8.5 矩形 菱形 正方形 课件(苏科版八年级下册) (7)

合集下载

江苏省南京市江宁区汤山中学八年级数学上册《矩形、菱形、正方形》课件苏科版共17页

江苏省南京市江宁区汤山中学八年级数学上册《矩形、菱形、正方形》课件苏科版共17页
45、自己的饭量自己知道。——苏联
1
0















41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:ห้องสมุดไป่ตู้不利与艰 难的遭遇里百折不饶。——贝多芬
江苏省南京市江宁区汤山中学八年级 数学上册《矩形、菱形、正方形》课
件苏科版
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。

华师大版八年级数学下册 第19章 矩形、菱形与正方形 2.菱形的判定(课件)

华师大版八年级数学下册 第19章 矩形、菱形与正方形 2.菱形的判定(课件)

试一试
作一个两条对角线互相垂直的平行四边形.
1.作2条互相垂直的直线m、n,记交点为点O;
2.以点O为圆心、适当长为半径画弧,在直线m上截取相等的 两条线段OA、OC;
3.以点O为圆心、另一适当长为半径画弧,在直线n上截取相 等的两条线段OB、OD;
4.顺次连结所得的四点,即得一个对角线互相垂直且平分的 四边形ABCD,显然它是一个对角线互相垂直的平行四边形.
O
1. 菱形的四条边都相等.
2. 菱形的对角线互相垂直平分,
B
C
并且每一条对角线平分一组对角.
进行新课
我们已经知道,有一组邻边相等的平行四边形 是菱形,这是菱形的定义.我们可以根据定义来判定 一个四边形是否是菱形.除此之外,还能找到其他的 判定方法?
思考
对于一般的四边形,如何寻找判定它是不是菱形 的方法呢?
BO D
④AB=BC,AB∥CD
A.①
B.①② C.②
C
D.③④
5.如图,AE∥BF,AC平分∠BAD,且交BF于点C,
BO平分∠ABC,且交AE于点D,连接CD,求证:
四边形ABCD是菱形.
证明:∵AE∥BF,∴∠EAC=∠ACB.
又∵AC平分∠BAD, ∴∠ACB=∠BAC=∠EAC,∴AB=BC.
2. 平行四边形ABCD的对角线AC平分∠BAD,则平 行四边形ABCD_是___(填“是”或“不是”)菱形. 3. 四边形ABCD是平行四边形,请补充一个条件: _A_B__=_B_C__,使它是菱形.
4.如图所示,下列条件中能说明四边形ABCD是菱形
的有( C )
A
①BD⊥AC
②OA=OC,OB=OD,AB=BC ③AC=BD

苏科版数学八年级下册 9.4矩形菱形正方形大题综合练习(含答案解析)

苏科版数学八年级下册 9.4矩形菱形正方形大题综合练习(含答案解析)

苏科版数学八年级下册9.4矩形菱形正方形大题综合练习1.如图菱形ABCD中,∠ADC=60°,M、N分别为线段AB,BC上两点,且BM=CN,且AN,CM所在直线相交于E.(1)证明△BCM≌△CAN;(2)∠AEM=________°;(3)求证DE平分∠AEC;(4)试猜想AE,CE,DE之间的数量关系并证明.【答案】(1)证明:如图1中,连接AC.∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠ADC=60°,∴△ACD,△ABC是等边三角形,∴BC=AC,∠B=∠ACN=60°,在△BCM和△CAN中,{BC=AC∠B=∠ACNBM=CN,∴△BCM≌△CAN(2)60(3)证明:如图2中,作DG⊥AN于G.DH⊥MC交MC的延长线于H.∵∠AEM=60°,∴∠AEC=120°,∵∠DGE=∠H=90°,∴∠GEH+∠GDH=180°,∴∠GDH=∠ADC=60°,∴∠ADG=∠CDH ,在△DGA 和△DHC 中,{∠DGA =∠H =90∘∠ADG =∠CDH DA =DC,∴△DGA ≌△DHC ,∴DG=DH ,∵DG ⊥AN ,DH ⊥MC ,∴∠DEG=∠DEH .∴DE 平分∠AEC .(4)证明:结论:EA+EC=ED .理由如下:如图2中,由(3)可知,∠GED=60°,在Rt △DEG 中,∵∠EDG=30°,∴DE=2EG ,易知△DEG ≌△DEH ,∴EG=EH ,∴EA+EC=EG+AG+EH-CH ,∵△DGA ≌△DHC ,∴GA=CH ,∴EA+EC=2EG=DE ,∴EA+EC=ED.【解析】【解答】解:(2)如图1中,∵△BCM ≌△CAN ,∴∠BCM=∠CAN ,∴AEM=∠ACE+∠EAC=∠ACE+∠BCM=60°.故答案为60.【分析】(1)连接AC,因为∠ADC=60°,利用菱形四边相等的性质,可知△ADC为等边三角形,所以AC=BC ,又因为菱形的对角线平分一组对角,所以∠ACN=60°=∠B,因为BM=CN,所以△BCM≌△CAN;(2)因为∠AEM=∠CEN,对顶角相等,由全等可知∠AEM=∠CEN=∠B=60°;(3)过点D做AE、CM两边的垂线,利用角角边可得到△DHC≌△DGA,可得DH=DG,再用角平分线的性质,到一个角两边距离相等的点在这个角的角平分线上;(4)由全等可知EA+EC=2EG,又因为在Rt△中30°的角所对的边等于斜边的一半,所以EA +EC=DE.2.综合:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为A. 平行四边形B. 菱形C. 矩形D. 正方形(2)如图2,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.【答案】(1)C(2)解:如图2中,①证明:∵AD=5,S□ABCD=15,∴AE=3.又∵在图2中,EF=4,∴在Rt△AEF中,AF═5.∴AF=AD=5,又∵AF∥DF',AF=DF,∴四边形AFF'D是平行四边形.∴四边形AFF'D是菱形.②解:连接AF',DF,在Rt△DE'F中,∵E'F=E'E﹣EF=5﹣4=1,DE'=3,∴DF═√E′D2+E′F2= √10.在Rt△AEF'中,∵EF'=E'E+E'F'=5+4=9,AE=3,∴AF'═√AE2+EF′2= √32+92=3 √10【解析】【解答】(1)解:如图1中,∵四边形ABCD是平行四边形,∴AD=BC,∵BE=CE′,∴AD∥EE′,AD=EE′,∴四边形AEE′D是平行四边形,∵∠AEE′=90°,∴四边形AEE′D是矩形,故选C.【分析】(1)根据矩形的判定方法即可判定;(2)①通过计算证明AF=AD=5,证明四边形AFF′D是平行四边形即可;②连接AF',DF,分别利用勾股定理计算即可;3.如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF 的面积为S1,△PDE的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.【答案】(1)解:如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.(2)解:由题意S1﹣S2= 12(4+x)•x﹣12•(4﹣x)•x=x2(0<x<4).(3)解:①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°= 4√3,3∴S1﹣S2=x2= 16.3②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN= √2x,∴√2x+x=4,∴x=4 √2﹣4,∴S1﹣S2=(4 √2﹣4)2=48﹣32 √2.【解析】【分析】(1)首先延长BP交DE于M.然后依据SAS可证明△BCP≌△DCE,依据全等三角形的性质可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;(2)根据题意可得到S1-S2=S△PBE-S△PDE,然后依据三角形的面积公式列出函数关系式即可;(3)分当∠PBF=30°和∠PBF=45°两种情形分别求出PC 的长,最后再利用(2)中结论进行计算即可.4.如图,在矩形ABCD 中,BC >AB ,∠BAD 的平分线AF 与BD ,BC 分别交于点E ,F ,点O 是BD 的中点,直线OK ∥AF ,交AD 于点K ,交BC 于点G .(1)求证:△DOK ≌△BOG ;(2)探究线段AB 、AK 、BG 三者之间的关系,并证明你的结论;(3)若KD=KG ,BC=2 √2 ﹣1,求KD 的长度.【答案】(1)证明:∵在矩形ABCD 中,AD ∥BC ,∴∠KDO=∠GBO ,∠DKO=BGO .∵点O 是BD 的中点;∴DO=BO .在△DOK 和△BOG 中, {∠KDO =∠GBO∠DKO =∠BGO DO =BO∴△DOK ≌△BOG (AAS ).(2)解:AB+AK=BG ;证明如下:∵四边形ABCD 是矩形;∴∠BAD=∠ABC=90°,AD ∥BC .又∵AF 平分∠BAD ,∴∠BAF=∠BFA=45°.∴AB=BF .∵OK ∥AF ,AK ∥FG ,∴四边形AFGK 是平行四边形.∴AK=FG .∵BG=BF+FG ;∴BG=AB+AK .(3)解:∵四边形AFGK 是平行四边形.∴AK=FG ,AF=KG又∵△DOK ≌△BOG ,且KD=KG ,∴AF=KG=KD=BG .设AB=a ,则AF=KG=KD=BG= √2 a .∴AK=2 √2 ﹣1﹣ √2 a ,FG=BG ﹣BF= √2 a ﹣a .∴2 √2﹣1﹣√2a= √2a﹣a.解得a=1.∴KD= √2a= √2.【解析】【分析】(1)在矩形ABCD中,AD∥BC,得到∠KDO=∠GBO,∠DKO=BGO,DO=BO,得到△DOK≌△BOG(AAS);(2)四边形ABCD是矩形,得到∠BAD=∠ABC=90°,AD∥BC,又AF平分∠BAD,得到∠BAF=∠BFA=45°,AB=BF,由OK∥AF,AK∥FG,得到四边形AFGK 是平行四边形,得到AK=FG,BG=BF+FG,即BG=AB+AK;(3)四边形AFGK是平行四边形,得到AK=FG,AF=KG,又△DOK≌△BOG,且KD=KG,得到AF=KG=KD=BG,设AB=a,则AF=KG=KD=BG=√2a,得到AK=2√2﹣1-√2a,FG=BG﹣BF=√2a﹣a,解得a=1,得到KD=√2a=√2.5.综合题(1)感知:如图①,四边形ABCD、CEFG均为正方形.易知BE=DG.(2)探究:如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(3)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD的延长线上.若AE=3ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为________ .【答案】(1)证明:∵四边形ABCD、四边形CEFG均为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD﹣∠ECD=∠ECG﹣∠ECD,即∠BCE=∠DCG,在△BCE和△DCG中,{CB=CD∠BCE=∠DCGCE=CG,∴△BCE≌△DCG,∴BE=DG.(2)∵四边形ABCD、四边形CEFG均为菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F,∵∠A=∠F,∴∠BCD=∠ECG,∴∠BCD﹣∠ECD=∠ECG﹣∠ECD,即∠BCE=∠DCG,∴△BCE≌△DCG.,∴BE=DG.(3)20【解析】【解答】解:应用:∵四边形ABCD是菱形,S△EBC=8,∴S△AEB+S△EDC=8,∵AE=3DE,∴S△AEB=3S△EDC,∴S△EDC=6,S△EDC=2,∵△BCE≌△DCG,∴S△DGC=S△EBC=8,∴S△ECG=8+2=10,∴菱形CEFG的面积=2•S△EGC=20,故答案为20.【分析】感知:根据正方形的性质,得到BC=CD,CE=CG,∠BCD=∠ECG=90°,得到∠BCE=∠DCG,得到△BCE≌△DCG,BE=DG;探究:由四边形ABCD、四边形CEFG均为菱形,得到BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F,由∠A=∠F,得到∠BCE=∠DCG,△BCE≌△DCG,BE=DG;应用:由四边形ABCD是菱形,△EBC的面积为8,AE=3DE,得到S△AEB=3S△EDC,得到S△EDC=6,S△EDC=2,由△BCE≌△DCG,得到S△DGC=S△EBC=8,S△ECG=8+2=10,所以菱形CEFG的面积=2•S△EGC=20.6.如图,矩形OABC的顶点A、C分别在x、y的正半轴上,点B的坐标为(3,4),一次函x+b的图象与边OC、AB分别交于点D、E,并且满足OD=BE.点M是线段DE 数y=23上的一个动点.(1)求b的值;(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设点N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N 的坐标.【答案】(1)解:y=23x+b中,令x=0,解得y=b,则D的坐标是(0,b),OD=b,∵OD=BE,∴BE=b,则E的坐标是(3,4﹣b),把E的坐标代入y=23x+b得4﹣b=﹣2+b,解得:b=3(2)解:S四边形OAED= 12(OD+AE)•OA= 12×(3+1)×3=6,∵三角形ODM的面积与四边形OAEM的面积之比为1:3,∴S△ODM=1.5.设M的横坐标是a,则12×3a=1.5,解得:a=1,把x=a=1代入y=﹣23x+3得y=﹣23× 43+3= 73.则M的坐标是(1,73)(3)解:当四边形OMDN是菱形时,如图(1),M的纵坐标是32,把y= 32代入y=﹣23x+3,得﹣23x+3= 32,解得:x= 94,则M的坐标是(94,32),则N的坐标是(﹣94,32);当四边形OMND是菱形时,如图(2)OM=OD=3,设M的横坐标是m,则纵坐标是﹣23m+3,则m2+(﹣23m+3)2=9,解得:m= 3613或0(舍去).则M的坐标是(3613,1513).则DM的中点是(1813,2713).则N的坐标是(3613,5413).故N的坐标是(﹣94,32)或(3613,5413).【解析】【分析】(1)首先在一次函数的解析式中令x=0,即可求得D的坐标,则OD的长度即可求得,OD=b,则E的坐标即可利用b表示出来,然后代入一次函数解析式即可得到关于b的方程,求得b的值;(2)首先求得四边形OAED的面积,则△ODM的面积即可求得,设出M的横坐标,根据三角形的面积公式即可求得M的横坐标,进而求得M的坐标;(3)分成四边形OMDN是菱形和四边形OMND是菱形两种情况进行讨论,四边形OMDN 是菱形时,M是OD的中垂线与DE的交点,M关于OD的对称点就是N;四边形OMND是菱形,OM=OD,M在直角DE上,设出M的坐标,根据OM=OD即可求得M的坐标,则根据ON和DM的中点重合,即可求得N的坐标.7.如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2.(1)若DG=6,求AE的长;(2)若DG=2,求证:四边形EFGH是正方形.【答案】(1)解:∵AD=6,AH=2∴DH=AD﹣AH=4∵四边形ABCD是矩形∴∠A=∠D=90°∴在Rt△DHG中,HG2=DH2+DG2在Rt△AEH中,HE2=AH2+AE2∵四边形EFGH是菱形∴HG=HE∴DH2+DG2=AH2+AE2即42+62=22+AE2∴AE= =4(2)证明:∵AH=2,DG=2,∴AH=DG,∵四边形EFGH是菱形,∴HG=HE,在Rt△DHG和Rt△AEH中,,∴Rt△DHG≌Rt△AEH(HL),∴∠DHG=∠AEH,∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形【解析】【分析】(1)先根据矩形的性质,利用勾股定理列出表达式:HG2=DH2+DG2,HE2=AH2+AE2,再根据菱形的性质,得到等式DH2+DG2=AH2+AE2,最后计算AE的长;(2)先根据已知条件,用HL判定Rt△DHG≌Rt△AEH,得到∠DHG=∠AEH,因为∠AEH+∠AHE=90°,∠DHG+∠AHE=90°,可得菱形的一个角为90°,进而判定该菱形为正方形.8.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD 于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=________,AP=________.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC等于.【答案】(1)8﹣2t;2+t(2)解:∵四边形ANCP为平行四边形时,CN=AP,∴6﹣t=8﹣(6﹣t),解得t=2(3)解:①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6﹣t﹣2t=8﹣(6﹣t),解得t=1,②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=8 √2.【解析】【解答】解:(1)如图1.∵DM=2t,∴AM=AD﹣DM=8﹣2t.∵在直角梯形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴DP=CN=BC﹣BN=6﹣t,∴AP=AD﹣DP=8﹣(6﹣t)=2+t;故答案为:8﹣2t,2+t.【分析】(1)由DM=2t,根据AM=AD﹣DM即可求出AM=8﹣2t;先证明四边形CNPD为矩形,得出DP=CN=6﹣t,则AP=AD﹣DP=2+t;(2)根据四边形ANCP为平行四边形时,可得6﹣t=8﹣(6﹣t),解方程即可;(3)①由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6﹣t﹣2t=8﹣(6﹣t),求解即可,②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK为正方形,则CD=AD,由AD=8,可得CD=8,利用勾股定理求得AC即可.9.已知▱OABC的顶点A、C分别在直线x=2和x=4上,O为坐标原点,直线x=2分别与x轴和OC边交于D、E,直线x=4分别与x轴和AB边的交于点F、G.(1)如图,在点A、C移动的过程中,若点B在x轴上,①直线AC是否会经过一个定点,若是,请直接写出定点的坐标;若否,请说明理由.②▱OABC是否可以形成矩形?如果可以,请求出矩形OABC的面积;若否,请说明理由.③四边形AECG是否可以形成菱形?如果可以,请求出菱形AECG的面积;若否,请说明理由.(2)在点A 、C 移动的过程中,若点B 不在x 轴上,且当▱OABC 为正方形时,直接写出点C 的坐标.【答案】(1)解:①是,经过定点(3,0).理由如下:如图1中,连接AC 交OB 于K .∵四边形OABC 是平行四边形,∴OK=KB ,BC ∥OA ,BC=OA ,∴∠CBF=∠AOD ,在△DOA 和△FBC 中,{∠ODA =∠CFB =90°∠AOD =∠CBF OA =BC,∴△DOA ≌△FBC ,∴OD=FB=2,∴OB=6,∵OK=KB ,∴OK=3,∴K (3,0),∴直线AC 经过定点K (3,0).②可以.利用如下:当∠OCB=90°时,四边形OABC 是矩形,由(1)可知△DOA ≌△FBC ,∴OD=BF=2,∵∠OCF+∠FCB=90°,∠FCB+∠CBF=90°,∴∠OCF=∠CBF,∵∠CFO=∠CFB,∴△CFO∽△BFC,∴CFBF = OFCF,∴CF2= 4CF,∴CF=2 √2,∴S矩形OABC=2•S△OBC=2× 12× 6×2√2=12 √2.③可以.理由如下:如图3中,易知当OE=EC=AE时,四边形AECG是菱形.由(1)可知,△DOA≌△FBC,∴AD=CF,∵DE= 12CF,设DE=x,则AD=CF=2x,OE=AE=3x,在Rt△ADE中,∵OE2=OD2+DE2,∴9x2=x2+4,∴x= √22,∴AE= 3√22,∴S菱形AECG=AE•DF= 3√22×2=3 √2(2)解:如图4中,当四边形OABC是正方形时,易证△DOA≌△FCO,∴OD=CF=2,∴点C坐标(4,2),根据对称性C′(4,﹣2)时,也满足条件.综上所述,点C坐标为(4,2)或(4,﹣2)【解析】【分析】(1)①是,经过定点(3,0).如图1中,连接AC交OB于K,只要证明OD=FB=2,推出OB=6,即可解决问题.②当∠OCB=90°时,四边形OABC是矩形,由(1)可知△DOA≌△FBC,推出OD=BF=2,由△CFO∽△BFC,可得CFBF = OFCF,由此即可解决问题.③可以.如图3中,易知当OE=EC=AE时,四边形AECG是菱形.由(1)可知,△DOA≌△FBC,推出AD=CF,易知DE= 12CF,设DE=x,则AD=CF=2x,OE=AE=3x,在Rt△ADE中,根据OE2=OD2+DE2,列出方程即可解决问题.(2)如图4中,当四边形OABC是正方形时,易证△DOA≌△FCO,推出OD=CF=2,推出点C坐标(4,2),根据对称性C′(4,﹣2)时,也满足条件.10.如图1,在平面直角坐标系中,正方形ABCO的顶点C、A分别在x、y轴上,A(0,6)、E(0,2),点H、F分别在边AB、OC上,以H、E、F为顶点作菱形EFGH(1)当H(﹣2,6)时,求证:四边形EFGH为正方形(2)若F(﹣5,0),求点G的坐标(3)如图2,点Q为对角线BO上一动点,D为边OA上一点,DQ⊥CQ,点Q从点B出发,沿BO方向移动.若移动的路径长为3,直接写出CD的中点M移动的路径长为________.【答案】(1)证明:如图1中,∵E(0,2),H(﹣2,6),∴OE=AH=2,∵四边形ABCO是正方形,∴∠HAE=∠EOF=90°,∵四边形EFGH是菱形,∴EH=EF,在Rt△AHE和Rt△OEF中,{AH=EOHE=EF,∴Rt△AHE≌△Rt△OEF,∴∠AEH=∠EFO,∵∠EFO+∠FEO=90°,∴∠AEH+∠FEO=90°,∴∠HEF=90°,∴四边形EFGH是正方形(2)解:如图1中,连接GE、FH交于点K.∵F(﹣5,0),E(0,2),∴OF=5,OE=2,EA=4,∵HE=EF,∴52+22=42+AH2,∴AH= √13,∴H(﹣√13,6),∵四边形EFGH是菱形,∴HK=KF,KE=KG,设G(m,n),则有m+02= −5−√132,n+22= 6+02,∴m=﹣5﹣√13,n=4,∴G(﹣5﹣√13,4)(3)3√22【解析】【解答】(3)解:如图2中,如图2中,作MN⊥CO于M.∵MN∥OD,CM=MD,∴CN=ON,∴MN垂直平分线段CO,∴点M在线段OC的垂直平分线上运动,如图3中,易知当点Q与B重合时,点M与BD的中点N重合,当BQ=3时,作EQ⊥BC于E,延长EQ交OA于F,延长OM交BC于H,连接NM(线段MN的长即为点M的运动轨迹的长),∵QC=QD,∠CEQ=∠QFD,易证∠ECQ=∠FQD,∴△EQC≌△FDQ,∴EQ=DF=BE= 3√22,CE=OF=6﹣3√22,∴DO=6﹣3 √2,∵CM=DM,∠CMH=∠OMD,∠CHM=∠DOM,∴△HMC≌△OMD,∴OM=HM,CH=OD=6﹣3 √2,BH=3 √2,∵ON=NB,∴MN= 12BH= 3√22,∴点M的运动的路径的长为3√22.故答案为3√2.2【分析】(1)只要证明Rt△AHE≌△Rt△OEF,推出∠AEH=∠EFO,由∠EFO+∠FEO=90°,推出∠AEH+∠FEO=90°,推出∠HEF=90°,即可解决问题.(2)如图1中,连接GE、FH交于点K.首先求出点H的坐标,设G(m,n),根据中点坐标公式,列出方程组即可解决问题.(3)如图2中,作MN⊥CO于M.由MN∥OD,CM=MD,推出CN=ON,推出MN 垂直平分线段CO,推出点M在线段OC的垂直平分线上运动,如图3中,易知当点Q与B 重合时,点M与BD的中点N重合,当BQ=3时,作EQ⊥BC于E,延长EQ交OA于F,延长OM交BC于H,连接NM(线段MN的长即为点M的运动轨迹的长),想办法求出BH 的长,即可利用三角形的中位线定理解决问题.11.如图,△ABC是等腰直角三角形,∠A=90°,点P,Q分别是AB, AC上的一动点,且满足BP=AQ,D 是BC的中点.(1)求证:△PDQ是等腰直角三角形.(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.【答案】(1)证明:连接AD.∵△ABC是等腰直角三角形,D是BC的中点,∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,又∵BP=AQ,∴△BPD≌△AQD,∴PD=QD,∠BDP=∠ADQ,∵∠BDP+∠ADP=90°,∴∠ADP+∠ADQ=∠PDQ=90°,∴△PDQ为等腰直角三角形(2)解:当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:由(1)知△ABD为等腰直角三角形,当P为AB的中点时,DP⊥AB,即∠APD=90°,又∵∠BAC=90°,∠PDQ=90°,∴四边形APDQ为矩形,AB,∴四边形APDQ为正方形又∵DP=AP= 12【解析】【分析】连接AD,根据直角三角形的性质可得AD=BD=DC,从而证明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,则△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,从而证出△PDQ是等腰直角三角形;若四边形APDQ是正方形,则DP⊥AB,得到P点是AB的中点.12.如图,在等边三角形ABC中,点D是BC边的中点,以AD为边作等边三角形ADE.(1)求∠CAE的度数;(2)取AB边的中点F,连结CF、CE,试证明四边形AFCE是矩形.【答案】(1)解:在等边三角形ABC中,∵点D是BC边的中点,∴∠DAC=30°.又∵△ADE为等边三角形,∴∠DAE=60°.∴∠CAE=∠DAE-∠DAC=30°(2)解:由(1)知,∠EAF=90°,由F为AB的中点知,∠CFA=90°,∴CF∥EA.在等边三角形ABC中,CF=AD.在等边三角形ADE中,AD=EA.∴CF=EA.∴四边形AFCE为平行四边形.又∵∠CFA=90°,∴四边形AFCE为矩形.【解析】【分析】根据等边三角形三线合一的特点,易求得∠DAC=30°,则∠CAE=∠DAE-∠DAC.先证明四边形AECF是平行四边形,然后根据∠CFA=∠FAE=90°,由矩形的定义判定四边形AFCE是矩形.13.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?【答案】(1)解:四边形ADEF是平行四边形.理由:∵△ABD,△EBC都是等边三角形.∴AD=BD=AB,BC=BE=EC∠DBA=∠EBC=60°∴∠DBE+∠EBA=∠ABC+∠EBA.∴∠DBE=∠ABC.在△DBE和△ABC中∵BD=BA∠DBE=∠ABCBE=BC,∴△DBE≌△ABC.∴DE=AC.又∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可证:AD=EF,∴四边形ADEF平行四边形(2)解:∵四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.∴∠BAC=150°时,四边形ADEF是矩形(3)解:当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在.理由如下:若∠BAC=60°,则∠DAF=360°﹣∠BAC﹣∠DAB﹣∠FAC=360°﹣60°﹣60°﹣60°=180°.此时,点A、D、E、F四点共线,∴以A、D、E、F为顶点的四边形不存在【解析】【分析】可先证明△DBE≌△ABC ,又∵△ACF是等边三角形,∴AC=AF.∴DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;若四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;根据∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,A,D,E,F为顶点的四边形就不存在.14.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)证明:如图1,当点G和点M、C不重合时,求证:DG=DN.【答案】(1)证明:如图2中,∵AM=ME.AD=DB,∴DM∥BE,∴∠GDN+∠DNE=180°,∵∠GDN=∠AEB,∴∠AEB+∠DNE=180°,∴AE∥DN,∴四边形DMEN是平行四边形,∵DM== BE,EM== AE,AE=BE,∴DM=EM,∴四边形DMEN是菱形(2)证明:如图1中,取BE的中点F,连接DM、DF.由(1)可知四边形EMDF是菱形,∴∠AEB=∠MDF,DM=DF,∴∠GDN=∠AEB,∴∠MDF=∠GDN,∴∠MDG=∠FDN,∵∠DFN=∠AEB=∠MCE+∠CME,∠GMD=∠EMD+∠CME,、在Rt△ACE中,∵AM=ME,∴CM=ME,∴∠MCE=∠CEM=∠EMD,∴∠DMG=∠DFN,∴△DMG≌△DFN,∴DG=DN【解析】【分析】(1)如图2中,首先证明四边形DMEN是平行四边形,再证明ME=MD 即可证明.(2)如图1中,取BE的中点F,连接DM、DF.只要证明△DMG≌△DFN即可.15.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,分别延长OB,OD到点E,F,使BE=DF,顺次连接A、E、C、F各点.(1)求证:∠FAD=∠EAB.(2)若∠ADC=130°,要使四边形AECF是正方形,求∠FAD的度数.【答案】(1)证明:∵菱形ABCD的对角线AC,BD相交于点O,∴AD=AB,∠ADB=∠ABD,∴∠ADF=∠ABE,在△FAD与△EAB中,∴△FAD≌△EAB(SAS),∴∠FAD=∠EAB;(2)解:∵四边形AECF对角线互相垂直平分,∴只要∠EAF=90°即得四边形BFDE是正方形,∵∠ADC=130°,∴∠DAB=180°﹣130°=50°∴∠FAD+∠EAB=40°,∵∠FAD=∠EAB,∴∠FAD= ×40°=20°【解析】【分析】(1)由题意易证∠ADF=∠ABE,又因为DF=EB,AD=AB,于是可△FAD≌△EAB,;(2)由已知可得四边形AECF对角线互相垂直平分,只要∠EAF=90°即得四边形AECF是正方形,由∠FAD=∠EAB,再证得∠DAB=50°,可得∠FAD+∠EAB=40°,于是∠FAD= 1×40°=20°.216.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD 为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:________,②BC,DC,CF之间的数量关系为:________;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,(1)中的①,②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请直接写出GE的长.【答案】(1)垂直;BC=CF+CD(2)解:CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.理由如下:∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,{AD=AF∠BAD=∠CAFAB=AC,∴△DAB≌△FAC(SAS),∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC .(3)解:过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N ,如图3所示:∵∠BAC=90°,AB=AC ,∴BC= √2 AB=2 √2 ,AH= 12 BC= √2 ,∴CD= 14 BC= √22 ,CH= 12 BC= √2 ,∴DH= 3√22 ,由(2)证得BC ⊥CF ,CF=BD= 5√22 ,∵四边形ADEF 是正方形,∴AD=DE ,∠ADE=90°,∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF ,∴四边形CMEN 是矩形,∴NE=CM ,EM=CN ,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM ,在△ADH 与△DEM 中, {∠ADH =∠DEM∠AHD =∠DMEAD =DE, ∴△ADH ≌△DEM (AAS ),∴EM=DH= 3√22 ,DM=AH= √2 ,∴CN=EM= 3√22 ,EN=CM= 3√22 ,∵∠ABC=45°,∴∠BGC=45°,∴△BCG 是等腰直角三角形,∴CG=BC=2 √2 ,∴GN=CG ﹣CN= √22 , ∴EG= √GN 2+EN 2 = (√22)(3√22)= √5 . 【解析】【解答】解:(1)①正方形ADEF 中,AD=AF ,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF ,在△DAB 与△FAC 中, {AD =AF∠BAD =∠CAFAB =AC,∴△DAB ≌△FAC (SAS ),∴∠B=∠ACF ,∴∠ACB+∠ACF=90°,即BC ⊥CF ;故答案为:垂直;②△DAB ≌△FAC ,∴CF=BD ,∵BC=BD+CD ,∴BC=CF+CD ;故答案为:BC=CF+CD ;【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB ≌△FAC ,根据全等三角形的性质即可得到结论;②由正方形ADEF 的性质可推出△DAB ≌△FAC ,根据全等三角形的性质得到CF=BD ,∠ACF=∠ABD ,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB ≌△FAC ,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)根据等腰直角三角形的性质得到BC= √2 AB=2 √2 ,AH= 12 BC= √2 ,求得DH= 3√22 ,根据正方形的性质得到AD=DE ,∠ADE=90°,根据矩形的性质得到NE=CM ,EM=CN ,由角的性质得到∠ADH=∠DEM ,根据全等三角形的性质得到EM=DH= 3√22 ,DM=AH= √2 ,等量代换得到CN=EM= 3√22 ,EN=CM= 3√22,根据等腰直角三角形的性质得到CG=BC=2 √2 ,根据勾股定理即可得到结论.17.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO=CO ,BO=DO ,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD 是矩形.(2)DF ⊥AC ,若∠ADF :∠FDC=3:2,则∠BDF 的度数是多少?【答案】(1)证明:∵AO=CO ,BO=DO ,∴四边形ABCD 是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,【解析】根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.18.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE=PA,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=________度.【答案】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,{AB=BC∠ABP=∠CBPPB=PB,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∵PA=PE,∴∠PAE=∠PEA,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°,∵∠ABC=90°,∴∠EPC=90°(3)115°【解析】【解答】(3)∠EPC=115°,理由:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,{AB=BC∠ABP=∠CBPPB=PB,∴△ABP≌△CBP(SAS),∴∠BAP=∠BCP,∵PA=PE,∴∠DAP=∠DCP,∴∠PAE=∠PEA,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°.∴∠CPE=180°-∠ABC=180°-65°=115°【分析】(1)根据正方形的性质得到△ABP≌△CBP,得到对应边相等,得到PC=PE;(2)由(1)知△ABP≌△CBP,得到对应边对应角相等,根据等边对等角和两直线平行同旁内角互补,求出∠CPE的度数;(3)根据菱形的性质,得到△ABP≌△CBP,得到得到对应边对应角相等,根据等边对等角和两直线平行同旁内角互补,求出∠CPE的度数.19.实践探究,解决问题如图1,△ABC中,AD为BC边上的中线,则S△ABD=S△ACD.(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,且AB=4,AD=8,则S阴影=________;(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S阴影和S平行四边形ABCD 之间满足的关系式为________;(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S阴影和S四边形ABCD之间还满足(2)中的关系式吗?若满足,请予以证明,若不满足,说明理由.解决问题:(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方米,求图中四个小三角形的面积和(即S1+S2+S3+S4的值).【答案】(1)16(2)S阴影=12S平行四边形ABCD(3)解:满足(2)中的关系式,理由如下:连接BD,由图1得S△EBD= 12 S△ABD同理S△BDF= 12S△BDC∴S四边形EBFD=S△EBD+S△BDF= 12S四边形ABCD(4)解:设四边形的空白区域分别为a,b,c,d 由上述性质可以得出:a+S2+S3= 12S△ACD①,c+S1+S4= 12S△ACB②,b+S2+S1= 12S△ABD③,d+S4+S3= 12S△ACD④,①+②+③+④得,a+S2+S3+c+S1+S4+b+S2+S1+d+S4+S3=S四边形ABCD⑤而S四边形ABCD=a+b+c+d+S1+S2+S3+S4+S阴影⑥所以联立⑤⑥得S1+S2+S3+S4=S阴影=20平方米.【解析】【解答】解:(1)∵E、F分别为矩形ABCD的边AD、BC的中点,且AB=4,AD=8,∴S阴影= 12×8×4=16,故答案为:16;(2)∵E、F分别为平行四边形ABCD的边AD、BC的中点,∴S阴影= 12S平行四边形ABCD;故答案为:S阴影= 12S平行四边形ABCD;【分析】(1)由矩形的性质容易得出结果;(2)由平行四边形的性质容易得出结果;(3)连接BD,由题意得出S△EBD= 12 S△ABD同理S△BDF= 12S△BDC,即可得出结论;(4)设四边形的空白区域分别为a,b,c,d,由(3)可以得出:a+S2+S3= 12S△ACD①,c+S1+S4= 12S△ACB②,b+S2+S1= 12S△ABD③,d+S4+S3= 12S△ACD④,进一步得出结论即可.20.如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)解:∵四边形AECF是菱形,如图所示:∴AE=EC,∴∠1=∠2,∵∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE= 12BC=5.【解析】【分析】(1)利用平行四边形的性质得出对边平行且相等,结合已知,可证出AECF是平行四边形;(2)利用菱形的邻边相等的性质,可证出BE=AE=CE= 12BC=5.。

苏科版八年级下册数学课件:第9章中心对称图形复习

苏科版八年级下册数学课件:第9章中心对称图形复习
初中数学八年级上册 (苏科版)
中心对称图形(复习)
1.平行四边形与矩形、菱形、正方形的关系:
矩形
平行四边形
一组邻边相等、 一个角是直角
正方形
菱形
2.平行四边形与矩形、菱形、正方形的性质:


对角线
对称性
平行四边形 对边平行且相等 对角相等
互相平分 中心对称图形
矩形
对边平行且相等 四个角都是直角 互相平分且相等
1.已知:如图,四边形ABDE、ACFG是正方 形,EC、BG交于点M. (1) 求证:BG=CE (2)试猜想BG与CE的关系.
E
A
G
D
M
F
B
例题讲授 2.已知:如图,E为正方形ABCD的边BC的中
点,AE平分∠BAF.
求证:AF=BC+CF.
D
FC
D
FC
G
G
E
E
A
B
A
B
例题讲授
4.如图,在矩形ABCD中,AB=4cm, AD=12cm,点P在AD边上以每秒1cm的速度 从点A向点D运动,点Q在BC边上,以每秒4cm 的速度从点C出发,在CB间往返运动,两个点 同时出发,当点P到达点D时停止(同时点Q也 停止),在这段时间内,t为何值时,ABQP是 矩形?
4.平行四边形ABCD周长为16cm,AC、BD相 交于点O, OE⊥AC交AC于E,则△DCE的周 长是_8_c_m___
A
ED
O
B
C
5.A、B、C、D在同一平面内,从①AB∥CD;
② AB=CD;③BC∥AD;④BC=AD,这四个
条件中任意选两个,能使四边形ABCD是平行
四边形的选法有( B )种.

8.5 矩形、菱形、正方形(第5课时) 课件 (苏科版八年级下)

8.5 矩形、菱形、正方形(第5课时) 课件 (苏科版八年级下)
苏科版数学 八年级(上)
A B C
D
知识回顾
矩形是由直角三角形怎样旋转而成的呢?
答:1)绕直角三角形斜边上的中点旋转 180°得到的;
2)斜边中点就是对称中心。
(1)矩形是特殊的平行四边形;
矩 形 与 平 行 四 边 形 的 关 系 :
(2)矩形拥有平行四边形的所有特点,
但也有不同与平行四边形的特点:
H A E B F G C
一展身手
⒍在菱形ABCD中作一个等边 △AEF,且AE=AB,求∠C的大小.
A
B E C F
D
教学反思
▲你对菱形知多少?请你谈一谈.
★从概念上来谈; ●从性质上来谈; ※从计算上来谈.
菱形对角线互相垂直,构成直角三角形, 所以往往要应用勾股定理, 如果有一个角为60°, 则边与对角线可构成等边三角形 和30°的直角
△CDA可以看成是△ABC绕点O 旋转180°得到的图形. 四边形ABCD是中心对称图形.
有一组邻边相等的平行四边形叫做菱形.
菱形是特殊的平行四边形,它具有 平行四边形的一切性质. 对边相等.
菱 形
对角相等. 对角线互相平分.
探索菱形的性质
讨论?
⒈如图,四边形ABCD是菱形. 图中哪些线段相等?哪些角相等?
A
B C
D
讨论?
⒉连结菱形ABCD的对角线AC、BD 相交于点O. 你还有什么发现?
A
O B D
C
A
特殊性!
B
O D C
菱形的4条边都相等. 菱形的对角线互相垂直,并且 每一条对角线平分一组对角.
例题精析
⒈在菱形ABCD中,对角线AC、BD的长分 别为a、b,AC、BD相交于点O.

矩形、菱形、正方形(探索矩形的性质)[上学期]--苏科版

矩形、菱形、正方形(探索矩形的性质)[上学期]--苏科版
[单选]某市地铁工程施工作业面内,因大量水和流沙涌入,引起部分结构损坏及周边地区地面沉降,造成3栋建筑物严重倾斜,直接经济损失约合1.5亿元。根据《生产安全事故报告和调查处理条例》规定,该事故的等级属于()。A.特别 故B.重大事故C.较大事故D.一般事故 [单选,A1型题]治疗肝郁气滞型外阴鳞状上皮增生首选方剂()。A.左归丸B.知柏地黄丸C.当归饮子D.右归丸E.黑逍遥散 [判断题]当叶轮、轴套等零件在轴上紧力不足引起振动时,其振动值随着负荷的增加而减少A.正确B.错误 [单选]建设项目竣工验收时,负责组织项目验收委员会的是()。A.建设单位B.监理单位C.施工单位D.项目主管部门 [单选]计量标准器具的准确度等级()计量基准。A.高于B.低于C.等于D.不定 [单选]面神经迷路段由内耳道底前上方进入面神经管,于前庭与耳蜗之间到达膝神经节,此段最窄,其长度为()A.2~3mmB.3~5mmC.5~10mmD.10~12mmE.12~15mm [单选]面神经疾病定性检查结果错误的是()A.面瘫发生2周内,病侧诱发总和电位最大反应幅度为健侧的10%或不足,提示病侧变性运动纤维>90%B.发病3周内,神经兴备性试验>3.5mA,提示预后不佳C.面肌失神经支配2周后出现 动电位,提示下运动神经变性D.面肌失神经支配6~12周出现多相神经再支配电位,表明预后不佳E.发病10天内,最大刺激试验消失.提示预后不佳 [单选]“扫描仪”的驱动程序安装是在()之后完成。A、"鼠标"安装B、"扫描仪"硬件安装C、"音箱"安装D、"调制解调器"安装 [单选]保证零部件互换性,允许加工的误差称为()A.配合B.公差C.形位公差D.偏差 [单选]20×7年1月1日,甲公司自证券市场购入面值总额为2000万元的债券。购入时实际支付价款2078.98万元,另外支付交易费用10万元。该债券发行日为20×7年1月1日,系分期付息、到期还本债券,期限为5年,票面年利率为5%,年实 为4%,每年l2月31日支付当年利息。甲公司将该债券作为持有至到期投资核算。假定不考虑其他因素,该持有至到期投资20×7年12月314B.2068.98C.2072.54D.2083.43

菱形(第二课时 菱形的判定)(课件)

菱形(第二课时 菱形的判定)(课件)
故选:C.

菱形的判定
如图,、、、分别是四边形ABCD四条边的中点,要使四边形EFGH为菱形,则四边形
ABCD应具备的条件是( )
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.一组对边平行而另一组对边不平行
【详解】
解:连接AC,BD,
∵四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为菱形,
D
1
2
做法:分别以A、C为圆心,以大于 AC
的长为半径作弧,两条弧分别相交于点B ,
D,依次连接A、B、C、D四点.
A
C
[思考]得到的这个四边形是菱形吗?
B
探索与证明
四条边都相等的四边形是菱形
A

B

已知:如图,四边形ABCD中,AB=BC=CD=AD.
求证:四边形ABCD是菱形.
证明:∵AB=BC=CD=AD
∴AB=CD,BC=AD
∴四边形ABCD是平行四边形
又∵AB=BC
∴四边形ABCD是菱形
判定1:四条边都相等的四边形是菱形
探索与证明
对角线互相垂直的的平行四边形是菱形
已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O ,AC⊥BD.
求证:▱ABCD是菱形.
B
证明: ∵四边形ABCD是平行四边形
A.3个
B.4个
C.1个
D.2个
【详解】
解:∵四边形ABCD是平行四边形,
∴①当AB=BC时,四边形ABCD是菱形;故符合题意;
②当AC⊥BD时,四边形ABCD是菱形;故符合题意;
③当∠ABC=90°时,四边形ABCD是矩形;故不符合题意;

苏教版八年级数学下册知识点总结归纳(苏科版)

苏教版八年级数学下册知识点总结归纳(苏科版)

苏教版八年级数学下册知识点总结归纳(苏科版)知识点总结第七章:数据的整理、收集、描述知识概念抽样与样本1.全面调查:考察全体对象的调查方式叫做全面调查。

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3.总体:要考察的全体对象称为总体。

4.个体:组成总体的每一个考察对象称为个体。

5.样本:被抽取的所有个体组成一个样本。

6.样本容量:样本中个体的数目称为样本容量。

频率分布1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。

2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:①计算极差(最大值与最小值的差)②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图(2)频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。

第八章:认识概率确定事件和随机事件1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。

不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。

2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。

随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。

要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。

所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。

概率的意义与表示方法1、概率的意义一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。

第八章中心对称图形复习(3)课件(苏科版八下)

第八章中心对称图形复习(3)课件(苏科版八下)

细心练一练
3.如图所示,边长为a的正方形ABCD的对角 线交于点O,点O又是另一个边长为a的正方 形EFGO的一个顶点.则两个正方形重叠部 分的面积=_______. A D 1 2 E a 4
O B F G
C
4.正方形ABCD,两条对角线AC、BD相交于 点O,P是射线AB上任意一点,过P点分别做 直线AC、BD的垂线PE、PF,垂足为E、F. (1)如图1,当P点在线段AB上时,线段PE、 PF、OB有怎样的等量关系,说明理由.
N
M
细心练一练
1.下列说法不正确的是( D ) A.一组邻边相等的矩形是正方形 B.对角线相等的菱形是正方形 C.对角线互相垂直的矩形是正方形 D.有一个角是直角的平行四边形是正方形 2.如图,把一个长方形纸片对折两次,然后剪下 一个角.为得到一个正方形,裁剪线与折痕所 成的角α的度数应为( C ) A.60° B.30° C.45° D.90°
O B D C
A P B D Q C B A Q P D C
例2 如图,在正方形ABCD中,点E、F分别 在边BC、CD上,AE、BF交于点O,AE=BF. 判断AE、BF的位置关系,说明理由.
例2 如图2,在正方形ABCD中,点E、H、F、 G分别在边AB、BC、CD、DA上,EF、GH 交于点O,EF=GH.判断EF、GH的位置关系, 说明理由.
4.正方形ABCD,P是射线AB上任意一点,过 P点分别做直线AC、BD的垂线PE、PF. (2)如图2,当P点在线段AB的延长线上时, 线段PE、PF、OB又有怎样的等量关系,说 明理由.
拓展与延伸
如图,△ABC中,AD是边BC上的中线, 过点A作AE//BC,过点D作DE//AB,DE与 AC、AE分别交于点O、点E,连接EC. (1)AD与EC相等吗?为什么?; (2)当∠BAC=90°时,判断四边形ADCE的形 状,并说明理由; A E

苏科版八年级数学下册课件:9.4矩形、菱形、正方形(5)正方形2(共35张PPT)

苏科版八年级数学下册课件:9.4矩形、菱形、正方形(5)正方形2(共35张PPT)
直角三角形.
7.如图,E是正方形ABCD的边BC延长线上的有
一点,且CE=AC.求∠E的度数.
A
D
B
C
E
8.已知:如图,四边形ABCD是正方形,以对角线
AC为一边作菱形AEFC.求∠FAB的度数.
DC
F
A
BE
9.已知:如图, E、F是正方形ABCD的对角 线AC 上的两点,且AE=CF.
求证:四边形BEDF是菱形.
(2)若正方形A’B’C’D’绕点O任意旋转某个角度后 ,OE=OF吗?
A O (A')
D
F
D'
B
E
C
A O (A')
B
E
B'
D
F D'
C
B'
C'
C'
练习 :如图,将n个边长都为1cm的正方形按如图
所示摆放,点A1、A2、…、An分别是正方形的中心, 则n个这样的正方形重叠部分的面积和为( )
A.
(1)A、B、C的对应点分别是什么?
(2)△ABC可通过怎样的变换得到△ADC?
A
(3)从对称性看,四边形
ABCD是什么图形? B
O
D
正方形实际是等腰直角三角形
绕其底边上的中点旋转180°
而形成的中心对称图形.
C
四边形ABCD有哪些特点?
四边形ABCD是中心对称图形,又是轴对称图形;
是平行四边形
A
A
D
F
OE
B
C
平行四边形
矩正菱 形方形

挑战第二关 具备什么条件的平行四边形是正方形?
正方形的判别方法:

苏科版八年级下册数学教学课件 第9章中心对称图形---平行四边形 矩形、菱形、正方形 第2课时 菱形

苏科版八年级下册数学教学课件 第9章中心对称图形---平行四边形 矩形、菱形、正方形 第2课时 菱形

cm,则四边形ABCD的周长为 ( A )
A.52 cm
B.40 cm
C.39 cm
D.26 cm
CONTENTS
4
菱形
菱形的定义
有一组邻边相等的平行四边形叫做菱形.
菱形的性质
1.对称性:菱形既是轴对称图形又是中心对称图形. 2.菱形具有平行四边形的一切性质 3.边:菱形的四条边相等,对边相等. 4.对角线:菱形的对角线互相垂直.
3
1.菱形具有而平行四边形不具有的性质是( C )
A.对角相等
B.对边相等
C.对角线互相垂直
D.对角线相等
1.下列命题中正确的是( D )
A.对角线相等的四边形是菱形 B.对角线互相垂直的四边形是菱形 C.对角线相等的平行四边形是菱形 D.对角线互相垂直的平行四边形是菱形
3.如图,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形
练一练:判断下列说法是否正确,正确的画“√”,不正确的画“×”.
(1)有一条对角线平分一组对角的四边形是菱形.
(× )
(2)对角线互相垂直,且一条对角线平分一组对角的四边形是菱形.
(3)对角线相等且互相平分的四边形是菱形. (4)对角线互相垂直平分的四边形是菱形.
( ×) (× ) (√ )
CONTENTS
问题3.1 我们知道,当平移一个平行四边形活动框架的一边, 使这个平行四边形成菱形时,它的两条对角线垂直.反过来,对 角线互相垂直的平行四边形是菱形吗?
菱形的判定
问题3.2 在□ABCD中,AC ⊥ BD.
求证:□ABCD是菱形.
A 证明:∵四边形ABCD是平行四边形,

∴OA=OC.
B
O

解题技巧专题:菱形、矩形、正方形中折叠、旋转问题之七大考点(解析版)

解题技巧专题:菱形、矩形、正方形中折叠、旋转问题之七大考点(解析版)

解题技巧专题:菱形、矩形、正方形中折叠、旋转问题之七大考点【考点导航】目录【典型例题】1【考点一菱形中的折叠求角度、线段长等问题】【考点二矩形中的折叠求角度、线段长等问题】【考点三正方形中的折叠求角度、线段长等问题】【考点四特殊平行四边形折叠后求周长、面积问题】【考点五菱形中旋转求角度、线段长等问题】【考点六矩形中旋转求角度、线段长等问题】【考点七正方形中旋转求角度、线段长等问题】【典型例题】【考点一菱形中的折叠求角度、线段长等问题】1(2022秋·九年级课时练习)如图,在菱形ABCD中,∠A=120°,AB=2,点E是边AB上一点,以DE 为对称轴将△DAE折叠得到△DGE,再折叠BE使BE落在直线EG上,点B的对应点为点H,折痕为EF且交BC于点F.(1)∠DEF=;(2)若点E是AB的中点,则DF的长为.【答案】 90° 2.8【分析】(1)由折叠得∠DEG+∠HEF=∠AED+∠BEF,再根据平角的定义可得结论;(2)首先证明B、G、D在同一条直线上,再运用勾股定理列方程求解即可.【详解】解由折叠得,∠AED=∠DEG,∠BEF=∠HEF∴∠DEG+∠HEF=∠AED+∠BEF∵∠AED+∠DEG+∠HEF+∠BEF=180°×180°=90°∴∠DEG+∠HEF=12即∠DEF=90°故答案为:90°;(2)∵四边形ABCD是菱形∴AD⎳BC,DC⎳AB,AB=BC=CD=DA=2∴∠B+∠A=180°∵∠A=120°∴∠B=180°-∠A=180°-120°=60°∵点E为AB的中点,且AB=2∴AE=BF=12AB=12×2=1.∵点A与点G重合,∴∠DGE=∠A=120°∵点B与点H重合∴∠EHF=∠B=60°又AE=EG,BE=EH,AE=BE∴EG=EH∴点G与点H重合∵∠DGE+∠FHE=∠DGE+∠FGE=100°+80°=180°∴B,G,D三点在同一条直线上过点D作DO⊥BC,交BC的延长线于点O,如图,∵DC⎳AB∴∠DCO=∠B=60°,DC=AB=2∴∠CDO=30°∴CO=12DC=12×2=1.在Rt△DCO中,OD=DC2-OC2=22-12=3由折叠得,BF=FH,AD=DH=2设BF=x,则FC=2-x∴DF=DF+GF=2+x,FO=FC+CO=2-x+1=3-x在Rt△DFO中,DF2=FO2+DO2∴(2+x)2=(3-x)2+(3)2解得,x=0.8∴DF=2+0.8=2.8故答案为2.8【点睛】本题主要考查了菱形的性质,折叠的性质,勾股定理等知识,正确作出辅助线构造直角三角形是解答本题的关键.【变式训练】1(2023春·全国·八年级专题练习)图,把菱形ABCD沿AE折叠,点B落在BC边上的F处,若∠BAE=15°,则∠FDC的大小为.【答案】22.5°【分析】根据翻折变换的性质可得AB=AF,然后根据等腰三角形两底角相等求出∠B=∠AFE=75°,可得∠C,根据AF=AD,求出∠AFD,由三角形外角等于不相邻的两个内角的和即可得答案.【详解】解:∵菱形ABCD沿AE折叠,B落在BC边上的点F处,∴AD=AB=AF,∠AEB=90°=∠AEF,∠FAE=∠BAE=15°,∴∠B=∠AFE=75°,在菱形ABCD中,AB∥CD,AD∥BC,∴∠DAF=∠AFE=75°,∠C=180°-∠B=105°,∵AF=AD,∴∠ADF=∠AFD=180°-75°2=52.5°,∴∠DFB=∠AFE+∠AFD=127.5°,∴∠FDC=∠DFB-∠B=22.5°,故答案为:22.5°.【点睛】本题考查了菱形中的翻折问题,等腰三角形的性质,解题的关键是掌握翻折的性质及菱形的性质.2(2023春·八年级课时练习)如图,在菱形ABCD中,∠B=60°,AB=4,E,F分别是边AB,BC上的点,将△EBF沿EF折叠,使点B的对应点B'落在边AD上,若AE=AB',则CF的长为.【答案】4-23##-23+4【分析】根据菱形性质和∠B=60°,可得BC=AB=4,AD⎳BC,∠BAD=120°,过点A作AG⊥EB'于点G,AP⊥BC于点P,过点B'Q⊥BC于点Q,得矩形APQB',然后利用含30度角的直角三角形可得1 24-AE=32AE,得AE=23-2,再利用勾股定理即可解决问题.【详解】解:在菱形ABCD中,∠B=60°,BC=AB=4,AD⎳BC,∴∠BAD=120°,如图,过点A作AG⊥EB'于点G,AP⊥BC于点P,过点B'Q⊥BC于点Q,得矩形APQB',如图所示:∴PQ=AB',B'Q=AP,∵AE =AB ',AG ⊥EB ',∴EG =B 'G =12EB ',∠AEG =30°,由翻折可知:BE =B 'E ,BF =B 'F ,∴BE =B 'E =AB -AE =4-AE ,∴EG =B 'G =124-AE ,∵EG =AE ⋅cos30°,∴124-AE =32AE ,解得AE =23-2,∴PQ =AB '=AE =23-2,在Rt △ABP 中,∠B =60°,AB =4,∴BP =12AB =2,∴AP =23,∴B 'Q =AP =23,∴CF =BC -BF =4-BF ,QF =BF -BP -PQ =BF -2-23-2 =BF -23,在Rt △B 'QF 中,根据勾股定理,得:B 'Q 2+QF 2=B 'F 2,∴(23)2+(BF -23)2=BF 2,解得BF =23,∴CF =4-BF =4-23,故答案为:4-23.【点睛】本题考查勾股定理求线段长,涉及到翻折变换的性质、菱形的性质、等边三角形的判定与性质、勾股定理,熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键.3(2023春·江苏苏州·八年级苏州工业园区星湾学校校考阶段练习)如图,菱形纸片ABCD ,AB =8,∠B =60°,将该菱形纸片折叠,使点B 恰好落在CD 边的中点B 处,折痕与边BC 、BA 分别交于点M 、N .则CM 的长为.【答案】2.4【分析】过点B 作B E ⊥BC 与BC 的延长线交于点E ,根据含30°角的直角三角形的性质和勾股定理求出CE 和B ′E ,设BM =x ,则B ′M =x ,用x 表示出ME ,然后在Rt △B ME 中,利用勾股定理得出方程进行解答.【详解】解:过点B 作B E ⊥BC 与BC 的延长线交于点E ,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =8,AB ∥CD ,∵B 是CD 的中点,∴B′C=4,∵∠B=60°,∴∠B′CE=∠B=60°,∠CB′E=30°,∴CE=2,∴B′E=42-22=23,设BM=x,则ME=BC+CE-BM=8+2-x=10-x,由折叠的性质知:B′M=BM=x,在Rt△B ME中,B′M2=B′E2+ME2,∴x2=232+10-x2,解得:x=5.6,8-x=2.4,即CM的长为2.4,故答案为:2.4.【点睛】本题主要考查了菱形的性质,折叠的性质,含30°角的直角三角形的性质,勾股定理,二次根式的运算等知识,关键是作辅助线构造直角三角形.【考点二矩形中的折叠求角度、线段长等问题】1(2023·湖南长沙·校联考一模)如图,在矩形ABCD中,E在AD边上,将△ABE沿BE折叠,点A恰好落在矩形ABCD的对称中心O处,若AB=3,则BC的长为.【答案】33【分析】连接OD,由O是矩形ABCD中心,得到B,O,D共线,由翻折变换得到OB=AB,由矩形的性质得到BD=2OB=2AB=6,由勾股定理求出AD的长即可.【详解】解:连接OD,∵O是矩形ABCD中心,∴B,O,D共线,∵△ABE沿BE翻折到△OBE,∴OB=BA,∵四边形ABCD是矩形,O是它的中心,∴BD=2OB=2AB=2×3=6,BC=AD,∵∠BAD=90°,∴AD=BD2-AB2=62-32=33,∴BC=AD=33.故答案为:33【点睛】本题考查矩形的性质,中心对称,翻折变换,关键是掌握矩形的性质.【变式训练】1(2023秋·福建福州·八年级福建省福州第一中学校考期末)如图,长方形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=16°,则∠DCF=度.【答案】37【分析】由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=37°,可得到∠AEF=∠AEB=53°,求出∠CEF=74°,求出FE=CE,由等腰三角形的性质求出∠ECF=53°,即可得出∠DCF的度数.【详解】解:∵四边形ABCD是长方形,∴∠BAD=∠B=∠BCD=90°,由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=16°,∴∠BAE=∠FAE=12×90°-16°=37°,∴∠AEF=∠AEB=90°-37°=53°,∴∠CEF=180°-2×53°=74°,∵E为BC的中点,∴BE=CE,∴FE=CE,∴∠ECF=12×180°-74°=53°,∴∠DCF=90°-∠ECF=37°;故答案为:37.【点睛】本题主要考查了折叠变换的性质、等腰三角形的性质、三角形内角和定理;求出∠ECF的度数是解题的关键.2(2023春·八年级课时练习)长方形纸片ABCD中,AB=3,BC=4,点E是BC边上一动点,连接AE,把∠B沿AE折叠,使点B落在点F处,连接CF,当△CEF为直角三角形时,BE的长为.【答案】32或3【分析】当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如答图1所示.连接AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AFE=∠B=90°,而当△CEF为直角三角形时,只能得到∠EFC=90°,所以点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,则EB= EF,AB=AF=3,可计算出CF=2,设BE=x,则EF=x,CE=4-x,然后在Rt△CEF中运用勾股定理可计算出x .②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形.【详解】解:当△CEF 为直角三角形时,有两种情况:当点F 落在矩形内部时,如答图1所示.连接AC ,在Rt △ABC 中,AB =3,BC =4,∴AC =AB 2+BC 2=32+42=5,∵∠B 沿AE 折叠,使点B 落在点F 处,∴∠AFE =∠B =90°,当△CEF 为直角三角形时,只能得到∠EFC =90°,∴点A 、F 、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,∴EB =EF ,AB =AF =3,∴CF =5-3=2,设BE =x ,则EF =x ,CE =4-x ,在Rt △CEF 中,∵EF 2+CF 2=CE 2,∴x 2+22=4-x 2解得:x =32;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,∴BE =AB =3.故答案为:32或3;【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.3(2023·安徽合肥·统考一模)如图,点E 是矩形ABCD 的边CD 上的点,连接AE ,将矩形ABCD 沿AE 折叠,点D 的对应点P 恰好在边BC 上.(1)写出图中与∠CEP 相等的角;(2)若AD =5,AB =4,则折痕AE 的长为.【答案】 ∠DAP 和∠APB 552【分析】(1)根据矩形的性质得到∠D =90°,AD ∥BC ,由折叠知∠D =∠APE =90°,由此得到∠DAP +∠PED =180°,即可证明∠DAP =∠CEP ,再由平行线的性质得到∠DAP =∠APB ,则∠APB =∠CEP ;(2)由矩形的性质得到AB =CD =4,BC =AD =5,∠C =∠D =90°,由折叠知AP =AD =5,DE =PE ,利用勾股定理求出BP =3,则CP =2,在Rt △CPE 中,根据勾股定理得DE 2=4-DE 2+22,解得DE =52,则AE =AD 2+DE 2=552.【详解】解:(1)∵四边形ABCD 是矩形,∴∠D =90°,AD ∥BC ,由折叠知∠D =∠APE =90°,∴∠DAP +∠PED =180°,∵∠CEP +∠PED =180°,∴∠DAP =∠CEP ,∵AD ∥BC ,∴∠DAP =∠APB ,∴∠APB =∠CEP ;故答案为:∠DAP 和∠APB ;(2)∵四边形ABCD 是矩形,∴AB =CD =4,BC =AD =5,∠C =∠D =90°,由折叠知AP =AD =5,DE =PE ,∴BP =AP 2-AB 2=52-42=3,∴CP =BC -BP =2,在Rt △CPE 中,根据勾股定理DE 2=CE 2+CP 2,∴DE 2=4-DE 2+22解得DE =52,∴AE =AD 2+DE 2=52+52 2=552,故答案为:552.【点睛】本题主要考查了矩形与折叠问题,勾股定理与折叠问题,灵活应用所学知识是解题的关键.4(2023春·江苏盐城·九年级校考阶段练习)如图,在矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,使点C 落在AD 边上的点F 处,过点F 作FG ∥CD ,交BE 于点G ,连接CG .(1)判断四边形CEFG 的形状,并说明理由.(2)若AB =6,AD =10,求四边形CEFG 的面积.【答案】(1)见解析(2)203.【分析】(1)由翻折得∠BEC =∠BEF ,FE =CE ,根据FG ∥CE ,可得∠FGE =∠BEC ,从而∠FGE =∠BEF ,FG =FE ,故FG =EC ,四边形CEFG 是平行四边形,即可得证;(2)在Rt △ABF 中,利用勾股定理求得AF 的长,可得DF =1,设EF =x ,则CE =x ,DE =3-x ,在Rt △DEF 中,用勾股定理列方程可解得CE ,在Rt △BCE 中,即可求出答案.【详解】(1)证明:(1)∵△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,∴△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE ,∵FG∥CE,∴∠FGE=∠BEC,∴∠FGE=∠BEF,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)解:∵矩形ABCD中,AD=10,∴BC=10,∵△BCE沿BE折叠,点C落在AD边上的点F处,∴BF=BC=10,在Rt△ABF中,AB=6,AF=BF2-AB2=8,∴DF=AD-AF=2,设EF=x,则CE=x,DE=6-x,在Rt△DEF中,DF2+DE2=EF2,∴22+(6-x)2=x2,解得x=103,∴CE=103,∴四边形CEFG的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5(2023春·全国·八年级专题练习)如图,矩形ABCD中,AB=3,BC=5,现进行如下折叠:(1)沿着过点B的直线折叠,使点A 落在BC边上,此时折痕BE的长为;(2)沿着过点B的直线折叠,使点A 落在矩形内部,且恰好使点E、A 、C三点在同一直线上,此时折痕BE的长为.【答案】3210【分析】(1)根据折叠的性质,可得出三角形ABE是边长为3的等腰直角三角形,根据勾股定理可求出BE 的长;(2)根据三角形的面积公式可得出EC=BC=5,再根据勾股定理求出DE,AE,最后再根据勾股定理求出BE即可.【详解】解:(1)由折叠可得,AB=A′B,AE=A′E,∠ABE=∠A′BE,∵四边形ABCD是矩形,∴∠A=∠ABC=90°=∠BA′E,∴∠ABE=∠A′BE=45°,∴∠ABE=∠AEB=45°,∴AB=AE,在Rt△ABE中,由勾股定理得,BE=AB2+AE2=32+32=32,故答案为:32;(2)由折叠可得,AB=A′B=3,∠A=∠BA′E=90°,∵点E、A′、C三点在同一直线上,∴S△EBC=12BC•AB=12EC•A′B,∴EC=BC=5,在Rt△DCE中,由勾股定理可得,DE=EC2-DC2=52-32=4,∴AE=AD-DE=5-4=1,在Rt△ABE中,BE=AB2+AE2=32+12=10,故答案为:10.【点睛】本题考查矩形的性质、折叠的性质、勾股定理等知识点.有一定的综合性.6(2023春·全国·七年级专题练习)如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是,CF的对应线段是;(2)若∠1=50°,求∠2、∠3的度数;(3)若AB=8,DE=10,求CF的长度.【答案】(1)BC′,C′F;(2)50°,80°;(3)6【分析】(1)根据折叠的性质即可得出;(2)由折叠的性质可得,∠2=∠BEF,由AD∥BC得∠1=∠2,所以∠2=∠BEF=50°,从而得∠3=80°;(3)根据勾股定理先求得AE的长度,也可求出AD,BC的长度,然后根据∠1=∠BEF=50°,可得BF= BE=10,继而可求得CF=BC-BF.【详解】(1)由折叠的性质可得:折叠后,DC的对应线段是BC′,CF的对应线段是C′F;故答案为:BC′,C′F.(2)由折叠的性质可得:∠2=∠BEF,∵AD∥BC,∴∠1=∠2=50°.∴∠2=∠BEF=50°,∴∠3=180°-50°-50°=80°;(3)∵AB=8,DE=10,∴AE=BE2-AB2=6,∴AD=BC=6+10=16,∵∠1=∠BEF=50°,∴BF=BE=10,∴CF=BC-BF=16-10=6.【点睛】本题考查了矩形折叠的性质,平行线的性质定理,勾股定理解直角三角形,等腰三角形判定相关知识.7(2023春·广东河源·八年级统考开学考试)如图,将一张长方形纸片OABC放在直角坐标系中,使得OA与x轴重合,OC与y轴重合,点D为AB边上的一点(不与点A、点B重合),且点A(6,0),点C (0,8).(1)如图1,折叠△ABC,使得点B的对应点B1落在对角线AC上,折痕为CD,求此刻点D的坐标.(2)如图2,折叠△ABC,使得点A与点C重合,折痕交AB与点D,交AC于点E,求直线CD的解析式.【答案】(1)D(6,5);x+8.(2)直线CD的解析式为y=-724【分析】(1)根据勾股定理求得AC=10,设AD=n,则BD=8-n,根据折叠的性质得出B1D=BD=8-n,CE=CB=6,AB1=10-6=4,在Rt△AB1D中,利用勾股定理得出关于n的方程,解方程求得n的值,即可求得D的坐标;(2)设AD=m,则BD=8-m,根据折叠的性质CD=AD=m,在Rt△CBD中,利用勾股定理得出关于m的方程,解方程求得m的值,即可求得D的坐标,然后根据待定系数法即可求得作出直线CD的解析式.【详解】(1)解:∵点A(6,0),点C(0,8),∴OA=BC=6,OC=AB=8,∴AC=OA2+OC2=10,设AD=n,则BD=8-n,由折叠的性质可知B1D=BD=8-n,CE=CB=6,∴AB1=10-6=4,由折叠的性质可知CD=AD=n,在Rt△AB1D中,AB21+B1D2=AD2,∴42+(8-n)2=n2,解得n=5,∴AD=5,(2)解:设AD =m ,则BD =8-m ,根据折叠的性质可知CD =AD =m ,在Rt △CBD 中,CB 2+BD 2=CD 2,∴62+(8-m )2=m 2,解得m =254,∴AD =254,∴D 6,254,设直线CD 的解析式为y =kx +8,代入D 6,254 得,254=6k +8,解得k =-724,∴直线CD 的解析式为y =-724x +8.【点睛】本题考查了待定系数法求一次函数的解析式,矩形的性质,折叠的性质,勾股定理的应用等,求得D 的坐标是解题的关键.【考点三正方形中的折叠求角度、线段长等问题】1(2022秋·广东梅州·九年级校考阶段练习)如图,将正方形纸片按如图折叠,AM 为折痕,点B 落在对角线AC 上的点E 处,则∠EMC 的度数为()A.22.5°B.30°C.45°D.67.5°【答案】C【分析】根据正方形的性质可得∠B =90°,∠ACB =12∠BCD =45°,再由折叠可得∠AEM =∠B =90°,然后利用三角形的外角进行计算即可解答.【详解】解:∵四边形ABCD 是正方形,∴∠B =90°,∠ACB =12∠BCD =45°,由折叠得:∠AEM =∠B =90°,∴∠EMC =∠AEM -∠ACB =90°-45°=45°,故选:C .【点睛】本题考查了正方形的性质,折叠的性质,三角形外角的性质,熟练掌握正方形的性质是解题的关键.【变式训练】1(2023·全国·八年级专题练习)如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A 处,连接A C,则∠BA C=°.【答案】67.5【分析】根据正方形的性质求出∠CBD,再根据折叠的性质得A B=BC,进而根据等腰三角形的性质得出答案.【详解】∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,BD平分∠ABC,∠ABC=45°,∴∠CBD=12根据折叠可知,AB=A B,∴A B=BC,=67.5°.∴∠BA C=∠BCA =180°-45°2故答案为:67.5.【点睛】本题主要考查了正方形的性质,折叠的性质,等腰三角形的性质等,判定等腰三角形是解题的关键.2(2022秋·四川成都·八年级成都七中校考期中)已知:如图,在边长为12的正方形ABCD中,点E在边BC上,BE=2CE,将△DCE沿DE折叠至△DFE,延长EF交AB于点G,连接DG(1)求∠GDE的度数:(2)求AG的长度【答案】(1)∠EDG=45°(2)6【分析】(1)根据△DCE沿DE折叠至△DFE,可得∠DFE=∠DFG=90°,DC=DF,证明Rt△DAG≌Rt△DFG HL可得∠ADG=∠FDG,根据对折可得∠CDE=∠FDE,即可得出∠GDE的度数;(2)令AG=x,则BG=12-x,GF=x,在Rt△BEG中,勾股定理即可求解.【详解】(1)∵将△DCE沿DE折叠至△DFE,∵四边形ABCD是正方形,∴∠DAG=∠DFG=90°,在Rt△DAG与Rt△DFG中,DF=DA DG=DG,∴Rt△DAG≌Rt△DFG HL,∴∠ADG=∠FDG,由对折得∠CDE=∠FDE,∴∠EDG=∠EDF+∠GDF=12∠ADC=45°;(2)令AG=x,则BG=12-x,GF=x,∵BE=2CE,∴BE=8,EF=CE=4,在Rt△BEG中,82+12-x2=4+x2,解得:x=6.∴AG=6.【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,折叠的性质,掌握以上知识是解题的关键.3(2023春·江苏·八年级专题练习)如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求证:∠EDG=45°.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.【答案】(1)证明见解析;(2)①证明见解析,②线段AG的长为2【分析】(1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE =∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明RtΔDGA≅RtΔDGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE的长度,再利用勾股定理列出方程求解即可;【详解】(1)证明:如图1:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC=90°,∵ΔDEC沿DE折叠得到ΔDEF,∴∠DFG =∠A =90°,DA =DF ,在Rt △DGA 和Rt △DGF 中,DG =DG DA =DF ,∴Rt △DGA ≌Rt △DGF (HL ),∴∠3=∠4,∴∠EDG =∠3+∠2=12∠ADF +12∠FDC ,=12(∠ADF +∠FDC ),=12×90°,=45°;(2)证明:如图2所示:∵ΔDEC 沿DE 折叠得到ΔDEF ,E 为BC 的中点,∴CE =EF =BE ,∠DEF =∠DEC ,∴∠5=∠6,∵∠FEC =∠5+∠6,∴∠DEF +∠DEC =∠5+∠6,∴2∠5=2∠DEC ,即∠5=∠DEC ,∴BF ∥DE ;②解:设AG =x ,则GF =x ,BG =6-x ,∵正方形边长为6,E 为BC 的中点,∴CE =EF =BE =12×6=3,∴GE =EF +GF =3+x ,在Rt △GBE 中,根据勾股定理得:(6-x )2+32=(3+x )2,解得:x =2,即线段AG 的长为2.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、翻折变换的性质;熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.【考点四特殊平行四边形折叠后求周长、面积问题】1(2023·全国·九年级假期作业)如图1,菱形纸片ABCD 的边长为6cm ,∠ABC =60°,将菱形ABCD 沿EF ,GH 折叠,使得点B ,D 两点重合于对角线BD 上的点P (如图2).若AE =2BE ,则六边形AEFCHG 的面积为cm 2.【答案】133【分析】由菱形的性质可得AC⊥BD,∠BAD=120°,AB=BC=6cm,∠ABD=30°,,由折叠的性质可得EF⊥BP,∠BEF=∠PEF,BE=EP=2,可证四边形AEPG是平行四边形,可得AG= EP=2cm,DG=4cm,由面积和差关系可求解.【详解】解:如图,∵四边形ABCD是菱形,∠ABC=60°,∴AC⊥BD,∠BAD=∠BCD=120°,AB=BC=6cm,∠ABD=30°,∴OA=12AB=3cm,∠BAC=∠BCA=∠DAC=∠DCA=60°,∴OB=62-32=33cm∴BD=63cm.∵AE=2BE,∴AE=23×6=4cm,BE=13×6=2cm,∵将菱形ABCD沿EF,GH折叠,∴EF⊥BP,∠BEF=∠PEF,BE=EP=2cm,∴EF∥AC,∴∠BEF=∠BAC=60°,∴∠BEF=∠60°=∠PEF,∴∠BEP=∠BAD=120°,∴EP∥AD,同理可得:GP∥AB,∴四边形AEPG是平行四边形,∴AG=EP=2cm,∴DG=4cm,∴六边形AEFCHG面积=S菱形ABCD-S△BEF-S△GDH=12×6×63-34×22-34×42=133cm2,故答案为:133.【点睛】本题考查了折叠的性质,菱形的性质,含30°角的直角三角形的性质,勾股定理,平行四边形的判定和性质等知识,求出DG的长是本题的关键.【变式训练】1(2022秋·辽宁沈阳·九年级统考期末)如图,已知正方形ABCD面积为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为()A.2B.2C.4D.42【答案】D【分析】首先由正方形ABCD 面积为2,即可求得其边长为2,然后由折叠的性质,可得A M =AM ,D N =DN ,A D =AD ,则可得图中阴影部分的周长为:A M +BM +BC +CN +D N +A D =AB +BC +CD +AD ,继而求得答案.【详解】解:设折叠后A ,D 的点分别为A ,D ,EF 与AB ,CD 分别交于点M ,N ,如图所示,∵正方形ABCD 面积为2,∴AB =BC =CD =AD =2,由折叠的性质:A M =AM ,D N =DN ,A D =AD ,∴图中阴影部分的周长为:A M +BM +BC +CN +D N +A D=AM +BM +BC +CN +DN +AD=AB +BC +CD +AD=42.故选:D .【点睛】此题考查了折叠的性质与正方形的性质,掌握折叠的性质与正方形的性质是解题的关键.2(2022春·广东汕头·八年级校考阶段练习)如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上点F 处,已知CE =3,AB =8,则阴影部分的面积为.【答案】30【分析】根据折叠的性质求出EF =DE =CD -CE =5,AD =AF =BC ,再根据勾股定理列出方程求解即可.【详解】解:由折叠的性质知,EF =DE =CD -CE =5,AD =AF =BC ,由勾股定理得,CF =4,AF 2=AB 2+BF 2,即AD 2=82+(AD -4)2,解得,AD =10,∴BF =6,CF =4,图中阴影部分面积=S △ABF +S △CEF =12×6×8+12×3×4=30cm 2.故答案为:30【点睛】本题考查了折叠的性质,解决本题的关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②勾股定理,三角形的面积公式求解.【考点五菱形中旋转求角度、线段长等问题】1(2023春·天津西青·九年级校考阶段练习)如图,将菱形ABCD 绕点A 顺时针旋转得到菱形AB C D ,使点D 落在对角线AC 上,连接DD ,B D ,则下列结论一定正确的是()A.DD =1B D B.∠DAB =90°2C.△AB D 是等边三角形D.△ABC≌△AD C【答案】D【分析】由菱形的性质可得AD=AB=BC=CD,∠ABC=∠ADC,由旋转的性质可得AD= AD ,CD=C D ,∠AD C =∠ADC,由“SAS”可证△ABC≌△AD C ,即可求解.【详解】解:∵四边形ABCD是菱形,∴AD=AB=BC=CD,∠ABC=∠ADC,∵将菱形ABCD绕点A顺时针旋转得到菱形AB C D ,∴AD=AD ,CD=C D ,∠AD C =∠ADC,∴AB=AD ,BC=C D ,∠ABC=∠AD C ,∴△ABC≌△AD C SAS,故选:D.【点睛】本题考查了旋转的性质,菱形的性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.【变式训练】1(2023·山东东营·统考中考真题)如图,在平面直角坐标系中,菱形OABC的边长为26,点B在x 轴的正半轴上,且∠AOC=60°,将菱形OABC绕原点O逆时针方向旋转60°,得到四边形OA B C (点A 与点C重合),则点B 的坐标是()A.36,32D.62,36C.32,62B.32,36【答案】B【分析】延长B C 交x轴于点D,根据旋转的性质以及已知条件得出∠B DO=90°,进而求得OD,DB 的长,即可求解.【详解】解:如图所示,延长B C 交x轴于点D,∵四边形ABCD是菱形,点B在x轴的正半轴上,OB平分∠AOC,∠AOC=60°,∴∠COB=∠AOB=30°,∠CBA=60°∵将菱形OABC绕原点O逆时针方向旋转60°,∴∠C OC=60°,则∠OB C=12∠C B C=30°,AB=CB∴∠B OD=60°∴∠B DO=90°,在Rt△CDO中,OC=B C=26∴CD=12OC=6,OD=3CD=3×6=32∴DB =36,∴B 32,36,故选:B.【点睛】本题考查了旋转的性质,菱形的性质,勾股定理,含30度角的直角三角形的性质,坐标与图形,熟练掌握菱形的性质是解题的关键.2(2023春·八年级单元测试)如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上.EF与CD交于点P,则PE的长是.【答案】3-1【分析】连接BD交AC于O,由菱形的性质得出CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=12∠BAD=30°,由直角三角形的性质求出OB=12AB=1,由直角三角形的性质得出AC=23,由旋转的性质得出AE=AB=2,∠EAG=∠BAD=60°,求出CE=AC-AE=23-2,证出∠CPE=90°,由直角三角形的性质得出PE的长【详解】解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=12∠BAD=30°,OA=OC,AC⊥BD,∴OB=12AB=1∴OA=3OB=3,∴AC=23由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°,∴CE=AC-AE=23-2,∵四边形AEFG是菱形,∴EF∥AG,∴∠CEP=∠EAG=60°,∴∠CEP+∠ACD=90°,∴∠CPE=90°,∴PE=12CE=3-1故答案为:3-1【点睛】本题考查了菱形的性质、旋转的性质、含30°角的直角三角形的性质、平行线的性质等知识;熟练掌握旋转的性质和菱形的性质是解题的关键.3(2023·江苏·八年级假期作业)如图1,菱形AEFG的两边AE、AG分别在菱形ABCD的边AB和AD上,且∠BAD=60°,连接CF;(1)求证:3DG=CF;(2)如图2,将菱形AEFG绕点A进行顺时针旋转,在旋转过程中(1)中的结论是否发生变化?请说明理由.【答案】(1)见解析;(2)CF=3DG,(1)中的结论不变.理由见解析.【分析】(1)延长EF交CD于M点,证明三角形CMF是等腰三角形,且∠EMC=120°,过点M作MN⊥CF,垂足为N,根据30°角所对直角边等于斜边的一半,和勾股定理,得FN=NC=32DG即CF=2FN=3DG;(2)过D做∠NDC=∠ADG,使DN=DG,连接NC,证明△DGN为等腰三角形,四边形GFNC为平行四边形即可.【详解】(1)如图1,延长EF交CD于M点,∵四边形AEFG和四边形ABCD是菱形∴DC⎳GF⎳AB,DM⎳GF∴四边形GFMD是平行四边形则∠D=∠EMC=120°,∴∠MFC=∠MCF=30°,过点M作MN⊥CF,垂足为N,∴MN=12MF,根据勾股定理,得FN=32 DG,∵MC=MF,∴FN=NC,∴CF=2FN=3DG;(2)如图2,过D做∠NDC=∠ADG,使DN=DG,连接NC,∴△AGD≌△DNC(SAS)∴AG=NC∠DNC=∠AGD∴△DGN为等腰三角形,则∠DGN=∠DNG,∵∠NGF=360°-∠AGD-∠AGF-∠DGN=240°-∠DGA-∠DGN ∠GNC=∠DNC-∠DNG=∠DNC-∠DNG∴∠NGF +∠GNC =240°-∠DGN -∠DNG ,∵∠DGN +∠DNG =180°-∠GDN =60°∴∠NGF +∠GNC =180°∴NC ⎳GF ,∴四边形GFNC 为平行四边形∴CF =GN ,则GN =3DG ,∴CF =3DG ,结论(1)不变.【点睛】本题考查了菱形的性质,平行四边形的判定,三角形的全等,等腰三角形的性质,灵活构造辅助线是解题的关键.【考点六矩形中旋转求角度、线段长等问题】1(2023·江苏无锡·校考一模)如图,在矩形ABCD 中,AB =5,AD =4,将矩形ABCD 绕点A 逆时针旋转得到矩形AB ′C ′D ′,AB ′交CD 于点E ,且DE =B ′E ,则AE 的长为.【答案】4110【分析】根据旋转不变性得到AB ′=AB =5,设AE =CE =x ,在Rt ΔADE 中结合勾股定理即可得出结论.【详解】解:∵将矩形ABCD 绕点A 逆时针旋转得到矩形AB ′C ′D ′,∴AB ′=AB =5,∵DE =B ′E ,∴AE =CE ,设AE =CE =x ,∴DE =5-x ,∵∠D =90°,∴AD 2+DE 2=AE 2,即42+5-x 2=x 2,解得:x =4110,即AE 的长为4110(也可以写作4.1),故答案为:4110.【点睛】本题考查了利用旋转的性质结合勾股定理求线段长.解题过程中涉及到矩形的性质、勾股定理等知识,熟练掌握几何图形旋转不变性及勾股定理求线段长是解决问题的关键.【变式训练】1(2023·江苏南京·校联考三模)如图,将矩形ABCD 绕点C 旋转,使点B 落在对角线AC 上的B 处,延长AD 交A D 于点E .若AB =3,BC =4,则DE 的长为.【答案】1【分析】如图所示,连接A A ,A C ,CE ,由矩形的性质和勾股定理得到AC =5,CD =AB =3,AD =BC =4,由旋转的性质得到A B =AB =3,四边形A B C D 是矩形,证明S △AAC =S △ACE ,则可得AE =AC ⋅A B CD=5,则DE =AE -AD =1.【详解】解:如图所示,连接A A ,A C ,CE ,∵在矩形ABCD 中,AB =3,BC =4,∴AC =AB 2+BC 2=5,CD =AB =3,AD =BC =4,由旋转的性质可得A B =AB =3,四边形A B C D 是矩形,∴A D ∥B C ,A B ⊥AC ,∴S △AAC =S △ACE ,∴12AC ⋅A B =12AE ⋅CD ,∴AE =AC ⋅A B CD=3×53=5,∴DE =AE -AD =1,故答案为:1.【点睛】本题主要考查了矩形的性质,勾股定理,旋转的性质,证明S △AAC =S △ACE ,利用等面积法求出AE 的长是解题的关键.2(2023春·江苏淮安·八年级统考期中)如图,将矩形ABCD 绕点B 旋转得到矩形BEFG ,点E 在AD 上,延长DA 交GF 于点H .(1)求证:△ABE ≅△FEH ;(2)连接BH ,若∠EBC =30°,求∠ABH 的度数.【答案】(1)见解析;(2)15°.【分析】(1)根据矩形的性质得出AB =DC ,∠BAE =∠D =90°,根据旋转的性质得出FE =DC ,∠EFH =∠D =90°,再证明△ABE ≅△FEH AAS 即可;(2)根据矩形的性质得出∠HEB =∠EBC =30°,由全等三角形的性质得出∠EHB =∠EBH =12180°-30° =75°,再计算即可得出答案.【详解】(1)解:∵四边形ABCD 是矩形,∴AB =DC ,∠BAE =∠D =90°,由旋转性质,得:FE =DC ,∠EFH =∠D =90°,∴AB =FE ,∠BAE =∠EFH ,∵在矩形BEFG 中,GF ∥BE ,∴∠AEB =∠FHE ,在△ABE 和△FEH 中,∠AEB =∠FHE∠BAE =∠EFH AB =FE,∴△ABE ≅△FEH AAS ,(2)解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠HEB =∠EBC =30°,∵△ABE ≅△FEH ,∴BE =EH ,∴∠EHB =∠EBH =12180°-30° =75°,∵∠BAH =90°,∴∠ABH =90°-∠EHB =15°,即∠ABH 的度数为15°.【点睛】本题考查矩形的性质,平行线的性质,全等三角形的判定与性质,正确得出全等是解题的关键.3(2023春·福建三明·八年级统考期中)在长方形ABCD 中,AB =5,BC =3,将长方形ABCD 绕点A 顺时针旋转α0°<α<90° ,得到长方形AEFG .(1)如图1,当点E 落在CD 边上时,延长ED 交FG 于点M ,求证:EM=AE ;(2)如图2,当GC =GB 时,求α的值;(3)如图3,当点E 落在线段CF 上时,AE 与CD 交于点N ,求△ADN 的面积.【答案】(1)证明见解析;(2)60°:(3)125.【分析】(1)只需要证明△EFM ≌△ADE 即可得到答案;(2)连接DG ,证明△CDG ≌△BAG ,得到△ADG 为等边三角形,从而可以得到答案;(3)连接AC ,证明△ABC ≌△AEC ,得到∠EAC =∠BAC =∠ACD ,从而得到CN =AN ,再根据勾股定理计算即可得到答案.【详解】解:(1)由旋转的性质得:BC =EF ,∠B =∠FEA∵四边形ABCD 是矩形∴∠B =∠D =∠FEA =90°,BC =AD =EF∵∠FEM +∠AED =90°,∠DAE +∠AED =90°∴∠FEM =∠DAE∴△EFM ≌△ADE (HL )∴EM =AE(2)如图所示,连接DG∵四边形ABCD 是矩形∴∠ABC =∠BCD =90°,AB =CD∵GC =GB∴∠GCB =∠GBC∴∠DCG =∠ABG∴△CDG ≌△BAG∴DG =AG由翻折的性质可得:AD =AG∴AD =AG =DG∴△ADG 为等边三角形∴∠DAG =60°∴∠DAE =30°∴∠BAE =60°∴α=60°(3)如图所示,连接AC由矩形的性质和翻折的性质可得:AB =AE ,∠AEF =∠B =90°∵∠AEF =∠B =90°∴∠AEC =∠B =90°又∵AB =AE∴△ABC ≌△AEC (HL )∴∠EAC =∠BAC∵AB ∥CD∴∠BAC =∠ACD∴∠EAC =∠ACD∴NC =AN设DN =x ,则NC =AN =CD -DN =5-x 在直角三角形AND 中,AN 2=DN 2+AD 2∴x 2+32=5-x 2解得x =85∴S △ADN =12AD ∙DN =125【点睛】本题主要考查了矩形的性质,折叠的性质,全等三角形的性质与判定,勾股定理,等边三角形的性质与判定,等腰三角形的判定,解题的关键在于能够熟练掌握相关知识进行求解.【考点七正方形中旋转求角度、线段长等问题】1(2022秋·广东珠海·九年级统考期末)如图,将正方形ABCD绕顶点A顺时针旋转45°得到正方形A BC D ,BC与C D 相交于点E,连接BD,B D 相交于点F.(1)填空:∠D EC=度;(2)求证:四边形BED F是菱形.【答案】(1)45(2)见解析【分析】(1)根据正方形的性质求出相关角度,再根据角度之间的关系求出∠D EC即可.(2)先证出四边形BED F是平行四边形,再连接AE,构造全等三角形证邻边相等即可.【详解】(1)解:∵四边形ABCD和四边形A B C D 是正方形∴∠AD C =∠ABC=90°∵∠D AB=45°∴∠BED =180°-45°=135°∴∠D EC=45°(2)解:连接AE.∵四边形ABCD和四边形A B C D 是正方形∴∠AD C =∠ABC=90°∵∠D AB=45°∴∠BED =180°-45°=135°∴∠D EC=45°(方法不唯一,直接写由(1)得也可以)在正方形A B C D 中,∠B D C =45°∴∠D EC=∠B D C∴D F∥BC,即D F∥BE.同理∠DBC=∠D EC=45°,∴D E∥BF.∴四边形BED F是平行四边形在Rt△AD E和Rt△ABE中AD =AB AE=AE。

20.3 矩形 菱形 正方形 课件7(沪科版八年级下册)

20.3 矩形 菱形 正方形 课件7(沪科版八年级下册)
(1)四个角都相等的四边形是正方形 (2)四条边都相等的四边形是正方形 (3)四边相等,有一角是直角的四边形是正方形 (4) 正方形的一条对角线把正方形分成两个全等的等腰 直角三角形 (5) 正方形是轴对称图形,一共有2条对称轴
八年级 数学
第二十章 四边形
正方形
判断满足下列条件的四边形是否是正方形,并说明理由.
§20.3 正方形
正方形
八年级 数学
第二十章 四边形
复习:菱形和矩形的定义
一组邻边相等
平行四边形
菱形
定义:有一组邻边相等的平行四边形叫做菱形
平行四边形
一个角是直角
矩形
定义:有一个角是直角的平行四边形叫做矩形
2002年世界数学大会会 标
八年级 数学
第二十章 四边形
正方形
根据矩形和菱形的定义判定正 方形是不是矩形或菱形? 正方形(square)是特殊的矩形,又是特殊 的菱形,更是特殊的平行四边形,因此正 方形具有这些图形的所有性质.
证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA. 又∵AA′=BB′=CC′=DD′, ∴D′A=A′B=B′C=C′D .∵∠A=∠B=∠C=∠D=90°, ∴△AA′D′≌△BB′A′≌△CC′B′≌DD′C′.
∴A′B′=B′C′=C′D′=D′A′. ∴四边形A′B′C′D′是菱形. 又∵∠1=∠3,∠1+∠2=90°, ∴∠2+∠3=90°,∴∠D′A′B′=90°. ∴四边形A′B′C′D′是正方形.
4)既是矩形又是菱形它一定是正方形
1. 正方形具有而矩形不一定具有的性质是(B ) A、四个角相等. B、对角线互相垂直. C、对角互补. D、对角线相等. 2.正方形具有而菱形不一定具有的性质( D ) A、四条边相等. B、对角线互相垂直. C、对角线平分一组对角. D、对角线相等.

苏科版八年级下册数学知识点汇总

苏科版八年级下册数学知识点汇总

苏科版八年级下册数学知识点汇总
本文档汇总了苏科版八年级下册数学的主要知识点,以供学生复和备考使用。

一. 几何与图形
1. 平面图形:
- 三角形的分类及性质
- 四边形的分类及性质(矩形、正方形、菱形等)
- 圆的性质及相关公式
2. 空间几何:
- 空间图形的投影
- 空间几何体的表面积和体积
二. 代数与方程
1. 方程与不等式:
- 一次方程与一元一次方程组的解法
- 二元一次方程组的解法
- 一次不等式与一元一次不等式组的解法
2. 分式与比例:
- 分式的定义及运算
- 比例与比例的性质
3. 二次根式与二次方程:
- 二次根式的化简与运算
- 二次方程的解法(配方法、公式法)
三. 数据与概率
1. 统计图表:
- 条形图、折线图、饼图的制作与解读
2. 概率与事件:
- 基本概率概念及计算
- 样本空间与事件的关系
四. 函数与图像
1. 函数的概念与表示方法:
- 函数的定义及符号表示
- 函数关系的表示方法(表格、图像等)
2. 一次函数与二次函数:
- 一次函数的性质与图像
- 二次函数的性质与图像
以上是苏科版八年级下册数学知识点的简要汇总。

学生可以根
据自己的学习情况,有选择性地进行复习和巩固。

祝大家学习进步!。

苏科版数学八年级下册第九章 9.4 矩形、菱形、正方形(选择、填空题)专练(详细答案)

苏科版数学八年级下册第九章 9.4 矩形、菱形、正方形(选择、填空题)专练(详细答案)

9.4 矩形、菱形、正方形(选择、填空题)一.选择题1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直2.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.43.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)4.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.5.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°6.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A .4.8B .5C .6D .7.27.如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB=,EF=2,∠H=120°,则DN 的长为( ) A .B .C .﹣D .2﹣8.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个9.如图,在矩形ABCD 中,AD=6,AE ⊥BD ,垂足为E ,ED=3BE ,点P 、Q 分别在BD ,AD 上,则AP +PQ 的最小值为( ) A .2B .C .2D .310.有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1:S 2等于( )A .1:B .1:2C .2:3D .4:911.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE :EC=2:1,则线段CH 的长是( ) A .3B .4C .5D .612.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或613.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD 上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对14.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.7515.如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G 分别在AB、BC、FD上.若BF=,则小正方形的周长为()A.B.C.D.16.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:=13S ①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH,其中结论正确的有()△DHCA.1个 B.2个 C.3个 D.4个二.填空题17.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.18.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.19.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.21.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=度.22.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.23.如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.24.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为.25.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.26.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2021B2021C2021的顶点B2021的坐标是.27.如图,在平面内,四边形ABCD和BEFG均为正方形,则AG:DF:CE=.28.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为.29.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为.30.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.答案与解析一.选择题1.(2021•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分 D.对角线互相垂直【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.2.(2021•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.4【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,=,∵S菱形ABCD∴,∴DH=,故选A.【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱=是解此题的关键.形ABCD3.(2021•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.4.(2021•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.5.(2021•海南)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.6.(2021•宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2【分析】首先连接OP ,由矩形的两条边AB 、BC 的长分别为6和8,可求得OA=OD=5,△AOD 的面积,然后由S △AOD =S △AOP +S △DOP =OA•PE +OD•PF 求得答案.【解答】解:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形ABCD =AB•BC=48,OA=OC ,OB=OD ,AC=BD=10, ∴OA=OD=5,∴S △ACD =S 矩形ABCD =24, ∴S △AOD =S △ACD =12,∵S △AOD =S △AOP +S △DOP =OA•PE +OD•PF=×5×PE +×5×PF=(PE +PF )=12, 解得:PE +PF=4.8. 故选:A .【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.7.(2021•资阳)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.﹣ D.2﹣【分析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证CG=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.【解答】解:延长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=CD=,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=,根据题意得:PG 是梯形MCDN 的中位线,∴DN +CM=2PG=,∴DN=﹣; 故选:C .【点评】本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键.8.(2021•眉山)如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个【分析】①利用线段垂直平分线的性质的逆定理可得结论;②在△EOB 和△CMB 中,对应直角边不相等;③可证明∠CDE=∠DFE ;④可通过面积转化进行解答.【解答】解:①∵矩形ABCD 中,O 为AC 中点,∴OB=OC ,∵∠COB=60°,∴△OBC 是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,但BO≠BM,故②错误;③易知△ADE≌△CBF,∠1=∠2=∠3=30°,∴∠ADE=∠CBF=30°,∠BEO=60°,∴∠CDE=60°,∠DFE=∠BEO=60°,∴∠CDE=∠DFE,∴DE=EF,故③正确;④易知△AOE≌△COF,∴S△AOE =S△COF,∵S△COF =2S△CMF,∴S△AOE :S△BCM=2S△CMF:S△BCM=,∵∠FCO=30°,∴FM=,BM=CM,∴=,∴S△AOE :S△BCM=2:3,故④正确;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.9.(2021•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2 B.C.2 D.3【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD 的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..【解答】解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE•DE,即AE2=3x2,∴AE=x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(x)2+(3x)2,解得x=,∴AE=3,DE=3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=3,故选D.【点评】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.10.(2021•南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.11.(2021•毕节市)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D 落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【分析】根据折叠可得DH=EH,在直角△CEH中,设CH=x,则DH=EH=9﹣x,根据BE:EC=2:1可得CE=3,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:设CH=x,则DH=EH=9﹣x,∵BE:EC=2:1,BC=9,∴CE=BC=3,∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4.故选(B).【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称变换.在直角三角形中,利用勾股定理列出方程进行求解是解决本题的关键.12.(2021•徐州)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6【分析】根据题意列方程,即可得到结论.【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(62+92+x2)﹣6×3,解得x=3,或x=6,故选D.【点评】本题考查了正方形的性质,图形的面积的计算,准确分识别图形是解题的关键.13.(2021•陕西)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON ≌△M′ON′.由此即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.14.(2021•台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.75【分析】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.【点评】本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.15.(2021•呼和浩特)如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为()A.B.C.D.【分析】先利用勾股定理求出DF,再根据△BEF∽△CFD,得=求出EF即可解决问题.【解答】解:∵四边形ABCD是正方形,面积为24,∴BC=CD=2,∠B=∠C=90°,∵四边形EFGH是正方形,∴∠EFG=90°,∵∠EFB+∠DFC=90°,∠BEF+∠EFB=90°,∴∠BEF=∠DFC,∵∠EBF=∠C=90°,∴△BEF∽△CFD,∴=,∵BF=,CF=,DF==,∴=,∴EF=,∴正方形EFGH的周长为.故选C.【点评】本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,属于中考常考题型.16.(2021•昆明)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:=13S ①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH,其中结论正确的有()△DHCA.1个 B.2个 C.3个 D.4个【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF;②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;③同②证明△EHF≌△DHC即可;④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=x,CD=6x,=×HM×CD=3x2,S△EDH=×DH2=13x2,则S△DHC=13S△DHC,故④正确;∴3S△EDH故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.二.填空题(共14小题)17.(2021•内江)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.【分析】先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了勾股定理和三角形面积公式.18.(2021•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出AD=6.本题属于基础题,难度不大,解决该题型题目时,根据菱形的性质找出对角线互相垂直,再通过直角三角形的性质找出菱形的一条变成是关键.19.(2021•盐城)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【分析】延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,由菱形的性质和已知条件得出∠MFD=30°,设MD=x,则DF=2x,FM=x,得出MG=x+1,由勾股定理得出(x+1)2+(x)2=(2﹣2x)2,解方程得出DF=0.6,AF=1.4,求出AH=AF=0.7,FH=,证明△DCB是等边三角形,得出BG⊥CD,由勾股定理求出BG=,设BE=y,则GE=2﹣y,由勾股定理得出()2+y2=(2﹣y)2,解方程求出y=0.25,得出AE、EH,再由勾股定理求出EF即可.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.【点评】本题考查了菱形的性质、翻折变换的性质、勾股定理、等边三角形的判定与性质等知识;本题综合性强,难度较大,运用勾股定理得出方程是解决问题的关键.20.(2021•哈尔滨)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【分析】首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根=BC•FG即可解决问题.据2•S△ABC【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,=BC•FG,∴2•S△ABC∴2××(6)2=6•FG,∴FG=3.故答案为3.【点评】本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.21.(2021•巴中)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=15度.【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.22.(2021•包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=22.5度.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.【点评】本题考查矩形的性质、等腰直角三角形的性质等知识,解题的关键是发现△AEO是等腰直角三角形这个突破口,属于中考常考题型.23.(2021•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= 2a.【分析】作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF中,由三角函数求出FP即可.【解答】解:作FM⊥AD于M,如图所示:则MF=DC=3a,∵四边形ABCD是矩形,∴∠C=∠D=90°.∵DC=3DE=3a,∴CE=2a,由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°﹣90°﹣30°=60°,在Rt△MPF中,∵sin∠MPF=,∴FP===2a;故答案为:2a.【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.24.(2021•湖北襄阳)如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为.【分析】先根据ASA判定△AFO≌△BEO,并根据勾股定理求得BE的长,再判定△BFM∽△BEO,最后根据对应边成比例,列出比例式求解即可.【解答】解:∵正方形ABCD∴AO=BO,∠AOF=∠BOE=90°∵AM⊥BE,∠AFO=∠BFM∴∠FAO=∠EBO在△AFO和△BEO中∴△AFO≌△BEO(ASA)∴FO=EO∵正方形ABCD的边长为2,E是OC的中点∴FO=EO=1=BF,BO=2∴直角三角形BOE中,BE==由∠FBM=∠EBO,∠FMB=∠EOB,可得△BFM∽△BEO∴,即∴FM=故答案为:【点评】本题主要考查了正方形,解决问题的关键的掌握全等三角形和相似三角形的判定与性质.解题时注意:正方形的对角线将正方形分成四个全等的等腰直角三角形.25.(2021•南京)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.26.(2021•聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2021B2021C2021的顶点B2021的坐标是(21008,0).【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2021的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2021÷8=252∴B2021的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2021的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.27.(2021•安徽自主招生)如图,在平面内,四边形ABCD和BEFG均为正方形,则AG:DF:CE=1::1.【分析】连接BD、BF,可证明△ABG∽△DBF,可求得AG:DF,连接CE,可证明△ABG≌△CBE,可求得AG=CE,可求得答案.【解答】解:连接BD、BF和CE,∵四边形ABCD和BEFG均为正方形,∴==,且∠ABD=∠GBF=45°,∴∠ABG+∠GBD=∠GBD+∠DBF,∴∠ABG=∠GBD,∴△ABG∽△DBF,∴,又∴AB=BC,BG=BE,∠ABC=∠GBE=90°,∴∠AGB+∠GBC=∠GBC+∠CBE,∴∠AGB=∠CBE,在△ABG和△CBE中∴△ABG≌△CBE(SAS),∴AG=CE,∴AG:CE=1:1,∴AG:DF:CE=1::1,故答案为:1::1.【点评】本题主要考查相似三角形和全等三角形的判定和性质,构造全等或相似三角形是解题的关键.28.(2021•湖北校级自主招生)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE 的最小值为.【分析】连接CM,先证明四边形CDME是矩形,得出DE=CM,再由三角形的面积关系求出CM的最小值,即可得出结果.【解答】解:连接CM,如图所示:∵MD⊥AC,ME⊥CB,∴∠MDC=∠MEC=90°,∵∠C=90°,∴四边形CDME是矩形,∴DE=CM,∵∠C=90°,BC=3,AC=4,∴AB===5,当CM⊥AB时,CM最短,此时△ABC的面积=AB•CM=BC•AC,∴CM的最小值==,∴线段DE的最小值为;故答案为:.【点评】本题考查了矩形的判定与性质、勾股定理、直角三角形面积的计算方法;熟练掌握矩形的判定与性质,并能进行推理论证与计算是解决问题的关键.29.(2021•丹东)如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为6.【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【解答】解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3=6,故答案为:6.【点评】本题主要考查了正方形的性质,角平分线的性质等,利用等角对等边是解答此题的关键.30.(2021•天津)如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM。

八年级数学下册 9.4《矩形、菱形、正方形》矩形的性质、判定学案(新版)苏科版

八年级数学下册 9.4《矩形、菱形、正方形》矩形的性质、判定学案(新版)苏科版

八年级数学下册 9.4《矩形、菱形、正方形》矩形的性质、判定学案(新版)苏科版9、4矩形、菱形、正方形矩形的性质、判定一、概念:1、定义:有一个角是直角的平行四边形叫做矩形、(矩形也叫长方形)2、矩形的性质:(1)矩形是特殊的平行四边形,它具有平行四边形的一切性质(是中心对称图形,对角线的交点是它的对称中心;对边相等、对角相等、对角线互相平分、)(2)矩形的特殊性质:①矩形是轴对称图形;②矩形的四个角都是直角,对角线相等、3、矩形的判定:(1)有一个角是直角的平行四边形叫做矩形、(定义)(2)三个角是直角的四边形是矩形、(3)对角线相等的平行四边形是矩形、(归纳:证明四边形是矩形的方法有(1)三个角是直角(2)先证明是平行四边形,再证明有一个角是直角或者对角线相等)二、例题讲解例1、如图,矩形ABCD的对角线AC、BD相交于点O,AB=4 cm,∠AOB=60求对角线AC的长、例2、如图,矩形ABCD的两条对角线交于点O,且AC=2AB、求证:△AOB是等边三角形、例3、如图,在矩形ABCD中,点E在AD上,EC平分∠BED、(1)△BEC是否为等腰三角形?为什么?(2)若AB=1,∠ABE=45,求BC的长、例4、如图,矩形ABCD中,对角线AC、BD相交于点O,点E、F、G、H分别在OA、OB、OC、OD上,且AE=BF=CG=DH、探索四边形EFGH的形状并说明理由、例5、如图,四边形ABCD是平行四边形,CA垂直平分BE,试判断四边形EACD的形状,并说明理由、ABCDEFGHMN例6、已知如图,AB∥CD,GM、GN、HM、HN、分别平分∠AGH、∠BGH、∠CHG、∠DHG,试判断四边形GMHN的形状,并说明理由。

【9、4矩形、菱形、正方形(3)(4)菱形的性质、判定】一、概念:1、定义:有一组邻边相等的平行四边形叫做菱形、2、菱形的性质:(1)菱形是特殊的平行四边形,它具有平行四边形的一切性质(是中心对称图形,对角线的交点是它的对称中心;对边相等、对角相等、对角线互相平分、)(2)菱形的特殊性质:①菱形是轴对称图形;②菱形的四条边相等,对角线互相垂直、3、菱形的判定:(1)有一组邻边相等的平行四边形叫做菱形、(定义)(2)四边相等的四边形是菱形、(3)对角线互相垂直的平行四边形是菱形、(归纳:证明四边形是菱形的方法有(1)四边相等(2)先证明是平行四边形,再证明有一组邻边相等或者对角线互相垂直)二、例题讲解例1、如图,在菱形ABCD中,对角线AC、BD的长分别为、,AC、BD相交于点O。

矩形、菱形、正方形(探索矩形的性质)[上学期]--苏科版

矩形、菱形、正方形(探索矩形的性质)[上学期]--苏科版
微信群发布 /cyzn/42物、性废物、药物性废物、化学性废物。 被照体矢状面与胶片平行的摄影体位有A.胸部正位B.心脏右前斜位C.梅氏位D.腕关节正位E.胸部侧卧侧位 督、任、冲脉皆起于胞中,同出会阴,故称A.循行走向B.离入出合C.奇恒之腑D.一源三歧E.别道奇行 钩蚴可引起_____和______症状,钩虫成虫可引起_____、______、______为主的表现,严重者可致_____和_____。 在驾驶间隙,脚可以放在刹车上休息。A.正确B.错误 [问答题,案例分析题]2002年1月,某作者Z将其旅行经历写成多篇文章,投给甲期刊社。该社自当年2月至12月连续刊登了这些作品,受到读者广泛欢迎。但是,该刊并未登载Z关于不得转载、摘编的声明。2002年3月,乙出版社将上述文章汇集成共10万字的《探险历程》一书出版,作者署名为Z。 直肠癌患者,手术前肠道准备,错误的做法是()A.先嘱患者排尿、排便B.每次用量500~1000mlC.溶液温度39~41℃D.行大量不保留灌肠一次,排除粪便和气体E.液面距肛门40~60cm 消化性溃疡患者需紧急手术治疗的情况是()A.伴胃酸减少B.年龄较大,病程长,疼痛反复发作C.有反复上消化道出血史,现大便隐血试验又强阳性D.合并幽门梗阻E.大出血停止后,1天内又有大量出血 无症状的HIV感染者实验室检查达到以下哪一标准时,可以诊断为艾滋病。A.CD4T+淋巴细胞数目&lt;400/mm3B.CD4T+淋巴细胞数目&lt;200/mm3CD4+/CD8+&le;1.0D.HIVRNA阳性E.白细胞数目&lt;2000/mm3 一女29岁,尿频尿急尿痛,加重时尿末有血尿,夜尿7~8次,尿检查:红细胞白细胞,脓细胞均满视野,尿普通细菌培养无细菌生长,尿路平片未见明显异常,按膀胱炎治疗已半年未见好转首先要考虑哪一种疾病A.慢性肾盂肾炎B.泌尿系肿瘤C.间质性膀胱炎D.泌尿系结核E.尿道炎 理中丸主治证是A.虚劳里急证B.脾胃虚寒证C.虚寒腹痛证D.脾胃气虚证E.虚寒呕吐证 垂向加积作用 对鼻前庭疖肿恰当的处理为。A.已成熟的疖肿用硝酸银腐蚀脓头B.疖肿未成熟时可挤压C.已成熟的疖肿可切开并延长到周围浸润部分D.疖肿破溃后不用处理E.以上均不正确 在施工过程中,发生事故后,事故报告应当包括的内容有。A.事故发生单位概况B.事故发生的时间、地点以及事故现场情况C.事故已经造成或者可能造成的伤亡人数(包括下落不明的人数)和初步估计的直接经济损失D.已经采取的措施E.已经处分的相关责任人 我国刑法规定了_____法定原则,_____法定原则的经典表述是,“法无明文规定不为罪”、“法无明文规定不处罚”;刑法同时规定了_____相适应原则,即刑罚的轻重,应当与犯罪分子所犯_____和承担的_____相适应;死刑只适用于_____极其严重的犯罪分子。在这段话的空格中A.2处填写"罪刑" 关于医学模式的观点错误的是A.是一种哲学观在医学上的反映B.随历史的发展而不断发展变化C.&quot;生物-心理-社会&quot;医学模式的提出并不排斥生物医学的研究D.新的医学模式以身心一元论为基本指导思想,坚持病因一元论的观点E.医学心理学促进和推动了医学模式的转化 梯形图如图1所示,该梯形图支持的诊断是A.窦性心律,正常心电图B.房性心律C.交界性心律D.窦性心律不齐E.一度房室传导阻滞 前臂双骨折时桡骨在旋前圆肌止点以上骨折应在屈肘旋后位牵引。()A.正确B.错误 已知三个不相等的数a、b、c,试给出寻找这三个数中最大的一个算法,画出该算法的流程图。 下列哪种心律失常不是造成突发心跳骤停的常见致命性心律失常A.室颤B.无脉性室速C.心脏停搏D.心率>200次/min的PSVTE.无脉电活动 [多选,案例分析题]男性,35岁。因鼻塞、流涕3天伴咽痛、咳嗽两天就诊。自服"感冒通"等稍好转。无明显发热、咳痰及胸痛等。查体:T37.3℃,神志清,呼吸平顺,唇甲无发绀,咽稍红,双侧扁桃体无肿大。气管居中,双肺叩诊清音,未闻明显干湿啰音。患者行血常规示:WBC2.8×109/L, 行单纯乳突切开术时在乳突尖与耳垂连线中点皮下注射麻醉药2ml是为了阻滞哪根神经A.耳颞神经外耳道支B.耳大神经C.迷走神经耳支D.枕小神经E.面神经 最易出现呼吸窘迫症的输血不良反应是。A.循环超负荷B.过敏反应C.输血相关性肺损伤D.肺微血管栓塞E.肺含铁血黄素沉着 膀胱粘膜白斑的细胞学涂片常见的特征细胞为()A.移行上皮细胞B.角化前鳞状上皮C.不全角化鳞状上皮D.完全角化鳞状上皮细胞E.黏液柱状上皮细胞 哪几类人不宜做整形美容手术? 证券组合是由各种货币市场工具构成的,如国库券、高信用等级的商业票据等,安全性很强。A.增长型B.混合型C.货币市场型D.收入型 男性,8岁。于8月19日开始发热,头痛,当时测体温38℃,在外院诊断为上感,给予布洛芬退热,头孢菌素静滴无效,8月22日出现嗜睡,体温高达40℃,8月23日因昏迷伴抽搐入院。查体:神志不清,压眶有反应,体温40.5℃,血压、呼吸正常,双瞳孔等大,皮肤黏膜无出血点,颈强阳性,克氏 女性,30岁。旅游归来感全身乏力,翌日起出现寒战,高热,头痛和肌肉酸痛,干咳,右侧胸痛来急诊。胸部X线示右下片状浸润影。曾在基层医院应用头孢唑啉、阿米卡星(丁胺卡那霉素)等治疗无效。症状加重,高热达40℃,谵妄,腹泻。体检热性重病容,脉搏72次/分,巩膜轻度黄染,右 凿井提升机房的位置,须根据提升机型式、数量、井架高度以及提升钢丝绳的倾角,偏角等来确定,布置时应避开,并考虑提升方位与永久提升方位的关系,使之能适应井筒开凿、平巷开拓、井筒装备各阶段提升的需要。A.永久建筑物的位置B.临时提升机的位置C.凿井绞车的位置D.井口房的位置 矿业工程项目施工总进度安排时,一般情况下是构成矿井工程项目关键路线的关键工程。A.井架安装B.绞车安装C.井筒施工D.井筒装备 是规定国家和社会的基本制度,公民的基本权利和义务,国家机关的地位、组织和活动原则等重大社会关系的法律的总称。A.宪法B.行政法C.民法D.商法 对房地产开发企业来说,下列房地产开发的工作内容中,属于前期工作的是()。(2011年真题)A、土地储备B、销售方案的细化C、建设项目的质量控制D、申领《建设用地规划许可证》 2000年10月31日,九届全国人大第十八次会议通过的《中华人民共和国国家通用语言文字法》从起实施。A.2000年1月1日B.2000年12月1日C.2001年1月1日 通信用支撑杆、升高架需采取防锈蚀措施,其材料、半成品、成品在安装前必须A.刷油漆;B.刷银粉;C.刷防锈漆;D.热镀锌; 人类淋巴细胞膜上富含HLA抗原,目前已检出约224个基因座位,其中下列哪组HLA可以用血清学方法检出。A,B,DQ和DRB.A,B和CC.A,B,C,DQ和DRD.A,B,C和DRE.A,B和DR
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA. 又∵AA′=BB′=CC′=DD′, ∴D′A=A′B=B′C=C′D .∵∠A=∠B=∠C=∠D=90°, ∴△AA′D′≌△BB′A′≌△CC′B′≌DD′C′.
∴A′B′=B′C′=C′D′=D′A′. ∴四边形A′B′C′D′是菱形. 又∵∠1=∠3,∠1+∠2=90°, ∴∠2+∠3=90°,∴∠D′A′B′=90°. ∴四边形A′B′C′D′是正方形.
思维拓展
方案设计
在一块正方形的花坛上,欲修建两条直的小路,使得两条直 的小路将花坛平均分成面积相等的四部分(不考虑道路的宽度), 你有几种方法?(至少说出三种)
(1)这节课我的收获是什么? (2)我最感兴趣的是什么? (3)我的困惑是什么?
两组对边 一角为直角且有 分别平行 一组邻边相等
20Βιβλιοθήκη 四边形平行四边形、矩形、菱形、正方形的关系
平行四边形

矩形

菱形

八年级 数学
第二十章 四边形
例题讲解
例6
如图,点A'B'C'D'分别是正方形ABCD四条边上 的点,并且AA'=BB'=CC'=DD'. 求证:四边形ABCD是正方形.
分析: 的判定. (3)正方形的判定. 关键:如何判定四边形ABCD是正方 形? (1)正方形的性质. (2)直角三角形全等
4)既是矩形又是菱形它一定是正方形
1. 正方形具有而矩形不一定具有的性质是(B ) A、四个角相等. B、对角线互相垂直. C、对角互补. D、对角线相等. 2.正方形具有而菱形不一定具有的性质( D ) A、四条边相等. B、对角线互相垂直. C、对角线平分一组对角. D、对角线相等.
下列说法对吗?


P89练习题 习题20.3
2、 3(2)、12
(1)四个角都相等的四边形是正方形 (2)四条边都相等的四边形是正方形 (3)四边相等,有一角是直角的四边形是正方形 (4) 正方形的一条对角线把正方形分成两个全等的等腰 直角三角形 (5) 正方形是轴对称图形,一共有2条对称轴
八年级 数学
第二十章 四边形
正方形
判断满足下列条件的四边形是否是正方形,并说明理由.
§20.3 正方形
正方形
八年级 数学
第二十章 四边形
复习:菱形和矩形的定义
一组邻边相等
平行四边形
菱形
定义:有一组邻边相等的平行四边形叫做菱形
平行四边形
一个角是直角
矩形
定义:有一个角是直角的平行四边形叫做矩形
2002年世界数学大会会 标
八年级 数学
第二十章 四边形
正方形
根据矩形和菱形的定义判定正 方形是不是矩形或菱形? 正方形(square)是特殊的矩形,又是特殊 的菱形,更是特殊的平行四边形,因此正 方形具有这些图形的所有性质.
1.对角线互相垂直且相等的平行四边形. 2.对角线互相垂直的矩形. 3.对角线相等的菱形. 4.对角线互相垂直平分且相等的四边形.
正方形、菱形、矩形、平行四边形 四者之间有什么关系?与同学们交 流一下,并列表或用框图表示这些 关系。
八年级 数学
第二十章 四边形
各平行四边形关系再认识
有一组邻边相等且有 一个角是直角
八年级 数学
第二十章 四边形
数一数
数一数图中正方形的个数,你发现了什么?

)个(
)个

)个

)个



第n个图中正方形有
3n-1 个
给一张长方形纸片,如何裁出正 方形纸片?你能判断你剪出的纸片是 正方形吗?
如何用一根长为40cm的绳子围 成一个面积最大的四边形?
八年级 数学
第二十章 四边形
正方形 矩形
邻边相等 的矩形
想一想:怎样的菱形是正方形?
菱形 正方形
一个角是直角的菱形
八年级 数学
第二十章 四边形
正方形的判定
怎样判定一个四边形是正方形呢?
有一组邻边相等的矩形是正方形 有一个角是直角的菱形是正方形 定义:有一个角是直角 正 且有一组邻边相等的 叫做 方 平行四边形 形
正方形的判定方法: 1)正方形的定义 2)一组邻边相等的矩形是正方形 3)有一个角是直角的菱形是正方形
正方形有哪些性质?把它们全部写出 来,相互交流一下,看是否全面。
正方形的性质
正 方 形 性 质 边 对边平行
A
D
四边相等
B
C
角 四个角相等且都是直角
对角线相等 对角线 互相垂直平分
每条对角线平分一组对角
正方形具有平行四边形、矩形、 菱形的一切性质。
八年级 数学
第二十章 四边形
轴对称图形
想一想:怎样的矩形是正方形?
相关文档
最新文档