部最优,且搜索精度比 遗传算法低[3]。 由于 PSO 算法概念简单,实现容易,短短几年时间,PSO 算法便获得了很大的 发展,但是,其数学基础不完善,实现技术不规范,在适应度函数选取、参数设置、 收敛理论等方面还存在许多需要深入研究的问题。文献[4-6]展开了一系列研究,取得 了一些建设性的成果,如关于算法收敛性的分析。围绕 PSO 的实现技术和数学理论 基础,以 Kennedy 和 Eberhart 为代表的许多专家学者一直在对 PSO 做深入的探索, 尤其在实现技术方面,提出了各种改进版本的 PSO。 对 PSO 参数的研究,研究最多的是关于惯性权重的取值问题。PSO 最初的算法 是没有惯性权重的, 自从 PSO 基本算法中对粒子的速度和位置更新引入惯性权重[7,8], 包括 Eberhart、Shi 等在内的许多学者对其取值方法和取值范围作了大量的研究[9-11]。 目前大致可分为固定惯性权重取值法、线性自适应惯性权重取值法、非线性惯性权 重取值法[12-14]等。 PSO 是一种随机优化技术,其实现技术与遗传算法(GA)非常相似,受 GA 的启 发,人们提出多种改进的 PSO 算法,如带交叉算子的 PSO、带变异算子的 PSO、带 选择算子的 PSO 等等。 文献[15]在粒子群每次迭代后, 通过交叉来生成更优秀的粒子,

高密度聚乙烯装置降本增效优化措施

高密度聚乙烯装置降本增效优化措施

高密度聚乙烯装置降本增效优化措施作者:吴世奇来源:《科技传播》2013年第17期摘要高密度聚乙烯(HDPE)是通用合成树脂中应用最广泛的品种之一,主要用来制造薄膜、容器、管材、单丝等。

生产高密度聚乙烯的工艺技术通常有淤浆法、气相法、溶液法。

本文对淤浆法高密度聚乙烯装置原辅料及燃动力成本进行了分析,并介绍了装置降本增效方面的各项优化措施,通过各项降本增效优化措施的实施,创造了较大的经济效益,提升了装置产品的竞争力。

关键词聚乙烯;物耗;能耗;效益;竞争力中图分类号TQ 文献标识码A 文章编号 1674-6708(2013)98-0123-03中沙(天津)石化有限公高密度聚乙烯装置采用淤浆法的Innovene S工艺技术,设计产能为30万吨/年。

Innovene S工艺采用两台双环管反应器生产单峰/双峰聚乙烯产品,由原料精制、催化剂配置、聚合反应、固体浓缩及高低压闪蒸、溶剂回收、风送、造粒、公用工程等单元组成。

聚合反应在两个串联的双环管式反应器中进行,聚合物颗粒悬浮于含有乙烯、氢气和共聚单体混合物的异丁烷稀释剂中,混合物浆料从第二反应器中被送出至高、低压闪蒸系统中进行聚合物固体颗粒与稀释剂异丁烷的分离。

被分离出的固体粉料最后由造粒机组生产出合格的高密度聚乙烯成品粒料,稀释剂异丁烷及共聚单体在溶剂回收单元实现回收再利用。

作为新引进工艺技术,在做好新技术消化吸收基础上,如何进一步优化装置生产运行、降本增效以提高产品竞争力,成为装置管理面临的主要课题。

1降低生产成本优化措施1.1 成本分析及优化对象确定图1、图2分别为装置某月原辅料、燃动力成本分解图。

从图1可看出原辅料成本中排在前三位的分别是乙烯、三剂、异丁烷,三剂成本包括主催化剂、助催化剂及添加剂,正常生产过程中三剂的加入量通常都是稳定的,因此原辅料降本的优化对象确定为乙烯和异丁烷。

从图2可看出燃动力成本中排在前四位的分别是电、循环水、氮气、蒸汽,因这四种燃动力成本所占比例高,确定其为燃动力降本的优化对象。

AI人工智能的几种常用算法概念

AI人工智能的几种常用算法概念

一、粒子群算法粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为PSO,是近年来发展起来的一种新的进化算法((Evolu2tionary Algorithm - EA)。

PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的交叉(Crossover) 和变异(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。

这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。

优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题.为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度.爬山法精度较高,但是易于陷入局部极小.遗传算法属于进化算法(EvolutionaryAlgorithms)的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解.遗传算法有三个基本算子:选择、交叉和变异.但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995年Eberhart博士和kennedy博士提出了一种新的算法;粒子群优化(ParticalSwarmOptimization-PSO)算法.这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.粒子群优化(ParticalSwarmOptimization-PSO)算法是近年来发展起来的一种新的进化算法(Evolu2tionaryAlgorithm-EA).PSO算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质.但是它比遗传算法规则更为简单,它没有遗传算法的交叉(Crossover)和变异(Mutation)操作.它通过追随当前搜索到的最优值来寻找全局最优二、遗传算法遗传算法是计算数学中用于解决最佳化的,是进化算法的一种。

多目标最优化的粒子群算法

多目标最优化的粒子群算法

多目标最优化的粒子群算法多目标最优化问题是指在一个问题中同时优化多个目标函数,这些目标函数通常是相互冲突的,无法通过改变一个目标而不影响其他目标。

粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,它受到鸟群觅食行为的启发,通过模拟鸟群中的个体在解空间中的和信息交流来寻找问题的最优解。

在多目标最优化问题中,粒子群优化算法也可以被扩展为多目标优化版本,即多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization, MOPSO)。

多目标粒子群优化算法的核心思想是利用非支配排序将种群中的个体划分为多个不同的前沿(Pareto Front),每个前沿上的解都是最优解的候选。

根据个体之间的支配关系和拥挤度,确定前沿上的个体,并通过粒子群算法进行和优化。

为了保持种群的多样性,采用了一个外部存档来存储过去迭代中的非支配解,以避免陷入局部最优。

多目标粒子群优化算法的步骤如下:1.初始化种群:设定种群规模、粒子的初始位置和速度,以及其他算法参数。

2.非支配排序:根据个体之间的支配关系对种群中的解进行排序。

3.拥挤度计算:计算种群中个体的拥挤度,通过衡量个体周围解的密度来保持前沿上的均匀分布。

4.外部存档更新:根据非支配排序和拥挤度计算结果,更新外部存档中的非支配解。

5.速度和位置更新:根据粒子群算法的速度和位置更新规则,更新每个粒子的速度和位置。

6.达到停止条件:判断是否满足停止条件,如达到最大迭代次数或找到满意的近似解。

7.重复步骤2至6,直到满足停止条件。

多目标粒子群优化算法相比单目标版本有以下几个特点:1.非支配排序:非支配排序用于划分种群中的解为多个前沿。

支配关系的判断通常使用帕累托支配方法。

2.拥挤度计算:拥挤度计算用于保持前沿上的均匀分布,避免解集中在其中一区域。

3.外部存档更新:外部存档用于存储过去迭代中的非支配解,保证多样性。

求解动态优化问题的多种群骨干粒子群算法

求解动态优化问题的多种群骨干粒子群算法

求解动态优化问题的多种群骨干粒子群算法陈健;申元霞;纪滨【摘要】To solve the challenges of outdated memory and diversity loss in Dynamic Optimization Problem(DOP), this paper proposes an improved Multi-swarms Bare Bones Particle Swarm Optimization(MBBPSO). First of all, the particles of environment survey are set to detect timely the change of environment in MBBPSO, which avoids incorrect information guiding the direction of swarms'evolution. After the change of environment, MBBPSO reinitialize all swarms by using the information which every swarm explores in last environment which enhances fast tracking ability of the excellent solution to the current environment. When the swarm falls into a standstill, MBBPSO designs newly methods to enhanceparticles'activation and use the multi-swarms measure to maintain the whole swarm's diversity. The simulation experi-ment results show that MBBPSO has stronger competitiveness in dynamic environment.%针对动态优化问题(Dynamic Optimization Problem,DOP)中所面临的过时记忆和多样性丧失的挑战,提出了一种改进的多种群骨干粒子群优化算法(Multi-swarms Bare Bones Particle Swarm Optimization,MBBPSO).通过设置环境勘探粒子及时检测环境的变化,避免了错误信息误导种群的进化方向;环境改变后,利用上一个环境搜索的信息初始化新的种群,提高MBBPSO快速追踪到当前环境的优秀解的能力;当种群陷入停滞时,采用新的进化方程以加强粒子的活性和多种群策略维持群体的多样性.仿真实验表明,MBBPSO在解决动态环境问题中具有较强的竞争力.【期刊名称】《计算机工程与应用》【年(卷),期】2017(053)019【总页数】7页(P45-50,108)【关键词】动态优化问题;骨干粒子群算法;过时记忆;多样性丧失;多种群【作者】陈健;申元霞;纪滨【作者单位】安徽工业大学计算机科学与技术学院,安徽马鞍山 243032;安徽工业大学计算机科学与技术学院,安徽马鞍山 243032;安徽工业大学计算机科学与技术学院,安徽马鞍山 243032【正文语种】中文【中图分类】TP301.6粒子群优化算法(Particle Swarms Optimization,PSO)是美国社会心理学学家Kennedy和电气工程师Eberhart于1995首先提出的[1]。

人工智能开发技术中的优化算法介绍

人工智能开发技术中的优化算法介绍

人工智能开发技术中的优化算法介绍人工智能(Artificial Intelligence,AI)领域的发展日新月异,其中的优化算法在人工智能开发技术中起着重要的作用。

本文将对一些常见的优化算法进行介绍,包括遗传算法、模拟退火算法和粒子群算法。

一、遗传算法遗传算法(Genetic Algorithm,GA)是一种模拟生物进化过程的优化算法。

它的基本思想是通过模拟自然界中生物进化的过程,不断搜索问题的最优解。

遗传算法的流程如下:1. 初始种群的生成:根据问题的特点,生成初始的种群,每个个体都代表问题的一个可能解。

2. 适应度函数的计算:根据目标函数,计算每个个体的适应度值,作为选择、交叉和变异的依据。

3. 选择操作:根据适应度值,选择个体作为下一代的父母。

4. 交叉操作:对选出的父母个体进行染色体的交叉,生成下一代个体。

5. 变异操作:对新生成的个体进行染色体的变异,引入新的基因组合。

6. 判断终止条件:如果达到预定的终止条件,算法终止;否则,返回第3步。

遗传算法通过不断进行选择、交叉和变异等操作,使种群中的个体逐渐趋向于问题的最优解。

它具有全局搜索能力强、不易陷入局部最优解等优点,在实际应用中得到了广泛的应用。

然而,遗传算法的计算复杂度较高,需要消耗大量的时间和计算资源。

二、模拟退火算法模拟退火算法(Simulated Annealing,SA)是一种通过模拟固体退火过程求解优化问题的算法。

它的基本思想源于材料学中的退火过程,通过控制温度的下降,使固体逐渐达到平衡状态。

模拟退火算法的流程如下:1. 初始解的生成:根据问题的特点,生成初始的解,作为当前解。

2. 选择操作:根据目标函数的变化情况,选择是否接受新解。

3. 邻域搜索:根据当前解生成新的解,通过改变解的一个或多个要素。

4. 降温操作:通过降低温度,控制搜索过程中的随机性。

5. 判断终止条件:如果达到预定的终止条件,算法终止;否则,返回第2步。

一种新型的群智能优化技术的研究与应用麻雀搜索算法

一种新型的群智能优化技术的研究与应用麻雀搜索算法

一种新型的群智能优化技术的研究与应用麻雀搜索算法一、本文概述随着科技的不断进步和应用领域的日益拓宽,群智能优化技术已成为解决复杂优化问题的重要工具。

群智能优化技术模仿自然界中生物群体的行为特性,通过个体间的协作和信息共享,达到全局最优解的搜索。

近年来,群智能优化算法在众多领域,如机器学习、函数优化、路径规划等,均取得了显著的成果。

本文旨在介绍一种新型的群智能优化技术——麻雀搜索算法(Sparrow Search Algorithm, SSA),并探讨其原理、特点、实现方法以及在各类实际问题中的应用。

麻雀搜索算法作为一种新兴的群智能优化技术,结合了自然界中麻雀群体觅食行为的智能特性,通过模拟麻雀群体中的信息交流、合作和竞争机制,实现高效的全局搜索和局部寻优。

该算法在求解复杂优化问题时展现出独特的优势和潜力,为解决多模态、非线性、大规模优化问题提供了新的思路和方法。

本文首先对麻雀搜索算法的基本原理和核心思想进行详细阐述,包括其灵感来源、数学模型、关键参数和操作流程等。

通过对比实验和案例分析,探讨麻雀搜索算法在不同优化问题中的性能表现和适用范围,验证其有效性和优越性。

结合实际应用场景,介绍麻雀搜索算法在工程优化、路径规划、机器学习等领域中的具体应用案例,展望其未来的发展前景和研究方向。

二、麻雀搜索算法的基本原理麻雀搜索算法是一种新型的群智能优化技术,它借鉴了自然界中麻雀群体的行为特性,通过模拟麻雀在觅食、飞行和社交过程中的智能行为,实现了高效的搜索和优化功能。

该算法的基本原理主要包括以下几个方面:群体智能与个体行为:麻雀搜索算法充分利用了群体智能的概念,即多个麻雀个体通过相互协作和信息共享,共同寻找最优解。

每个麻雀个体在搜索空间中独立行动,并通过与其他个体的交互,不断更新自身的位置和状态。

信息素与引导机制:算法中引入了信息素的概念,类似于自然界中动物留下的气味标记。

麻雀通过感知周围环境中的信息素,来判断食物来源或其他麻雀的位置。

多目标优化问题的粒子群算法实现

多目标优化问题的粒子群算法实现

多目标优化问题的粒子群算法实现在机器学习领域中,多目标优化问题是一种经常遇到的实际问题。

对于这类问题,传统的优化算法往往难以找到最优解或较优解,而粒子群算法则是较为有效的一种算法。

本文将介绍多目标优化问题的粒子群算法实现。

一、多目标优化问题简介多目标优化问题是指,存在多个优化目标(一般为两个或两个以上),需要找到一组最优解,使得所有目标函数都能达到最好的值。

具体来说,在机器学习中,这些目标函数可以用来衡量模型的性能、准确率、泛化能力等。

在实际问题中,多目标优化问题的解决往往涉及到非凸性、高度非线性等问题,传统的优化算法(如梯度下降法、遗传算法等)表现的不尽如人意。

而粒子群算法则可以在这类问题上展现出更出色的表现,下面将会详细阐述。

二、粒子群算法原理粒子群算法(Particle Swarm Optimization,PSO)是一种群体智能算法,由Eberhart和Kennedy于1995年提出。

它通过模拟鸟群捕食食物的过程,实现参数寻优的目的。

与其他优化算法相比,它具有并行性、鲁棒性、容易实现等优点。

粒子群算法的基本思想是,将一群粒子随机放在搜索空间内,并不断调整它们的位置和速度,以寻找最优解。

具体来说,设群体中包含N个粒子,每个粒子都有一定的位置x和速度v,每个粒子都维护自己个体最优解pbest和全局最优解gbest。

在算法开始时,我们将各粒子随机放入欧式空间中,每个粒子尝试寻找自己的最优解,并获得全局最优解。

在每轮迭代中,按如下公式更新计算每个粒子的位置和速度:\begin{equation}v_{i}(t+1)=\omega v_{i}(t)+c_{1}r_{1}(pbest_{i}-x_{i})+c_{2}r_{2}(gbest-x_{i})\end{equation}\begin{equation}x_{i}(t+1)=x_{i}(t)+v_{i}(t+1)\end{equation}其中,第一项是粒子自身速度的惯性项,第二项和第三项分别表示吸引粒子向个体最优解和全局最优解移动的因子。

群体智能优化算法-粒子群优化算法

群体智能优化算法-粒子群优化算法

第二章粒子群优化算法粒子群优化(PSO)是一种基于群体智能的数值优化算法,由社会心理学家James Kennedy和电气工程师Russell Eberhart于1995年提出。

自PSO诞生以来,它在许多方面都得到了改进,这一部分将介绍基本的粒子群优化算法原理和过程。

2.1粒子群优化粒子群优化(PSO)是一种群智能算法,其灵感来自于鸟类的群集或鱼群学习,用于解决许多科学和工程领域中出现的非线性、非凸性或组合优化问题。

图1 Russel Eberhart和James Kennedy2.1.1算法思想许多鸟类都是群居性的,并由各种原因形成不同的鸟群。

鸟群可能大小不同,出现在不同的季节,甚至可能由群体中可以很好合作的不同物种组成。

更多的眼睛和耳朵意味着有更多的及时发现食物和捕食者的机会。

鸟群在许多方面对其成员的生存总是有益的:觅食:社会生物学家E.O. Wilson说,至少在理论上,群体中的个体成员可以从其他成员在寻找食物过程中的发现和先前的经验中获益[1]。

如果一群鸟的食物来源是相同的,那么某些种类的鸟就会以一种非竞争的方式聚集在一起。

这样,更多的鸟类就能利用其他鸟类对食物位置的发现。

抵御捕食者:鸟群在保护自己免受捕食者侵害方面有很多优势。

◆更多的耳朵和眼睛意味着更多的机会发现捕食者或任何其他潜在的危险;◆一群鸟可能会通过围攻或敏捷的飞行来迷惑或压制捕食者;◆在群体中,互相间的警告可以减少任何一只鸟的危险。

空气动力学:当鸟类成群飞行时,它们经常把自己排成特定的形状或队形。

鸟群中鸟的数量不同,每只鸟煽动翅膀时产生不同的气流,这都会导致变化的风型,这些队形会充分利用不同的分型,从而使得飞行中的鸟类能够以最节能的方式利用周围的空气。

粒子群算法的发展需要模拟鸟群的一些优点,然而,为了了解群体智能和粒子群优化的一个重要性质,值得提一下是鸟群的一些缺点。

当鸟类成群结队时,也会给它们带来一些风险。

更多的耳朵和眼睛意味着更多的翅膀和嘴,这导致更多的噪音和运动。

粒子群算法研究及其工程应用案例

粒子群算法研究及其工程应用案例

粒子群算法研究及其工程应用案例一、概述随着现代制造业对高精度生产能力和自主研发能力需求的提升,优化指导技术在精确生产制造领域中的应用日益广泛。

粒子群优化算法(Particle Swarm Optimization,PSO)作为一种基于群体智能的优化算法,因其结构简单、参数较少、对优化目标问题的数学属性要求较低等优点,被广泛应用于各种工程实际问题中。

粒子群算法起源于对鸟群捕食行为的研究,通过模拟鸟群或鱼群等群体行为,利用群体中的个体对信息的共享,使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而找到最优解。

自1995年由Eberhart博士和kennedy博士提出以来,粒子群算法已成为一种重要的进化计算技术,并在工程应用中展现出强大的优势。

在工程应用中,粒子群算法可用于工艺参数优化设计、部件结构轻量化设计、工业工程最优工作路径设计等多个方面。

通过将粒子群算法与常规算法融合,可以形成更为强大的策略设计。

例如,在物流路径优化、机器人路径规划、神经网络训练、能源调度优化以及图像分割等领域,粒子群算法都取得了显著的应用成果。

本文旨在深入研究粒子群算法的改进及其工程应用。

对优化理论及算法进行分析及分类,梳理粒子群算法的产生背景和发展历程,包括标准粒子群算法、离散粒子群算法(Discrete Particle Swarm Optimization, DPSO)和多目标粒子群算法(Multi Objective Particle Swarm Optimization Algorithm, MOPSO)等。

在此基础上,分析粒子群算法的流程设计思路、参数设置方式以及针对不同需求得到的改进模式。

结合具体工程案例,探讨粒子群算法在工程实际中的应用。

通过构建基于堆栈和指针概念的离散粒子群改进方法,分析焊接顺序和方向对高速铁路客车转向架构架侧梁的焊接残余应力和变形的影响。

同时,将粒子群算法应用于点云数据处理优化设计,提高曲面重建和粮食体积计算的精度和效率。

粒子群算法的各种变体算法

粒子群算法的各种变体算法

粒子群算法的各种变体算法
粒子群算法(PSO)是一种启发式优化算法,最初由Kennedy和Eberhart在1995年提出。

它模拟了鸟群或鱼群中个体之间的协作
和竞争关系,在解决优化问题时具有较好的收敛性和全局寻优能力。

随着研究的深入,人们提出了许多粒子群算法的变体,以应对不同
类型的优化问题和改善算法性能。

以下是一些常见的粒子群算法的
变体:
1. 改进的粒子群算法(IPSO),IPSO通过改变粒子的速度更
新公式、邻域拓扑结构或者引入新的搜索策略来增强PSO的全局搜
索能力和局部搜索能力。

2. 多种群粒子群算法(MPSO),MPSO将种群划分为多个子种群,每个子种群独立进行搜索,并通过信息共享来提高全局搜索能力。

3. 自适应粒子群算法(APSO),APSO通过自适应地调整算法
参数或者搜索策略来适应不同的优化问题,提高算法的鲁棒性和适
用性。

4. 混沌粒子群算法(CPSO),CPSO引入了混沌序列来增加算
法的随机性,提高搜索的多样性和全局寻优能力。

5. 多目标粒子群算法(MOPSO),MOPSO针对多目标优化问题
进行了改进,通过引入帕累托最优解集和多目标优化策略来寻找最
优的解集。

6. 基于改进策略的粒子群算法(SPSO),SPSO通过引入新的
搜索策略,如局部搜索、动态权重、自适应参数等,来提高算法的
收敛速度和全局搜索能力。

这些粒子群算法的变体在不同的优化问题中都有其独特的优势,研究人员可以根据具体的问题特点选择合适的算法来进行求解。

同时,随着对粒子群算法的研究不断深入,相信会有更多新的变体算
法被提出来,以满足不断变化的优化问题需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 京 化 工 大 学 信息 科 学 与技 术 学 院 ,北 京 10 2 ) 北 0 0 9
摘 要 :利用模糊 c均值聚类对种群 自适应划分 ,提出一种基 于模 糊 C均值 聚类 的多 群竞争粒子 群优化算 法 。根
据 种群 规模 选择 不 同 的 寻 优 策 略 ,规模 大 者 采 用 标 准 粒 子 群 算 法 寻 优 ,规 模 小 者 在 最 优 解 邻 域 随 机 搜 索 ,增 大 跳 出局 部 最 优 概 率 。在 每 个 聚 类 内 部 ,个 体 相 互 通 信 ,通 过 竞 争 学 习 分 别 找 到 各 聚 类 种 群 的适 应 值 ,按 照 不 同 聚 类 的 适 应 值 排 序 ,再 把 适 应 值 小 者 向 其 邻 近 的适 应 值 大 者 融 合 ,通 过 种 群 间 的竞 争 保 证 种 群 向 最 算 法 的 全 局 搜 索 能 力 ,通 过 标 准 函 数 验 证 了 算 法 的 有 效 性 。 最 后 ,把 提 出 的 优 化 算 法 应 用 到 高 密 度 聚 乙烯 装 置 ( P ) 乙烯 单 体 总 消 耗 的优 化 操 作 ,实 际 应 用 效 果 良好 。 HD E 关 键 词 :模 糊 聚 类 ;粒 子 群 ;多 群 竞 争 ;高 密 度 聚 乙 烯
v l fe e y cus e i wa m ompe ii e r n sr s e tv l o a ue o v r l t rng s r by c ttvel a ni g i e p c i e y f und a r a e he o de ft nd a r ng d t r r o he d fe e t d p i e if r n a a tv vaue, a d he t e wa m o s l d ptv va u i e r t s l n t n h s r f ma l a ie a l e nt g a e wih he t t neghb i g i orn s r o a g d ptveva u wa m f l r e a a i l e, e urn h r i l wa ms t e r h t ns i g t e pa tc e s r o s a c owa dst p i ls l i y t r he o tma o uton b he c mpe ii n i t s r s The a i iy o tto n he wa m . v ld t wa t s e by he s etd t be c n hma k unc i ns o mpr v t g ob l r f to t i o e he l a s a c a biiy At ls , t r o e l rt m s us d t ptmi e t pe a i na o ii s o g e r h c pa lt . a t he p op s d a go ih wa e o o i z he o r to lc nd ton fhi h
mu t s r o e i v O ( CM CPS l — wa ms c mp t i e PS i t F O) ag rt m s p o o e . c r i g t h c l ft e s r l o ih i r p s d Ac o d n o t e s a e o h wa ms
第 6 2卷 第 8期 21 0 1年 8 月

工 学

Vo . 2 No 8 16 .
Au gus 2 1 t 01
CI C J u n l ES o r a

种 新 的 多种群 竞 争粒 子 群优 化算 法及
高密 度 聚 乙烯 装置 操 作优 化
耿 志 强,韩 永 明,朱群 雄
t e e t d fe e t o tma t a e e o s l c i r n p i ls r t gis, t wa m fl r c l s s t t nda d pa tce s r a g ihm he s r o a ge s a e u e he s a r ri l wa m l ort t ptmie, a d he wa m o s a l c l r n oml s a c s n he oo i z n t s r f m l s a e a d y e r he i t op i l o u i n tma s l to negh r o i bo h od,
ic e sn h r b bl y o u ig o to h o a p i z to . ihn e ey cu trn , t e a a tv n ra ig t ep o a i t fj mpn u ft e lc lo tmia in W t i v r l sei g h d p ie i
A w u t‘ wa m s c m pe ii e pa tc e s r o tm i a i n a g r t m n t ne m lis r o ttv r i l wa m p i z to l o ih a d is
a lc to o p r to a p i i a i n i g e s t l e h l n q i e pp i a i n f r o e a i n lo tm z to n hi h d n iy po y t y e e e u pm nt
D :1 . 9 9 j is . 4 8 1 5 . 0 1 0 . 1 OI 0 3 6 /.s n 0 3 — 1 7 2 1 . 8 0 5
中 图分 类 号 :T 8 P 1
文 献 标 志 码 :A
文 章 编 号 :0 3 — 1 5 ( 0 1 0 — 2 7 — 0 4 8 1 7 2 1 ) 8 16 6
Absr c :Th f z y C me n l t rng i us d o i i e h s r d ptv l ta t e uz a s c us e i s e t d v d t e wa ms a a i ey, a d a u z C e ns n f z y m a
GENG i in Zhq a g,HAN Yo g n ,ZHU n in n mig Qu xo g
( le f n r to ce c Colge I fo ma in S in e& T c n lg o e h oo y,Bej n ie st f C e c lTeh oo y,Bejn 0 0 9,C ia) iig Un v riy o h mia c n lg ii g 1 0 2 hn
相关文档
最新文档