中考数学复习考点题型讲解与训练4---代数与几何综合题
初中数学代数与几何综合题
初中数学代数与⼏何综合题初中数学代数与⼏何综合题代数与⼏何综合题从内容上来说,是把代数中的数与式、⽅程与不等式、函数,⼏何中的三⾓形、四边形、圆等图形的性质,以及解直⾓三⾓形的⽅法、图形的变换、相似等内容有机地结合在⼀起,同时也融⼊了开放性、探究性等问题,如探究条件、探究结论、探究存在性等。
经常考察的题⽬类型主要有坐标系中的⼏何问题(简称坐标⼏何问题),以及图形运动过程中求函数解析式问题等。
解决代数与⼏何综合题,第⼀,需要认真审题,分析、挖掘题⽬的隐含条件,翻译并转化为显性条件;第⼆,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进⾏恰当地组合,进⼀步得到新的结论,尤其要注意的是,恰当地使⽤分析综合法及⽅程与函数的思想、转化思想、数⾏结合思想、分类与整合思想等数学思想⽅法,能更有效地解决问题。
第⼀类:与反⽐例函数相关1. (09北京)如图,点 C 为O O 直径AB 上⼀点,过点 C 的直线交O O 于点D 、E 两点,且/ ACD=45°,DF _AB 于点 F ,EG _ AB 于点G .当点C 在AB 上运动时,设 AF =x , DE = y ,下列-a -2、、ab b > 0, a b > 2、、ab ,只有当 a = b 时,等号成⽴.图象中,能表⽰ y 与x 的函数关系的图象⼤致是(经过正⽅形 ABOC 的三个顶点 A 、B 、C3. (09延庆)阅读理解:对于任意正实数 a ,2.如图,在平⾯直⾓坐标系中y结论:在a b > 2 ab ( a , b 均为正实数)中,若 ab 为定值p ,则a b > 2 p ,12(2)探索应⽤:已知A(-3,0) , B(0,_4),点P 为双曲线y (x ■ 0)上的任意⼀点,过点P 作PC _ x 轴于点C , PD _ y 轴于D . 求四边形ABCD ⾯积的最⼩值,并说明此时四边形ABCD 的形状.1 、y x 相交4(m , n )(在A 点左侧)是双曲线y =上的动点.过点B 作xBD // y 轴交x 轴于点D.过N(0, - n)作NC // x 轴交双曲线y ⼆⾊于点E ,交BD 于点C .x(1) 若点D 坐标是(―坐标及k 的值. (2) 若B 是CD 的中点,为4,求直线CM(3) 设直线 AM 、BM 分别与y 轴相交于 P 、Q 两点,且 MA=pMP , MB=qMQ ,求p - q 的值.285. (09.5西城)已知:反⽐例函数y 和y在平⾯直⾓坐标系 xOy 第⼀象限中的图 xx82只有当a =b 时,a - b 有最⼩值2 p .根据上述内容,回答下列问题:(1)若m ,只有当m ⼯时,m ?丄有最⼩值mk4. (08南通)已知双曲线 y 与直线x于A 、B 两点.第⼀象限上的点 Mk 8,0),求A 、B 两点四边形OBCE 的⾯积的解析式?象如图所⽰,点A在y 的图象上,AB // y轴,与y 的图象交于点B, AC、BDx x与x轴平⾏,分别与y=2、y=8的图象交于点C、D.x x(1) 若点A的横坐标为2,求梯形ACBD的对⾓线的交点F的坐标;(2) 若点A的横坐标为m,⽐较△ OBC与⼛ABC的⾯积的⼤⼩;(3) 若⼛ABC与以A、B、D为顶点的三⾓形相似,请直接写出点A的坐标.点F 的坐标为(2,17).5-S ABC . (3)点A 的坐标为(2,4)函数y = m ( x - 0 , m 是常数)的图象经过 A(1,4),xB(a ,b),其中a 1 .过点A 作x 轴垂线,垂⾜为C ,连结 AD ,DC ,CB .(1) 若△ ABD 的⾯积为4,求点B 的坐标; (2) 求证:DC // AB ;(3) 当AD =BC 时,求直线 AB 的函数解析式. 答案: (3)所求直线 AB 的函数解析式是 y = -2x ? 6或y = -x 5⼆、与三⾓形相关7. (07北京)在平⾯直⾓坐标系 xOy 中,抛物线y = mx 2 + 2 .3 mx + n 经过P 「3, 5),A(0, 2)两点.(1)求此抛物线的解析式;(2) 设抛物线的顶点为 B,将直线AB 沿y 轴向下平移两个单位得到直线 I,直线I 与抛物线的对称轴交于C 点,求直线l 的解析式;⑶在⑵的条件下,求到直线OB, OC, BC 距离相等的点的坐标.答案:(1)抛物线的解析式为:y = ^x 2- 3x+ 2 3 3(2) 直线I 的解析式为y =守x(3) ⾄煩线OB 、OC 、BC 距离相等的点的坐标分别为:M 1(-"^, 0)、 M 2 (0, 2)、 M 3(0, -2)、M 4 (-2.3, 0).36.( 07上海)如图,在直⾓坐标平⾯内,(1)点B 的坐标为3,; .3⑺.DC // AB .过点2&(08北京)平⾯直⾓坐标系 xOy 中,抛物线y = x + bx + c 与x 轴交于A, B 两点(点A 在点B 的左侧),与y 轴交于点C,点B 的坐标为(3, 0),将直线y = kx 沿y 轴向上平移3个单位长度后恰好经过 B, C 两点.(1) 求直线BC 及抛物线的解析式;(2) 设抛物线的顶点为 D,点P 在抛物线的对称轴上,且⼄APD =WACB,求点P 的坐标;⑶连结CD,求£OCA 与MOCD 两⾓和的度数.答案:(1)直线BC 的解析式为y = -x + 3.抛物线的解析式为y = x 2 - 4x + 3.(2) 点P 的坐标为(2, 2)或(2, -2). (3) . OCA 与.OCD 两⾓和的度数为 45 ... 2 29. (10.6密云) 已知:如图,抛物线 y = -X mx 2m (m 0)与x 轴交于A 、B 两点,点A 在点B 的左边,C 是抛物线上⼀动点(点C 与点A 、B 不重合),D 是OC 中点,连结BD 并延长,交AC 于点E .(1) 求A 、B 两点的坐标(⽤含 m 的代数式表⽰);CE(2 )求的值;AE物线和直线BE 的解析式.且OB = OC ⼆3OA . (I )求抛物线的解析式;(II) 探究坐标轴上是否存在点 P ,使得以点P,代C 为顶点的三⾓形为直⾓三⾓形?若存在,求出P 点坐标,若不存在,请说明理由;1(III) 直线y x 1交y 轴于D 点,E 为抛物线顶(3)当C 、A 两点到y 轴的距离相等,且SCED答案: (1) A (-m , 0), B ( 2m , 0).(2) CEAE(3) 抛物线的解析式为 y = -X 22x 8 .直线BE 的解析式为4丄16 y x3310.(崇⽂ 09)如图,抛物线y =ax 2bx - 3与x 轴交于A, B 两点,与y 轴交于点C ,求抛3点?若.DBC ⼆:…CBE = ■-,求爲「?的值. 答案:(I )y = x 2-2x-3(II )R(0,1)P 2(9,0) , P 3(0,0)3(IIIDBO EOBC =45 .11. (11.6东城)如图,已知在平⾯直⾓坐标系xOy 中,直⾓梯形 OABC 的边0A 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA = AB = 2, OC = 3,过点B 作BD 丄BC ,交OA于点D .将/ DBC 绕点B 按顺时针⽅向旋转,⾓的两边分别交正半轴于点E 和F .(1) 求经过A 、B 、C 三点的抛物线的解析式; (2) 当BE 经过(1)中抛物线的顶点时,求 CF 的长;(3) 在抛物线的对称轴上取两点 P 、Q (点Q 在点P 的上⽅),且PQ = 1,要使四边形 BCPQ 的周长最⼩,求出 P 、Q 两点的坐标.答案:(1) y - -2x 24x 2 .333⼀ 2(3)点P 的坐标为(1,3、与⾯积有相关12. ( 11.6通县)已知如图, AABC 中,AC =BC , BC 与x 轴平⾏,点 A 在x 轴上,点 C 在y 轴上,抛物线y =ax 2 -5ax - 4经过:ABC 的三个顶点,(1) 求出该抛物线的解析式;(2) 若直线y ⼆kx 7将四边形 ACBD ⾯积平分,求此直线的解析式 .(3) 若直线y =kx b 将四边形ACBD 的周长和⾯积同时分成相等的两部分,请你确定y = kx ? b 中k 的取值范围.2 2 4⑵由 y 「2x 3x 2 =- 2(x-1)2 8 3 3CF = FM + CM y 轴的正半轴、x 轴的。
中考数学专题2024代数历年题目解析
中考数学专题2024代数历年题目解析代数作为数学的一个重要分支,是中考数学考试的重点内容之一。
通过掌握代数知识和解题技巧,可以更好地应对中考数学考试中的代数题目。
下面,本文将结合2024年中考数学实际题目,进行代数题目的历年解析,帮助同学们更好地理解和掌握代数知识。
一、线性方程组在中考数学中,线性方程组是一个常见的代数问题。
以下是2024年中考数学中的一道线性方程组题目:【题目】解方程组$$\begin{cases}2x-y=3\\x+y=5\end{cases}$$【解析】该方程组为二元一次方程组。
我们可以使用消元法或代入法进行求解。
方法一:消元法将第二个方程的等式两边同乘2,得到$2(x+y)=2 \times 5\Rightarrow 2x+2y=10$。
将该式与第一个方程相减,消去$y$,得到:$$(2x+2y)-(2x-y)=10-3$$$$3y=7$$$$y=\frac{7}{3}$$代入第二个方程,得到:$$x+ \frac{7}{3} = 5$$$$x = 5- \frac{7}{3}$$$$x = \frac{8}{3}$$所以,方程组的解为:$x=\frac{8}{3}$,$y=\frac{7}{3}$。
方法二:代入法由第二个方程可得:$y=5-x$。
将该式代入第一个方程,得到:$2x-(5-x)=3$,化简得:$x=\frac{8}{3}$。
代入第二个方程,得到:$y=5-\frac{8}{3}=\frac{7}{3}$。
所以,方程组的解为:$x=\frac{8}{3}$,$y=\frac{7}{3}$。
二、因式分解在代数题目中,因式分解是一个常见的解题方法。
以下是2024年中考数学中的一道因式分解题目:【题目】将多项式$3x^2-x-4$分解因式。
【解析】要想将多项式$3x^2-x-4$分解因式,我们需要找出其因式的组合,使得两个因式的乘积可以得到原多项式。
观察该多项式,可以发现它是一个二次多项式,可以用因式定理来进行分解。
中考数学-几何与代数综合专题(含答案)
题型:反比例函数专题题型说明:自从2010年北京中考第23题考查了反比例函数的知识以来,各区县模拟考试题中就开始出现了很多反比例函数的类型题,但是不管如何考查,都基本上会涉及几何变换,数形结合,方程与不等式,整体思想等。
【例1】已知:反比例函数()0ky k x=≠经过点(11)B ,. ⑴求该反比例函数解析式;⑵联结OB ,再把点(20)A ,与点B 连结,将OAB ∆绕点O 按顺时针方向旋转135︒得到''OA B ∆,写出''A B 的中点P 的坐标,试判断点P 是否在此双曲线上,并说明理由;⑶若该反比例函数图象上有一点(1)F m -(其中0m >),在线段OF 上任取一点E ,设E 点的纵坐标为n ,过F 点作FM x ⊥轴于点M ,连结EM ,使OEM ∆的面积是2,求代数式2n +-【答案】⑴反比例函数解析式:1y x=⑵∵已知(11)B ,,(20)A , ∴OAB ∆是等腰直角三角形∵顺时针方向旋转135°,∴'(0B,'(A - ∴中点P为(2. ∵((1⋅= ∴点P 在此双曲线上. ⑶∵EH n = ,OM m =例题精讲代数综合(二)∴OEM S ∆=EH OM ⋅21=mn 21=2,∴m = 又∵(1)F m -在函数图象上∴)123(-m m =1. 将m21=∴2n =∴2n +-【例2】如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N . ⑴求直线DE 的解析式和点M 的坐标; ⑵若反比例函数y =xm(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上; ⑶若反比例函数y =xm(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围. 【答案】⑴设直线DE 的解析式为y =kx +b∵点D ,E 的坐标为(0,3)、(6,0), ∴⎩⎨⎧b k b+== 603 解得⎪⎩⎪⎨⎧321 ==b k -∴直线DE 的解析式为y =-21x +3 ∵点M 在AB 边上,B (4,2),而四边形OABC 是矩形,∴点M 的纵坐标为2 又∵点M 在直线y =-21x +3上,∴2=-21x +3,∴x =2,∴M (2,2) ⑵∵y =xm (x >0)经过点M (2,2),∴m =4,∴y =x 4又∵点N 在BC 边上,B (4,2),∴点N 的横坐标为4 ∵点N 在直线y =-21x +3上,∴y =1 ∴ N (4,1) ∵当x =4时,y =x 4=1,∴点N 在函数y =x4的图象上 ⑶48m ≤≤【例3】如图,已知直线y =-2x +b 与双曲线y =xk(k >0且2k ≠)相交于第一象限内的两点P (1,k )、Q (22-b ,y 2) ⑴求点Q 的坐标(用含k 的代数式表示)⑵过P 、Q 分别作坐标轴的垂线,垂足为A 、C ,两垂线相交于点B .是否存在这样的k 值,使得△OPQ 的面积等于△BPQ 面积的二倍?若存在,求k 的值;若不存在,请说明理由 (P 、Q 两点请自己在图中标明)【答案】⑴∵P (1,k )在直线y =-2x +b 上,∴k =-2+b∴b -2=k ∵Q (22-b ,y 2)在双曲线y =x k上,∴y 2=22-b k =2∴22-b =2k∴点Q 的坐标为(2k,2)⑵由P (1,k )、Q (2k,2)可知P 为AB 与双曲线的交点,Q 为BC 与双曲线的交点 S △OPQ=S 矩形OABC-S △AOP -S △COQ -S △BPQ =1×2-21×1×k -21×2k ×2-21×(1-2k )(2-k ) =1-41k2 假设存在这样的k 值,使得△OPQ 的面积等于△BPQ 面积的二倍,则有 1-41k2=2×21×(1-2k)(2-k ) 整理得:3k2-8k +4=0解得:k =2(不合题意,舍去)或23k =, 故存在k =32,使得△OPQ 的面积等于△BPQ 面积的二倍 【例4】如图,直线y =21x +b 分别与x 轴、y 轴相交于A 、B ,与双曲线y =xk(其中x >0)相交于第一象限内的点P (2,y 1),作PC ⊥x 轴于C ,已知△APC 的面积为9. ⑴求双曲线所对应的函数关系式;⑵在⑴中所求的双曲线上是否存在点Q (m ,n )(其中m >0),作QH ⊥x 轴于H ,当QH>CH时,使得△QCH 与△AOB 相似?若存在,请求出Q 点坐标;若不存在,请说明理由.【答案】⑴y =0代入y =21x +b ,得x =-2b ∴A (-2b ,0)把x =2代入y =21x +b ,得y 1=1+b ,∴P 由题意得:S △APC=21AC ·PC =21(2+2b )(1+b )=9 整理得:(1+b )2=9,解得b =-4(舍去)或b =2 ∴P (2,3),把P (2,3)代入y =x k,得k =6 ∴双曲线所对应的函数关系式为y =x6 ⑵由⑴知AO =4,BO =2,设Q (m ,m6) 当点Q 在点P 左侧时,CH =2-m ,QH =m 6若△QCH ∽△ABO ,则有BO CH =AO QH ,即22m -=46m整理得:m2-2m +3=0,此方程无实数解当点Q 在点P 右侧时,CH =m -2,QH =m6 若△QCH ∽△ABO ,则有BO CH =AO QH ,即22-m =46mm2-2m -3=0,解得m =-1(负值,舍去)或m =3当m =3时,CH =1,QH =2,QH>CH ,符合题意∴Q (3,2)综上所述,存在点Q (3,2),使得△QCH 与△AOB 相似【例5】如图,直线1y k x b =+与反比例函数y =xk 2(x >0)的图象交于A (1,6),B (a ,3)两点. (1)求k 1、k 2的值; (2)直接写出k 1x +b -xk 2>0时x 的取值范围;0 (3)如图,等腰梯形OBCD 中,BC ∥OD ,OB =CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.【答案】(1)由题意知:k 2=1×6=6∴反比例函数的解析式为y =x6 又B (a ,3)在y =x6的图象上,∴a =2,∴B (2,3) ∵直线y =k 1x +b 过A (1,6),B (2,3)两点 ∴⎩⎨⎧32611 =+=+b k b k 解得⎩⎨⎧93 1 ==-b k(2)x 的取值范围为1<x<2(3)当S 梯形OBCD=12时,PC =PE设点P 的坐标为(m ,n ),∵BC ∥OD ,CE ⊥OD ,OB =CD ,B (2,3) ∴C (m ,3),CE =3,BC =m -2,OD =m +2 ∴S 梯形OBCD=21(BC +OD )·CE ,即12=21×(m -2+m +2)×3∴m =4,mn =6,∴n =23,即PE =21CE∴PC =PE【例6】在平面直角坐标系中,函数y =xm(x >0,m 是常数)的图象经过点A (1,4)、点B (a ,b ),其中a >1.过点A 作x 轴的垂线,垂足为C ,过点B 作y 轴的垂线,垂足为D ,AC 与BD 相交于点M ,连结AD 、DC 、CB 与AB . ⑴求m 的值; ⑵求证:DC ∥AB ;⑶当AD =BC 时,求直线AB 的函数解析式【答案】⑴∵点A (1,4)在函数y =xm图像上 ∴4=1m,∴m =4 ⑵∵点B (a ,b )在函数y =x4图像上 ∴B (a ,a 4),∴D (0,a4) 又∵A (1,4),∴C (1,0),M (1,a4) ∴DM =1,MB =a -1,AM =4-a 4,MC =a4 ∴MC DM =a 4,AM MB =aa 441--=a 4 ∴MC DM =AMMB∵∠DMC =∠BMA∴△CDM ∽△ABM ∴∠DCA =∠BAC ∴DC ∥AB ⑶设直线AB 的函数解析式为y =kx +b∵DC ∥AB ,AD =BC∴四边形ABCD 为平行四边形或等腰梯形 情况①:四边形ABCD 为平行四边形则DM =MB ,∴1=a -1,∴a =2 ∴B (2,2)∵点A (1,4)、B (2,2)在直线AB 上∴⎩⎪⎨⎪⎧k +b =42k +b =2 解得⎩⎪⎨⎪⎧k =-2b =6 ∴直线AB 的函数解析式为y =-2x +6情况②:四边形ABCD 为等腰梯形则AC =BD ,∴a =4∴B (4,1)∵点A (1,4)、B (4,1)在直线AB 上∴⎩⎪⎨⎪⎧k +b =44k +b =1 解得⎩⎪⎨⎪⎧k =-1b =5 ∴直线AB 的函数解析式为y =-x +5综上所述,直线AB 的函数解析式为y =-2x +6或y =-x +5【例7】如图,在平面直角坐标系中,已知A (1,0),B (0,1),E 、F 是线段AB 上的两个动点,且∠EOF=45°,过点E 、F 分别作x 轴和y 轴的垂线CE 、DF 相交于点P ,垂足分别为C 、D .设P 点的坐标为(x ,y ),令x y =k . ⑴求证:△AOF ∽△BEO ; ⑵当OC =OD 时,求k 的值;⑶在点E 、F 运动过程中,点P 也随之运动,探索:k 是否为定值?请证明你的结论.【答案】⑴证明:由已知得OA =OB =1,∠AOB =90°∴∠OAF =∠OBE =45°,又∵∠OF A =∠ABO +∠BOF =∠EOF +∠BOF =∠EOB ∴△AOF ∽△BEO⑵解:如图,过O 作OM ⊥AB 于M ,则OM =21AB =22∵OA =OB =1,OC =OD ,∴AC =BD ,∴CE =DF 又∠OCE =∠ODF =90°,∴△OCE ≌△ODF ∴OE =OF ,∴△EOF 是等腰三角形,∠EOM =21∠EOF =22.5° 而∠COE =∠AOM -∠EOM =45°-22.5°=22.5°=∠EOM ∠OCE =∠OME =90°,OE =OE ,∴△OCE ≌△OME∴OC =OM =22,∴PC =PD =OC =22 ∴k =x y =PD ·PC =21(3)k 为定值如图,过E 作EH ⊥OB 于H ,过F 作FK ⊥OA 于K 由△AOF ∽△BEO 得OB AF =BEOA,∴AF ·BE =OA ·OB =1 又AF =2FK ,BE =2HE ,∴2HE ·2FK =1 ∴HE ·FK =21,∴PD ·PC =HE ·FK =21,∴k 为定值21【例8】如图,点P (a ,b )和点Q (c ,d )是反比例函数y =x1在第一象限内图象上的两个动点(a b <,a c ≠),且OP =OQ .P 1是点P 关于y 轴的对称点,Q 1是点Q 关于x 轴的对称点,连接P 1Q 1分别交OP 、OQ 于点M 、N . ⑴求证:a =d ,b =c ; ⑵求证:11PQ PQ ∥;⑶设四边形PQNM 的面积为S .①求S 关于a 的函数关系式; ②是否存在这样的点P ,使得S =58?若存在,求出点P 的坐标;若不存在,请说明理由. 【答案】(1)∵P (a ,b ),Q (c ,d ),OP =OQ ,∴a2+b2=c2+d2又∵b =a 1,d =c 1,∴a2+(a 1)2=c2+(c1)2整理得(ac +1)(ac -1)(a +c )(a -c )=0 ∵a >0,c >0,且a ≠c ,∴ac =1 从而可得a =d ,b =c(2)证明:分别延长P 1P 、Q 1Q 相交于点A , 过点P 1、Q 1分别作x 轴、y 轴的垂线相交于点B 由(1)知AP =AQ =b -a ,AP 1=AQ 1=b +a ∴∠APQ =∠AP 1Q 1=45° ∴PQ ∥P 1Q 1(3)解:①易得P 1、Q 1的坐标分别为(-a ,b )、(b ,-a ) ∴S 梯形PP 1Q 1Q=S △AP 1Q 1-S △APQ =21(b +a )2-21(b -a )2=2ab =2 设直线P 1Q 1的解析式为y =kx +n则⎩⎪⎨⎪⎧-ak +n =b bk +n =-a 解得⎩⎪⎨⎪⎧k =-1n =b -a ∴直线P 1Q 1的解析式为y =-x +b -a 由已知可得直线OP 的解析式为y =abx 联立⎩⎪⎨⎪⎧y =-x +b -a y =abx 得x =b a a b a +-)( ,y =b a a b b +-)( 即点M 的坐标为(b a a b a +-)( ,ba ab b +-)( ) ∴S △PP 1M=21×2a ×[b -b a a b b +-)( ]=b a b a +22=ba a+2 由对称性可知S △QQ 1M=S △PP 1M=ba a +2 ∴S 四边形PQNM=S 梯形PP 1Q 1Q-2S △PP 1M=2-2×b a a+2=12222+-a a②假设存在这样的点P ,则12222+-a a =58,解得a =±31∵a >0,∴a =31,∴b =3∴存在满足条件的点P ,点P 的坐标为(31,3)【例9】如图,矩形ABCD (点A 在第一象限)与x 轴的正半轴相交于M ,与y 的负半轴相交于N ,AB ∥x轴,反比例函数y =xk的图象过A 、C 两点,直线AC 与x 轴相交于点E 、与y 轴相交于点F . (1)若B (-3,3),直线AC 的解析式为y =ax +b①求a 的值;②连结OA 、OC ,若△OAC 的面积记为S △OAC,△ABC 的面积记为S △ABC,记S =S △ABC-S △OAC,问S 是否存在最小值?若存在,求出其最小值;若不存在,请说明理由; (2)AE 与CF 是否相等?请证明你的结论.【答案】(1)①方法一:∵四边形ABCD 是矩形,AB ∥x 轴,B (-3,3) ∴A (3k ,3),C (-3,-3k) ∵y =ax +b 经过A 、C 两点∴⎩⎪⎨⎪⎧3ka +b =3-3a +b =-3k ∴(3k +3)a =3k +3∵k >0,∴3k+3≠0,∴a =1 方法二:∵四边形ABCD 是矩形,AB ∥x 轴,B (-3,3) ∴A (3k ,3),C (-3,-3k ),D (3k ,-3k) ∴AB =3k +3,AD =3k+3,∴AB =AD ,∴四边形ABCD 是正方形 ∴∠AEO =∠ACD =45°,∴OE =OF =b ∴E (-b ,0),∴-ab +b =0 ∵b ≠0,∴a =1②∵S =S △ABC-S △OAC=S △ACD-S △OAC=S △AOM+S △CON+S 矩形ONDM=21×3k ×3+21×3×3k +3k ×3k =91k2+k =91(k +29)2-49∴当k >-29时,S 随着k 的增大而增大 又∵k >0,k 没有最小值,∴S 没有最小值 (2)答:AE =CF ,理由如下: 方法一:如图,连接MN ,设AB 交y 轴于点P ,BC 交x 轴于点Q∵S 矩形APOM=S 矩形CQON=3k ×3=k ,∴DN ·AD =DM ·CD ∴CD DN =ADDM,又∵∠D =∠D ,∴△DNM ∽△DCA ∴∠DNM =∠DCA ,∴MN ∥AF又∵AM ∥FN ,∴四边形AFNM 是平行四边形,∴AF =MN 同理CE =MN ,∴AF =CE ∴AE =CF 方法二:设A (m ,m k ),C (n ,n k ),则AM =m k ,AD =m k -nk,CN =-n ,CD =m -n∵EM ∥CD ,∴△AEM ∽△ACD ,∴AC AE =AD AM =n k m k mk -=nk m k mk -=m n n- ∵FN ∥AD ,∴△CFN ∽△CAD ,∴AC CF =CDCN =n m n --=m n n- ∴AC AE =ACCF,∴AE =CF 方法三:设A (m ,mk ),C (n ,n k ),则M (m ,0)、N (0,n k)从而⎩⎪⎨⎪⎧ma +b =m kna +b =nk ∴(m -n )a =m k -nk∴a =-mn k ,∴b =mn k n m )(+,∴直线AC 的解析式为y =-mn k x +mnkn m )(+ ∴E (m +n ,0),∴EM =m -(m +n )=-n ,∵CN =-n ,∴EM =CN ∵EM ∥BA ∥CN ,∴∠AEM =∠FCN又∵∠AME =∠FNC =90°,∴△AEM ≌△FCN ∴AE =CF【例10】已知二次函数23(0)2y ax bx a =+-≠的图象经过点(10),和(30)-,,反比例函数1ky x=(0x >)的图象经过点(1,2).(1)求这两个函数的解析式,并在给定的直角坐标系中作出这两个函数的图象; (2)若反比例函数1k y x =(0x >)的图象与二次函数23(0)2y ax bx a =+-≠的图象在第一象限内交于点00()A x y ,,0x 落在两个相邻的正整数之间.请你观察图象写出这两个相邻的正整数; (3)若反比例函数2k y x=(00k x >>,)的图象与二次函数23(0)2y ax bx a =+-≠的图象在第一初中数学.中考冲刺.第06讲.教师版 Page 11 of 11 象限内的交点为A ,点A 的横坐标0x 满足023x <<,试求实数k 的取值范围.【答案】(1)把(10),和(30)-,分别代入23(0)2y ax bx a =+-≠解方程组,得 12a =,1b = ∴ 抛物线解析式为23212-+=x x y ∵ 反比例函数1k y x =的图象经过点(1,2),∴ k =2. ∴ 12y x= (2)正确的画出二次函数和反比例函数在第一象限内的图象 由图象可知,这两个相邻的正整数为1与2.(3)由函数图象或函数性质可知:当23x <<时,对23212-+=x x y ,y 随着x 的增大而增大,对2(0)k y k x=>,2y 随着x 的增大而减小.因为00()A x y ,为二次函数图象与反比例函数图象的交点,所以当02x =时,由反比例函数图象在二次函数的图象上方,得2y y > 即2k >2322212-+⨯,解得5k >. 同理,当03x =时,由二次函数的图象在反比例函数图象上方的,得2y y >, 即2333212-+⨯>3k ,解得18k <. 所以k 的取值范围为518k <<.。
初中数学代数综合题中考专题解说
… …
根据以上促销方法,顾客在该商场购物可获得双重优惠 例如 根据以上促销方法 顾客在该商场购物可获得双重优惠.例如 顾客在该商场购物可获得双重优惠 例如, 购买标价为450元的商品 则消费金额为 元的商品,则消费金额为 购买标价为 元的商品 则消费金额为:450×0.8=360(元), ×0.8=360(元 获得优惠金额为:450 0.2+30=120(元 :450× 获得优惠金额为:450×0.2+30=120(元)
问题4、某工厂生产某种产品,每件产品的出厂价为 万元 万元, 问题 、某工厂生产某种产品,每件产品的出厂价为1万元, 某原材料成本价(含设备损耗等) 万元,同时在生产 某原材料成本价(含设备损耗等)为0.55万元 同时在生产 万元 过程中平均每生产一件产品有1吨的废渣产生 吨的废渣产生.为达到国家环 过程中平均每生产一件产品有 吨的废渣产生 为达到国家环 保要求,需要对废渣进行脱流、脱氧等处理,现有两种方案可 保要求 需要对废渣进行脱流、脱氧等处理 现有两种方案可 需要对废渣进行脱流 供选择. 供选择 方案1:由工厂对废渣直接进行处理 每处理1吨废渣所用的原 方案 由工厂对废渣直接进行处理,每处理 吨废渣所用的原 由工厂对废渣直接进行处理 每处理 料费为0.05万元 并且每月设备维护及损耗费为 万元 万元,并且每月设备维护及损耗费为 万元; 料费为 万元 并且每月设备维护及损耗费为20万元 方案2:工厂将废渣集中到废渣处理厂统一处理 每处理1吨废 方案 工厂将废渣集中到废渣处理厂统一处理,每处理 吨废 工厂将废渣集中到废渣处理厂统一处理 每处理 渣需付0.1万元的处理费 万元的处理费. 渣需付 万元的处理费 试问:(1)设工厂每月生产 件产品,每月利润为y万元,分别 试问 设工厂每月生产x件产品,每月利润为 万元, 设工厂每月生产 件产品 万元 求出方案1和方案 处理废渣时, 与 之间的关系式 利润= 和方案2处理废渣时 之间的关系式( 求出方案 和方案 处理废渣时,y与x之间的关系式(利润 总收入-总支出); 总收入-总支出); (2)若你是工厂负责人,如何根据月生产量选择处理方案, )若你是工厂负责人,如何根据月生产量选择处理方案, 既可以达到环保要求又合算。 既可以达到环保要求又合算。 答:(1) y1=0.4x-20 y2=0.35x
中考数学复习专题 代数与几何综合(含答案)
5. 如图 2-5-16,在矩形 ABCD 中,AB=10。cm,BC=8cm.点 P 从 A 出发,沿 A→B→C→D 路线运动,到 D 停止;点 Q 从 D 出发,沿 D→C→B→A 路线运动,到 A 停止,若点 P、 点 Q 同时出发,点 P 的速度为 1cm/s,点 Q 的速度为 2cm/s,a s 时点 P、点 Q 同时改变 速度,点 P 的速度变为 bcm/s,点 Q 的速度变为 d cm/s,图 2-5-17 是点 P 出发 x 秒 后△APD 的面积 S1(cm2)与 x(s)的函数关系图象;图 2-5-18 是点 Q 出发 xs 后面 AQD 的面积 S2(cm2)与 x(s)的函数关系图象. ⑴ 参照图 2-5-17,求 a、b 及图中 c 的值; ⑵ 求 d 的值; ⑶ 设点 P 离开点 A 的路程为 y1(cm),点 Q 到点 A 还需走的路程为 y2(cm),请分别写出 动点 P、Q 改变速度后,y1、y2 与出发后的运动时间 x(s)的函数解析式,并求出 P、 Q 相遇时 x 的值. ⑷ 当点 Q 出发_______s 时,点 P、点 Q 在运动路线上相距的路程为 25cm.
第- 6 -页 共 8 页
答案 一、ABDCB DAACD
二、1、 3 2、 2 -1
三、1、(1)y=- 1 x2+x 2
3、 11
6
4、(-502,502)
(2)x 取最大整数为-1,∴ y=- 1 ×(-1)2-1=– 3 ∴AC= 3
2
2
2
由△BOQ∽△CAQ,可得 BO = OQ
AC AQ
C. y x
D. y 3 x 2
7.如图,反比例函数 y 4 的图象与直线 y 1 x 的
中考数学复习考点题型专题训练4---代数与几何综合题
(1)当 0≤t≤3 时,t=________,EF= 10. (2)当 0≤t≤3 时(如图①),求 S 与 t 的函数关系式,并化为 S=a(t-h)2+k 的形式, 指出当 t 为何值时,S 有最大值,最大值为多少? (3)当 3≤t≤8 时(如图②),求 S 与 t 的函数关系式,并求出当 t 为何值时,S 有最 大值,最大值为多少?
y 3-x ∴x= 3 ,
∴y=-
1 3
(x-32)2+43,
∵-
1 3
3 <0,∴x=2时,y
3 的最大值为4;
(3)如解图,作 FH⊥AB 于点 H.∵CB=CA,BD=CD,∠BCA=90°,
∴CD⊥AB,CD=BD=AD=3,
DE 3 ∴tan∠DCE=CD= 3 ,
∴∠DCE=30°,
∵四边形 EFGC 是正方形,
第 1 题解图
2 / 27
2. 已知,在 Rt△ABC 中,∠ACB=90°,BC=AC,AB=6,D 是 AB 的中点, 动点 E 从点 D 出发,在 AB 边上向左或右运动,以 CE 为边向左侧作正方形 CEFG, 直线 BG,FE 相交于点 N(点 E 向左运动时如图①,点 E 向右运动时如图②). (1)在点 E 的运动过程中,直线 BG 与 CD 的位置关系为________; (2)设 DE=x,NB=y,求 y 与 x 之间的函数关系式,并求出 y 的最大值; (3)如图②,当 DE 的长度为 3时,求∠BFE 的度数.
中考数学复习考点题型专题训练 代数与几何综合题
类型一 动点型探究题 1. 如图①,已知 Rt△ABC 中,∠C=90°,AC=8 cm,BC=6 cm,点 P 由 B 出 发沿 BA 方向向点 A 匀速运动,同时点 Q 由 A 出发沿 AC 方向向点 C 匀速运动, 它们的速度均为 2 cm/s.以 AQ、PQ 为边作四边形 AQPD,连接 DQ,交 AB 于 点 E.设运动的时间为 t(单位:s)(0<t≤4),解答下列问题: (1)用含有 t 的代数式表பைடு நூலகம் AE=____; (2)如图②,当 t 为何值时,四边形 AQPD 为菱形; (3)求运动过程中,四边形 AQPD 的面积的最大值.
九年级数学专题复习代数综合问题
中考冲刺:代数综合问题【中考展望】初中代数综合题,主要以方程、函数这两部分为重点,因此牢固地掌握方程与不等式的解法、一元二次方程的解法和根的判别式、函数的解析式的确定及函数性质等重要基础知识,是解好代数综合题的关键.在许多问题中,代数和几何问题交织在一起,就要沟通这些知识之间的内在联系,以数形结合的方法找到解决问题的突破口.通过解综合题有利于透彻和熟练地掌握基础知识和基本技能,更深刻地领悟数学思想方法,提高分析问题和解决问题的能力.【方法点拨】(1)对“数学概念”的深刻理解是解综合题的基础;(2)认识综合题的结构是解综合题的前提;(3)灵活运用数学思想方法是解综合题的关键;(4)帮助学生建立思维程序是解综合题的核心.* 审题(读题、断句、找关键);* 先宏观(题型、知识块、方法);后微观(具体条件,具体定理、公式)* 由已知,想可知(联想知识);由未知,想须知(应具备的条件),注意知识的结合;* 观察——挖掘题目结构特征;联想——联系相关知识网络;突破——抓往关键实现突破;寻求——学会寻求解题思路.(5)准确计算,严密推理是解综合题的保证.【典型例题】类型一、函数综合例1.已知函数2yx和y=kx+1(k≠0).(1)若这两个函数的图象都经过点(1,a),求a和k的值;(2)当k取何值时,这两个函数的图象总有公共点?【变式】如图,一元二次方程0322=-+x x 的两根1x ,2x (1x <2x )是抛物线)0(2≠++=a c bx ax y 与x 轴的两个交点B ,C 的横坐标,且此抛物线过点A (3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标; (3)在x 轴上有一动点M ,当MQ+MA 取得最小值时,求M 点的坐标.类型二、函数与方程综合例2.已知关于x 的二次函数2212m y x mx +=-+与2222m y x mx +=--,这两个二次函数的图象中的一条与x 轴交于A ,B 两个不同的点.(1)试判断哪个二次函数的图象经过A ,B 两点;(2)若A 点坐标为(-1,0),试求B 点坐标;(3)在(2)的条件下,对于经过A ,B 两点的二次函数,当x 取何值时,y 的值随x 值的增大而减小?xyO【变式】已知关于x 的一元二次方程mx 2+(3m +1)x +3=0. (1)求证该方程有两个实数根;(2)如果抛物线y =mx 2+(3m +1)x +3与x 轴交于A 、B 两个整数点(点A 在点B 左侧),且m 为正整数,求此抛物线的表达式;(3)在(2)的条件下,抛物线y =mx 2+(3m +1)x +3与y 轴交于点C ,点B 关于y 轴的对称点为D ,设此抛物线在-3≤x ≤12之间的部分为图象G ,如果图象G 向右平移n (n >0)个单位长度后与直线CD 有公共点,求n 的取值范围.类型三、以代数为主的综合题例3.如图所示,在直角坐标系中,点A的坐标为(-2,0),将线段OA绕原点O顺时针旋转120°得到线段OB.(1)求点B的坐标;(2)求经过A,O,B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.例4.在平面直角坐标系xOy 中,抛物线()210y axbx a =++≠过点()1,0A -,()1,1B ,与y 轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.举一反三:【变式】如图所示,抛物线23y ax bx =++与y 轴交于点C ,与x 轴交于A ,B 两点,1tan 3OCA ∠=,6ABC S =△.(1)求点B 的坐标;(2)求抛物线的解析式及顶点坐标;(3)若E 点在x 轴上,F 点在抛物线上,如果A ,C ,E ,F 构成平行四边形,直接写出点E 的坐标.例5.已知函数y 1=x ,y 2=x 2+bx+c ,α,β为方程120y y -=的两个根,点M(t ,T)在函数y 2的图象上.(1)若13α=,12β=,求函数y 2的解析式; (2)在(1)的条件下,若函数y 1与y 2的图象的两个交点为A ,B ,当△ABM 的面积为3112时,求t 的值; (3)若0<α<β<1,当0<t <l 时,试确定T ,α,β三者之间的大小关系,并说明理由.【巩固练习】 一、选择题1. 如图,已知在直角梯形AOBC 中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC 、AB 交于点D ,点E 、F 、G 分别是CD 、BD 、BC 的中点,以O 为原点,直线OB 为x 轴建立平面直角坐标系,则G 、E 、D 、F 四个点中与点A 在同一反比例函数图象上的是 ( )A .点GB .点EC .点D D .点F2.已知函数y=()⎪⎩⎪⎨⎧>--≤--)3(1)5(31)1(22x x x x ,若使y=k 成立的x 值恰好有三个,则k 的值为 ( )A .0B .1C .2D .33.已知二次函数y=ax 2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc <0;②4ac ﹣b 2=0;③a >2;④4a ﹣2b+c >0.其中正确的个数是( )A .1B .2C .3D .4二、填空题4.若a+b-21a --42b -=33c --12c-5,则a+b+c 的值为 .5.已知关于x 的方程x 2+(k-5)x+9=0在1<x <2内有一实数根,则实数k 的取值范围是 .6.关于x 的方程,2kx 2-2x-3k=0的两根一个大于1,一个小于1,则实数k 的的取值范围是 .三、解答题7.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根x 1、x 2. (1)求实数k 的取值范围.(2)若方程两实根x 1、x 2满足x 1+x 2=﹣x 1•x 2,求k 的值.8. 已知关于x 的一元二次方程()0312=-+--m x m x .(1)求证:不论m 取何值时,方程总有两个不相等的实数根.(2)若直线()31+-=x m y 与函数m x y +=2的图象1C 的一个交点的横坐标为2,求关于x 的一元二次方程()0312=-+--m x m x 的解.(3)在(2)的条件下,将抛物线()312-+--=m x m x y 绕原点旋转︒180,得到图象2C ,点P为x 轴上的一个动点,过点P 作x 轴的垂线,分别与图象1C 、2C 交于N M 、两点,当线段MN 的长度最小时,求点P 的坐标.9. 抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n .① 判断mn 的符号;② 若抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (点A 在点B 左侧), 请说明116x <,2112x <<.10. 已知:二次函数y=22(2)x n m x m mn +-+-. (1)求证:此二次函数与x 轴有交点;(2)若m-1=0,求证方程22(2)0x n m x m mn +-+-=有一个实数根为1;(3)在(2)的条件下,设方程22(2)0x n m x m mn +-+-=的另一根为a,当x=2时,关于n 的函数1y nx am =+与222(2)y x n m ax m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线L 与1y nx am =+、222(2)y x n m ax m mn =+-+-的图象分别交于点C 、D ,若CD=6,求点C 、D 的坐标.。
中考数学总复习专题四代数综合题(课堂本)课件新人教版
例1(2015•广东)如图,反比例函数
y
k x
( k ≠ 0 ,x> 0 )的图
象与直线 相交于点C,过直线上点A(1,3)作 AB⊥x轴
于点B,交反比例函数图象于点D,且AB=3BD.
(1) 求k的值;
(2) 求点C的坐标;
(3) 在y轴上确实一点M,使点M到C、D两点距离之和
d=MC+MD,求点M的坐标.
x 4 ×3=3,即 =2,
解得:x=﹣2或x=﹣6,
则P坐标为(﹣2,0)或(﹣6,0).
3.(2016•湘西州)如图,已知反比例函数y=
k x
的图象
与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交
点为B.
(1)求反比例函数和直线的解析式;
(2)求△AOB的面积.
k
解:(1)把A(1,4)代入y= 所以反比例函数的解析式为y=
x
得k=1×4=4, 4;
把A(1,4)代入y=﹣x+b得﹣1+bx =4,解得b=5,
所以直线解析式为y=﹣x+5;
(2)当y=0时,﹣x+5=0,解得x=5,则B(5,0),
所以△AOB的面积=
1 2
×5×4=10.
4交.于(点2A0,16B•,金与华反)比如例图函,数直y线=y=kx (3 3 kx>﹣0)3 与 图象x,交y于轴点分C别, D,过点A作x轴的垂线交该反比例函数图象于点E. (1)求点A的坐标. (2)若AE=AC. ①求k的值. ②试判断点E与点D是否关于原点O成中心对称?并说明理 由.
2a b 4
b2
∴一次函数的表达式为y=x+2.
(2)令y=x+2中x=0,则y=2,
【初三数学】代数几何综合题(含答案)(共15页)
代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。
例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。
解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。
关键是搞清楚用坐标表示的数与线段的长度的关系。
练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。
(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。
人教版数学中考专题:代数几合综合问题含答案完整版
人教版数学中考专题:代数几合综合问题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】中考数学专题:代数几何综合问题一、填空题1. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的 C点的坐标为______________.2.如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是______.二,选择题3.如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A. B.B. D.C.D. 4. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为()E.?F.G.三、解答题H. 5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以厘米/秒的速度沿BC向终点C运动.过点P作I.PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).J.(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;K.(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?L.(3)当t为何值时,△EDQ为直角三角形.M.N.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)O.(1)求线段AB的长;当t为何值时,MN∥OC?P.(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?Q.R.7. 条件:如下图,A、B是直线l同旁的两个定点.S.T.问题:在直线l上确定一点P,使PA+PB的值最小.U.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).V.模型应用:W.(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;X.(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;Y.(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB 上的动点,求△PQR周长的最小值.Z.8.如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x 轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.9.(1)求N点、M点的坐标;10.(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;11.(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;12.②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S 是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.13.14.9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10. (2018?成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a <0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y 轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.11. 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M 为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F 是否在直线NE上?请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.?【答案与解析】一、填空题1.【答案】(0,0),(0,10),(0,2),(0,8)2.【答案】(2×3n﹣1,0).【解析】∵点B1、B2、B3、…、Bn在直线y=2x的图象上,∴A1B1=4,A2B2=2×(2+4)=12,A3B3=2×(2+4+12)=36,A4B4=2×(2+4+12+36)=108,…,∴An Bn=4×3n﹣1(n为正整数).∵OAn =AnBn,∴点An的坐标为(2×3n﹣1,0).故答案为:(2×3n﹣1,0).二、选择题3.【答案】A.【解析】分两种情况:①当0≤t<4时,作OG⊥AB于G,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,AD=AB=BC=4cm,∵O是正方形ABCD的中心,∴AG=BG=OG=AB=2cm,∴S=AP?OG=×t×2=t(cm2),②当t≥4时,作OG⊥AB于G,如图2所示:S=△OAG的面积+梯形OGBP的面积=×2×2+(2+t﹣4)×2=t(cm2);综上所述:面积S(cm2)与时间t(s)的关系的图象是过原点的线段,故选A.4.【答案】A.三、解答题5.【答案与解析】解:(1)能,如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以厘米/秒的速度沿BC向终点C运动,t=1秒∴AP=1,BQ=,∵AC=4,BC=5,点D在BC上,CD=3,∴PC=AC-AP=4-1=3,QD=BC-BQ-CD==,∵PE∥BC,解得PE=,∵PE∥BC,PE=QD,∴四边形EQDP是平行四边形;(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以厘米/秒的速度沿BC向终点C运动,∴PC=AC-AP=4-t,QC=BC-BQ=,∴?∴PQ∥AB;(3)分两种情况讨论:①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,又∵EQ∥AC,∴△EDQ∽△ADC∴,∵BC=5,CD=3,∴BD=2,∴DQ=,∴解得t=(秒);②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则EM=PC=4-t,在 Rt△ACD中,∵AC=4,CD=3,∴AD=,?∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,?∴ t=(秒).综上所述,当 t=秒或t=秒时,△EDQ为直角三角形.6.【答案与解析】解:(1)过点B作BD⊥OA于点D,则四边形CODB是矩形,BD=CO=4,OD=CB=3,DA=3在Rt△ABD中,.当?时,,?,.∵?,,∴,即?(秒).(2)过点作轴于点,交的延长线于点,∵?,∴,.即?,.?,?.?,∴.即?().由?,得.∴当时,S有最小值,且7.【答案与解析】解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.8.【答案与解析】解:(1)∵CN=CB=15,OC=9,∴ON==12,∴N(12,0);又∵AN=OA﹣ON=15﹣12=3,设AM=x∴32+x2=(9﹣x)2,∴x=4,M(15,4);(2)解法一:设抛物线l为y=(x﹣a)2﹣36则(12﹣a)2=36∴a1=6或a2=18(舍去)∴抛物线l:y=(x﹣6)2﹣36 解法二:∵x2﹣36=0,∴x1=﹣6,x2=6;∴y=x2﹣36与x轴的交点为(﹣6,0)或(6,0)由题意知,交点(6,0)向右平移6个单位到N点,所以y=x2﹣36向右平移6个单位得到抛物线l:y=(x﹣6)2﹣36;(3)①由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,设直线MN的解析式为y=kx+b,则?,解得?,∴y=x﹣16,∴P(6,﹣8);②∵DE∥OA,∴△CDE∽△CON,∴;∴S=∵a=﹣<0,开口向下,又m=﹣∴S有最大值,且S最大=﹣.9.【答案与解析】解:(1)∵y=kx﹣1与y轴相交于点C,∴OC=1;∵tan∠OCB=,∴OB=;∴B点坐标为:;把B点坐标为:代入y=kx﹣1得:k=2;(2)∵S=,y=kx﹣1,∴S=×|2x﹣1|;∴S=|x﹣|;(3)①当S=时,x﹣=,∴x=1,y=2x﹣1=1;∴A点坐标为(1,1)时,△AOB的面积为;②存在.满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0).10.【答案与解析】解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,∴=,∵CD=4AC,∴==4,∵OA=1,∴OF=4,∴D点的横坐标为4,代入y=ax2﹣2ax﹣3a得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,∴直线l的函数表达式为y=ax+a.(2)设点E(m,a(m+1)(m﹣3)),yAE =k1x+b1,则,解得:,∴yAE=a(m﹣3)x+a(m﹣3),∴S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,∴有最大值﹣a=,∴a=﹣;(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得x1=﹣1,x2=4,∴D(4,5a),∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P1(1,m),①若AD是矩形的一条边,由AQ∥DP知xD ﹣xP=xA﹣xQ,可知Q点横坐标为﹣4,将x=﹣4带入抛物线方程得Q(﹣4,21a),m=yD +yQ=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,PD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=,∵a<0,∴a=﹣,∴P1(1,﹣).②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形ADPQ为矩形,∴∠APD=90°,∴AP2+PD2=AD2,∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴22+(8a)2+32+(3a)2=52+(5a)2,解得a2=,∵a<0,∴a=﹣,∴P2(1,﹣4).综上可得,P点的坐标为P1(1,﹣4),P2(1,﹣).11.【答案与解析】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上.(2)成立.证明:连结DE,DF.∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE.在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE.∴MF=NE.(3)画出图形(连出线段NE),MF与EN相等的结论仍然成立(或MF=NE成立).。
几何与代数相结合的综合题型的复习要点和复习策略.docx
几何与代数相结合的综合题型的复习要点和复习策略初中数学传统上分为几何和代数(以下简称“几代”)两部分,于是几、代的有机结合也就成为初中数学的一个落脚点,因此几代相结合的综合题型也就理所当然成为中考的車点、难点•焦点。
几代相结合的综合题常以“起点低、入口宽、步步高”的特点呈现,并以“思想方法立意”和“能力立意”为创新点。
从某一角度上讲可分为“几何背景代数解法”和“代数背景几何解法”两大类。
下回就谈谈几代相结合的综合题型的复习要点和复习策略:一.几代综合题的复习要点K基础知识的复习仍是几代综合题复习的前提与基础,否则几代综合题的复习就成为无本之木,无源之水几代综合题是基于几何、代数基本知识Z上,它的解法其实就是对各基础知识的综合、灵活的运用,因此全面复习好几何与代数基础知识,对丁•几代综合题的复习至关重要。
其包含的基础知识主要有:代数基础知识:数的运算、式的变形、方程、不等式的解法、函数的图象与性质。
几何基础知识:几何变换、平行四边形的性质与判定、相似三角形的性质与判定(含全等三角形、勾股定理与三角函数、圜中的位置关系及其判定。
【例1】已知,在Rt AOAB 中,ZOAB二90。
,ZBOA=30° , AB二若以0为坐标原点,OA所在2.直线为X轴,建立如图1所示的平面直角坐标系,点B在第一象限内. A落在点C处.(1 )直接写出A的坐标;(2 )若抛物线y = ax2 +bx ( d H 0 )经过C、A两点,求此抛物线的解析式;(3)若⑵中抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.简析:(1)利用特殊三角形的性质直接写出A的坐标是解直角三角形的最基本的知识。
(2)通过解直角三角形求点C的坐标,并利用待定系数法求解析式是确定解析式的基本方法。
初中代数式与几何结合题
初中代数式与几何结合题全文共四篇示例,供读者参考第一篇示例:初中代数与几何是数学中两个非常重要的内容,代数式是一种抽象的数学符号,而几何是研究空间形状、大小和位置关系的数学学科。
将代数与几何结合起来可以帮助学生更好地理解数学知识,提高数学思维能力。
代数式与几何结合题是数学学习中的一种常见题型,通过这种题型可以考查学生对代数和几何知识的综合运用能力。
现在我们来看几个关于初中代数式与几何结合题的例子。
第一个例子:已知直角三角形的两条边长分别为a和b,求斜边长。
解:根据勾股定理可知,斜边长c满足c^2 = a^2 + b^2。
这个例子就是将几何中直角三角形的斜边长与代数中平方的概念结合起来,考查学生对几何定理和代数运算的理解能力。
第二个例子:已知一个三角形的内角和为180度,其中一个角是x 度,另外两个角分别是2x度和3x度,求这个三角形的三个角度。
解:根据三角形内角和的性质可知,x + 2x + 3x = 180。
解方程得到6x = 180,即x = 30。
所以这个三角形的三个角度分别为30度、60度和90度。
通过上面两个例子可以看出,初中代数式与几何结合题能够帮助学生更全面地理解数学知识,培养他们的逻辑思维能力和解决问题的能力。
这种类型的题目也激发了学生对数学的兴趣,提高了他们对数学学习的积极性。
在解题过程中,学生需要综合利用代数与几何的知识点,灵活运用各种数学方法,培养他们的综合运用能力和创新思维。
通过训练和解答这类题目,学生还可以提高他们的数学分析和推理能力,同时也为将来更深入地学习数学打下坚实的基础。
在数学教育中,加强初中代数式与几何的结合题的教学和训练是非常重要的。
学生们应该注重理解数学知识的内在逻辑,勇于探索和尝试,提高自己的数学素养,从而在数学学习中取得更好的成绩。
希望广大学生能够喜欢数学,享受数学,不断提升自己的数学水平,成为数学领域的佼佼者。
【这篇文章共计798字】.第二篇示例:初中代数式与几何结合题是数学学科中一个非常重要的部分,代数与几何各有其独特性,但结合起来可以帮助学生更好地理解数学知识。
代数几何综合题(含答案)
代数⼏何综合题(含答案)代数⼏何综合题代数⼏何综合题是初中数学中覆盖⾯最⼴、综合笥最强的题型,近⼏年的中考试题很多以代数⼏何综合题的形式出现,其命题的主要结合点是⽅程与⼏何、函数与⼏何等,解代数⼏何综合题最常⽤的数学⽅法是数形结合,由形导数,以数促形。
例1、如图,已知平⾯直⾓坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作P C P B ⊥交过点A 的直线a 于点C (2,y )(1)求y 与x 之间的函数关系式;(2)当x 取最⼤整数时,求BC 与PA 的交点Q 的坐标。
解:(1) P C P B B O P O ⊥⊥,∴∠+∠=?∠+∠∴∠=∠C P A O P B P B O O P B C P A P B O 90,A (2,0),C (2,y )在直线a 上∴∠=∠=?B O P P AC 90 ∴??B O PP A C ~ ∴=P O A C B O P A ,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122 (2) x <0,∴x的最⼤整数值为-1 , 当x =-1时,y =-32,∴=CA 32B O a B O QC A Q O Q A Q B OC A //~,,∴∴=??设Q 点坐标为()m ,0,则A Q m=-2 ∴-=∴=m m m 223287,∴Q 点坐标为()870,说明:利⽤数形结合起来的思想,考查了相似三⾓形的判定及应⽤。
关键是搞清楚⽤坐标表⽰的数与线段的长度的关系。
练习1.如图,从⊙O 外⼀点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出⾃变量x 的取值范围;(3分)(3)若AO +CD =11,求AB 的长。
初中数学九年级中考复习代数与几何综合题专题讲解
(2)如图①,抛物线对称轴l是 x=4. ∵ Q(8,m)抛物线上,∴ m=2.过点Q作QK⊥x轴 于点K,则K(8,0),QK=2,AK=6,
∴AQ=
AK 2 QK 2 2 10
又∵ B(6,0)与A(2,0)关于对称轴l对称, 2 10 ∴ PQ+PB的最小值=AQ=.
【考题解析】
C
y
1 4k b. b 5
直线AB的函数解析式是.Y=-x+5 综上所述,所求直线的函数解析式是Y=-2x+6 或.Y=-x+5
【考题解析】
例.(07南充市) 如图,点M(4,0),以点M为圆心、 1 2 2为半径的圆与x轴交于点A、B.已知抛物线 y 6 x bx c 过点A和B,与y轴交于点C. (1)求点C的坐标,并画出抛物线的大致图象. 1 2 (2)点Q(8,m)在抛物线 y 6 x bx c 上,点P为 此抛物线对称轴上一个动点,求PQ+PB的最小值. (3)CE是过点C的⊙M的切线,点E是切点,求OE所在 直线的解析式. 解:(1)由已知,得 A(2,0),B(6,0), ∵ 抛物线 y 1 x 2 bx c
1、复习不够全面,存在知识死角,或者部分
知识点不够清楚导致随便应付;
2、解题没有注意训练解题技巧 ,导致耽误宝
贵的时间。
选择题考查的内容覆盖了初中阶段所学的重要 知识点,要求学生通过计算、推理、综合分析进行判 断,从“相似”的结论中排除错误选项的干扰,找到 正确的选项。部分学生碰到选择题提笔就计算,答题 思维比较“死”,往往耗时过多,如果一个选择题是 "超时"答对的,那么就意味着你已隐性丢分了,因为占 用了解答别的题目的时间.因此,除了具备扎实的基 本功外,巧妙的解题技巧也是必不可少的。
中考代数几何-综合题
中考代数几何综合题代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.方法点拨方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x 轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.类型一、方程与几何综合的问题1.如图,在梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3.问:线段AB上是否存在点P,使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似?若存在,这样的总共有几个?并求出AP的长;若不存在,请说明理由.【思路点拨】由于以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似时的对应点不能确定,故应分两种情况讨论.【答案与解析】解:存在.∵AD∥BC,∠A=90°,∴∠B=90°,当△PAD∽△PBC时,∵AD=2,BC=3,设AP=x,PB=7-x,则∴.①当△ADP∽△BPC时,AD=2,BC=3,设设AP=x,PB=7-x,则∴AP=1或AP=6.②由①②可知,P点距离A点有三个位置:,AP=1,AP=6.【总结升华】本题考查的是相似三角形的判定,解答此题时要注意分类讨论,不要漏解.【变式】有一张矩形纸片ABCD,已知AB=2,AD=5.把这张纸片折叠,使点A落在边BC上的点E处,折痕为MN,MN交AB于M,交AD于N.(1)若BE=,试画出折痕MN的位置,并求这时AM的长;(2)点E在BC上运动时,设BE=x,AN=y,试求y关于x的函数解析式,并写出x 的取值范围;(3)连接DE,是否存在这样的点E,使得△AME与△DNE相似?若存在,请求出这时BE的长;若不存在,请说明理由.【答案】(1)画出正确的图形.(折痕MN必须与AB、AD相交).设AM=t,则ME=t,MB=2-t,由BM2+BE2=ME2,得t=,即AM=.(2)如图(a),∵BE=x,设BM=a,则a2+x2=(2-a)2,a2+x2=4-4a+a2,∴a=,AM=2-BM=2-=.由△AMN∽△BEA,得,∴y=,∵0<x≤2,0<y≤5,x的取值范围为:,故x=1.(3)如图(b),若△AME与△DNE相似,不难得∠DNE=∠AME.又∵AM=ME,∴DN=NE=NA=,∴=解得:x=1或x=4.又∵,故x=1.或者由∠DEN=∠AEM,得∠AED=90°,推出△ABE∽△ECD,从而得BE=1类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A (1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.答案与解析【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;(2)不变.∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,∴当x=1时,y=1-t,∴M(1,1-t),∴AM=|1-t|=t-1,∵OP=t,∴AP=t-1,∴AM=AP,∵∠PAM=90°,∴∠AMP=45°;(3)<t<.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解;②左边3个好点在抛物线上方,右边3个好点在抛物线下方:则有 -4<y2<-3,-2<y3<-1,即-4<4-2t<-3,-2<9-3t<-1,∴<t<4且<t<,解得<t<;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解;④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解;⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解;综上所述, t的取值范围是:<t<.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用类型三、动态几何中的函数问题3. 如图,在平面直角坐标系中,已知二次函数的图像与轴交于,与轴交于A、B两点,点B的坐标为(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△的面积最大?最大面积是多少?并求出此时点P的坐标.答案与解析举一反三【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B、C的坐标代入其中求解即可.(2)先画出相关图示,连接OD后发现:S△OBD:S四边形ACDB=2:3,因此直线OM必须经过线段BD才有可能符合题干的要求;设直线OM与线段BD的交点为E,根据题干可知:△OBE、多边形OEDCA的面积比应该是1:2或2:1,即△OBE的面积是四边形ACDB面积的,所以先求出四边形ABDC的面积,进而得到△OBE的面积后,可确定点E的坐标,首先求出直线OE(即直线OM)的解析式,联立抛物线的解析式后即可确定点M的坐标(注意点M的位置).(3)此题必须先得到关于△CPB面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P坐标;通过图示可发现,△CPB的面积可由四边形OCPB的面积减去△OCB的面积求得,首先设出点P的坐标,四边形OCPB的面积可由△OCP、△OPB的面积和得出.【答案与解析】解:(1)由题意,得:解得:所以,二次函数的解析式为:,顶点D的坐标为(-1,4).(2)画图由A、B、C、D四点的坐标,易求四边形ACDB的面积为9.直线BD的解析式为y=2x+6.设直线OM与直线BD 交于点E,则△OBE的面积可以为3或6.①当时,如图,易得E点坐标(-2,-2),直线OE的解析式为y=-x.设M 点坐标(x,-x),∴②当时,同理可得M点坐标.∴ M 点坐标为(-1,4).(3)如图,连接,设P点的坐标为,∵点P在抛物线上,∴,∴∵,∴当时,. △的面积有最大值∴当点P的坐标为时,△的面积有最大值,且最大值为【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M的位置,以免出现漏解的情况.【变式】如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB 于点E.(1)记△ODE的面积为S,求S与的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.【答案】(1)由题意得B(3,1).若直线经过点A(3,0)时,则b=若直线经过点B(3,1)时,则b=若直线经过点C(0,1)时,则b=1.①若直线与折线OAB的交点在OA上时,即1<b≤,如图1,此时点E(2b,0).∴S=OE·CO=×2b×1=b.②若直线与折线OAB的交点在BA上时,即<b<,如图2,此时点E(3,),D(2b-2,1).∴S=S矩-(S△OCD+S△OAE +S△DBE )=3-[(2b-1)×1+×(5-2b)•()+×3()](2)如图3,设O1A1与CB相交于点M,C1B1与OA相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形,根据轴对称知,∠MED=∠NED,又∠MDE=∠NED,∴∠MED=∠MDE,MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题可知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHM中,由勾股定理知:,∴a=.∴S四边形DNEM=NE·DH=.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.答案与解析【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD,FB=AB,可得四边形ABFD是正方形,则可求点E、F的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E、F、P为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E、F、P为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解.【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF,在Rt△EBF中,∠B=90°,∴EF=.设点P的坐标为(0,n),n>0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a≠0).①如图1,当EF=PF时,EF2=PF2,∴12+(n-2)2=5,解得n1=0(舍去),n2=4.∴P(0,4),∴4=a(0-1)2+2,解得a=2,∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP时,EP2=FP2,∴(2-n)2+1=(1-n)2+9,解得n=-(舍去)③当EF=EP时,EP=<3,这种情况不存在.综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M、N,使得四边形MNFE的周长最小.如图3,作点E关于x轴的对称点E′,作点F关于y轴的对称点F′,连结E′F′,分别与x轴、y轴交于点M、N,则点M、N就是所求. 连结NF、ME.∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3.∴FN+NM+ME=F′N+NM+ME′=F′E′==5.又∵EF=,∴FN+MN+ME+EF=5+,此时四边形MNFE的周长最小值为5+.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA,再以等腰直角三角形ABA的斜边为直角边向外作第3个等腰直角三角形A BB,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S= ________(n为正整数).答案与解析举一反三【思路点拨】本题要先根据已知的条件求出S1、S2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n的表达式.【答案与解析】根据直角三角形的面积公式,得S1=;根据勾股定理,得:AB=,则S2=1=20;A1B=2,则S3=21,依此类推,发现:=.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.【变式】阅读下面的文字,回答后面的问题.求 3+32+33+…+3100的值.解:令 S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2),(2)-(1)得到:2S=3101-3∴S=∴3+32+33+ (3100)问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).答案与解析【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3).一、选择题1. 如图,正方形ABCD的边长为2, 将长为2的线段QF的两端放在正方形相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按滑动到点A为止,同时点F从点B出发,沿图中所示方向按滑动到点B为止那么在这个过程中线段QF的中点M所经过的路线围成的图形的面积为()A. 2B. 4-C.D.2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为()二、填空题3. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的C点的坐标为______________.4. 如图,(n+1)个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S2=______________;S n=__________________(用含的式子表示).三、解答题5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?(3)当t为何值时,△EDQ为直角三角形.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)(1)求线段AB的长;当t为何值时,MN∥OC?(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?7. 条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8. 如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x 轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.(1)求N点、M点的坐标;(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P 点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10. 如图,已知抛物线y=ax2+bx+3经过点B(-1,0)、C(3,0),交y轴于点A,将线段OB绕点O顺时针旋转90°,点B的对应点为点M,过点A的直线与x轴交于点D(4,0).直角梯形EFGH的上底EF与线段CD重合∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH从点D开始,沿射线DA方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG与直线AD始终重合,设运动时间为t秒.(1)求此抛物线的解析式;(2)当t为何值时,以M、O、H、E为顶点的四边形是特殊的平行四边形;(3)作点A关于抛物线对称轴的对称点A′,直线HG与对称轴交于点K,当t为何值时,以A、A′、G、K为顶点的四边形为平行四边形?请直接写出符合条件的t值.11. 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M 为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.【答案与解析】一、选择题1.【答案】B.2.【答案】A.三、填空题3.【答案】(0,0),(0,10),(0,2),(0,8)4.【答案】;;【解析】由于各三角形为等边三角形,且各边长为2,过各三角形的顶点B1、B2、B3…向对边作垂线,垂足为M1、M2、M3∵△AB1C1是等边三角形,∴AD1=AC1.sin60°=2×=,∵△B1C1B2也是等边三角形,∴C1B1是∠AC1B2的角平分线,∴AD1=B2D1=,故S1=S△B2C1A﹣S△AC1D1=×2×﹣×2×=;S2=S△B3C2A﹣S△AC2D2=×4×﹣×4×=;作AB∥B1C1,使AB=AB1,连接BB1,则B2,B3,…B n在一条直线上.∵B n C n∥AB,∴==,∴B n D n=.AD=,则D n C n=2﹣B n D n=2﹣=.△B n C n B n+1是边长是2的等边三角形,因而面积是:.△B n+1D n C n面积为S n=.=.=.即第n个图形的面积S n=.三、解答题5.【答案与解析】解:(1)能,如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,t=1秒∴AP=1,BQ=1.25,∵AC=4,BC=5,点D在BC上,CD=3,∴PC=AC-AP=4-1=3,QD=BC-BQ-CD=5-1.25-3=0.75,∵PE∥BC,解得PE=0.75,∵PE∥BC,PE=QD,∴四边形EQDP是平行四边形;(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,∴PC=AC-AP=4-t,QC=BC-BQ=5-1.25t,∴∴PQ∥AB;(3)分两种情况讨论:①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,又∵EQ∥AC,∴△EDQ∽△ADC∴,∵BC=5,CD=3,∴BD=2,∴DQ=1.25t-2,∴解得t=2.5(秒);②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则EM=PC=4-t,在Rt△ACD中,∵AC=4,CD=3,∴AD=,∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,∴t=3.1(秒).综上所述,当t=2.5秒或t=3.1秒时,△EDQ为直角三角形.6.【答案与解析】解:(1)过点B作BD⊥OA于点D,则四边形CODB是矩形,BD=CO=4,OD=CB=3,DA=3在Rt△ABD中,.当时,,,.∵,,∴,即(秒).(2)过点作轴于点,交的延长线于点,∵,∴,.即,.,.,∴.即().由,得.∴当时,S有最小值,且7.【答案与解析】解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.8.【答案与解析】解:(1)∵CN=CB=15,OC=9,∴ON==12,∴N(12,0);又∵AN=OA﹣ON=15﹣12=3,设AM=x∴32+x2=(9﹣x)2,∴x=4,M(15,4);(2)解法一:设抛物线l为y=(x﹣a)2﹣36则(12﹣a)2=36∴a1=6或a2=18(舍去)∴抛物线l:y=(x﹣6)2﹣36解法二:∵x2﹣36=0,∴x1=﹣6,x2=6;∴y=x2﹣36与x轴的交点为(﹣6,0)或(6,0)由题意知,交点(6,0)向右平移6个单位到N点,所以y=x2﹣36向右平移6个单位得到抛物线l:y=(x﹣6)2﹣36;(3)①由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,设直线MN的解析式为y=kx+b,则,解得,∴y=x﹣16,∴P(6,﹣8);②∵DE∥OA,∴△CDE∽△CON,∴;∴S=∵a=﹣<0,开口向下,又m=﹣∴S有最大值,且S最大=﹣.9.【答案与解析】解:(1)∵y=kx﹣1与y轴相交于点C,∴OC=1;∵tan∠OCB=,∴OB=;∴B点坐标为:;把B点坐标为:代入y=kx﹣1得:k=2;(2)∵S=,y=kx﹣1,∴S=×|2x﹣1|;∴S=|x﹣|;(3)①当S=时,x﹣=,∴x=1,y=2x﹣1=1;∴A点坐标为(1,1)时,△AOB的面积为;②存在.满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0).10.【答案与解析】解:(1)∵抛物线y=ax2+bx+3经过点B(﹣1,0)、C(3,0),∴,解得a=﹣1,b=2,∴抛物线的解析式为:y=﹣x2+2x+3.(2)在直角梯形EFGH运动的过程中:①四边形MOHE构成矩形的情形,如图1所示:此时边GH落在x轴上时,点G与点D重合.由题意可知,EH,MO均与x轴垂直,且EH=MO=1,则此时四边形MOHE构成矩形.此时直角梯形EFGH平移的距离即为线段DF的长度.过点F作FN⊥x轴于点N,则有FN=EH=1,FN∥y轴,∴,即,解得DN=.在Rt△DFN中,由勾股定理得:DF===,∴t=;②四边形MOHE构成正方形的情形.由图1可知,OH=OD﹣DN﹣HN=4﹣﹣1=,即OH≠MO,所以此种情形不存在;③四边形MOHE构成菱形的情形,如图2所示:过点F作FN⊥x轴于点N,交GH于点T,过点H作HR⊥x轴于点R.易知FN ∥y轴,RN=EF=FT=1,HR=TN.设HR=x,则FN=FT+TN=FT+HR=1+x;∵FN∥y轴,∴,即,解得DN=(1+x).∴OR=OD﹣RN﹣DN=4﹣1﹣(1+x)=﹣x.若四边形MOHE构成菱形,则OH=EH=1,在Rt△ORH中,由勾股定理得:OR2+HR2=OH2,即:(﹣x)2+x2=12,解得x=,∴FN=1+x=,DN=(1+x)=.在Rt△DFN中,由勾股定理得:DF===3.由此可见,四边形MOHE构成菱形的情形存在,此时直角梯形EFGH平移的距离即为线段DF的长度,∴t=3.综上所述,当t=s时,四边形MOHE构成矩形;当t=3s时,四边形MOHE构成菱形.(3)当t=s或t=s时,以A、A′、G、K为顶点的四边形为平行四边形.简答如下:(注:本题并无要求写出解题过程,以下仅作参考)由题意可知,AA′=2.以A、A′、G、K为顶点的四边形为平行四边形,则GK ∥AA′,且GK=AA′=2.①当直角梯形位于△OAD内部时,如图3所示:过点H作HS⊥y轴于点S,由对称轴为x=1可得KS=1,∴SG=KS+GK=3.由SG∥x轴,得,求得AS=,∴OS=OA﹣AS=,∴FN=FT+TN=FT+OS=,易知DN=FN=,在Rt△FND中,由勾股定理求得DF=;②当直角梯形位于△OAD外部时,如图4所示:设GK与y轴交于点S,则GS=SK=1,AS=,OS=OA+AS=.过点F作FN⊥x轴,交GH于点T,则FN=FT+NT=FT+OS=.在Rt△FGT中,FT=1,则TG=,FG=.由TG∥x轴,∴,解得DF=.由于在以上两种情形中,直角梯形EFGH平移的距离均为线段DF的长度,则综上所述,当t=s或t=s时以A、A′、G、K为顶点的四边形为平行四边形.11.【答案与解析】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上.(2)成立.证明:连结DE,DF.∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE.在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE.∴MF=NE.(3)画出图形(连出线段NE),MF与EN相等的结论仍然成立(或MF=NE成立).。
初三中考总复习代数几何综合题解题策略
从本题解的过程可以看到,善于构造恰当的直角三角形,以及灵活恰当地实施“坐标”与“线段长”之间的转换,是落实解法的可靠保证。
练习:
如图所示,在平面直角坐标系中,四边形 是等腰梯形, ,点P为 轴上的一个动点,点P不与点 ,点A重合,连结CP,过点P作 交AB于点D。
轴向右平移轴向右平移轴向右平移11个单位个单位个单位轴向上平移轴向上平移轴向上平移22个单位个单位个单位关于关于关于xx轴作轴对称变换沿轴作轴对称变换沿轴作轴对称变换沿xx关于关于关于yy轴作轴对称变换沿轴作轴对称变换沿轴作轴对称变换沿yy关于原点作中心对称变换绕原点旋转关于原点作中心对称变换绕原点旋转关于原点作中心对称变换绕原点旋转180180180从数的角度从数的角度从数的角度由于图形在作变换时抛物线的大小形状并未改变由于图形在作变换时抛物线的大小形状并未改变由于图形在作变换时抛物线的大小形状并未改变所以所以所以aa不变不变不变根据局部带动整体可由原顶点坐标求出变换后新顶点坐标再用草图判断开口方向确定根据局部带动整体可由原顶点坐标求出变换后新顶点坐标再用草图判断开口方向确定根据局部带动整体可由原顶点坐标求出变换后新顶点坐标再用草图判断开口方向确定aaa代入顶代入顶代入顶点式求得解析式
代数几何综合题解题策略
代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.
从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也融入了开放性、探究性等问题,如探究条件、探究结论、探究存在性等。经常考察的题目是以函数为背景,在平面直角坐标系下研究几何问题(简称坐标几何问题),以及在图形运动过程中的探究性问题等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CQ=CP,如解图①,则
t=
24 5
12 -t.解得:t= 5 ;②若
1 PQ=PC,如解图②所示.∵PQ=PC,PH⊥QC,∴QH=CH=2QC=
10 / 27
t
t
CH CP 2
2.∵△CHP∽△BCA.∴BC=AB.∴6=
24 − t 5 10
,解得
144 t= 55 ;③若
QC=QP,
24 如解图③,过点 Q 作 QE⊥CP,垂足为 E,同理可得:t=11.综上所述:当
t
为
24 5
144 24 秒或 55 秒或11秒时,△CPQ
为等腰三角形.
第 4 题解图 5. 如图,在矩形 ABCD 中,AB=6cm,BC=8cm.如果点 E 由点 B 出发沿 BC 方向向点 C 匀速运动,同时点 F 由点 D 出发沿 DA 方向向点 A 匀速运 动,它们的速度分别为 2cm/s 和 1cm/s.FQ⊥BC,分别交 AC、BC 于点 P 和 Q,设运动时间为 t(s)(0<t<4). (1)连接 EF、DQ,若四边形 EQDF 为平行四边形,求 t 的值; (2)连接 EP,设△EPC 的面积为 ycm2,求 y 与 t 的函数关系式,并求 y 的 最大值;
8 / 27
(1)①解:∵∠ACB=90°,AC=8,BC=6,
∴AB=10,
∵CD⊥AB,
∴S△ABC=12BC·AC=12AB·CD,
BC·AC 6×8 ∴CD= AB = 10 =
24 5
,
∴线段 CD 的长为 24 ;
5
②证明:∵∠B=∠B,∠CDB=∠BCA=90°,
∴△CBD∽△ABC;
1 / 27
1 为平行四边形,∴AE=2AP=5-t.
AE AC (2)如解图①,当四边形 AQPD 是菱形时,DQ⊥AP,则 cos∠BAC=AQ=AB,
5-t 8
25
即 2t =10,解得 t=13,
25 ∴当 t=13时,四边形 AQPD 是菱形;
(3)如解图②,作 PM⊥AC 于 M,设平行四边形 AQPD 的面积为 S.
3 / 27
∴CD=BD=AD=3,∠CBA=∠A=45°,
易得△CAE≌△CBG,
∴∠CBG=∠A=45°,
∴∠GBA=∠GBC+∠CBA=90°.
∵∠BEN+∠BNE=90°,∠BEN+∠CED=90°,
∴∠BNE=∠CED,
∵∠EBN=∠CDE=90°,
∴△NBE∽△EDC,
BN BE ∴ED=CD,
第 2 题图 解:(1)BG∥CD; 【解法提示】∵四边形 EFGC 是正方形,∴CG=CE,∠GCE=∠GFE= ∠FEC=90°,∵∠ACB=∠GCE=90°,∴∠GCB=∠ECA,∵GC=CE, CB=CA,∴△CAE≌△CBG.又∵∠ACB=90°,BC=AC,D 是 AB 的中点, ∴∠CBG=∠CAE=45°,∠BCD=45°,∴∠CBG=∠BCD,∴BG∥CD. (2)∵CB=CA,CD⊥AB,∠ACB=90°,
∵PM∥BC,
∴△APM∽△ABC,
AP PM 10-2t PM ∴AB=BC,即 10 = 6 ,
6 ∴PM=5(5-t),
∴S=AQ·PM=2t·56(5-t)=-152t2+12t=
−
12 5
t
−
5 2
2
+
15
(0<t≤4),
12 ∵- 5 <0,∴当
5 t=2时,S
有最大值,最大值为
15
第 3 题图 解:(1) 2; 【解法提示】根据题意知,AF=t,AE=2t,∵∠A=90°, ∴AF2+AE2=EF2,即 t2+(2t)2=( 10)2,解得:t= 2(负值舍去). (2)当 0≤t≤3 时,如解图①,过点 C 作 CP⊥AB,交 AB 延长线于点 P,
第 3 题解图① ∵∠A=∠D=90°, ∴四边形 APCD 是矩形,
128 128 相似,则 t 的值为:2 或 57 或 39 .
类型二 动线型探究题
6. 如图,在△ABC 中,∠C=90°,∠A=60°,AC=2 cm.长为 1 cm 的线段 MN 在△ABC 的边 AB 上沿 AB 方向以 1 cm/s 的速度向点 B 运动(运动前点 M 与点 A 重合).过 M,N 分别作 AB 的垂线交直角边于 P,Q 两点,线段 MN 运动的时间为 t s.
6 / 27
则 CP=AD=6 cm,
∵AB=8 cm,AD=6 cm,
∴BF=(8-t)cm,(6-2t)cm,
则 S=S 梯形 △ △ △ ABCD-S AEF-S CBF-S CDE
1
1
1
1
=2×(8+10)×6-2×t×2t-2×(8-t)×6-2×(6-2t)×10
=-t2+13t
PH
24 − t 5
∴ 8 = 10 ,
∴PH=9265-45t,
1
1 96 4
∴S=2CQ·PH=2t(25-5t)=
-25(t-152)2+218285,
∵ − 2 <0,
5
12
288
∴当 t= 5 时,S 最大=125;
12 14.4 24 (3)存在,t= 5 或 55 或11.
【解法提示】①若
(2)解:如解图②,过点 P 作 PH⊥AC,垂足为 H,
由题可知 DP=t,CQ=t, 则 CP= 24 -t,
5
∵∠ACB=∠CDB=90°,
∴∠HCP=90°-∠DCB=∠B,
9 / 27
∵PH⊥AC,
∴∠CHP=90°,
∴∠CHP=∠ACB,
∴△CHP∽△BCA,
PH PC ∴AC=BA,
(2)∵∠FQC=90°,∠B=90°, ∴∠FQC=∠B, ∴PQ∥AB,
12 / 27
∴△CPQ∽△CAB,
PQ QC ∴AB=BC,
PQ t 即 6 =8,
∴PQ=43t,
∵S△EPC=12EC·PQ,
∴y=21·(8-2t)·34t=-34t2+3t=-34(t-2)2+3,
即 y=-43(t-2)2+3,
3
PQ EQ 4t 8-3t
128
AD=CD,即 8 = 6 ,解得 t= 57 .若 E 在 FQ 右边,③当△EPQ∽△ACD
13 / 27
3 PQ EQ 4t 3t-8 时,可得:CD=AD,即 6 = 8 ,解得 t=4(舍去);④当△EPQ∽△CAD
3
PQ EQ 4t 3t-8
128
时,可得:AD=CD,即 8 = 6 ,解得 t= 39 .综上所述,若△EPQ 与△ADC
7 / 27
∴FQ=AD=6 cm, ∵AD+DE=2t,AD=6 cm,CD=10 cm, ∴CE=(16-2t)cm,
1 则此时 S=2×(16-2t)×6=48-6t, ∵-6<0, ∴S 随 t 的增大而减小, ∴当 t=3 时,S 取得最大值,最大值为 30cm2. 4. 如图,在 Rt△ABC 中,∠ACB=90°,AC=8,BC=6,CD⊥AB 于点 D.点 P 从点 D 出发,沿线段 DC 向点 C 运动,点 Q 从点 C 出发,沿线段 CA 向点 A 运动,两点同时出发,速度都为每秒 1 个单位长度,当点 P 运 动到 C 时,两点都停止.设运动时间为 t 秒. (1)①求线段 CD 的长; ②求证:△CBD∽△ABC; (2)设△CPQ 的面积为 S,求 S 与 t 之间的函数关系式,并求出 S 的最大值; (3)是否存在某一时刻 t,使得△CPQ 为等腰三角形?若存在,请直接写出 满足条件的 t 的值;若不存在,请说明理由.
cm2.
2 / 27
第 1 题解图 2. 已知,在 Rt△ABC 中,∠ACB=90°,BC=AC,AB=6,D 是 AB 的中 点,动点 E 从点 D 出发,在 AB 边上向左或右运动,以 CE 为边向左侧作 正方形 CEFG,直线 BG,FE 相交于点 N(点 E 向左运动时如图①,点 E 向 右运动时如图②). (1)在点 E 的运动过程中,直线 BG 与 CD 的位置关系为________; (2)设 DE=x,NB=y,求 y 与 x 之间的函数关系式,并求出 y 的最大值; (3)如图②,当 DE 的长度为 3时,求∠BFE 的度数.
第 2 题解图 3. 如图,在直角梯形 ABCD 中,∠A=∠D=90°,AB=8 cm,CD=10 cm, AD=6 cm,点 E 从点 A 出发,沿 A→D→C 方向运动,运动速度为 2 cm/s,
5 / 27
点 F 同时从点 A 出发,沿 A→B 方向运动,运动速度为 1 cm/s.设运动时间 为 t(s),△CEF 的面积为 S(cm2). (1)当 0≤t≤3 时,t=________,EF= 10. (2)当 0≤t≤3 时(如图①),求 S 与 t 的函数关系式,并化为 S=a(t-h)2+k 的 形式,指出当 t 为何值时,S 有最大值,最大值为多少? (3)当 3≤t≤8 时(如图②),求 S 与 t 的函数关系式,并求出当 t 为何值时,S 有最大值,最大值为多少?
第 1 题图 解:(1)5-t; 【解法提示】∵在 Rt△ABC 中,∠C=90°,AC=8 cm,BC=6 cm,∴由 勾股定理得:AB=10 cm,∵点 P 由 B 出发沿 BA 方向向点 A 匀速运动, 速度为 2 cm/s,∴BP=2t cm,∴AP=AB-BP=10-2t,∵四边形 AQPD
中考数学复习考点题型讲解与训练
---代数与几何综合题
类型一 动点型探究题 1. 如图①,已知 Rt△ABC 中,∠C=90°,AC=8 cm,BC=6 cm,点 P 由 B 出发沿 BA 方向向点 A 匀速运动,同时点 Q 由 A 出发沿 AC 方向向点 C 匀速运动,它们的速度均为 2 cm/s.以 AQ、PQ 为边作四边形 AQPD,连接 DQ,交 AB 于点 E.设运动的时间为 t(单位:s)(0<t≤4),解答下列问题: (1)用含有 t 的代数式表示 AE=____; (2)如图②,当 t 为何值时,四边形 AQPD 为菱形; (3)求运动过程中,四边形 AQPD 的面积的最大值.