2011年高中数学 3.2.2《函数模型的应用实例》学案 新人教A版必修1
高中数学3.2.2函数模型的应用实例第1课时教学设计新人教A版必修1-经典通用宝藏文档
函数模型的运用实例(第一课时)【教学设计】一、教学内容本课是普通高中课程标准实验教科书(人民教育出版社A版)数学1(必修),3.2.2 函数模型的运用实例的第一课时。
经过对例3,例4的教学让先生学习领会利用已知的函数模型解决成绩和建立确定的函数模型解决理论成绩,进而掌握建立数学模型解决理论成绩的普通步骤。
二、教学目标知识与技能目标:1.能根据图象和表格提供的有关信息和数据,发掘隐含条件,建立函数模型;2.领会分段函数模型的理论运用,规范分段函数的标准方式;3.掌握用待定系数法求解已知函数类型的函数模型;4.学会验证数学模型与理论情况能否吻合的方法及运用数学模型进行预测。
5.会利用建立的函数模型解决理论成绩,掌握求解函数运用题的普通步骤;6.培养先生浏览理解、分析成绩、数形结合、抽象概括、数据处理、数学建模等数学能力.过程与方法目标:1.经过实例分析,巩固练习,结合多媒体教学,培养先生读图的能力;2.经过实例使先生感受函数的广泛运用,领会建立函数模型解决理论成绩的普通过程;3.浸透数形结合、转化与化归等数学思想方法.情感、态度与价值观目标:1.经过切身感受数学建模的过程,让先生体验数学在理论生活中的运用,领会数学来源于生活又服务于生活,体验数学在解决理论成绩中的价值和作用,激发学习数学的兴味与动力,加强学好数学的认识。
2.培养先生的应意图识、创新认识和勇于探求、勤于考虑的精神,优化先生的理性思想和求真务虚的科学态度。
三、教材分析本课时共有2个例题,其中例3是根据图形信息建立确定的函数模型解决理论成绩;例4 是利用已知的确定的函数模型解决理论成绩,并验证求解出的数学模型与理论情况的吻合程度及用数学模型进行预测。
分别在汽车和人口成绩这两种不同运用情境中,引导学生自主建立函数模型来解决理论成绩.教学重点1.根据图形信息建立函数模型解决理论成绩.2.用待定系数法求解函数模型并运用.3.将理论成绩转化为数学成绩的过程。
高中数学人教A版必修13.2.2函数模型的应用实例导学案
优质资料---欢迎下载3.2 函数模型及其应用3.2.2 函数模型的应用实例 【使用说明及预习指导】1. 认真阅读教材106101-P ,再思考完成课本第P104的练习题;2. 限时40分钟,规范完成探究案,适当总结。
【重点难点】重点:选择适当的函数模型解决问题;难点:建立确定性函数模型和拟合函数模型解决实际问题。
【学习目标】1.能选择适当的函数模型解决问题;2.通过函数模型的应用实例的学习,熟悉解决问题的过程和方法,总结规律,提炼解题步骤。
探 究 案 探究一 给出函数模型的问题例1 某电子公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数R(x)=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x>400.其中x 是仪器的月产量.(1)将利润f(x)表示为月产量x 的函数;(2)当月产量为何值时,公司所获得利润最大?最大利润为多少元?(总收益=总成本+利润)思考题1 (1)某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y =5x +4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( ) A .200副 B .400副 C .600副D .800副(2)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p 与加工时间t(单位:分钟)满足函数关系p =at 2+bt +c(a ,b ,c 是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为 ( )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟探究二 根据条件建立函数模型例2 某市原来民用电价为0.52 元/kwh.换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55 元/kwh ,谷时段(晚上九点到次日早上八点)的电价为0.35 元/kwh.对于一个平均每月用电量为200 kwh 的家庭,要使节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为多少kwh?思考题2 为了预防甲流感,某学校对教室采用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=(116)t -a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:①从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为________;②据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.探究三 已知图象或表格的应用问题例3 甲,乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息如图所示.甲调查表明:每个甲鱼池平均出产量从第一年1万只甲鱼上升到第6年2万只. 乙调查表明:甲鱼池个数由第一年30个减少到第6年10个,请你根据提供的信息说明: (1)第2年甲鱼池的个数及全县出产甲鱼总数;(2)到第6年这个县的甲鱼养殖业的规模比第一年是扩大了还是缩小了?说明理由. (3)哪一年的规模最大?说明理由.思考题 3 医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检验,病毒细胞的总数与天数的数据记录如下表:已知该种病毒细胞在小白鼠体内的个数超过10的时候,小白鼠将会死亡,如注射某种药物,可杀死其体内该病毒细胞的98%.(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(答案精确到天,已知lg2=0.301 0) 小结:。
【数学】2010-2011学年同步精品学案(人教A版必修1):第3章 函数的应用 §31 几类不同增长的函数模型 新
3.2.1几类不同增长的函数模型学习目标1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.2.能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.自学导引函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的增减性增函数增函数增函数图象的变化随x的增大逐渐变“陡”随x的增大逐渐趋于稳定随n值而不同xan(1)对于指数函数y=a x和幂函数y=x n(n>0)在区间(0,+∞)上,无论n比a大多少,尽管在x的一定范围内,a x会小于x n,但由于y=a x的增长快于y=x n的增长,因此总存在一个x0,当x>x0时,就会有a x>x n.(2)对于对数函数y=log a x(a>1)和幂函数y=x n(n>0),在区间(0,+∞)上,尽管在x的一定范围内,log a x可能会大于x n,但由于y=log a x的增长慢于y=x n的增长,因此总存在一个x0,当x>x0时,就会有log a x<x n.一、一次函数模型例1为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(分)与通话费y(元)的关系如图所示.(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮助用户计算,在一个月内使用哪种卡便宜.解(1)由图象可设y1=k1x+29,y2=k2x,把点B(30,35),C(30,15)分别代入y1,y2得k 1=15,k 2=12.∴y 1=15+29,y 2=12x .(2)令y 1=y 2,即15x +29=12x ,则x =9623.当x =9623时,y 1=y 2,两种卡收费一致;当x <9623时,y 1>y 2,即如意卡便宜;当x >9623时,y 1<y 2,即便民卡便宜.点评 由图象给出的函数关系的应用问题,要先确定函数类型,然后,通过待定系数法列方程求解.变式迁移1 商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该店推出两种优惠办法:(1)买一个茶壶赠送一个茶杯;(2)按总价的92%付款.顾客只能任选其一.某顾客需购茶壶4个,茶杯若干个(不少于4个),若购买茶杯数为x 个,付款数为y (元),试分别建立两种优惠办法中y 与x 之间的函数关系式,并讨论两种办法哪一种更省钱.解 由优惠办法(1)可得函数关系式为 y 1=20×4+(x -4)×5=5x +60 (x ≥4); 由优惠办法(2)得:y 2=4×20×0.92+x ×5×0.92=4.6x +73.6 (x ≥4) 当购买34只茶杯时,两办法付款相同; 当4≤x <34时,y 1<y 2,优惠办法(1)省钱; 当x >34时,y 1>y 2,优惠办法(2)省钱.二、指数函数模型例2 某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,问至少应过滤几次才能使产品达到市场要求?(已知:lg 2=0.301 0,lg 3=0.477 1)分析 每次过滤杂质含量降为原来的23,过滤n 次后杂质含量为2100·⎝⎛⎭⎫23n,结合按市场要求杂质含量不能超过0.1%,即可建立数学模型.解 依题意,得2100·⎝⎛⎭⎫23n ≤11 000,即⎝⎛⎭⎫23n ≤120.则n (lg2-lg3)≤-(1+lg2),故n ≥1+lg2lg3-lg2≈7.4,考虑到n ∈N ,即至少要过滤8次才能达到市场要求.点评 一般地,形如y =a x(a >0且a ≠1)的函数叫做指数函数,而在生产、生活实际中,以函数y =b ·a x +k 作为模型的应用问题很常见,称这类函数为指数函数模型.以指数函数、对数函数为模型的实际应用问题通常与增长率、衰减率有关,在现实生活和科学技术领域,诸如人口普查中的人口增长、细胞分裂次数的推算、考古中根据碳-14的衰减推算年代以及药物在人体内残留时间的推算等问题都属于这一模型.变式迁移2 2004年全国人口普查时,我国人口数为13亿,如果从2004年开始按1%的人口年增长率来控制人口增长,那么,大约经过多少年我国人口数达到18亿?解 设大约经过n 年,我国人口由2004年的13亿增加到18亿,则13×(1+1%)n =18.∴1.01n=1813,即n =log 1.011813=lg1813lg1.01=lg18-lg13lg1.01≈1.255 3-1.113 90.004 3=32.883 7≈33(年)即从2004年开始,大约经过33年,我国人口总数可达18亿.三、对数函数模型的应用例3 燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少? 分析 由题目可获取以下主要信息: ①已知飞行速度是耗氧量的函数;②第(1)问知v ,求Q ;第(2)问知Q ,求v . 解答本题的关键是给变量赋值.解 (1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q10,解得Q =10.即燕子静止时的耗氧量是10个单位. (2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15 (m/s).即当一只燕子的耗氧量是80个单位时, 它的飞行速度为15 m/s.点评 直接以对数函数为模型的应用问题不是很多.此类问题一般是先给出对数函数模型,利用对数运算性质求解.变式迁移3 在不考虑空气阻力的条件下,火箭的最大速度v (m/s)和燃料的质量M (kg)、火箭(除燃料外)的质量m (kg)的关系v =2 000ln ⎝⎛⎭⎫1+M m .当燃料质量是火箭质量的多少倍时,火箭的最大速度可达12 km/s?解 由12 000=2 000ln⎝⎛⎭⎫1+M m ,即6=ln ⎝⎛⎭⎫1+M m , 1+M m =e 6,利用计算器算得Mm≈402.即当燃料质量约是火箭质量的402倍时,火箭的最大速度可达12 km/s.1.根据实际问题提供的两个变量的数量关系可构建和选择正确的函数模型.同时,要注意利用函数图象的直观性,来确定适合题意的函数模型.2.常见的函数模型及增长特点(1)直线y =kx +b (k >0)模型,其增长特点是直线上升; (2)对数y =log a x (a >1)模型,其增长缓慢; (3)指数y =a x (a >1)模型,其增长迅速.一、选择题1.在我国大西北,某地区荒漠化土地面积每年平均比上年增长10.4%,专家预测经过x 年可能增长到原来的y 倍,则函数y =f (x )的图象大致为( )答案 D2.能使不等式log 2 x <x 2<2x 成立的x 的取值范围是( )A .(0,+∞)B .(2,+∞)C .(-∞,2)D .(0,2)∪(4,+∞) 答案 D3.下列函数中随x 的增大而增长速度最快的是( )A .y =1100e xB .y =100ln xC .y =x 100D .y =100·2x 答案 A4.已知镭每经过100年衰变后剩留质量是原来质量的95.76%,设质量为1的镭经过x 年后剩留质量为y ,则x 与y 之间的关系为( )A .y =0.957 6xB .y =0.957 6x100C .y =1-0.042 4x 100D .y =⎝⎛⎭⎫0.957 6100x答案 B5.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个繁殖成4 096个需经过( )A .12小时B .4小时C .3小时D .2小时 答案 C解析 设共分裂了x 次,则有2x =4 096, ∴2x =212,又∵每次为15分钟,∴共15×12=180分钟,即3个小时. 二、填空题6.国家规定的个人稿酬纳税办法是:不超过800元不纳税,超过800元不超过4 000元的按超过800元的14%纳税,超过4 000元的按全部稿酬的11%纳税,某人出版了一本书,共纳税420元,他的稿费为________元.答案 3 800解析 ∵3 000×14%=420元, 所以他的稿费应为3 800元.7.某工厂一年中十二月份的产量是一月份的a 倍,那么该工厂这一年中的月平均增长率是________.答案11a-1解析设这一年中月平均增长率为x,1月份的产量为M,则M(1+x)11=a·M,∴x=11a-1.8其中x,呈幂函数型变化的变量是______.答案y3y2y1三、解答题9.某公司预投资100万元,有两种投资可供选择:一种是年利率10%,按单利计算,5年后收回本金和利息;另一种是年利率9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元) 分析这是一个单利和复利所获得收益多少的比较问题.可先按单利和复利计算5年后的本息和分别是多少,再通过比较作答.解本金100万元,年利率10%,按单利计算,5年后的本息和是100×(1+10%×5)=150(万元).本金100万元,年利率9%,按每年复利一次计算,5年后的本息和是100×(1+9%)5=153.86(万元).由此可见,按年利率9%每年复利一次计算的比年利率10%单利计算的更有利,5年后多得利息3.86万元.10.某长途汽车客运公司规定旅客可随身携带一定质量的行李.如果超过规定的质量,则需购买行李票,行李费用y(元)是行李质量x(kg)的一次函数,其图象如图所示.(1)根据图象数据,求y 与x 之间的函数关系式;(2)问旅客最多可免费携带行李的质量是多少?分析 因为所求函数关系是一次函数,所以可先设出解析式,再通过图象利用待定系数法求出;免费携带,即y 的值为0,最多可免费携带行李的质量,应是函数图象与x 轴交点的横坐标.解 (1)设y 与x 之间的函数关系式为y=kx+b.由图象可知,当x=60时,y=6;当x=80时,y=10.∴⎩⎨⎧=+=+1080660b k b k 解得k=51,b=-6.∴y 与x 之间的函数关系式为y=51x-6 (x ≥30).(2)根据题意,当y=0时,x=30.∴旅客最多可免费携带行李的质量为30 kg.。
人教a版必修1学案:3.2.2函数模型的应用实例(含答案)
3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。
高中数学第三章函数的应用第2节函数模型及其应用(1)教案新人教A版必修1
第二节函数模型及其应用第一课时整体设计教学分析函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的.通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.三维目标1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.2.恰当运用函数的三种表示方法(解析式、表格、图象)并借助信息技术解决一些实际问题.3.让学生体会数学在实际问题中的应用价值,培养学生学习兴趣.重点难点教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.教学难点:应用函数模型解决简单问题.课时安排2课时教学过程第1课时作者:林大华导入新课思路1.(事例导入)一张纸的厚度大约为0.01 cm,一块砖的厚度大约为10 cm,请同学们计算将一张纸对折n次的厚度和n块砖的厚度,列出函数关系式,并计算n=20时它们的厚度.你的直觉与结果一致吗?解:纸对折n次的厚度:f(n)=0.01·2n(cm),n块砖的厚度:g(n)=10n(cm),f(20)≈105 m,g(20)=2 m.也许同学们感到意外,通过对本节课的学习大家对这些问题会有更深的了解.思路2.(直接导入)请同学们回忆指数函数、对数函数以及幂函数的图象和性质,本节我们将通过实例比较它们的增长差异.推进新课新知探究提出问题①如果张红购买了每千克1元的蔬菜x千克,需要支付y元,把y表示为x的函数.②正方形的边长为x,面积为y,把y表示为x的函数.③某保护区有1单位面积的湿地,由于保护区的努力,使湿地面积每年以5%的增长率增长,经过x年后湿地的面积为y,把y表示为x的函数.④分别用表格、图象表示上述函数.,⑤指出它们属于哪种函数模型.⑥讨论它们的单调性.⑦比较它们的增长差异.⑧另外还有哪种函数模型与对数函数相关.活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.①总价等于单价与数量的积.②面积等于边长的平方.③由特殊到一般,先求出经过1年、2年… ④列表画出函数图象.⑤引导学生回忆学过的函数模型.⑥结合函数表格与图象讨论它们的单调性. ⑦让学生自己比较并体会.⑧其他与对数函数有关的函数模型. 讨论结果:①y =x .②y =x 2.③y =(1+5%)x.图1 图2 图3⑤它们分别属于:y =kx +b (直线型),y =ax 2+bx +c (a ≠0,抛物线型),y =ka x+b (指数型).⑥从表格和图象得出它们都为增函数.⑦在不同区间增长速度不同,随着x 的增大y =(1+5%)x的增长速度越来越快,会远远大于另外两个函数.⑧另外还有与对数函数有关的函数模型,形如y =log a x +b ,我们把它叫做对数型函数. 应用示例例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据.解:设第x 天所得回报是y 元,则方案一可以用函数y =40(x ∈N *)进行描述;方案二可以用函数y =10x (x ∈N *)进行描述;方案三可以用函数y =0.4×2x -1(x ∈N *)进行描述.三个模型中,第一个是常数函数,后两个都是递增函数模型.要对三个方案做出选择,就要对它的增长情况进行分析.我们先用计算机计算一下三种所得回报的增长情况.图4由表和图4可知,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但方案二与方案三的函数的增长情况很不相同.可以看到,尽管方案一、方案二在第1天所得回报分别是方案三的100倍和25倍,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的,从第7天开始,方案三比其他两方案增长得快得多,这种增长速度是方案一、方案二无法企及的.从每天所得回报看,在第1~3天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第5~8天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.天,应选择方案二;投资11天(含11天)以上,则应选择方案三.针对上例可以思考下面问题:①选择哪种方案是依据一天的回报数还是累积回报数. ②课本把两种回报数都列表给出的意义何在? ③由此得出怎样的结论.答案:①选择哪种方案依据的是累积回报数. ②让我们体会每天回报数的增长变化.③上述例子只是一种假想情况,但从中我们可以体会到,不同的函数增长模型,其增长变化存在很大差异.图5根据图中两函数图象的交点所对应的横坐标为250,元时,由图象可知,y1所对应的自变量的值大于+50=200,∴x=375;在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%,由于公司总的利润目标为1 000万元,所以人员销售利润一般不会超过公司总的利润.于是只需在区间[10,1 000]上,检验三个模型是否符合公司要求即可.不妨先作出函数图象,通过观察函数的图象,得到初步结论,再通过具体计算,确认结果.解:借助计算器或计算机作出函数y=0.25x,y=log7x+1,y=1.002x的图象(图6).图6观察函数的图象,在区间[10,1 000]上,模型y =0.25x ,y =1.002x的图象都有一部分在直线y =5的上方,只有模型y =log 7x +1的图象始终在y =5的下方,这说明只有按模型y =log 7x +1进行奖励时才符合公司的要求.下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万.对于模型y =0.25x ,它在区间[10,1 000]上递增,而且当x =20时,y =5,因此,当x >20时,y >5,所以该模型不符合要求;对于模型y =1.002x,由函数图象,并利用计算器,可知在区间(805,806)内有一个点x 0满足1.002x 0=5,由于它在区间[10,1 000]上递增,因此当x >x 0时,y >5,所以该模型也不符合要求;对于模型y =log 7x +1,它在区间[10,1 000]上递增,而且当x =1 000时,y =log 71 000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y =log 7x +1奖励时,奖金是否不超过利润的25%,即当x ∈[10,1 000]时,是否有y x=log 7x +1x≤0.25成立.令f (x )=log 7x +1-0.25x ,x ∈[10,1 000].利用计算器或计算机作出函数f (x )的图象(图7),由函数图象可知它是递减的,因此图7f (x )<f (10)≈-0.316 7<0,即log 7x +1<0.25x .所以当x ∈[10,1 000]时,log 7x +1x<0.25.说明按模型y =log 7x +1奖励,奖金不超过利润的25%. 变式训练市场营销人员对过去几年某商品的价格及销售数量的关系做数据分析发现有如下规律:该商品的价格每上涨x %(x >0),销售数量就减少kx %(其中k 为正实数).目前,该商品定价为a 元,统计其销售数量为b 个.(1)当k =12时,该商品的价格上涨多少,就能使销售的总金额达到最大?(2)在适当的涨价过程中,求使销售总金额不断增加....时k 的取值范围. 解:依题意,价格上涨x %后,销售总金额为y =a (1+x %)·b (1-kx %)=ab10 000[-kx 2+100(1-k )x +10 000].(1)取k =12,y =ab 10 000(-12x 2+50x +10 000),所以x =50,即商品价格上涨50%,y 最大为98ab .(2)因为y =ab10 000[-kx 2+100(1-k )x +10 000],此二次函数的开口向下,对称轴为x =501-kk,在适当涨价过程后,销售总金额不断增加,即要求此函数当自变量x 在{x |x >0}的一个子集内增大时,y 也增大.所以501-k k>0,解得0<k <1.点评:这类问题的关键在于列函数解析式建立函数模型,然后借助不等式进行讨论.光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k ,通过x 块玻璃以后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃以后,光线强度减弱到原来的13以下.(lg3≈0.477 1)解:(1)光线经过1块玻璃后强度为(1-10%)k =0.9k ;光线经过2块玻璃后强度为(1-10%)·0.9k =0.92k ;光线经过3块玻璃后强度为(1-10%)·0.92k =0.93k ;光线经过x 块玻璃后强度为0.9xk .∴y =0.9x k (x ∈N *).(2)由题意:0.9x k <k 3.∴0.9x<13.两边取对数,x lg0.9<lg 13.∵lg0.9<0,∴x >lg 13lg0.9.∵lg 13lg0.9=lg31-2lg3≈10.4,∴x min =11. ∴通过11块玻璃以后,光线强度减弱到原来的13以下.拓展提升某池塘中野生水葫芦的面积与时间的函数关系的图象(如图8所示).假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2、3 m 2、6 m 2所需的时间分别为t 1、t 2、t 3,则有t 1+t 2=t 3; ⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.哪些说法是正确的?图8解:①说法正确. ∵关系为指数函数,∴可设y =a x (a >0且a ≠1).∴由图知2=a 1. ∴a =2,即底数为2.②∵25=32>30,∴说法正确. ③∵指数函数增长速度越来越快, ∴说法不正确.④t1=1,t2=log23,t3=log26,∴说法正确.⑤∵指数函数增长速度越来越快,∴说法不正确.课堂小结活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.引导方法:从基本知识和基本技能两方面来总结.答案:(1)建立函数模型;(2)利用函数图象性质分析问题、解决问题.作业课本习题3.2A组1、2.设计感想本节设计由学生熟悉的素材入手,结果却出乎学生的意料,由此使学生产生浓厚的学习兴趣.课本中两个例题不仅让学生学会了函数模型的应用,而且体会到它们之间的差异;我们补充的例题与之相映生辉,其难度适中,是各地高考模拟经常选用的素材.其中拓展提升中的问题紧贴本节主题,很好地体现了指数函数的性质特点,是不可多得的素材.。
高中数学3.2.2函数模型的应用实例教案(新人教A版必修1)河北地区专用
4)“总收入最高”的数学含义如何理解?
根据老师的引导启发,学生自主,建立恰当的函数模型,进行解答,然后交流、进行评析.(AB)
[略解:]
设客房日租金每间提高2 元,则每天客房出租数为300-10 ,由 >0,且300-10 >0得:0< <30
设客房租金总上收入 元,则有:
比例激发学生学习兴趣,增强其求知欲望.
可引导学生运用方程的思想解答“鸡兔同笼”问题.
二、结合实例,探求新知
1. 例1.某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.
1)本例所涉及的变量之间的关系可用何种函数模型来描述?
2)本例涉及到几个函数模型?
3)如何理解“更省钱?”;
4)写出具体的解答过程.
在学生自主思考,相互讨论完成本例题解答之后,老师小结:通过以上两例,数学模型是用数学语言模拟现实的一种模型,它把实际问题中某些事物的主要特征和关系抽象出来,并用数学语言来表达,这一过程称为建模,是解应用题的关键。数学模型可采用各种形式,如方程(组),函数解析式,图形与网络等.
=(20+2 )(-10 )
=-20( -10)2+8000(0< <30)
由二次函数性质可知当 =10时, =8000.
所以当每间客房日租金提高到20+10×2=40元时,客户租金总收入最高,为每天8000元.
3. 课堂练习2要建一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.
高中数学教材必修一《函数模型的应用实例》教案
3.2.2函数模型的应用实例教案教学目标知识与技能掌握一些普遍使用的函数模型(一次函数、二次函数、指数函数、对数函数、幂函数、分段函数等)的实例。
过程与方法通过实例,感知并体会函数在实际生活中的应用,能利用函数图象、解析式等有关知识正确解决生活中的数学问题。
情感、态度与价值观通过实例,提高解决实际问题的能力,发挥个人的能力,构建数学模型,养成独立思考问题的能力。
教学重点与难点:函数模型的选取与求解。
教学过程设计第一课时已知函数模型解实际问题例1、一辆汽车在某段路程中的行驶速率与时间的关系如图所示。
(1)求略中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆车的里程表在汽车行驶这段路程前的读数为2004 km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象。
解:(1)阴影部分的面积为50×1 + 80×1 + 90×1 + 75×1 +65×1 = 360,阴影部分的面积表示汽车在这5小时内行驶的路程为360km。
(2)根据上图,有502004,0180(1)2054,1290(2)2134,2375(3)2224,3465(4)2299,45t tt ts t tt tt t+≤<⎧⎪-+≤<⎪⎪=-+≤<⎨⎪-+≤<⎪-+≤≤⎪⎩,这个函数的图象如右图所示。
h VH 小结:由函数图象,可以形象直观地研究推断函数关系,可以定性地研究变量之间的变化趋势,是近年来常见的应用题的一种题型,其出发点是函数的图象,处理问题的基本方法就是数形结合。
练习1:向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h的函数关系的图象如右图所示,那么水瓶的形状是( )(A) (B) (C) (D)练习2:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。
人教A版必修一3.2.2函数模型的应用实例
类型一:难题,需要55的接受能力以及13 min时间,老师能否及时在学生一直达到 所需接受能力的状态下讲授完这个难题?. 思路点拨:利用所给函数关系式解决有关问题
规律方法:本题是常数函数、一次函数、二次函数混合在一起的分段函数,自变量的取值 不同函数解析式可能不一样,这一点要特别注意.另外,函数的最值也是通过先求每一段 的最值,然后再作比较而求得. 变式训练1-1:某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件.为 了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产 量y与月份数x的关系,模拟函数可以选用二次函数或指数型函数,已知4月份该产品的产 量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
思路点拨:解答本题可首先根据表中数据作出散点图,然后通过观 察图象判断问题所适用的函数模型.
这样,我们得到一个函数模型:y=2.2+1.8x.作出函数图象如图(乙),可以发现,这 个函数模型与已知数据的拟合程度较好,这说明它能较好地反映积雪深度与灌溉面积的关 系. (3)由y=2.2+1.8×25,求得y=47.2,即当积雪深度为25 cm时,可以灌溉土地47.2公顷. 规律方法:对于此类实际应用问题,关键是建立适当的函数关系式,再解决数学问题 ,最后验证并结合问题的实际意义作出回答,这个过程就是先拟合函数再利用函数解题. 函数拟合与预测的一般步骤是:
类型二:自建函数模型解应用题 【例2】 某市原来民用电价为0.52元/kW·h.换装分时电表后,峰时段(早上八点到晚上 九点)的电价为0.55元/kW·h,谷时段(晚上九点到次日早上八点)的电价为0.35元 /kW·h.对于一个平均每月用电量为200 kW·h的家庭,要使节省的电费不少于原来电费的 10%,则这个家庭每月在峰时段的平均用电量至多为多少kW·h?
高中新人教A版必修1数学教案 3.2.2 函数模型的应用实例
3.2.2 函数模型的应用实例[学习目标] 1.会利用已知函数模型解决实际问题.2.能建立函数模型解决实际问题.[预习导引]1.解决函数应用问题的基本步骤利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:2.数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述.解决学生疑难点要点一用已知函数模型解决问题例1 通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)值越大,表示接受的能力越强),x表示提出和讲授概念的时间(单位:min),可有以下的公式:f (x )=⎩⎪⎨⎪⎧-0.1x 2+2.6x +43,0<x ≤10,59,10<x ≤16,-3x +107,16<x ≤30.(1)开始后多少分钟,学生的接受能力最强?能维持多长时间? (2)开讲后5 min 与开讲后20 min 比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13 min 时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题? 解 (1)当0<x ≤10时,f (x )=-0.1x 2+2.6x +43=-0.1(x -13)2+59.9.故f (x )在(0,10]上单调递增,最大值为f (10)=-0.1×(-3)2+59.9=59;当16<x ≤30时,f (x )单调递减,f (x )<-3×16+107=59.因此,开讲后10 min ,学生达到最强的接受能力(值为59),并维持6 min. (2)f (5)=-0.1×(5-13)2+59.9=59.9-6.4=53.5,f (20)=-3×20+107=47<53.5=f (5).因此,开讲后5 min 学生的接受能力比开讲后20 min 强一些. (3)当0<x ≤10时,令f (x )=55, 则-0.1×(x -13)2=-4.9,(x -13)2=49. 所以x =20或x =6.但0<x ≤10, 故x =6.当16<x ≤30时,令f (x )=55,则-3x +107=55. 所以x =17 13.因此,学生达到(或超过)55的接受能力的时间为17 13-6=11 13<13(min),所以老师来不及在学生一直达到所需接受能力的状态下讲授完这道难题.规律方法 解决已给出函数模型的实际应用题,关键是考虑该题考查的是哪种函数,并要注意定义域,然后结合所给模型,列出函数关系式,最后结合其实际意义作出解答. 解决此类型函数应用题的基本步骤是: 第一步:阅读理解,审清题意.读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景.在此基础上,分析出已知是什么,所求是什么,并从中提炼出相应的数学问题.第二步:根据所给模型,列出函数关系式.根据问题的已知条件和数量关系,建立函数关系式,在此基础上将实际问题转化为一个函数问题.第三步:利用数学的方法将得到的常规函数问题(即数学模型)予以解答,求得结果. 第四步:再将所得结论转译成具体问题的解答.跟踪演练1 统计表明,某种型号的汽车在匀速行驶中每小时的耗油量为y (升)关于行驶速度x (千米/时)的函数解析式可以表示为:y =112 800x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米.当汽车以40千米/时的速度匀速行驶时,从甲地到乙地要耗油多少升? 解 当x =40时,汽车从甲地到乙地行驶了10040=2.5(小时),要耗油⎝ ⎛⎭⎪⎫112 800×403-380×40+8×2.5=28.75(升),即当汽车以40千米/时的速度匀速行驶时,从甲地到乙地耗油28.75升. 要点二 建立函数模型解决实际问题例2 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数. (1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/时)解 (1)由题意:当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,13200-x ,20≤x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x 200-x ,20≤x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200; 当20≤x ≤200时,f (x )=13x (200-x )=-13x 2+2003x =-13(x 2-200x )=-13(x -100)2+10 0003,所以当x =100时,f (x )在区间[20,200]上取得最大值10 0003. 综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时. 规律方法 根据收集到的数据的特点,通过建立函数模型,解决实际问题的基本过程,如下图所示.跟踪演练2 某投资公司投资甲、乙两个项目所获得的利润分别是M (亿元)和N (亿元),它们与投资额t (亿元)的关系有经验公式:M =13 t ,N =16t ,今该公司将用3亿元投资这两个项目,若设甲项目投资x 亿元,投资这两个项目所获得的总利润为y 亿元. (1)写出y 关于x 的函数表达式; (2)求总利润y 的最大值.解 (1)当甲项目投资x 亿元时,获得利润为M =13x (亿元),此时乙项目投资(3-x )亿元,获得利润为N =16(3-x )(亿元),则有y =13x +16(3-x ),x ∈[0,3].(2)令x =t ,t ∈[0,3],则x =t 2, 此时y =13t +16(3-t 2)=-16(t -1)2+23.∵t ∈[0,3],∴当t =1,即x =1时,y 有最大值为23.即总利润y 的最大值是23亿元.1.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A .310元B .300元C .390元D .280元 答案 B解析 由图象知,该一次函数过(1,800),(2,1 300),可求得解析式y =500x +300(x ≥0),当x =0时,y =300.2.小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10分钟报纸后,用20分钟返回家里,下面图形中能表示小明的父亲离开家的时间与距离之间的关系的是( )答案 D3.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……现有2个这样的细胞,分裂x 次后得到细胞的个数y 与x 的函数关系是( )A .y =2xB .y =2x -1C .y =2xD .y =2x +1答案 D解析 分裂一次后由2个变成2×2=22个,分裂两次后4×2=23个,……,分裂x 次后y =2x +1个.4.长为3,宽为2的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.答案 12解析 S =(3+x )(2-x 2)=-x 22+x2+6=-12(x -12)2+498,∴x =12时,S max =498.1.函数模型的应用实例主要包括三个方面: (1)利用给定的函数模型解决实际问题; (2)建立确定性的函数模型解决实际问题; (3)建立拟合函数模型解决实际问题.2.在引入自变量建立目标函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求.3.在实际问题向数学问题的转化过程中,要充分使用数学语言,如引入字母,列表,画图等使实际问题数学符号化.一、基础达标1.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往,他先前进了a km ,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b <a ),当他记起诗句“不到长城非好汉”,便调转车头继续前进,则该同学离起点的距离与时间的函数关系图象大致为( )答案 C解析 由题意可知,s 是关于时间t 的一次函数,所以其图象特征是直线上升.由于中间休息了一段时间,该段时间的图象应是平行于横轴的一条线段.然后原路返回,图象下降,再调转车头继续前进,则直线一致上升.2.国内快递1 000 g 以内的包裹的邮资标准如下表:运送距离x (km)0<x ≤ 500 500<x ≤ 1 000 1 000<x ≤ 1 500 … 邮资y (元)5.006.007.00…( )A .5.00元B .6.00元C .7.00元D .8.00元 答案 C解析 由题意可知,当x =1 200时,y =7.00元.3.某机器总成本y (万元)与产量x (台)之间的函数关系式是y =x 2-75x ,若每台机器售价为25万元,则该厂获利润最大时应生产的机器台数为( ) A .30 B .40 C .50 D .60 答案 C解析 设安排生产x 台,则获得利润f (x )=25x -y =-x 2+100x=-(x -50)2+2 500.故当x =50台时,获利润最大.4.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧c x ,x <A ,c A ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是( ) A .75,25 B .75,16 C .60,25 D .60,16 答案 D解析 由题意知,组装第A 件产品所需时间为c A =15,故组装第4件产品所需时间为c4=30,解得c =60.将c =60代入cA=15,得A =16. 5.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +110x 2,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有( )A .a =45,b =-30B .a =30,b =-45C .a =-30,b =45D .a =-45,b =-30 答案 A解析 设生产x 吨产品全部卖出,获利润为y 元, 则y =xQ -P =x ⎝ ⎛⎭⎪⎫a +x b -⎝ ⎛⎭⎪⎫1 000+5x +110x 2=⎝ ⎛⎭⎪⎫1b -110x 2+(a -5)x -1 000(x >0). 由题意知,当x =150时,y 取最大值,此时Q =40.∴⎩⎨⎧-a -52⎝ ⎛⎭⎪⎫1b -110=150,a +150b =40,解得⎩⎪⎨⎪⎧a =45,b =-30.6.已测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1,乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则选用________作为拟合模型较好.答案 甲解析 对于甲:x =3时,y =32+1=10,对于乙:x =3时,y =8,因此用甲作为拟合模型较好.7.武汉市的一家报摊主从报社买进《武汉晚报》的价格是每份0.40元,卖出的价格是每份0.50元,卖不掉的报纸还可以以每份0.08元的价格退回报社.在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,他应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算他一个月最多可赚得多少元?解 设报摊主每天买进报纸x 份,每月利润为y 元(x 为正整数). 当x ≤250时,y =0.1×30×x =3x . 当250≤x ≤400时,y =0.1×20×x +0.1×10×250-(x -250)×0.32×10=2x +250-3.2x +800 =1 050-1.2x . 当x ≥400时,y =0.1×20×400+0.1×10×250-(x -400)×0.32×20-(x -250)×0.32×10=800+250-6.4x +2 560-3.2x +800 =-9.6x +4 410.当x ≤250时,取x =250,y max =3×250=750(元). 当250≤x ≤400时,取x =250,y max =750(元). 当x ≥400时,取x =400,y max =570(元).故他应该每天从报社买进250份报纸,才能使每月所获得的利润最大,最大值为750元. 二、能力提升8.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -kt .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( ) A .125 B .100 C .75 D .50 答案 C解析 由已知,得49a =a ·e -50k ,∴e -k=⎝ ⎛⎭⎪⎫49501.设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e-kt 1, ∴827=(e -k)t 1=⎝ ⎛⎭⎪⎫49501t, ∴t 150=32,t 1=75. 9.“学习曲线”可以用来描述学习某一任务的速度,假设函数t =-144lg ⎝ ⎛⎭⎪⎫1-N 90中,t 表示达到某一英文打字水平所需的学习时间,N 表示每分钟打出的字数.则当N =40时,t =________(已知lg 2≈0.301,lg 3≈0.477). 答案 36.72解析 当N =40时,则t =-144lg ⎝ ⎛⎭⎪⎫1-4090=-144lg 59=-144(lg 5-2lg 3)=36.72. 10.如图所示,某池塘中浮萍蔓延的面积y (m 2)与时间t (月)的关系y =a t,有以下几种说法:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m 2; ③浮萍从4 m 2蔓延到12 m 2需要经过1.5个月; ④浮萍每月增加的面积都相等. 其中正确的命题序号是________. 答案 ①②解析 由图象知,t =2时,y =4,∴a 2=4,故a =2,①正确.当t =5时,y =25=32>30,②正确, 当y =4时,由4=2t 1知t 1=2,当y =12时,由12=2t 2知t 2=log 212=2+log 23.t 2-t 1=log 23≠1.5,故③错误;浮萍每月增长的面积不相等,实际上增长速度越来越快,④错误.11.在对口扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).根据甲提供的资料有:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如下图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额. (2)企业乙只依靠该店,最早可望在几年后脱贫? 解 设该店月利润余额为L ,则由题设得:L =Q (P -14)×100-3 600-2 000.①由销量图易得:Q =⎩⎪⎨⎪⎧-2P +50,14≤P ≤20,-32P +40,20<P ≤26,代入①式得 L =⎩⎪⎨⎪⎧-2P +50P -14×100-5 600,14≤P ≤20,-32P +40P -14×100-5 600,20<P ≤26,(1)当14≤P ≤20时,L max =450(元), 此时P =19.5(元);当20<P ≤26时,L max =1 2503(元),此时P =613(元).故当P =19.5(元)时,月利润余额最大,最大余额为450元. (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫. 三、探究与创新12.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12h t,其中T a 表示环境温度,h 称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20 min ,那么降温到35℃时,需要多少时间? 解 由题意知40-24=(88-24)·⎝ ⎛⎭⎪⎫12h 20, 即14=⎝ ⎛⎭⎪⎫12h 20,解得h =10.故T -24=(88-24)·⎝ ⎛⎭⎪⎫1210t . 当T =35时,代入上式,得35-24=(88-24)·⎝ ⎛⎭⎪⎫1210t , 即⎝ ⎛⎭⎪⎫1210t =1164. 两边取对数,用计算器求得t ≈25.因此,约需要25 min ,可降温到35℃.13.今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P (单位:mg/L)与过滤时间t (单位:小时)间的关系为P =P 0e -kt (P 0,k 均为非零常数,e 为自然对数的底数),其中P 0为t =0时的污染物数量.若经过5小时过滤后还剩余90%的污染物.(1)求常数k 的值;(2)试计算污染物减少到40%至少需要多少时间(精确到1小时,参考数据:ln 0.2≈-1.61,ln 0.3≈-1.20,ln 0.4≈-0.92,ln 0.5≈-0.69,ln 0.9≈-0.11.)解 (1)由已知,当t =0时,P =P 0;当t =5时,P =90%P 0.于是有90%P 0=P 0e -5k .解得k =-15ln 0.9(或0.022). (2)由(1)得,知P =t P ⎪⎪⎭⎫ ⎝⎛0.9In 510e .当P=40%P0时,有0.4P0=tP⎪⎪⎭⎫⎝⎛0.9In51e.解得t=ln 0.41 5ln 0.9≈-0.9215×-0.11=4.600.11≈41.82.故污染物减少到40%至少需要42小时.。
人教A版必修1高中数学学案教案: (2.2 函数模型的应用举例 第2课时)
第2课时 函数模型的应用举例导入新课思路1.(事例导入)一辆汽车在水平的公路上匀加速行驶,初速度为v 0,加速度为a,那么经过t 小时它的速度为多少?在这t 小时中经过的位移是多少?试写出它们函数解析式,它们分别属于那种函数模型?v=v 0+at,s=v 0t+21at 2,它们分别属于一次函数模型和二次函数模型. 不仅在物理现象中用到函数模型,在其他现实生活中也经常用到函数模型,今天我们继续讨论函数模型的应用举例. 思路2.(直接导入)前面我们学习了函数模型的应用,今天我们在巩固函数模型应用的基础上进一步讨论函数拟合问题. 推进新课 新知探究 提出问题①我市某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平稳增长.已知2000年为第一年,头4年年产量f(x)(万件)如下表所示:x 1 2 3 4 f(x)4.005.587.008.441°画出2000~2003年该企业年产量的散点图;建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.2°2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少? ②什么是函数拟合?③总结建立函数模型解决实际问题的基本过程. 讨论结果:①1°如图3-2-2-5,设f(x)=ax +b,代入(1,4)、(3,7),得⎩⎨⎧=+=+7,b 3a 4,b a 解得a=23,b=25.∴f(x)=23x+25. 检验:f(2)=5.5,|5.58-5.5|=0.08<0.1; f(4)=8.5,|8.44-8.5|=0.06<0.1. ∴模型f(x)=23x+25能基本反映产量变化. 2°f(7)=13,13×70%=9.1,2006年年产量应约为9.1万件.图3-2-2-5②函数拟合:根据搜集的数据或给出的数据画出散点图,然后选择函数模型并求出函数解析式,再进行拟合比较选出最恰当函数模型的过程.③建立函数模型解决实际问题的基本过程为:图3-2-2-6应用示例思路1例1某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表所示:销售单价/元 6 7 8 9 10 11 12 日均销售量/桶480 440 400 360 320 280 240 请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?解:根据上表,销售单价每增加1元,日均销售量就减少40桶.设在进价基础上增加x元后,日均销售利润为y元,而在此情况下的日均销售量就为480-40(x-1)=520-40x(桶).由于x>0,且520-40x>0,即0<x<13,于是可得y=(520-40x)x-200=-40x2+520x-200,0<x<13.易知,当x=6.5时,y 有最大值.所以,只需将销售单价定为11.5元,就可获得最大的利润. 变式训练某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式; (2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少? 解:(1)设在原来基础上增加x 台,则每台生产数量为384-4x 件,机器台数为80+x , 由题意有y=(80+x)(384-4x).(2)整理得y=-4x 2+64x+30 720,由y=-4x 2+64x+30 720,得y=-4(x-8)2+30 976,所以增加8台机器每天生产的总量最大,最大生产总量为30 976件. 点评:二次函数模型是现实生活中最常见数学模型. 例2某地区不同身高的未成年男性的体重平均值如下表: 身高∕c m 60 70 80 90 100 110 120 130 140 150 160 170体重∕k g6.137.90 9.99 12.15 15.02 17.50 20.92 26.86 31.11 38.85 47.25 55.05(1)根据上表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重y kg 与身高x cm 的函数关系?试写出这个函数模型的解析式.(2)若体重超过相同身高男性体重的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg 的在校男生的体重是否正常?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导: 根据表的数据画出散点图.观察发现,这些点的连线是一条向上弯曲的曲线.根据这些点的分布情况,可以考虑用y=a·b x这一函数模型来近似刻画这个地区未成年男性体重y kg 与身高x cm 的函数关系. 解:(1)以身高为横坐标,体重为纵坐标,画出散点图(图3-2-2-7).根据点的分布特征,可以考虑用y=a·b x作为刻画这个地区未成年男性体重y kg 与身高x cm 关系的函数模型.如果取其中的两组数据(70,7.90),(160,47.25),代入y=a·b x,得⎩⎨⎧1•=•=.0025.47,9.770b a b a用计算器算得a≈2,b≈1.02.这样,我们就得到一个函数模型:y=2×1.02x.将已知数据代入上述函数解析式,或作出上述函数的图象(图3-2-2-8),可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系.(2)将x=175代入y=2×1.02x ,得y=2×1.02175, 由计算器算得y≈63.98. 由于78÷63.98≈1.22>1.2,所以这个男生偏胖.图3-2-2-7 图3-2-2-8变式训练九十年代,政府间气候变化专业委员会(IPCC)提供的一项报告指出:使全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中使CO2浓度增加.据测,1990年、1991年、1992年大气中的CO2浓度分别比1989年增加了1个可比单位、3个可比单位、6个可比单位.若用一个函数模拟九十年代中每年CO2浓度增加的可比单位数y与年份增加数x的关系,模拟函数可选用二次函数或函数y=a·b x+c(其中a、b、c为常数),且又知1994年大气中的CO2浓度比1989年增加了16个可比单位,请问用以上哪个函数作为模拟函数较好?解:(1)若以f(x)=px2+qx+r作模拟函数,则依题意得⎪⎩⎪⎨⎧=++=++=++6,r3q9p3,r2q4p1,rqp解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===,0,21,21rqp所以f(x)=21x2+21x.(2)若以g(x)=a·b x+c作模拟函数,则⎪⎩⎪⎨⎧=+=+=+6,cab3,cab1,cab32解得⎪⎪⎪⎩⎪⎪⎪⎨⎧-===3,23,38cba所以g(x)=38·(23)x-3.(3)利用f(x)、g(x)对1994年CO2浓度作估算,则其数值分别为:f(5)=15可比单位,g(5)=17.25可比单位,∵|f(5)-16|<|g(5)-16|,故选f(x)=21x2+21x作为模拟函数与1994年的实际数据较为接近.思路2例1某自来水厂的蓄水池有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t小时内供水总量为1206t吨,其中0≤t≤24.(1)从供水开始到第几小时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问:在一天的24小时内,有几小时出现供水紧张现象?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导.思路分析:首先建立函数模型,利用函数模型解决实际问题.解:设供水t 小时,水池中存水y 吨,则 (1)y=400+60t-1206t =60(t 6-)2+40(1≤t≤24),当t=6时,y min =40(吨),故从供水开始到第6小时,蓄水池中的存水量最少,最少存水为40吨. (2)依条件知60(t 6-)2+40<80,1≤t≤24,解得38<t<332,33238-=8. 故一天24小时内有8小时出现供水紧张.例22007泰安高三期末统考,文18某蛋糕厂生产某种蛋糕的成本为40元/个,出厂价为60元/个,日销售量为1 000个,为适应市场需求,计划提高蛋糕档次,适度增加成本.若每个蛋糕成本增加的百分率为x (0<x<1),则每个蛋糕的出厂价相应提高的百分率为0.5x ,同时预计日销售量增加的百分率为0.8x ,已知日利润=(出厂价一成本)×日销售量,且设增加成本后的日利润为y.(1)写出y 与x 的关系式;(2)为使日利润有所增加,求x 的取值范围. 解:(1)由题意得y=[60×(1+0.5x)-40×(1+x)]×1 000×(1+0.8x)=2 000(-4x 2+3x+10)(0<x<1). (2)要保证日利润有所增加,当且仅当⎩⎨⎧<<>⨯--,10,01000)4060(x y即⎩⎨⎧<<>+-.10,0342x x x 解得0<x<43.所以为保证日利润有所增加,x 应满足0<x<43. 点评:函数模型应用经常伴随方程和不等式的应用,它们是有机的整体. 知能训练2007广东韶关统考,文18某养殖厂需定期购买饲料,已知该厂每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管与其他费用为平均每千克每天0.03元,购买饲料每次支付运费300元.(1)求该厂多少天购买一次饲料才能使平均每天支付的总费用最小;(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时其价格可享受八五折优惠(即原价的85%).问该厂是否考虑利用此优惠条件,请说明理由.解:(1)设该厂应隔x(x∈N *)天购买一次饲料,平均每天支付的总费用为y 1, ∵饲料的保管与其他费用每天比前一天少200×0.03=6(元). ∴x 天饲料的保管与其他费用共有6(x-1)+6(x-2)+…+6=3x 2-3x(元). 从而有y 1=x1(3x 2-3x+300)+200×1.8 =x300+3x+357,可以证明y 1=x300+3x+357,在(0,10)上为减函数,在(10,+∞)上为增函数. ∴当x=10时,y 1有最小值417,即每隔10天购买一次饲料才能使平均每天支付的总费用最小.(2)若厂家利用此优惠条件,则至少25天购买一次饲料,设该厂利用此优惠条件,每隔x 天(x≥25)购买一次饲料,平均每天支付的总费用为y 2,则 y 2=x 1(3x 2-3x+300)+200×1.8×0.85=x300+3x+303(x≥25). ∵函数y 2在[25,+∞)上是增函数,∴当x=25时,y 2取得最小值为390.而390<417, ∴该厂应接受此优惠条件. 拓展提升如何用函数模型解决物理问题?例:在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,…,a n 共n 个数据,我们规定所测量的物理量的“最佳近似值”a 是这样一个量:与其他近似值比较a 与各数据差的平方和最小,依此规定,从a 1,a 2,a 3,…,a n 推出的a=________.活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:此题应排除物理因素的干扰,抓准题中的数量关系,将问题转化成函数求最值问题.解:由题意可知,所求a 应使y=(a-a 1)2+…+(a -a n )2最小,由于y=na 2-2(a 1+a 2+…+a n )2a+(a 12+a 22+…+a n 2).若把a 看作自变量,则y 是关于a 的二次函数,于是问题转化为求二次函数的最小值. 因为n>0,二次函数f(a)图象开口方向向上,当a=n 1(a 1+a 2+…+a n )时,y 有最小值, 所以a=n1(a 1+a 2+…+a n )即为所求.点评:此题在高考中是具有导向意义的试题,它以物理知识和简单数学知识为基础,并以物理学科中的统计问题为背景,给出一个新的定义,要求学生读懂题目,抽象其中的数量关系,将文字语言转化为符号语言,即y=(a-a 1)2+(a-a 2)2+…+(a -a n )2,然后运用函数的思想方法去解决问题.解题关键是将函数式化成以a 为自变量的二次函数形式,这是函数思想在解决实际问题中的应用. 课堂小结1.巩固函数模型的应用.2.初步掌握函数拟合思想,并会用函数拟合思想解决实际问题. 作业课本P 107习题3.2B 组1、2.设计感想本节通过事例引入课题,接着通过事例让学生感受什么是函数拟合;课本的例3是函数模型的应用,例4是函数拟合的应用,这都是本节的重点.因此本节选用了多个地市的模拟试题进行强化训练,其中开放性函数拟合问题更值得关注.本节素材鲜活丰富,结构合理有序,难度适中贴近高考.习题详解(课本第98页练习) 1.y 2.2.设第1轮病毒发作时有a 1=10台被感染,第2轮,第3轮,…,依次有a 2台,a 3台,…被感染,依题意有a 5=10×204=160.答:在第5轮病毒发作时会有160万台被感染. (课本第101页练习) 三个函数图象如下:图3-2-2-9由图象可以看到,函数(1)以“爆炸”式的速度增长;函数(2)增长缓慢,并渐渐趋于稳定;函数(3)以稳定的速度增加. (课本第104页练习)1.(1)已知人口模型为y=y 0e rt,其中y 0表示t=0时的人口数,r 表示人口的年增长率.若按1650年世界人口5亿,年增长率为0.3%估计,有y=5e 0.003t. 当y=10时,解得t≈231.所以,1881年世界人口数约为1650年的2倍.同理,可知2003年世界人口数约为1970年的2倍.(2)由此看出,此模型不太适宜估计跨度时间非常大的人口增长情况.2.由题意有75t-4.9t 2=100, 解得t=9.425.6075⨯±,即t 1≈1.480,t 2≈13.827.所以,子弹保持在100 m 以上的时间t=t 2-t 1≈12.35,在此过程中,子弹最大速率 v 1=v 0-9.8t=75-9.8×1.480=60.498 m/s.答:子弹保持在100米以上高度的时间是12.35秒,在此过程中,子弹速率的范围是v∈(0,60.498). (课本第106页练习)1.(1)由题意可得y 1=150+0.25x, y 2=x150+0.25, y 3=0.35x,y 4=0.35x-(150+0.25x)=0.1x-150. (2)画出y 4=0.1x-150的图象如下.图3-2-2-10由图象可知,当x<1500件时,该公司亏损;当x=1500件时,公司不赔不赚;当x>1500件时,公司赢利.2.(1)列表.(2)画散点图.图3-2-2-11 3.确定函数模型.甲:y1=-x2+12x+41,乙:y2=-52.07×0.778x+92.5.(4)做出函数图象进行比较.图3-2-2-12图3-2-2-13图3-2-2-14计算x=6时,y 1=77,y 2=80.9. 可见,乙选择的模型较好. (课本第107页习题3.2)A 组1.(1)列表.(2)描点.图3-2-2-15(3)根据点的分布特征,可以考虑以d=kf+b 作为刻画长度与拉力的函数模型,取两组数据(1,14.2)、(4,57.5),有⎩⎨⎧=+=+57.5,b 4k 14.2,b k解得⎩⎨⎧≈≈-0.2.b 14.4,k 所以d=14.4f-0.2.将已知数据带入上述解析式或作出函数图象,可以发现,这个函数模型与已知数据拟合程度较好,说明它能较好地反映长度与拉力的关系.图3-2-2-162.由31020=(60)2a,得a=35361⨯⨯.由31050=35361⨯⨯x 2,得x=3010. 因为3010<100,所以这辆车没有超速.3.(1)x=⎪⎩⎪⎨⎧≤<--≤<≤≤.5.65.3),5.3(50150,5.35.2,150,5.20,60t t t t t t (2)v=⎪⎩⎪⎨⎧≤<≤<≤≤.5.65.3,50,5.35.2,0,5.20,60t t t图略.4.设水池总造价为y 元,水池长度为x m,则y=(12x+x 2400)95+61200×135, 画出函数y 1=(12x+x 2400)95+61200×135和函数y 2=7的图象.图3-2-2-17由图可知,若y 1≤7,则x 应介于[x 1,x 2]之间,x 1,x 2即为方程(12x+x 2400)95+61200×135=70 000的两个根.解得x 1≈6.4,x 2≈31.3.答:水池的长与宽应该控制在[6.4,31.3]之间.5.将x=0,y=1.01×105和x=2400,y=0.90×105分别代入y=ce kx,得到⎪⎩⎪⎨⎧=⨯⨯=,1090.0,1001.1240055kcec解得c=⎪⎩⎪⎨⎧⨯-=⨯=-,10805.4,1001.155k c 所以y=1.01×105e 510805.4-⨯-x.当x=5596m 时,y=0.772×105(Pa)<0.775×105(Pa).答:这位游客的决定是冒险的决定. 6.由500≤2500(108)t<1500,解得2.3<t≤7.2. 答:应该在用药2.3小时后及7.2小时以前补充药.B 组1.(1)利用计算器画出1990~2000年国内生产总值的图象如下.图3-2-2-18(2)根据以上图象的特征,可考虑用函数y=kx+b 刻画国民生产总值发展变化的趋势. 取(1994,46670)(1998,76967.1)两组数据代入上式,得⎩⎨⎧+=+=b,1998k 76967.1b,1994k 46670解得⎩⎨⎧==35.-15056434.b 7574.275,k 这样,我们就得到了函数模型y=7574.275x-15056434.35.作出上述函数图象如下.图3-2-2-19根据上述函数图象,我们发现这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映国民生产总值的发展变化.(3)以x=2 004代入以上模型可得y=122 412.75亿元,由此可预测2004年的国民生产总值约为122 412.75亿元.2.(1)点A,B 的实际意义为当乘客量为0时,亏损1(单位);当乘客量为1.5单位时,收支持平;射线AB 上的点的实际意义为当乘客量小于1.5时公司将亏损,当乘客量大于1.5时公司将赢利.(2)图2的建议是:降低成本而保持票价不变;图3的建议是:提高票价而保持成本不变.。
高中数学3.2.2函数模型的应用实例教学设计新人教A版必修1
《函数模型的应用实例(二)》教学设计一、教学内容分析:本节课选自人民教育出版社A版的普通高中课程标准实验教科书·数学必修1中3.2.2函数模型的应用实例(第二课时).函数基本模型的应用是本章的重点内容之一,函数模型本身就来源于现实,并用于解决实际问题.本节课的内容是在《几类不同增长的函数模型》和《函数模型的应用实例(一)》内容之后,对于纯数学知识的几类函数及其性质和给定的函数模型应用有了一定的学习,本节课是对以上两节内容的延续与拓展,研究没有给定函数模型或没有确定性函数模型的实际问题进行建模和应用.这节课的内容继续通过一些实例来感受函数模型的建立和应用,逐步体会实际问题中构建函数模型的过程,本节课的函数模型的应用实例主要包括建立确定性函数模型解决问题及选择或建立拟合函数模型解决问题.例5所给的问题的特点是表中数学的变化是有特定规律的,运用表中的数据规律建立数学模型,注意变化范围和检验结果的合理性,同时使用这种有规律的简单数据实例提供了建立数学模型的方法.例6与例5有所区别,表中数据的变化规律特点不是和明显,需要自己根据对数据的理解选择模型,这反映一个较为完整的建立函数模型解决问题的过程,让学生逐步感受和明确这一点.整节课要求学生分析数据,比较各个函数模型的优劣,选择接近实际的函数模型,并应用函数模型解决实际问题.强化读图、读表能力;优化学生思维,提高学生探究和解决问题的能力;强化学生数学应用意识,感受数学的实用性;锻炼学生的吃苦精神,提高学生的团队合作能力.二、教学目标:知识与技能:1.会分析所给出数据,画出散点图.2.会利用选择或建立的函数模型.3.会运用函数模型解决实际问题.过程与方法:1.通过对给出的数据的分析,抽象出相应的确定性函数模型,并验证函数模型的合理性.2.通过收集到的数据作出散点图,并通过观察图像判断问题所适用的函数模型,在合理选择部分数据或计算机的拟合功能得出具体的满意的函数解析式,并应用模型解决实际问题.情感、态度和价值观:1.经历建立函数模型解决实际问题的过程,领悟数学源自生活,服务生活,体会数学的应用价值.2.培养学生的应用意识、创新意识和探索精神,优化学生的理性思维和求真务实的科学态度.3.提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度.三、学生学情分析:1.已掌握了一些基本初等函数的相关知识,有相应的数学基础知识储备.2.在前面的学习中,初步体会了利用给定函数模型解决实际问题的经历,为本节课积累解决问题的经验.3.学生从文字语言向图像语言和符号语言转化较弱;应用意识和应用能力不强;抽象概括和局部处理能力薄弱.四、教学重点、难点重点:根据收集的数据作出散点图,并通过观察图像选择问题所适用的函数模型,利用演算或计算机数据建立具体的函数解析式.难点:怎样合理分析数据选择函数模型和建立具体的函数解析式.五、教学策略分析:基于新课程标准倡导以学生为主体进行探究性学习,教师应成为学生学习的引导者、组织者和合作者的教学理念和最近发展区理论,结合本节课的教学目标,采用如下教学方法:1.问题教学法.在例1的教学中,提出如何能更为直观的发现函数模型,引导学生思考,发现选择函数模型的重要方法,即散点图图像,从而让学生有收获,有成就感.在例2的解决过程中,提出一系列的问题串,学会对问题的剖析,直达问题的核心.使学生的学习过程成为在教师引导下的“再创造”过程,并使学生从中体会学习的兴趣.这样可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃,同时培养了学生自主学习,动手探究的能力.2.分组讨论法.在例2的教学中,遇到难以选择模型时,通过小组讨论,拓展思维,加强合作,解决问题;在获得函数模型后和课堂总结中,组织小组讨论,相互交流成果,扩大成果影响力.这样不仅能够培养学生对数学知识的探索精神和团队协作精神,更能让学生体验成功的乐趣,培养其学习的主动性.3.多媒体辅助教学法:在教学过程中,采用多媒体教学工具,通过动态演示有利于引起学生的学习兴趣,激发学生的学习热情,增大信息的容量,使内容充实、形象、直观,提高教学效率和教学质量。
高中数学人教A版必修1课件:3.2.2函数模型的应用实例
设甲项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
(1)写出 y 关于 x 的函数表达式;
(2)求总利润 y 的最大值.
分析:(1)总利润=投资甲项目利润+投资乙项目利润=M+N;(2)
转化为求(1)中函数的最大值.
-12-
3.2.2
题型一
函数模型的应用实例
题型二
题型三
M 目标导航
-3-
3.2.2
函数模型的应用实例
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
名师点拨巧记函数建模过程:
收集数据,画图提出假设;
依托图表,理顺数量关系;
抓住关键,建立函数模型;
精确计算,求解数学问题;
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
题型四
【变式训练 2】 大西洋鲑鱼每年都要逆流而上,游回产地产卵.
记鲑鱼的游速为 v(单位:m/s),鲑鱼的耗氧量的单位数为 Q,研究中发
现 v 与 log3
成正比, 且当Q=900 时,v=1.
100
(1)求出 v 关于 Q 的函数解析式;
米)的关系式为 p=1 000·
7
100
ℎ
3 000
, 则海拔6 000 米处的大气压强为
百帕.
解析:当 h=6 000 米时,p=1 000·
7
100
6 000
3 000
= 4.9(百帕).
答案:4.9
推荐-高中数学人教A版必修1课件3.2.2函数模型的应用实例
当 x>400 时,f(x)=60 000-100x 是减函数.
f(x)<60 000-100×400<25 000(元).
∴当 x=300 时,f(x)的最大值为 25 000 元.
故每月生产 300 台仪器时,利润最大,最大利润为 25 000 元.
探究一
探究二
探究三
思维辨 析
合作学习
反思感悟应用一次函数与二次函数的有关知识,可解决生产、生 活实际中的最大(小)值的问题.解答时需遵循的基本步骤是:(1)反 复阅读理解,认真审清题意;(2)依据数量关系,建立数学模型;(3)利 用数学方法,求解数学问题;(4)检验所得结果,译成实际答案.
合作学习
探究一
探究二
探究三
思维辨 析
解(1)已知仪器的月产量为 x 台,则总成本为 20 000+100x,
从而
f(x)=
-
1 2
������
2
+
300������-20
000,0
≤
������
≤
400,
60 000-100������,������ > 400.
(2)当 0≤x≤400 时,
f(x)=-12(x-300)2+25 000, ∴当 x=300 时,f(x)有最大值 25 000 元;
y=a+bx(a,b 为常数,b≠0).
取其中的两组数据(10.4,21.1),(24.0,45.8),
代入
y=a+bx,得
21.1 45.8
= =
������ ������
+ +
10.4������, 24.0������,
高中数学 3.2.2函数模型的应用举例教案(2)新人教A版必修1
3.2.2(2)函数模型的应用实例(教学设计)教学目标:知识与技能:能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.过程与方法:感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数模型在数学和其他学科中的重要性.情感、态度、价值观:体会运用函数思想和处理现实生活和社会中的简单问题的实用价值.教学重点难点:重点运用一次函数、二次函数模型的处理实际问题.难点运用函数思想理解和处理现实生活和社会中的简单问题.一、新课引入:2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目.67岁的马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了可供决策部门参考的应用软件.这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真.结果指出,将患者及时隔离对于抗击非典至关重要.分析报告说,就全国而论,若非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加2100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府未采取隔离措施,则高峰期病人人数将达60万人.这项研究在充分考虑传染病的一般流行机制、非典的特殊性、我国政府所采取的一系列强有力措施的基础上,根据疾病控制中心每日发布的数据,利用统计学的方法和流行病传播机理建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测.二、师生互动,新课讲解:例1:(课本第104页例5)某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示,销售单价/元 6 7 8 9 10 11 12日均销售量/桶480 440 400 360 320 280 240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?解:(课本P104)课本第104页表3-9中数据的变化是有特定规律的,教学时应注意引导学生分析问题所提供的数据特点,由数据特点抽象出函数模型.同时,应注意变量的变化范围,并以此检验结果的合理性.例2:(课本第105页例6)某地区不同身高的未成年男性的体重平均值如下表:(身高:cm;体重:kg)身高60 70 80 90 100 110体重 6.13 7.90 9.99 12.1515.0217.5身高120 130 140 150 160 170体重20.9226.8631.1138.8547.2555.051y kg与身高x cm的函数关系?试写出这个函数模型的解析式.2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?探索:1) 借助计算器或计算机根据统计数据,画出它们相应的散点图;2) 观察所作散点图,你认为它与以前所学过的何种函数的图象较为接近?3) 你认为选择何种函数来描述这个地区未成年男性体重y kg 与身高x cm 的函数关系? 4) 确定函数模型,并对所确定模型进行适当的检验和评价. 5) 怎样修正确定的函数模型,使其拟合程度更好? 课堂练习(课本P106练习 NO :1)例3:根据市场调查商品在最近40天内的价格P (万元)与时间t 的关系,用图(1)中的一条折线表示,销售量Q 与时间t 的关系用图(2)中的线段表示(t ∈N +)。
高中数学 第三章 §3.2.2函数模型的应用实例课件 新人教A版必修1
第五页,共22页。
小结 在实际问题中,有很多问题的两变量之间的关系是一次 函数模型,其增长特点是直线上升(自变量的系数大于 0)或直 线下降(自变量的系数小于 0),构建一次函数模型,利用一次 函数模型,利用一次函数的图象与单调性求解.
年份
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/万人 55 196 56 300 57 482 58 796 60 266 61 456 62 828 64 563 65 994 67 207
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增
第十一页,共22页。
跟踪训练 2 某游乐场每天的盈利额 y 元 与售出的门票数 x 张之间的关系如图所示, 试问盈利额为 750 元时,当天售出的门票 数为多少? 解 根据题意,每天的盈利额 y 元与售出的门 票数 x 张之间的函数关系是:y=31..7255xx+0≤1 0x0≤0440000<x≤600 . ①当 0≤x≤400 时,由 3.75x=750,得 x=200. ②当 400<x≤600 时,由 1.25x+1 000=750,得 x=- 200(舍去). 综合①和②,盈利额为 750 元时,当天售出的门票数为 200 张. 答 当天售出的门票数为 200 张时盈利额为 750 元.
第十七页,共22页。
当 y=10 时,解得 t≈231. 所以,1881 年世界人口约为 10 年的 2 倍.
(2)由此看出,此模型不太适宜估计跨度时间非常大的人口增长 情况.
高中数学 3.2.2函数模型的应用实例教案 新人教A版必修1
课题:§3.2.2函数模型的应用实例〔一〕教材分析本节课选自?普通高中课程标准实验教科书数学1必修本〔A版〕?的第三章的3.2.2函数模型的应用实例函数模型及其应用是中学重要内容之一,又是数学与生活理论互相衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用本质是提醒了客观世界中量的互相依存有互有制约的关系,因此函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。
本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进展简单的分析评价学情分析学生在学习本节内容之前已经学习了几类不同增长的函数模型,学会了任何选择适当的函数模型分析和解决实际问题,对函数模型增长变化有了较深入的认识。
这为建立函数模型解决实际问题提供了支持。
但学生对于从实际应用问题获取信息转化为数学问题的才能较薄弱,给建立函数模型带来了一定的难度。
因此在教学中应该给学生多阅读,多考虑,由易到难逐层引导提问,理解问题的本质从而得出结论。
教学目的:知识与技能可以利用给定的函数模型或建立确定性函数模型解决实际问题.过程与方法感受运用函数概念建立模型的过程和方法,对给定的函数模型进展简单的分析评价.情感、态度、价值观体会数学在实际问题中的应用价值.教学重点、难点:重点利用给定的函数模型或建立确定性函数模型解决实际问题.难点利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进展简单的分析评价.设计思想一、创设情境现实生活中有些实际问题所涉及的数学模型是确定的,但需要我们利用问题中的数据及其蕴含的关系建立数学模型,对于已给定数学模型的问题,我们要对所确定的数学模型进展分析评价,验证数学模型的与所提供的数据的吻合程度,并对给定的数学模型进展适当的分析和评价.设计意图老师介绍现实生活中函数应用的典型题型,提出研究内容与研究方法引出问题.二、组织探究例1.一辆汽车在某段路程中的行驶速度与时间的关系如下图.1)求图中阴影局部的面积,关说明所求面积的实际含义;2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2021km,试建立汽车行驶这段路程时汽车里程表读数s与时间t的函数解析式,并作出相应的图象.012345让学生主动参与,认真观察分析所给图象,独立考虑后,讨论,老师可以作以下引导 首先引导学生写出速度v 关于时间t 的函数解析式其次引导学生写出汽车行驶路程y 关于时间t 的函数关系式,并作图象再次探究:1〕将图中的阴影局部隐去,得到的图象什么意义?2〕图中每一个矩形的面积的意义是什么?3〕汽车的行驶里程与里程表读数之间有什么关系?它们关于时间的函数图象又有何关系? 设计意图学会将实际问题转化为数学问题.学会用函数模型〔分段函数〕刻画实际问题.培养学生的读图才能,让学生理解图象是函数对应关系的一种重要表现形式例2.人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供根据.早在1798,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:其中t 表示经过的时间,0y 表示t =0时的人口数,r 表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:〔单位:万人〕年份1950 1951 1952 1953 1954 人数 55196 56300 57482 58796 60266年份 1955 1956 1957 1958 1959 人数 61456 62828 64563 65994 672071〕假如以各年人口增长率的平均值作为我国这一时期的人口增长率〔准确到0.0001〕,用马尔萨斯人口增长模型建立我国在这一时期的详细人口增长模型,并检验所得模型与实际人口数据是否相符;2〕假如按表中的增长趋势,大约在哪一年我国的人口将到达13亿?认真阅读题目,老师指出本例的题型是利用给定的数学模型〔指数函数模型rt e y y 0 〕解决实际问题的一类问题,引导学生认识到确定详细函数模型的关键是确定两个参数0y 与r .学生独立考虑后,老师作以下提问1) 本例中所涉及的数量有哪些?2) 描绘所涉及数量之间关系的函数模型是否是确定的,确定这种模型需要几个因素?3) 根据表中数据如何确定函数模型?v 〔km/h 〕t 〔h 〕4) 对于所确定的函数模型怎样进展检验,根据检验结果对函数模型又应作出如何评价? 5〕如何根据所确定函数模型详细预测我国某个时期的人口数,本质是何种计算方法? 学生根据老师引导,完成数学模型确实定,借助计算器,利用所确定的函数模型对我国的人口增长情况进展适当的预测老师在验证问题中的数据与所确定的数学模型是否吻合时,可引导学生利用计算器或计算机作出所确定函数的图象,并由表中数据作出散点图,通过比拟来确定函数模型与人口数据的吻合程度.设计意图通过本例让学生认识到表格也是函数对应关系的一种表现形式.培养学生得阅读才能,分析才能三、探究研究引导学生分析例题,进展总结归纳利用给定函数模型或建立确定函数解决实际问题的方法:1〕根据题意选用恰当的函数模型来描绘所涉及的数量之间的关系;2〕利用待定系数法,确定详细函数模型;3〕对所确定的函数模型进展适当的评价;4〕根据实际问题对模型进展适当的修正.设计意图浸透数学思想方法,培养学生读图、分析数据、概括、总结等诸多方面的才能。
高中数学《函数模型的应用实例》教案2新人教A版必修1(优秀经典公开课比赛教案)
课题:§321几类不同增长的函数模型教学目标:知识与技能结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.过程与方法能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幕函数、分段函数等),了解函数模型的广泛应用.情感、态度、价值观体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.难点怎样选择数学模型分析解决实际问题.教学程序与环节设计: 实际问题引入,激发学生兴趣.选择变量、建立模型,利用数据表格、函数图象讨论模型,体会不同函数模型增长的含义及其差异.总结例题的探究方法,并进一步探索研究幂函数、指数函数、对数函数的增长差异,形成结论性报告.师生交流共同小结,归纳一般的应用题的求解方法步骤.强化基本方法,规范基本格式.收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用.4)你能借助计算器或计算机作出函数图象, 并通过图象描述一下三种方案的特点吗?生:对三种方案的不同 变化趋势作出描述,并 为方案选择提供依据.师:引导学生分析影响 方案选择的因素,使学 生认识到要做出正确 选择除了考虑每天的 收益,还要考虑一段时 间内的总收益.例2•某公司为了实现 1000万元利润的目标, 准备制定一个激励销售部门的奖励方案:在销售利 润达到10万元时,按销售利润进行奖励, 且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加但奖金不超过 5万元,同时奖金不超过利 润的25%.现有三个奖励模型:y = 0.25x y = log 7 x 1 y = 1.002x .问:其中哪个模型能符合公司的要求? 探究:师:引导学生分析问题 使学生得出:要对每一 个奖励模型的奖金总 额是否超出5万元,以 及奖励比例是否超过 25%进行分析,才能做 出正确选择.环节 呈现教学材料 师生互动设计师:引导学生利用函数 图象分析三种方案的 不同变化趋势.5)根据以上分析,你认为就作出如何选择?组织探究生:通过自主活动,分 析整理数据,并根据其 中的信息做出推理判 断,获得累计收益并给 出本全的完整解答,然 后全班进行交流.师:引导学生分析三种 函数的不同增长情况 对于奖励模型的影响, 使学生明确问题的实 质就是比较三个函数 的增长情况.生:进一步体会三种基 本函数模型在实际中 的广泛应用,体会它们 的增长差异.1)本例涉及了哪几类函数模型? 本例的实质是什么?2)你能根据问题中的数据,判定所给的奖励 模型是否符合公司要求吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.2.2 函数模型的应用实例(Ⅰ)
一、学习目标:
1. 初步体会应用一次函数、二次函数模型解决实际问题.
2.体会运用函数思想处理现实生活中和社会中的一些简单问题的实用价值. 二、学习重点与难点:
1.重点:运用一次函数、二次函数模型解决一些实际问题. 2. 难点:将实际问题转变为数学模型. 三、 教学设想 (一)问题衔接
1.一次函数的解析式为__________________ , 其图像是一条____线,当________时,一次函数在 上为增函数,当_______时, 一次函数在 上为减函数
2.二次函数的解析式为_______________, 其图像是一条________线,当______时,函数有最小值为___________,当______时,函数有最大值为____________。
(二)结合实例,探求新知
例1 一辆汽车在某段路程中的行驶速度与时间的关系如图所示:(72.3102 p ) (1)求图中阴影部分的面积,并说明所求面积的实际含义;
(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004 km ,试建立汽车行驶这段路程时汽车里程表读数s km 与时间t h 的函数解析式,并作出相应的图象
探索:
本例所涉及的数学模型是确定的,需要利用问题中的数据及其蕴含的关系建立数学模型,此例分段函数模型刻画实际问题.
教师要引导学生从条块图象的独立性思考问题,把握函数模型的特征.
注意培养学生的读图能力,让学生懂得图象是函数对应关系的一种重要表现形式老师提示:路程S 和自变量t 的取值范围(即函数的定义域),注意t 的实际意义.
例2一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?
引导学生探索过程如下:
1)本例涉及到哪些数量关系?
2)应如何选取变量,其取值范围又如何? 3)应当选取何种函数模型来描述变量的关系? 4)“所获得的利润最大”的数学含义如何理解?
例3 某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的
进价是5元,销售单价与日均销售量的关系如表所示:
请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?
课堂练习1 某农家旅游公司有客房300间,每间日房租为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?
课堂练习2 要建一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.
(三)归纳整理,发展思维.网
归纳一般的应用题的求解方法步骤:
1)合理迭取变量,建立实际问题中的变量之间的函数关系,从而将实际问题转化为
函数模型问题:
2)运用所学知识研究函数问题得到函数问题的解答;
3)将函数问题的解翻译或解释成实际问题的解;
4)在将实际问题向数学问题的转化过程中,能画图的要画图,可借助于图形的直观性,研究两变量间的联系.抽象出数学模型时,注意实际问题对变量范围的限制.
(四)布置作业
作业:教材P107习题3.2(A组)第3 、4题:。