2014全国高考物理真题分类汇编:电磁感应

合集下载

2014年高考物理分类汇编(高考真题 模拟新题)电磁感应

2014年高考物理分类汇编(高考真题 模拟新题)电磁感应

L单元电磁感应电磁感应现象、楞次定律14.[2014·新课标全国卷Ⅰ] 在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化14.D [解析] 本题考查了感应电流产生的条件.产生感应电流的条件是:只要穿过闭合电路的磁通量发生变化,电路中就会产生感应电流.本题中的A、B选项都不会使电路中的磁通量发生变化,不满足产生感应电流的条件,故不正确.C选项虽然在插入条形磁铁瞬间电路中的磁通量发生变化,但是当人到相邻房间时,电路已达到稳定状态,电路中的磁通量不再发生变化,故观察不到感应电流.在给线圈通电、断电瞬间,会引起闭合电路磁通量的变化,产生感应电流,因此D选项正确.8.(16分)[2014·重庆卷] 某电子天平原理如题8图所示,E形磁铁的两侧为N极,中心为S极,两极间的磁感应强度大小均为B,磁极宽度均为L,忽略边缘效应,一正方形线圈套于中心磁极,其骨架与秤盘连为一体,线圈两端C、D与外电路连接,当质量为m的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流I可确定重物的质量,已知线圈匝数为n,线圈电阻为R,重力加速度为g.问题8图(1)线圈向下运动过程中,线圈中感应电流是从C 端还是从D 端流出?(2)供电电流I 是从C 端还是D 端流入?求重物质量与电流的关系.(3)若线圈消耗的最大功率为P ,该电子天平能称量的最大质量是多少?8.[答案] (1)从C 端流出 (2)从D 端流入2nBIL g (3)2nBL g P R本题借助安培力来考查力的平衡,同时借助力的平衡来考查受力平衡的临界状态.[解析] (1)感应电流从C 端流出.(2)设线圈受到的安培力为F A ,外加电流从D 端流入.由F A =mg 和F A =2nBIL得m =2nBL gI (3)设称量最大质量为 m 0.由m =2nBL gI 和P =I 2R 得m 0=2nBL g P R15.、[2014·广东卷] 如图8所示,上下开口、内壁光滑的铜管P 和塑料管Q 竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( )A .在P 和Q 中都做自由落体运动B .在两个下落过程中的机械能都守恒C .在P 中的下落时间比在Q 中的长D .落至底部时在P 中的速度比在Q 中的大15.C [解析] 磁块在铜管中运动时,铜管中产生感应电流,根据楞次定律,磁块会受到向上的磁场力,因此磁块下落的加速度小于重力加速度,且机械能不守恒,选项A 、B 错误;磁块在塑料管中运动时,只受重力的作用,做自由落体运动,机械能守恒,磁块落至底部时,根据直线运动规律和功能关系,磁块在P 中的下落时间比在Q 中的长,落至底部时在P 中的速度比在Q 中的小,选项C 正确,选项D 错误.20.[2014·全国卷] 很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率( )A.均匀增大B.先增大,后减小C.逐渐增大,趋于不变D.先增大,再减小,最后不变20.C [解析] 本题考查楞次定律、法拉第电磁感应定律.竖直圆筒相当于闭合电路,磁铁穿过闭合电路,产生感应电流,根据楞次定律,磁铁受到向上的阻碍磁铁运动的安培力,开始时磁铁的速度小,产生的感应电流也小,安培力也小,磁铁加速运动,随着速度的增大,产生的感应电流增大,安培力也增大,直到安培力等于重力的时候,磁铁匀速运动.所以C正确.3.(2014·浙江效实中学摸底)如图X21­2所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化,下列说法正确的是( )图X21­2A.当磁感应强度增加时,线框中的感应电流可能减小B.当磁感应强度增加时,线框中的感应电流一定增大C.当磁感应强度减小时,线框中的感应电流一定增大D.当磁感应强度减小时,线框中的感应电流可能不变3.AD [解析] 由法拉第电磁感应定律可知,感应电流的大小取决于磁通量的变化率,与磁感应强度的增与减无关,选项A、D正确.4.(2014·石家庄二检)法拉第发明了世界上第一台发电机——法拉第圆盘发电机.如图X21­3所示,用紫铜做的圆盘水平放置在竖直向下的匀强磁场中,圆盘圆心处固定一个摇柄,边缘和圆心处各与一个黄铜电刷紧贴,用导线将电刷与电流表连接起来形成回路.转动摇柄,使圆盘逆时针匀速转动,电流表的指针发生偏转.下列说法正确的是( )。

2014高考物理 最新名校试题汇编大题冲关 专题07 电磁感应综合题

2014高考物理 最新名校试题汇编大题冲关 专题07 电磁感应综合题

2014高考物理最新名校试题汇编大题冲关专题07 电磁感应综合题1.(20分)(2014山东省青岛二模)如图所示,两条平行的金属导轨相距L = lm,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ的质量均为m=0.2kg,电阻分别为RMN =1Ω和RPQ = 2Ω.MN置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F1的作用下由静止开始以a =1m/s2的加速度向右做匀加速直线运动,PQ则在平行于斜面方向的力F2作用下保持静止状态.t=3s时,PQ 棒消耗的电功率为8W,不计导轨的电阻,水平导轨足够长,MN始终在水平导轨上运动.求:【参照答案】.(1)B = 2T代入数据可得: q = 3C…………………. (1分)2.(18分)(2014北京市顺义区模拟)如图所示,间距为L、电阻为零的U形金属竖直轨道,固定放置在磁感应强度为B的匀强磁场中,磁场方向垂直竖直轨道平面。

竖直轨道上部套有一金属条bc,bc的电阻为3.(19分) (2014年3月福建省龙岩市模拟)如图所示,倾角=30o、宽L=lm的足够长的U形光滑金属导轨固定在磁感应强度大小B=1T、范围足够大的匀强磁场中,磁场方向垂直导轨平面向上。

一根质量m=0.2Kg,电阻R=l的金属棒ab垂直于导轨放置。

现用一平行于导轨向上的牵引力F作用在曲棒上.使ab棒由静止开始沿导轨向上运动,运动中ab棒始终与导轨接触良好,导轨电阻不计,重力加速度g取10m/s2。

求:(1)若牵引力恒定,请在答题卡上定性画出ab棒运动的v—t图象;(2)若牵引力的功率P恒为72W,则ab棒运动的最终速度v为多大?(3)当ab棒沿导轨向上运动到某一速度时撤去牵引力,从撤去牵引力到ab棒的速度为零,通过ab棒的电量q=0.48C,则撤去牵引力后ab棒滑动的距离S多大?4.(18分)(2014广东省揭阳市质检)如图,两根足够长平行光滑的金属导轨相距为l,导轨与水平面夹角为θ,并处于磁感应强度为B2、方向垂直导轨平面向下的匀强磁场中。

【备考2015】全国名校2014高考物理试题分类汇编(11月 第二期)L单元 电磁感应(含解析)

【备考2015】全国名校2014高考物理试题分类汇编(11月 第二期)L单元 电磁感应(含解析)

L 单元 电磁感应L2 法拉第电磁感应定律、自感【【 原创精品解析纯word 版】物理卷·2015届云南省玉溪一中高三上学期期中考试(201411)】19.(9分)如图所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属轨道上。

导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直与导轨平面向上的匀强磁场中,左侧是水平放置、间距为d 的平行金属板R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻。

(1)调节R x =R ,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I 及棒的速率v 。

(2)改变R x ,待棒沿导轨再次匀速下滑后,将质量为m 、带电量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x 。

【答案】【知识点】电磁感应现象L2 L3【答案解析】(1)222sin MgR v B lθ=(2)sin x mldB R Mq θ=解析:(1)当R x =R 棒沿导轨匀速下滑时,由平衡条件sin Mg F θ=,安培力F BIl =,解得sin Mg I Bl θ=感应电动势E Blv =,电流2E I R =,解得 222sin MgR v B lθ= (2)微粒水平射入金属板间,能匀速通过,由平衡条件U mg qd = 棒沿导轨匀速,由平衡条件1sin Mg BI l θ=,金属板间电压1x U I R =解得sin x mldB R Mq θ=. 【思路点拨】本题考查了电磁感应现象中有关感应电流的计算,通过平衡条件求出金属棒的速度.【【 原创精品解析纯word 版】物理卷·2015届云南省玉溪一中高三上学期期中考试(201411)】14.半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0。

圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B。

杆在圆环上以速度v 平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置由θ确定,如图所示,则()A.θ=0时,杆产生的电动势为2BavB.θ=0时,杆受的安培力大小为23(2)RB avπ+C.3πθ=时,杆产生的电动势为3BavD.3πθ=时,杆受的安培力大小为23(53)RB avπ+【答案】【知识点】法拉第电磁感应定律安培力L2 K1【答案解析】AD解析:A、θ=0时,杆产生的电动势E=BLv=2Bav,故A正确B、θ=0时,由于单位长度电阻均为R0.所以电路中总电阻(2+π)aR0.所以杆受的安培力大小F=BIL=24(2)B avRπ+,故B错误C、θ=3π时,根据几何关系得出此时导体棒的有效切割长度是a,所以杆产生的电动势为Bav,故C错误D、θ=3π时,电路中总电阻是(513π+)aR0,所以杆受的安培力大小F′=BI′L′=23(53)B avRπ+,故D正确故选AD.【思路点拨】根据几何关系求出此时导体棒的有效切割长度,根据法拉第电磁感应定律求出电动势.注意总电阻的求解,进一步求出电流值,即可算出安培力的大小.电磁感应与电路的结合问题,关键是弄清电源和外电路的构造,然后根据电学知识进一步求解.【【原创纯word版精品解析】物理卷·2015届云南省玉溪一中高三上学期第二次月考(201410)】14.(15分)如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m ,导轨平面与水平面成θ=30角,上端连接阻值R =1.5Ω的电阻;质量为m =0.2kg 、阻值r =0.5Ω的金属棒ab 放在两导轨上,距离导轨最上端为L 2=4m ,棒与导轨垂直并保持良好接触。

2014年全国高考物理分类汇编(含详解)

2014年全国高考物理分类汇编(含详解)

2014年全国高考物理试题分类汇编专题1. 直线运动 专题2. 相互作用 专题3. 牛顿运动定律 专题4. 曲线运动专题5. 万有引力和天体运动 专题6. 机械能 专题7. 静电场 专题8. 恒定电流 专题9. 磁场专题10. 电磁感应 专题11. 交变电流 专题12. 光学专题13. 原子物理 专题14. 动量专题专题15.机械振动和机械波2014年高考物理试题分类汇编 专题1:直线运动14.[2014·新课标Ⅱ卷] 甲乙两汽车在一平直公路上同向行驶.在t =0到t =t 1的时间内,它们的v t 图像如图所示.在这段时间内( )A .汽车甲的平均速度比乙的大B .汽车乙的平均速度等于v 1+v 22C .甲乙两汽车的位移相同D .汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大14.A [解析] v t 图像中图线与横轴围成的面积代表位移,可知甲的位移大于乙的位移,而时间相同,故甲的平均速度比乙的大,A 正确,C 错误;匀变速直线运动的平均速度可以用v 1+v 22来表示,乙的运动不是匀变速直线运动,所以B 错误;图像的斜率的绝对值代表加速度的大小,则甲、乙的加速度均减小,D 错误.14. [2014·全国卷] 一质点沿x 轴做直线运动,其v t于x =5 m 处,开始沿x 轴正向运动.当t =8 s 时,质点在x 轴上的位置为( )A .x =3 mB .x =8 mC .x =9 mD .x =14 m14.B [解析] 本题考查v t 图像. v t 图像与x s 1-s 2=3 m ,由于初始坐标是5 m ,所以t =8 s 时质点在x 轴上的位臵为x =3 m +5 m =8 m ,因此B 正确.(2014上海)8.在离地高h 处,沿竖直方向同时向上和向下抛出两个小球,她们的初速度大小均为 ,不计空气阻力,两球落地的时间差为 ( )(A(B)(C(D[答案]A13.[2014·广东卷] 图6是物体做直线运动的v t图像,由图可知,该物体()A.第1 s内和第3 s内的运动方向相反B.第3 s内和第4 s内的加速度相同C.第1 s内和第4 s内的位移大小不相等D.0~2 s和0~4 s内的平均速度大小相等13.B[解析] 0~3 s内物体一直沿正方向运动,故选项A错误;v t图像的斜率表示加速度,第3 s内和第4 s选项B正确;v t图像图线与时间轴包围的面积表示位移的大小,第1 s内和第4 s内对应的两个三角形面积相等,故位移大小相等,选项C错误;第3 s内和第4 s内对应的两个三角形面积相等,故位移大小相等,方向相反,所以0~2 s和0~4 s内位移相同,但时间不同,故平均速度不相等,选项D错误.5.[2014·江苏卷] 一汽车从静止开始做匀加速直线运动,然后刹车做匀减速直线运动,直到停止.下列速度v和位移x的关系图像中,能描述该过程的是()AC5.A[解析] 设汽车做匀加速直线运动时的加速度为a1,则由运动学公式得2a1x=v2,由此可知选项C、D错误;设刹车时汽车的位移为x0,速度为v0,其后做减速运动的加速度为a2,则减速过程有v2-v20=2a2(x-x0),这里的v20=2a1x0,x>x0,则v2=2a1x0+2a2(x -x0)=2(a1-a2)x0+2a2x,即v=2(a1-a2)x0+2a2x(x>x0,a2<0).综上所述,只有选项A正确.15.[2014·山东卷] 一质点在外力作用下做直线运动,其速度v随时间t变化的图像如图所示.在图中标出的时刻中,质点所受合外力的方向与速度方向相同的有()A.t1B.t2C.t3D.t415.AC[解析] 本题考查的是速度图像.速度图像中某点的切线的斜率表示加速度.t1时刻速度为正,加速度也为正,合外力与速度同向;t2时刻速度为正,加速度为负,合外力与速度反向;t3时刻速度为负,加速度也为负,合外力与速度同向;t4时刻速度为负,加速度为正,合外力与速度反向.选项A、C正确.1.[2014·天津卷] 质点做直线运动的速度—时间图像如图所示,该质点()A .在第1秒末速度方向发生了改变B .在第2秒末加速度方向发生了改变C .在前2秒内发生的位移为零D .第3秒末和第5秒末的位置相同1.D [解析] 本题考查了学生的读图能力.应用图像判断物体的运动情况,速度的正负代表了运动的方向,A 错误;图线的斜率代表了加速度的大小及方向,B 错误;图线与时间轴围成的图形的面积代表了物体的位移,C 错误,D 正确.22. [2014·全国卷] 现用频闪照相方法来研究物块的变速运动.在一小物块沿斜面向下运动的过程中,用频闪相机拍摄的不同时刻物块的位置如图所示.拍摄时频闪频率是10 Hz ;通过斜面上固定的刻度尺读取的5个连续影像间的距离依次为x 1、x 2、x 3、x 4.已知斜面顶端的高度h 和斜面的长度s .数据如下表所示.重力加速度大小g 取9.80 m/s 2.单位:cm根据表中数据,完成下列填空:(1)物块的加速度a =________m/s 2(保留3位有效数字). (2)因为______________________,可知斜面是粗糙的.22.(1)4.30(填“4.29”或“4.31”同样给分) (2)物块加速度小于g hs =5.88 m/s 2(或:物块加速度小于物块沿光滑斜面下滑的加速度)[解析] (1)根据逐差法求出加速度a =(x 3+x 4)-(x 1+x 2)(2T )2=4.30 m/s 2. (2)根据牛顿第二定律,物块沿光滑斜面下滑的加速度a ′=g sin θ=g hs =5.88 m/s 2,由于a <a ′,可知斜面是粗糙的.2014年高考物理真题分类汇编 专题2:相互作用14. [2014·广东卷] 如图7所示,水平地面上堆放着原木,关于原木P 在支撑点M 、N 处受力的方向,下列说法正确的是( )A .M 处受到的支持力竖直向上B .N 处受到的支持力竖直向上C .M 处受到的静摩擦力沿MN 方向D .N 处受到的静摩擦力沿水平方向14.A [解析] 支持力的方向与接触面垂直,所以M 处的支持力的方向与地面垂直,即竖直向上,N 处支持力的方向与接触面垂直,即垂直MN 向上,故选项A 正确,选项B 错误;摩擦力的方向与接触面平行,与支持力垂直,故选项C 、D 错误.14.[2014·山东卷] 如图所示,用两根等长轻绳将木板悬挂在竖直木桩上等高的两点,制成一简易秋千.某次维修时将两轻绳各剪去一小段,但仍保持等长且悬挂点不变.木板静止时,F1表示木板所受合力的大小,F2表示单根轻绳对木板拉力的大小,则维修后()A.F1不变,F2变大B.F1不变,F2变小C.F1变大,F2变大D.F1变小,F2变小14.A[解析] 本题考查受力分析、物体的平衡.在轻绳被剪短前后,木板都处于静止状态,所以木板所受的合力都为零,即F1=0 N.因两根轻绳等长,且悬挂点等高,故两根轻绳对木板的拉力相等,均为F2.对木板进行受力分析,如图所示,则竖直方向平衡方程:2F2cos θ=G cos θ减小,故F2变大.选项A正确.14.[2014·浙江卷] )A.机械波的振幅与波源无关B.机械波的传播速度由介质本身的性质决定C.物体受到的静摩擦力方向与其运动方向相反D.动摩擦因数的数值跟相互接触的两个物体的材料无关14.B[解析] 本题考查机械波、静摩擦力、动摩擦因数等知识.机械波的振幅与波源有关,选项A错误;传播速度由介质决定,选项B正确;静摩擦力的方向可以与运动方向相同,也可以相反,也可以互成一定的夹角,选项C错误;动摩擦因数描述相互接触物体间的粗糙程度,与材料有关,选项D错误.[2014·重庆卷] (2)为了研究人们用绳索跨越山谷过程中绳索拉力的变化规律,同学们设计了如题6图3所示的实验装置,他们将不可伸长的轻绳的两端通过测力计(不计质量及长度)固定在相距为D的两根立柱上,固定点分别为P和Q,P低于Q,绳长为L(L>PQ).题6图3他们首先在绳上距离P点10 cm处(标记为C点)系上质量为m的重物(不滑动),由测力计读出绳PC、QC的拉力大小T P和T Q.随后,改变重物悬挂点C的位置,每次将P点到C 点的距离增加10 cm,并读出测力计的示数,最后得到T P、T Q与绳长PC的关系曲线如题6图4所示.由实验可知:题6图4①曲线Ⅱ中拉力最大时,C 点与P 点的距离为________cm ,该曲线为________(选填“T P ”或“T Q ”)的曲线.②在重物从P 移到Q 的整个过程中,受到最大拉力的是________(选填“P ”或“Q ”)点所在的立柱.③在曲线Ⅰ、Ⅱ相交处,可读出绳的拉力T 0=________ N ,它与L 、D 、m 和重力加速度g 的关系为T 0=________.[答案] (2)①60(56~64之间的值均可) T P ②Q③4.30(4.25~4.35之间的值均可) mgL L 2-D 22(L 2-D 2)[解析] (2)①从曲线Ⅱ可读出,拉力最大时C 点与P 点的距离为60 cm 左右,对绳子的结点进行受力如图所示,重物受力平衡,在水平方向有T P sin α=T Q sin β,当结点偏向左边时,α接近零度,sin α<sin β,则T P >T Q ,故可推断曲线Ⅱ为T P 的曲线,曲线Ⅰ为T Q 的曲线.②通过①的分析结果和曲线的变化趋势,可知受到最大拉力的是Q 点所在的立柱. ③曲线Ⅰ、Ⅱ相交处,T P =T Q =T 0,根据力的正交分解,可列方程如下,T 0sin α=T 0sin β,得α=β,T 0cos α+T 0cos β=mg ,对绳子,设左边长度为l 1,由几何关系有l 1sin α+(L -l 1)sin β=D ,以上方程解得T 0=mgL L 2-D 22(L 2-D 2).21. [2014·浙江卷] 在“探究弹力和弹簧伸长的关系”时,某同学把两根弹簧如图1连接起来进行探究.图(a)第21题图1第21题表1(1)某次测量如图2所示,指针示数为________ cm.(2)在弹性限度内,将50 g 的钩码逐个挂在弹簧下端,得到指针A 、B 的示数L A 和L B如表1.用表1数据计算弹簧Ⅰ的劲度系数为____ N/m(重力加速度g 取10 m/s 2).由表Ⅰ数据________(选填“能”或“不能”)计算出弹簧Ⅱ的劲度系数.第21题图221. [答案] (1)(15.95~16.05)cm ,有效数字位数正确 (2)(12.2~12.8) N/m 能[解析] (1)由图2可知刻度尺能精确到0.1 cm ,读数时需要往后估读一位.故指针示数为16.00±0.05 cm.(2)由表1中数据可知每挂一个钩码,弹簧Ⅰ的平均伸长量Δx 1≈4 cm ,弹簧Ⅱ的总平均伸长量Δx 2≈5.80 cm ,根据胡克定律可求得弹簧Ⅰ的劲度系数为12.5 N/m ,同理也能求出弹簧Ⅱ的劲度系数.23. (10分)[2014·新课标Ⅱ卷] 某实验小组探究弹簧的劲度系数k 与其长度(圈数)的关系.实验装置如图(a)所示:一均匀长弹簧竖直悬挂,7个指针P 0、P 1、P 2、P 3、P 4、P 5、P 6分别固定在弹簧上距悬点0、10、20、30、40、50、60圈处;通过旁边竖直放置的刻度尺,可以读出指针的位置,P 0指向0刻度.设弹簧下端未挂重物时,各指针的位置记为x 0;挂有质量为0.100 kg 的砝码时,各指针的位置记为x .测量结果及部分计算结果如下表所示(n 为弹簧的圈数,重力加速度取9.80 m/s 2).已知实验所用弹簧总圈数为60,整个弹簧的自由长度为11.88 cm.(1)将表中数据补充完整:①________;②________.(2)以n 为横坐标,1k 为纵坐标,在图(b)给出的坐标纸上画出1k ­n 图像.图(b)(3)图(b)中画出的直线可近似认为通过原点.若从实验中所用的弹簧截取圈数为n 的一段弹簧,该弹簧的劲度系数k 与其圈数n 的关系的表达式为k =____③__N/m ;该弹簧的劲度系数k 与其自由长度l 0(单位为m)的关系的表达式为k =____④__N/m.23.[答案] (1)①81.7 ②0.0122 (2)略(3)③1.75×103n (在1.67×103n ~1.83×103n 之间均同样给分) ④3.47l 0(在3.31l 0~3.62l 0之间均同样给分)[解析] (1)①k =mgΔx =0.100×9.80(5.26-4.06)×10-2=81.7 N/m ;②1k =181.7m/N =0.0122 m/N. (3)由作出的图像可知直线的斜率为5.8×10-4,故直线方程满足1k =5.8×10-4n m/N ,即k =1.7×103 n N/m(在1.67×103n ~1.83×103n之间均正确)④由于60圈弹簧的原长为11.88 cm ,则n 圈弹簧的原长满足n l 0=6011.88×10-2,代入数值,得k =3.47l 0(在3.31l 0~3.62l 0之间均正确).11.[2014·江苏卷] 小明通过实验验证力的平行四边形定则.(1)实验记录纸如题11-1图所示,O 点为橡皮筋被拉伸后伸长到的位置,两弹簧测力计共同作用时,拉力F 1和F 2的方向分别过P 1和P 2点;一个弹簧测力计拉橡皮筋时,拉力F 3的方向过P3点.三个力的大小分别为:F1=3.30 N、F2=3.85 N和F3=4.25 N.请根据图中给出的标度作图求出F1和F2的合力.(题11-1图)(2)仔细分析实验,小明怀疑实验中的橡皮筋被多次拉伸后弹性发生了变化,影响实验结果.他用弹簧测力计先后两次将橡皮筋拉伸到相同长度,发现读数不相同,于是进一步探究了拉伸过程对橡皮筋弹性的影响.实验装置如题11-2图所示,将一张白纸固定在竖直放置的木板上,橡皮筋的上端固定于O点,下端N挂一重物.用与白纸平行的水平力缓慢地移动N,在白纸上记录下N的轨迹.重复上述过程,再次记录下N的轨迹.(题11-2图)(题11-3图)两次实验记录的轨迹如题11-3图所示.过O点作一条直线与轨迹交于a、b两点,则实验中橡皮筋分别被拉伸到a和b时所受拉力F a、F b的大小关系为______.(3)根据(2)中的实验,可以得出的实验结果有________(填写选项前的字母).A.橡皮筋的长度与受到的拉力成正比B.两次受到的拉力相同时,橡皮筋第2次的长度较长C.两次被拉伸到相同长度时,橡皮筋第2次受到的拉力较大D.两次受到的拉力相同时,拉力越大,橡皮筋两次的长度之差越大(4)根据小明的上述实验探究,请对验证力的平行四边形定则实验提出两点注意事项.11.(1)(见下图,F合=4.6~4.9 N都算对)(2)F a=F b(3)BD(4)橡皮筋拉伸不宜过长;选用新橡皮筋.(或:拉力不宜过大;选用弹性好的橡皮筋;换用弹性好的弹簧.) [解析] (1)用力的图示法根据平行四边形定则作出合力并量出其大小.(2)画受力分析图如图所示,橡皮筋的拉力F与手的拉力F手的合力F合总与重力G平衡,故F cos θ=G,两次实验中的θ角相同,故F=F(3)力相同时,橡皮筋第2 次的长度较长,A错误,B正确;两次被拉伸到相同长度时,橡皮筋第2 次受到的拉力较小,C错误;根据轨迹越向右相差越多,说明两次受到的拉力相同时,拉力越大,橡皮筋两次的长度之差越大,D正确.2014年高考物理真题分类汇编专题3:牛顿运动定律17.[2014·新课标全国卷Ⅰ] 如图所示,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态.现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内).与稳定在竖直位置时相比,小球的高度()A.一定升高B.一定降低C.保持不变D.升高或降低由橡皮筋的劲度系数决定17.A[解析] 本题考查了牛顿第二定律与受力分析.设橡皮筋原长为l0,小球静止时设橡皮筋伸长x1,由平衡条件有kx1=mg,小球距离悬点高度h=l0+x1=l0+mgk,加速时,设橡皮筋与水平方向夹角为θ,此时橡皮筋伸长x2,小球在竖直方向上受力平衡,有kx2sin θ=mg,小球距离悬点高度h′=(l0+x2)sin θ=l0sin θ+mgk,因此小球高度升高了.18.[2014·北京卷] 应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入.例如平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出.对此现象分析正确的是()A.手托物体向上运动的过程中,物体始终处于超重状态B.手托物体向上运动的过程中,物体始终处于失重状态C.在物体离开手的瞬间,物体的加速度大于重力加速度D.在物体离开手的瞬间,手的加速度大于重力加速度18.D本题考查牛顿第二定律的动力学分析、超重和失重.加速度向上为超重向下为失重,手托物体抛出的过程,必定有一段加速过程,即超重过程,从加速后到手和物体分离的过程中,可以匀速也可以减速,因此可能失重,也可能既不超重也不失重,A、B错误.手与物体分离时的力学条件为:手与物体之间的压力N=0,分离后手和物体一定减速,物体减速的加速度为g,手减速要比物体快才会分离,因此手的加速度大于g,C错误,D正确.19.[2014·北京卷] 伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展.利用如图所示的装置做如下实验:小球从左侧斜面上的O 点由静止释放后沿斜面向下运动,并沿右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐降低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.根据三次实验结果的对比,可以得到的最直接的结论是()A.如果斜面光滑,小球将上升到与O点等高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态C.如果小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小19.A本题考查伽利略理想实验.选项之间有一定的逻辑性,题目中给出斜面上铺垫三种粗糙程度逐渐降低的材料,小球的位臵逐渐升高,不难想象,当斜面绝对光滑时,小球在斜面上运动没有能量损失,可以上升到与O点等高的位臵,这是可以得到的直接结论,A正确,B、C、D尽管也正确,但不是本实验得到的直接结论,故错误.15.[2014·福建卷Ⅰ] 如下图所示,滑块以初速度v0沿表面粗糙且足够长的固定斜面,从顶端下滑,直至速度为零.对于该运动过程,若用h、s、v、a分别表示滑块的下降高度、位移、速度和加速度的大小,t表示时间,则下列图像中能正确描述这一运动规律的是()A BC D15.B[解析] 设滑块与斜面间的动摩擦因数为μ,斜面倾角为θ,滑块在表面粗糙的固定斜面上下滑时做匀减速直线运动,加速度不变,其加速度的大小为a =μg cos θ-g sin θ,故D 项错误;由速度公式v =v 0-at 可知,v -t 图像应为一条倾斜的直线,故C 项错误;由位移公式s =v 0t -12at 2可知,B 项正确;由位移公式及几何关系可得h =s sin θ=⎝⎛⎭⎫v 0t -12at 2sin θ,故A 项错误. 8.[2014·江苏卷] 如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( )A .当F <2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A 的加速度为13μg C .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg 8.BCD [解析] 设B 对A 的摩擦力为f 1,A 对B 的摩擦力为f 2,地面对B 的摩擦力为f 3,由牛顿第三定律可知f 1与f 2大小相等,方向相反,f 1和f 2的最大值均为2μmg ,f 3的最大值为32μmg .故当0<F ≤32μmg 时,A 、B 均保持静止;继续增大F ,在一定范围内A 、B 将相对静止以共同的加速度开始运动,设当A 、B 恰好发生相对滑动时的拉力为F ′,加速度为a ′,则对A ,有F ′-2μmg =2ma ′,对A 、B 整体,有F ′-32μmg =3ma ′,解得F ′=3μmg ,故当32μmg <F ≤3μmg 时,A 相对于B 静止,二者以共同的加速度开始运动;当F >3μmg 时,A 相对于B 滑动.由以上分析可知A 错误,C 正确.当F =52μmg 时,A 、B 以共同的加速度开始运动,将A 、B 看作整体,由牛顿第二定律有F -32μmg =3ma ,解得a =μg 3,B 正确.对B 来说,其所受合力的最大值F m =2μmg -32μmg =12μmg ,即B 的加速度不会超过12μg ,D 正确.7.[2014·四川卷] 如图所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带.不计定滑轮质量和滑轮与绳之间的摩擦,绳足够长.正确描述小物体P 速度随时间变化的图像可能是( )A B C D7.BC [解析] 若P 在传送带左端时的速度v 2小于v 1,则P 受到向右的摩擦力,当P 受到的摩擦力大于绳的拉力时,P 做加速运动,则有两种可能:第一种是一直做加速运动,第二种是先做加速度运动,当速度达到v 1后做匀速运动,所以B 正确;当P 受到的摩擦力小于绳的拉力时,P做减速运动,也有两种可能:第一种是一直做减速运动,从右端滑出;第二种是先做减速运动再做反向加速运动,从左端滑出.若P在传送带左端具有的速度v2大于v1,则小物体P受到向左的摩擦力,使P做减速运动,则有三种可能:第一种是一直做减速运动,第二种是速度先减到v1,之后若P受到绳的拉力和静摩擦力作用而处于平衡状态,则其以速度v1做匀速运动,第三种是速度先减到v1,之后若P所受的静摩擦力小于绳的拉力,则P将继续减速直到速度减为0,再反向做加速运动并且摩擦力反向,加速度不变,从左端滑出,所以C正确.5.[2014·重庆卷] 以不同的初速度将两个物体同时竖直向上抛出并开始计时,一个物体所受空气阻力可忽略,另一个物体所受空气阻力大小与物体的速率成正比,下列分别用虚线和实线描述两物体运动的v-t图像可能正确的是()A BC D5.D[解析] 本题考查v-t图像.当不计阻力上抛物体时,物体做匀减速直线运动,图像为一倾斜直线,因加速度a=-g,故该倾斜直线的斜率的绝对值等于g.当上抛物体受空气阻力的大小与速率成正比时,对上升过程,由牛顿第二定律得-mg-k v=ma,可知物体做加速度逐渐减小的减速运动,通过图像的斜率比较,A错误.从公式推导出,上升过程中,|a|>g,当v=0时,物体运动到最高点,此时a=-g,而B、C图像的斜率的绝对值均小于g,故B、C错误,D正确.22.[2014·新课标全国卷Ⅰ] 某同学利用图(a)所示实验装置及数字化信息系统获得了小车加速度a与钩码的质量m的对应关系图,如图(b)所示.实验中小车(含发射器)的质量为200 g,实验时选择了不可伸长的轻质细绳和轻定滑轮,小车的加速度由位移传感器及与之相连的计算机得到,回答下列问题:图(a)图(b)(1)根据该同学的结果,小车的加速度与钩码的质量成________(选填“线性”或“非线性”)关系.(2)由图(b)可知,a -m 图线不经过原点,可能的原因是________.(3)若利用本实验装置来验证“在小车质量不变的情况下,小车的加速度与作用力成正比”的结论,并直接以钩码所受重力mg 作为小车受到的合外力,则实验中应采取的改进措施是________,钩码的质量应满足的条件是________.22.(1)非线性 (2)存在摩擦力 (3)调节轨道的倾斜度以平衡摩擦力 远小于小车的质量[解析] 本题考查了验证牛顿第二定律的实验.(1)根据图中描出的各点作出的图像不是一条直线,故小车的加速度和钩码的质量成非线性关系.(2)图像不过原点,小车受到拉力但没有加速度,原因是有摩擦力的影响.(3)平衡摩擦力之后,在满足钩码质量远小于小车质量的条件下,可以得出在小车质量不变的情况下拉力与加速度成正比的结论.24.[2014·新课标全国卷Ⅰ] 公路上行驶的两汽车之间应保持一定的安全距离.当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰.通常情况下,人的反应时间和汽车系统的反应时间之和为1 s ,当汽车在晴天干燥沥青路面上以108 km/h 的速度匀速行驶时,安全距离为120 m .设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的25,若要求安全距离仍为120 m ,求汽车在雨天安全行驶的最大速度.24.2 m/s(或72 km/h)[解析] 设路面干燥时,汽车与地面的动摩擦因数为μ0,刹车时汽车的加速度大小为a 0,安全距离为s ,反应时间为t 0,由牛顿第二定律和运动学公式得μ0mg =ma 0①s =v 0t 0+v 202a 0② 式中,m 和v 0分别为汽车的质量和刹车前的速度.设在雨天行驶时,汽车与地面的动摩擦因数为μ,依题意有μ=25μ0③ 设在雨天行驶时汽车刹车的加速度大小为a ,安全行驶的最大速度为v ,由牛顿第二定律和运动学公式得μmg =ma ④s =v t 0+v 22a⑤联立①②③④⑤式并代入题给数据得v=20 m/s(72 km/h).⑥24.C5[2014·新课标Ⅱ卷] 2012年10月,奥地利极限运动员菲利克斯·鲍姆加特纳乘气球升至约39 km的高空后跳下,经过4分20秒到达距地面约1.5 km高度处,打开降落伞并成功落地,打破了跳伞运动的多项世界纪录.重力加速度的大小g取10 m/s2.(1)若忽略空气阻力,求该运动员从静止开始下落至1.5 km高度处所需的时间及其在此处速度的大小;(2)实际上,物体在空气中运动时会受到空气的阻力,高速运动时所受阻力的大小可近似表示为f=k v2,其中v为速率,k为阻力系数,其数值与物体的形状、横截面积及空气密度有关.已知该运动员在某段时间内高速下落的v-t图像如图所示.若该运动员和所带装备的总质量m=100 kg,试估算该运动员在达到最大速度时所受阻力的阻力系数.(结果保留1位有效数字)24.[答案] (1)87 s8.7×102 m/s(2)0.008 kg/m[解析] (1)设该运动员从开始自由下落至1.5 km高度处的时间为t,下落距离为s,在1.5 km高度处的速度大小为v,根据运动学公式有v=gt①s=12gt2②根据题意有s=3.9×104 m-1.5×103 m③联立①②③式得t=87 s④v=8.7×102 m/s⑤(2)该运动员达到最大速度v max时,加速度为零,根据牛顿第二定律有mg=k v2max⑥由所给的v-t图像可读出v max≈360 m/s⑦由⑥⑦式得k=0.008 kg/m ⑧23.(18分)[2014·山东卷] 研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t0=0.4 s,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v0=72 km/h的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L =39 m,减速过程中汽车位移s与速度v的关系曲线如图乙所示,此过程可视为匀变速直线运动.取重力加速度的大小g取10 m/s2.求:图甲。

2014年高考物理黄金易错点专题汇编:专题11 电磁感应

2014年高考物理黄金易错点专题汇编:专题11 电磁感应

1.如图所示,在载流直导线近旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两可自由滑动的导体ab和cd.当载流直导线中的电流逐渐增强时,导体ab和cd的运动情况是( )A.一起向左运动B.一起向右运动C.ab和cd相向运动,相互靠近D.ab和cd相背运动,相互远离2.如图所示,ab为一金属杆,它处在垂直于纸面向里的匀强磁场中,可绕a点在纸面内转动;S为以a为圆心位于纸面内的金属环;在杆转动过程中,杆的b端与金属环保持良好接触;A为电流表,其一端与金属环相连,一端与a点良好接触.当杆沿顺时针方向转动时,某时刻ab杆的位置如图所示,则此时刻( )A.有电流通过电流表,方向由c向d,作用于ab的安培力向右B.有电流通过电流表,方向由c向d,作用于ab的安培力向左C.有电流通过电流表,方向由d向c,作用于ab的安培力向右D.无电流通过电流表,作用于ab的安培力为零3.用一根横截面积为S、电阻率为ρ的硬质导线做成一个半径为r的圆环,ab为圆环的一条直径.如图所示,在ab的左侧存在一个匀强磁场,磁场垂直圆环所在平面,方向如图,磁感应强度大小随时间的变化率()Bk k0t∆=<∆.则( )A.圆环中产生逆时针方向的感应电流B.圆环具有扩张的趋势C.圆环中感应电流的大小为krS || 2ρD.图中a、b两点间的电势差大小为2 ab1U|k r|4=π4.图中L是绕在铁芯上的线圈,它与电阻R、R0、开关和电池E构成闭合回路.开关S1和S2开始都处在断开状态.设在t=0时刻,接通开关S1,经过一段时间,在t=t1时刻,再接通开关S2,则能较准确表示电阻R两端的电势差U ab随时间t变化的图线是()5.如图甲所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A中通以如图乙所示的变化电流,t=0时电流方向为顺时针(如图甲箭头所示).在t1~t2时间内,对于线圈B,下列说法中正确的是( )A.线圈B内有顺时针方向的电流,线圈有扩张的趋势B.线圈B内有顺时针方向的电流,线圈有收缩的趋势C.线圈B内有逆时针方向的电流,线圈有扩张的趋势D.线圈B内有逆时针方向的电流,线圈有收缩的趋势6.如图所示,金属杆ab静放在水平固定的“U”形金属框上,整个装置处于竖直向上的磁场中.当磁感应强度均匀增大时,杆ab总保持静止,则( )A.杆中感应电流方向是从b到aB.杆中感应电流大小保持不变C.金属杆所受安培力逐渐增大D.金属杆受三个力作用而保持平衡7.如图所示为几个有理想边界的磁场区域,相邻区域的磁感应强度B大小相等、方向相反,区域的宽度均为L.现有一边长为L的正方形导线框由图示位置开始,沿垂直于区域边界的直线匀速穿过磁场区域,速度大小为v.设逆时针方向为电流的正方向,下列各图能正确反映线框中感应电流的是( )8.如图所示,由导体棒ab和矩形线框cdef组成的“10”图案在匀强磁场中一起向右匀速平动,匀强磁场的方向垂直线框平面向里,磁感应强度B随时间均匀增大,则下列说法正确的是( )A.导体棒的a端电势比b端电势高,电势差U ab在逐渐增大B.导体棒的a端电势比b端电势低,电势差U ab在逐渐增大C.线框cdef中有顺时针方向的电流,电流大小在逐渐增大D.线框cdef中有逆时针方向的电流,电流大小在逐渐增大9.如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是( )A.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)10.用均匀导线做成的正方形线框边长为0.2 m,正方形的一半放在垂直纸面向里的匀强磁场中,如图所示.当磁场以10 T/s的变化率增强时,线框中a、b两点间的电势差是( )A.U ab=0.1 VB.U ab=-0.1 VC.U ab=0.2 VD.U ab=-0.2 V11.如图所示,间距为L的光滑平行金属导轨弯成“∠”形,底部导轨面水平,倾斜部分与水平面成θ角,导轨与固定电阻相连,整个装置处于竖直向上的大小为B的匀强磁场中.导体棒ab和cd均垂直于导轨放置,且与导轨间接触良好,两导体棒的电阻皆与阻值为R的固定电阻相等,其余部分电阻不计.当导体棒cd沿底部导轨向右以速度v匀速滑动时,导体棒ab恰好在倾斜导轨上处于静止状态,导体棒ab的重力为mg,则()A.导体棒cd两端电压为BLvB.t时间内通过导体棒cd横截面的电荷量为2BLvt 3RC.cd棒克服安培力做功的功率为222 B L v RD.导体棒ab所受安培力为mgsinθ12.如图甲所示,两条足够长的光滑平行金属导轨竖直放置,导轨间距为L=1 m,两导轨的上端间接有电阻,阻值R=2 Ω.虚线OO′下方是垂直于导轨平面向里的匀强磁场,磁场磁感应强度为2 T.现将质量m=0.1 kg、电阻不计的金属杆ab,从OO′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触,且始终保持水平,不计导轨的电阻.已知金属杆下落0.3 m的过程中加速度a与下落距离h的关系图象如图乙所示.求:(1)金属杆刚进入磁场时速度为多大?下落了0.3 m时速度为多大?(2)金属杆下落0.3 m的过程中,在电阻R上产生多少热量?易错起源1、 楞次定律和法拉第电磁感应定律的应用例1. 如图所示,一导线弯成闭合线圈,以速度v 向左匀速进入磁感应强度为B 的匀强磁场,磁场方向垂直平面向外.线圈总电阻为R ,从线圈进入磁场开始到完全进入磁场为止,下列结论正确的是( ).A .感应电流一直沿顺时针方向B .线圈受到的安培力先增大,后减小C .感应电动势的最大值E =BrvD .穿过线圈某个横截面的电荷量为B r 2+πr 2R感应电流方向的判断方法1.右手定则——导体在磁场中做切割磁感线运动判定原则:a.感应电流方向的判定,右手定则——四指所指的方向为感应电流的方向;b.对于感应电动势的方向判断,无论电路是否闭合,都可以用右手定则进行判断——四指指向感应电动势的正极.2.楞次定律——闭合电路中的磁通量发生变化运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为: ①明确原磁场:弄清原磁场的方向及闭合电路中的磁通量的变化情况.②确定感应磁场:即根据楞次定律中的“阻碍”原则,结合闭合电路中的磁通量变化情况,确定出感应电流产生的磁场的方向.原磁通量增加,则感应电流的磁场与原磁场方向相反;原磁通量减少,则感应电流的磁场与原磁场方向相同——“增反减同”. ③判定电流方向:即根据产生感应磁场的方向,运用安培定则判断出感应电流方向.相对运动三步法:①明确研究对象和相对运动方向;②用“阻碍相对运动”判断出感应磁场的方向;③用安培定则判断感应电流的方向.易错起源2、电磁感应现象中的图象问题例2.如图所示,电阻R=1 Ω、半径r1=0.2 m的单匝圆形导线框P内有一个与P共面的圆形磁场区域Q,P、Q的圆心相同,Q的半径r2=0.1 m.t=0时刻,Q内存在着垂直于圆面向里的磁场,磁感应强度B随时间t变化的关系是B=2-t(T).若规定逆时针方向为电流的正方向,则线框P中感应电流I随时间t变化的关系图象应该是下图中的().解决电磁感应现象中图象问题的基本方法(1)明确图象的种类,如Bt图象、Φt图象、Et图象和It图象等.(2)理解图象的物理意义,看清横、纵坐标表示的物理量.(3)画出对应的物理图象(常常采用分段法、数学法来处理).分析电磁感应现象中图象问题的三大要点(1)注意横、纵坐标表示的物理量,以及各物理量的单位.定性或定量地表示出所研究问题的函数关系式.(2)注意在图象中E、I、B等物理量的方向是通过正负值来反映,故确定大小变化的同时,还应确定方向的情况.(3)由Φt图象、Bt图象等分析电磁感应的具体过程,求解时要注意分清“图象段”,依照规律逐段进行分析,同时还要用好图象斜率的物理意义.易错起源3、电磁感应中的电路问题例3.如图甲所示,光滑且足够长的平行金属导轨MN,PQ固定在同一水平面上,两导轨间距L=1 m,电阻R1=3 Ω,R2=1.5 Ω,导轨上放一质量m=1 kg,电阻r=1 Ω的金属杆,长度与金属导轨宽度相等,与导轨接触良好,导轨的电阻不计,整个装置处于磁感应强度B=0.8 T的匀强磁场中,磁场的方向垂直导轨平面向下,现用一拉力F沿水平方向拉杆,使金属杆由静止开始运动.图10-16乙为通过R1中的电流平方随时间变化的(I21t)图线,求:(1)5 s末金属杆的动能;(2)5 s末安培力的功率;(3)5 s内拉力F做的功.易错起源4、电磁感应现象中力和能量问题的分析例4.相距L=1.5 m的足够长金属导轨竖直放置,质量为m1=1 kg的金属棒ab和质量为m2=0.27 kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图10-18(甲)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab棒光滑,cd棒与导轨间的动摩擦因数为μ=0.75,两棒总电阻为1.8 Ω,导轨电阻不计.ab棒在方向竖直向上,大小按图10-18(乙)所示规律变化的外力F 作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放(取g=10 m/s2).求:(1)求出磁感应强度B的大小和ab棒加速度的大小;(2)已知在2 s内外力F做功40 J,求这一过程中两金属棒产生的总焦耳热;(3)判断cd棒将做怎样的运动,求出cd棒达到最大速度所需的时间t0.解决电磁感应现象中力和能量问题的基本方法(1)在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源.用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路图,由闭合电路欧姆定律求出回路中的电流.(3)分析研究导体的受力情况(用左手定则确定安培力的方向),列平衡方程或动力学方程求解.(4)分析导体机械能的变化,用功能关系得到机械功率的改变与回路中电功率的改变所满足的方程,即能量守恒方程.解决电磁感应现象中力和能量问题的技巧(1)因电磁感应现象中力和运动问题所给图形大多为立体空间分布图,故在受力分析时,应把立体图转化为平面图.(2)电磁感应中的能量问题①电磁感应的过程实质是不同形式的能量间相互转化的过程.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式:同理,安培力做正功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.②电能求解思路主要有三种:a.利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功;b.利用能量守恒求解:机械能的减少量等于产生的电能;c.利用电路特征来求解:通过电路中所产生的电能来计算.1.如图所示,在匀强磁场B中放一电阻不计的平行金属导轨,导轨跟固定的大导体矩形环M相连接,导轨上放一根金属导体棒ab并与导轨紧密接触,磁感线垂直于导轨所在平面.若ab匀速地向右做切割磁感线的运动,则在此过程中M所包围的固定闭合小矩形导体环N中电流表内()A.有自下而上的恒定电流B.产生自上而下的恒定电流C.电流方向周期性变化D.没有感应电流2.在空间yOz平面内的光滑绝缘细杆OP与y轴正方向成θ角固定,杆上套有一带正电的小球.使小球从O点以初速度v0沿杆上滑,某时刻起在杆所在空间加一电场或磁场,以下所加的“场”,能使小球在杆上匀速运动的是()A.沿z轴正方向的匀强电场B.沿x轴负方向的匀强磁场C.沿y轴负方向的匀强电场D.沿x轴正方向的匀强磁场3.如图所示,AOC是光滑的金属轨道,AO沿竖直方向,OC沿水平方向.PQ是一根立在导轨上的金属直杆,它从图示位置由静止开始在重力作用下运动,运动过程中Q端始终在OC上,空间存在着垂直纸面向外的匀强磁场,则在PQ杆滑动的过程中,下列判断正确的是()A.感应电流的方向始终是由P→QB.感应电流的方向先是由P→Q,后是由Q→PC.PQ受磁场力的方向垂直杆向左D.PQ受磁场力的方向先垂直于杆向左,后垂直于杆向右4.如图所示,两块金属板水平放置,与左侧水平放置的线圈通过开关S用导线连接.压力传感器上表面绝缘,位于两金属板间,带正电的小球静置于压力传感器上,均匀变化的磁场沿线圈的轴向穿过线圈.S未接通时压力传感器的示数为1 N,S闭合后压力传感器的示数变为2 N.则磁场的变化情况可能是()A.向上均匀增大B.向上均匀减小C.向下均匀减小D.向下均匀增大5.竖直平面内有一形状为抛物线的光滑曲面轨道,如图所示,抛物线方程是y=x2,轨道下半部分处在一个水平向外的匀强磁场中,磁场的上边界是y=a的直线(如图中虚线所示),一个小金属环从抛物线上y =b(b>a)处以速度v 沿抛物线下滑,假设抛物线足够长,金属环沿抛物线下滑后产生的焦耳热总量是( )A .mgb B.12mv 2 C .mg(b -a) D .mg(b -a)+12mv 2 6.一矩形线圈abcd 位于一随时间变化的匀强磁场内,磁场方向垂直线圈所在的平面向里(如图10-5甲所示),磁感应强度B 随时间t 变化的规律如图乙所示.以I 表示线圈中的感应电流(图甲中线圈上箭头方向为电流的正方向),则图10-6中能正确表示线圈中电流I 随时间t 变化规律的是( )A B C D图10-67.如图10-7所示,在坐标系xOy 中,有一边长为l 的正方形金属线框abcd ,其一条对角线ac 与y 轴重合,顶点a 位于坐标原点O 处.在y 轴右侧的Ⅰ、Ⅳ象限内有一垂直于纸面向里的匀强磁场,磁场上边界与线框的ab 边刚好完全重合,左边界与y 轴重合,右边界过b 点且与y 轴平行.t =0时刻,线框以恒定的速度v 沿垂直于磁场上边界的方向穿过磁场区域.取逆时针的感应电流方向为正方向,则在线框穿过磁场区域的过程中,感应电流i 、ab 间的电势差U ab 随时间t 变化的图线分别是图10-8中的( )8.如图10-9所示,一个水平放置的“∠”形光滑导轨固定在磁感应强度为B的匀强磁场中,ab是粗细、材料与导轨完全相同的导体棒,导体棒与导轨接触良好.在外力作用下,导体棒以恒定速度v向右平动,以导体棒在图中所示位置的时刻为计时起点,则回路中感应电动势E、感应电流I、导体棒所受外力的功率P和回路中产生的焦耳热Q 随时间t变化的图象如图10-10所示.其中正确的是()9.如图10-11所示,两根足够长的平行光滑金属导轨MN、PQ相距为L,导轨平面与水平面夹角α,导轨电阻不计.匀强磁场垂直导轨平面向上,长为L的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好.金属棒的质量为m、电阻为R,另有一条纸带固定金属棒ab上,纸带另一端通过打点计时器(图中未画出),且能正常工作.在两根金属导轨的上端连接右端电路,灯泡的电阻R L=4R,定值电阻R1=2R,调节电阻箱电阻,使R2=12R,重力加速度为g,现将金属棒由静止释放,同时接通打点计时器的电源,打出一条清晰的纸带,已知相邻点迹的时间间隔为T,如图10-12所示,各点间距以s为单位(s为已知量).试求:(1)求磁感应强度为B有多大?(2)当金属棒下滑距离为s0时速度恰达到最大,求金属棒由静止开始下滑2s0的过程中,整个电路产生的电热.10.如图甲所示,电阻不计的轨道MON与PRQ平行放置,ON及RQ与水平面的夹角θ=53°,水平导轨处于竖直向下的匀强磁场中,倾斜导轨处于平行轨道向下的磁场中,磁场的磁感应强度大小相同.两根相同的导体棒ab和cd分别放置在导轨上,与导轨垂直并始终接触良好.导体棒的质量m=1.0 kg,R=1.0 Ω,长度L=1.0 m,与导轨间距相同,导体棒与导轨间的动摩擦因数μ=0.5.现对ab棒施加一个方向向右、大小随乙图规律变化的力F的作用,同时由静止释放cd棒,则ab棒做初速度为零的匀加速直线运动,g取10 m/s2.求:(设解题涉及过程中ab、cd两棒分别位于水平和倾斜轨道上)(1)ab棒的加速度大小;(2)磁感应强度B的大小;(3)若已知在前2 s内外力做功W=30 J,求这一过程中电路产生的焦耳热;(4)求cd棒达到最大速度所需的时间.应电流和感应电动势均逐渐减小;当cd边与磁场边界重合后线框继续运动,cd边切割磁感线,根据右以上各式联立解得F =m(μg +a)+B 2L 2at 2R。

(重庆版)2014届高考物理(第02期)名校试题解析分项汇编 专题11 电磁感应(含解析)

(重庆版)2014届高考物理(第02期)名校试题解析分项汇编 专题11 电磁感应(含解析)

专题11 电磁感应(解析版)重庆理综卷物理部分有其特定的题命模板,无论是命题题型、考点分布、模型情景等,还是命题思路和发展趋向方面都不同于其他省市的地方卷。

为了给重庆考区广大师生提供一套专属自己的复习备考资料,物理解析团队的名校名师们精心编写了本系列资料。

本资料以重庆考区的最新名校试题为主,借鉴并吸收了其他省市最新模拟题中对重庆考区具有借鉴价值的典型题,优化组合,合理编排,极限命制。

一、单项选择题1.【2014•重庆市杨家坪中学高三(上)入学考试】如图所示,矩形闭合线圈放置在水平薄板上,薄板左下方有一条形磁铁,当磁铁匀速自左向右通过线圈下方时,线圈始终保持静止,那么线圈中产生感应电流的方向(从上向下看) 和线圈受到薄板的摩擦力方向分别是( )A.感应电流的方向先逆时针方向,后顺时针方向 B.感应电流的方向先顺时针方向,后逆时针方向C.摩擦力方向先向左、后向右 D.摩擦力方向先向右、后向左2.【2014•重庆市杨家坪中学高三(上)入学考试】如图甲所示,直角三角形ABC是由同种金属材料制成的线框,线框位于跟有界匀强磁场垂直的平面内。

现用外力将线框ABC匀速向右拉进磁场,至AB边进入磁场前,设线框中产生的感应电动势为E、AB两点间的电势差为U、线框受安培力的合力为F、回路中消耗的电功率为P,如图乙所示中画出了上述各物理量与图示位移x的关系图象,则与这一过程相符合的图象是()3.【2013·重庆市铜梁中学高三(下)三月考试】在右图所示的电路中,电键S断开之前与断开之后的瞬间,通过灯A的电流方向是( ).A.一直是由a到b B.先是由a到b,后无电流C.先是由a到b,后是由b到a D.无法判断【答案】C【解析】试题分析: 开关S断开之前,通过灯A的电流方向为a到b;当开关断开后,A灯中原来的电流消失,通过线圈的电流要减小,穿过线圈的磁通量减小,产生自感电动势,根据楞次定律可知,线圈右端相当于电源的正极,左端相当于电源的负极,则通过灯A的电流方向由b 到a,选项A、B、D均错误.故选C。

2014年最近3年高考分类汇编之专题十一 电磁感应

2014年最近3年高考分类汇编之专题十一 电磁感应

专题十一电磁感应高考试题考点一电磁感应现象楞次定律★★★1.(2013年新课标全国卷Ⅱ,19,6分)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用.下列叙述符合史实的是( )A.奥斯特在实验中观察到电流的磁效应,该效应揭示了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化解析:奥斯特发现了电流的磁效应,揭示了电和磁之间的关系,选项A正确;根据通电螺线管产生的磁场与条形磁铁的磁场相似性,安培提出了磁性是分子内环形电流产生的,即分子电流假说,选项B正确;法拉第探究磁产生电的问题,发现导线中电流“通、断”时导线附近的固定导线圈中出现感应电流,而导线中通有恒定电流时导线圈中不产生感应电流,选项C错误;楞次定律指出感应电流的磁场总要阻碍引起感应电流的磁通量的变化,选项D正确.答案:ABD2.(2012年山东理综,14,5分)以下叙述正确的是( )A.法拉第发现了电磁感应现象B.惯性是物体的固有属性,速度大的物体惯性一定大C.牛顿最早通过理想斜面实验得出力不是维持物体运动的原因D.感应电流遵从楞次定律所描述的方向,这是能量守恒定律的必然结果解析:法拉第最早发现了电磁感应现象,A正确;惯性是物体的固有属性,质量是物体惯性大小的唯一量度,B 错误;伽利略通过理想斜面实验得出力不是维持物体运动的原因,C错误;自然界任何过程都遵循能量守恒定律,D正确.答案:AD点评:本题难度不大,物理学史是近几年许多省高考的必考内容,也就要求今后在备考中要加强物理学史的学习,通过物理学史的学习使学生热爱科学,学习严谨的科学态度.3.(2011年海南卷,7,4分)自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是( )A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D.焦耳发现了电流的热效应,定量给出了电能和热能之间的转换关系解析:奥斯特发现了电流的磁效应,揭示了电与磁之间的联系,A正确;欧姆发现了欧姆定律,说明了纯电阻电路电流和电压之间存在联系,B错误;法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系,C正确;焦耳发现了电流的热效应,定量给出了电能和热能之间的转换关系,D正确.答案:ACD4.(2011年上海卷,13,3分)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a( )A.顺时针加速旋转B.顺时针减速旋转C.逆时针加速旋转D.逆时针减速旋转解析:b 中为顺时针电流,由安培定则知,感应电流的磁场方向垂直纸面向里;b 环有收缩趋势,说明原磁场磁通量减少,方向垂直纸面向里,a 环中的电流减小;a 环带正电,由楞次定律知,a 环顺时针减速运动. 答案:B点评: 本题综合考查了楞次定律和安培定则的应用,正确分析感应电流磁场方向及b 环收缩的原因是解题的关键.考点二 法拉第电磁感应定律 自感 ★★★1.(2013年北京理综,17,6分)如图所示,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动,MN 中产生的感应电动势为E 1;若磁感应强度增为2B,其他条件不变,MN 中产生的感应电动势变为E2.则通过电阻R 的电流方向及E 1与E 2之比E 1∶E 2分别为( )A.c →a,2∶1B.a →c,2∶1C.a →c,1∶2D.c →a,1∶2 解析:根据右手定则或楞次定律,知通过电阻R 的电流方向为a →c;由法拉第电磁感应定律E=Blv 知E 1=Blv,E 2=2Blv,则E 1∶E 2=1∶2,故选项C 正确,A 、B 、D 错误.答案:C2.(2013年天津理综,3,6分)如图所示,纸面内有一矩形导体闭合线框abcd,ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab 边平行MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1;第二次bc 边平行MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则( )A.Q 1>Q 2,q 1=q 2B.Q 1>Q 2,q 1>q 2C.Q 1=Q 2,q 1=q 2D.Q 1=Q 2,q 1>q 2解析:设线框ab 边长为L 1,bc 边长为L 2,进入磁场的速度为v,电阻为R,ab 边平行MN 进入磁场时,根据能量守恒,线框进入磁场的过程中产生的热量等于产生的电能,即Q 1=2221B L v R ·2L v =2212B L vL R,通过线框导体横截面的电荷量q 1=R ∆Φ=12BL L R ;同理得bc 边平行MN 进入磁场时,Q 2=222B L v R·L 1,q 2=R ∆Φ=12BL L R ,则q 1=q 2,由于L 1>L 2,因此Q 1>Q 2,选项A 正确.答案:A点评: 此题也可用安培力做功求解,线框中产生的热量等于克服安培力所做的功,注意安培力应为恒力;电荷量q 仅由回路电阻和磁通量变化决定,与磁通量发生变化的时间无关.3.(2013年浙江理综,15,6分)磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v 0刷卡时,在线圈中产生感应电动势,其E t 关系如图所示.如果只将刷卡速度改为02v ,线圈中的E t 关系图可能是( )解析:由公式E=Blv 可知,当刷卡速度减半时,线圈中的感应电动势最大值减半,且刷卡所用时间加倍,故选项D 正确.答案:D4.(2012年新课标全国理综,19,6分)如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率B t∆∆的大小应为( )A.04πB ωB.02πB ωC.0πB ωD.02πB ω解析:当线框绕过圆心O 的转动轴以角速度ω匀速转动时,由于面积的变化产生感应电动势,从而产生感应电流,即I 1=E R =R t Φ∆∆=0B S R t ∆∆=202B r Rω,当线圈不动,磁感应强度变化时,I 2=R t Φ∆∆=BS R t ∆∆=2π2B r R t ∆∆,因I 1=I 2,可得B t∆∆=0πB ω,C 正确. 答案:C点评: 本题考查法拉第电磁感应定律的应用,涉及两种类型公式的选用.解题时关键是要求学生能利用公式得到电流的表达式,注意本题的动生电动势是直径切割磁感线,而不是半径.5.(2011年广东理综,15,4分)将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是( )A.感应电动势的大小与线圈的匝数无关B.穿过线圈的磁通量越大,感应电动势越大C.穿过线圈的磁通量变化越快,感应电动势越大D.感应电流产生的磁场方向与原磁场方向始终相同解析:根据法拉第电磁感应定律,感应电动势的大小与线圈的匝数成正比,与磁通量的变化率成正比,与磁通量大小无关,故A 、B 错误,C 正确;根据楞次定律,感应电流产生的磁场方向可能与原磁场方向相同,也可能相反,D 错误.答案:C6.(2011年北京理综,19,6分)某同学为了验证断电自感现象,自己找来带铁芯的线圈L,小灯泡A,开关S 和电池组E,用导线将它们连接成如图所示的电路.检查电路后,闭合开关S,小灯泡发光;再断开开关S,小灯泡仅有不显著的延时熄灭现象.虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因.你认为最有可能造成小灯泡未闪亮的原因是( )A.电源的内阻较大B.小灯泡电阻偏大C.线圈电阻偏大D.线圈的自感系数较大解析:线圈L 要阻碍通过它的电流变化.断电时,要阻碍其中的电流减小,L 中电流要比断电前的电流小,并且通过灯泡形成一个回路,若L 中电流断电前比灯泡中电流大,此时L 中电流虽减小,但仍比灯泡断电前电流大,灯泡就会闪亮一下.要实现L 中电流比小灯泡电流大,根据欧姆定律可知,L 的电阻比小灯泡电阻要小,从而判定出C 正确.答案:C7.(2010年浙江理综,19,6分)半径为r 带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d,如图(甲)所示.有一变化的磁场垂直于纸面,规定向内为正,变化规律如图(乙)所示.在t=0时刻平板之间中心有一重力不计,电荷量为q 的静止微粒.则以下说法正确的是( )A.第2秒内上极板为正极B.第3秒内上极板为负极C.第2秒末微粒回到了原来位置D.第2秒末两极板之间的电场强度大小为0.2πr 2/d 解析:由题图(乙)知第2秒内,磁场向内并均匀减小,由楞次定律知,环中电流方向为顺时针,因而上极板带正电,A 项正确;第3秒内磁场向外且均匀增大.由楞次定律知,环中电流方向为顺时针,上极板仍带正电,B 项错误;同理,第1秒内上极板带负电,此微粒2秒内先做匀加速直线运动,再做匀减速直线运动,加速度大小不变,运动方向不变,C 项错误;由法拉第电磁感应定律知,电路中感应电动势为E 感=tΦ∆∆=0.1πr 2,场强为E=E d感=0.1πr 2/d,D 项错误. 答案:A8.(2013年江苏卷,13,15分)如图所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场垂直.已知线圈的匝数N=100,边长ab=1.0 m 、bc=0.5 m,电阻r=2 Ω.磁感应强度B 在0~1 s 内从零均匀变化到0.2 T.在1~5 s 内从0.2 T 均匀变化到-0.2 T,取垂直纸面向里为磁场的正方向.求:(1)0.5 s 时线圈内感应电动势的大小E 和感应电流的方向;(2)在1~5 s 内通过线圈的电荷量q;(3)在0~5 s 内线圈产生的焦耳热Q.解析:(1)感应电动势E 1=N 11t Φ∆∆, 磁通量的变化量ΔΦ1=ΔB 1S解得E 1=N 11B S t ∆∆, 代入数据得E 1=10 V,感应电流的方向为a →d →c →b →a.(2)同理可得E 2=N 22B S t ∆∆, 感应电流I 2=2E r ,电荷量q=I 2Δt 2 解得q=N 2B S r∆,代入数据得q=10 C. (3)0~1 s 内的焦耳热Q 1=21I r Δt 1,且I 1=1E r,1~5 s 内的焦耳热Q 2=22I r Δt 2 0~5 s 内焦耳热Q=Q 1+Q 2,代入数据得Q=100 J.答案:(1)10 V a →d →c →b →a(2)10 C (3)100 J考点三 电磁感应中的图像问题 ★★★1.(2013年新课标全国卷Ⅰ,17,6分)如图,在水平面(纸面)内有三根相同的均匀金属棒ab 、ac 和MN,其中ab 、ac 在a 点接触,构成“V ”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN 向右匀速运动,从图示位置开始计时,运动中MN 始终与∠bac 的平分线垂直且和导轨保持良好接触.下列关于回路中电流i 与时间t 的关系图线.可能正确的是( )解析:设开始时MN 距a 点距离为x 0,向右匀速运动的速度为v,金属棒电阻率为ρ,截面积为S,∠bac=2θ.在t 时刻MN 产生的感应电动势为:E=Blv=B ·2(x 0+vt)tan θ·v=2Bv(x 0+vt)tan θ,回路中电阻为R= ρ()0022tan cos x vt x vt S θθ+++=()02x vt S +1tan cos θθ⎛⎫+ ⎪⎝⎭,由I=E R 可得i=()sin 1sin BvS θρθ+,即电流保持不变,故选项A 正确.答案:A点评: 本题将电磁感应、电阻定律及电路结合,考查考生对电阻定律和法拉第电磁感应定律的应用能力.2.(2013年新课标全国卷Ⅱ,16,6分)如图,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动,t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v t 图像中,可能正确描述上述过程的是( )解析:线框进入和离开磁场时,穿过线框的磁通量发生变化产生感应电流,磁场对线框的安培力阻碍线框运动,使线框速度减小,由E=BLv 、I=E R及F=BIL=ma 可知安培力减小,加速度减小,当线框完全进入磁场后穿过线框的磁通量不再变化,不产生感应电流,不受安培力,线框做匀速直线运动,故选项D 正确.答案:D3.(2013年大纲全国卷,17,6分)纸面内两个半径均为R 的圆相切于O 点,两圆形区域内分别存在垂直于纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化.一长为2R 的导体杆OA 绕过O 点且垂直于纸面的轴顺时针匀速旋转,角速度为ω.t=0时,OA 恰好位于两圆的公切线上,如图所示,若选取从O 指向A 的电动势为正,下列描述导体杆中感应电动势随时间变化的图像可能正确的是( )解析:当导体杆顺时针转动切割圆形区域中的磁感线时,由右手定则可知电动势由O 指向A,即为正值,选项D 错误;切割过程中产生的感应电动势E=BL v =12BL 2ω,其中L=2Rsin ωt,如图所示,则E=2B ωR 2sin 2ωt,由此可知选项A 、B 错误,选项C 正确.答案:C点评: 本题中导体杆切割磁感线,导体杆中一定产生感应电动势,电动势与电路是否闭合无关;电动势的方向可由右手定则加以判断,即认为电路闭合,判断导体杆内电流方向,即为电动势方向.4.(2013年山东理综,18,5分)将一段导线绕成图(甲)所示的闭合回路,并固定在水平面(纸面)内,回路的ab 边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆形区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B 随时间t 变化的图像如图(乙)所示.用F 表示ab 边受到的安培力,以水平向右为F 的正方向,能正确反映F 随时间t 变化的图像是( )解析:0~2T 时间内,回路的圆环区域内垂直纸面的磁场Ⅱ的磁感应强度随时间先均匀减小后反向均匀增大,根据法拉第电磁感应定律及楞次定律可得回路的圆环区域产生大小恒定的、顺时针方向的感应电流,导线ab 中的电流方向由b →a,根据左手定则,ab 边在匀强磁场Ⅰ中受到水平向左的恒定的安培力;同理可得 2T ~T 时间内,ab 边在匀强磁场Ⅰ中受到水平向右的恒定的安培力,故选项B 正确. 答案:B点评:考查电磁感应中的图像问题,并利用法拉第电磁感应定律及楞次定律、左手定则处理电磁感应问题的能力.5.(2012年福建理综,18,6分)如图(甲),一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合.若取磁铁中心O为坐标原点,建立竖直向下为正方向的x轴,则图(乙)中最能正确反映环中感应电流i随环心位置坐标x变化的关系图像是( )解析:由条形磁铁的磁感线分布图知,从圆环下落处至O点,磁场的水平分量先增加后减小至0,磁场的增加与减小都不是线性的,且磁场方向向外,从O点以下,磁场的水平分量向里,先增加后减小,磁场的增加与减小也不是线性的,铜环加速下滑,由i=BlvR判定电流变化不是线性的,A错误;关于O点的对称点,下面的速度大于上面的速度,磁感应强度的水平分量B大小相同,则下边的电流大于上边电流,B正确.由于关于O点的对称点速度大小不同,则电流不同,C错误;在O点的上方与下方,磁感应强度的水平分量方向相反,根据右手定则,电流方向也应该相反,D错误.答案:B点评: (1)掌握常见磁体的磁感线分布是解此题的关键.(2)挖掘题目中的隐含条件,例如,磁感应强度的水平分量B关于O点对称,大小相等,方向相反;由于重力大于安培力,铜环加速下落.6.(2012年课标全国理综,20,6分)如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.设电流i正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是( )解析:因通电导线周围的磁场离导线越近磁场越强,而线框中左右两边电流的大小相同,而方向相反,所以受到的安培力方向相反,而导线框的左边受到的安培力大于导线框的右边受到的安培力,所以合力沿导线框左边受到的力的方向,因为线框受到的安培力的合力先水平向左,后水平向右,根据左手定则,导线框处的磁场方向先垂直纸面向里,后垂直纸面向外,根据右手螺旋定则,导线中的电流先为正,后为负,所以A正确,B、C、D错误.答案:A7.(2010年北京理综,19,6分)在如图(甲)所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L和一个滑动变阻器R.闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I.然后,断开S.若t′时刻再闭合S,则在t′前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图像是图(乙)中的( )解析:S闭合前,i1=0,i2=0,S闭合后,流过L1的电流从零缓慢增大到稳定值I.流过L2的电流立即增大到稳定值I.故B正确.答案:B8.(2011年海南卷,6,6分)如图所示,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF;OO′为∠EOF的角平分线,OO′间的距离为l;磁场方向垂直于纸面向里.一边长为l的正方形导线框沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线可能正确的是( )解析:当线框左边进入磁场时,线框上的电流方向为逆时针,直至线框右边完全进入磁场;当右边一半进入磁场,左边一半开始出磁场,此后线圈中的电流方向为顺时针.当线框左边进入磁场时,切割磁感线的有效长度均匀增加,故感应电动势、感应电流均匀增加,当左边完全进入磁场,右边还没有进入时,感应电动势、感应电流达最大,且直到右边将要进入磁场这一段时间内均不变,当右边进入磁场时,左边开始出磁场,这时切割磁感线的有效长度均匀减小,感应电动势、感应电流均减小,且左、右两边在磁场中长度相等时为零,之后再反向均匀增加至左边完全出来,到右边到达左边界时电流最大且不变,直到再次减小,故B 正确.答案:B考点四 电磁感应中的力、电综合问题 ★★★★1.(2013年安徽理综,16,6分)如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg,接入电路的电阻为 1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( )A.2.5 m/s 1 WB.5 m/s 1 WC.7.5 m/s 9 WD.15 m/s 9 W解析:小灯泡稳定发光时,导体棒MN 匀速运动,所受合力为零,在沿斜面方向上:mgsin 37°-μmgcos 37° -BIL=0,I=BLv R 总,R 总=2 Ω,代入数据得v=5 m/s;闭合回路的总功率P=IE=IBLv,代入数据得P=2 W,小灯泡与导体棒的电阻相等,消耗的电功率相等,都为1 W,故选项B 正确.答案:B2.(2013年四川理综,7,6分)如图所示,边长为L 、不可形变的正方形导线框内有半径为r 的圆形磁场区域,其磁感应强度B 随时间t 的变化关系为B=kt(常量k>0).回路中滑动变阻器R 的最大阻值为R 0,滑动片P 位于滑动变阻器中央,定值电阻R 1=R 0、R 2=02R .闭合开关S,电压表的示数为U,不考虑虚线MN 右侧导体的感应电动势,则( )A.R 2两端的电压为7UB.电容器的a 极板带正电C.滑动变阻器R 的热功率为电阻R 2的5倍D.正方形导线框中的感应电动势为kL 2解析:根据串、并联电路特点,虚线MN 右侧电路部分的总电阻R=R 0+02R +04R =74R 0.回路的总电流I=U R =047U R ,由于R 2=02R ,所以通过R 2的电流I 2=2I =027U R ,所以R 2两端电压U 2=I 2R 2=027U R ·02R =17U,选项A 正确;根据楞次定律可知,回路中的电流为逆时针方向,即流过R 2的电流方向向左,所以电容器b 极板带正电,选项B 错误;根据P=I 2R,滑动变阻器R 的热功率P=I 202R +22I ⎛⎫ ⎪⎝⎭02R =58I 2R 0,电阻R 2的热功率P 2=22I ⎛⎫ ⎪⎝⎭R 2=18I 2R 0=15P,选项C 正确;根据法拉第电磁感应定律得,线框中产生的感应电动势E=t Φ∆∆=B tS=k πr 2,选项D 错误. 答案:AC 点评: 本题考查知识点较多,涉及到楞次定律、法拉第电磁感应定律的计算、串并联电路的特点及电路中的欧姆定律和功率计算的知识,对学生基础知识的掌握以及推理能力的要求较高,但总体难度却不大,属于中档题.3.(2012年北京理综,19,6分)物理课上,老师做了一个奇妙的“跳环实验”.如图,她把一个带铁芯的线圈L 、开关S 和电源用导线连接起来后,将一金属套环置于线圈L 上,且使铁芯穿过套环.闭合开关S 的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复试验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是( )A.线圈接在了直流电源上B.电源电压过高C.所选线圈的匝数过多D.所用套环的材料与老师的不同解析:套环跳起的原因是闭合开关的瞬间,套环中产生感应电流从而受到磁场力的作用,且磁场力大于套环的重力.该同学实验未成功的原因,可能是选用了非导体材料的套环.D 项正确.答案:D4.(2012年山东理综,20,5分)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场垂直于导轨平面,磁感应强度为B.将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g.下列选项正确的是( )A.P=2mgvsin θB.P=3mgvsin θC.当导体棒速度达到2v 时加速度大小为2g sin θD.在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功解析:当导体棒以速度v 匀速下滑时,满足:22B L v R=mgsin θ 当导体棒以速度2v 匀速下滑时,满足: 222B L v R ⋅=mgsin θ+F两式联立解得:F=mgsin θ,则拉力F 的功率P=F ·2v=2mgvsin θ,A 正确,B 错误; 当导体棒以速度2v匀速下滑时, 由牛顿第二定律:mgsin θ-222B L vR =ma, 解得:a=2gsin θ,C 正确; 当导体棒以速度2v 匀速下滑时,由功能关系可知,F 做的功和重力做的功全部转化成电阻R 上产生的焦耳热,D 错误. 答案:AC点评: 本题是一道综合性比较强的考题,这类问题是每年高考的必考内容,考生在备考中要充分重视. 5.(2011年福建理综,17,6分)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v,则金属棒ab 在这一过程中( )A.运动的平均速度大小为12v B.下滑的位移大小为qR BLC.产生的焦耳热为qBLvD.受到的最大安培力大小为22B L vRsin θ解析:由法拉第电磁感应定律及闭合电路欧姆定律知: E=t Φ∆∆,I=E R =tR Φ∆∆,q=I ·Δt=R Φ∆=BL xR⋅, 所以位移x=qRBL,故B 正确. 因为棒不是做匀变速运动,故A 错误. 由E=BLv 和F 安=BIL 知安培力大小应为22B L vR,故D 错误. 求焦耳热应该用平均值,故C 错误. 答案:B6.(2013年重庆理综,7,15分)小明在研究性学习中设计了一种可测量磁感应强度的实验,其装置如图所示.在该实验中,磁铁固定在水平放置的电子测力计上,此时电子测力计的读数为G 1,磁铁两极之间的磁场可视为水平匀强磁场,其余区域磁场不计.直铜条AB 的两端通过导线与一电阻连接成闭合回路,总阻值为R.若让铜条水平且垂直于磁场,以恒定的速率v 在磁场中竖直向下运动,这时电子测力计的读数为G 2,铜条在磁场中的长度为L.。

2014-2018高考物理电磁感应真题

2014-2018高考物理电磁感应真题

专题十电磁感应(2017~2018年)2017.315.如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直。

金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面。

现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向2017.220.两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直。

边长为0.1m、总电阻为0.005Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图(a)所示。

已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场。

线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正)。

下列说法正确的是A.磁感应强度的大小为0.5TB.导线框运动的速度的大小为0.5m/sC.磁感应强度的方向垂直于纸面向外D.在t=0.4s至t=0.6s这段时间内,导线框所受的安培力大小为0.1N21.某同学自制的简易电动机示意图如图所示。

矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴。

将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方。

为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉2017.118.扫描对到显微镜(STM)可用来探测样品表面原子尺寸上的形貌,为了有效隔离外界震动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小震动,如图所示,无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及其左右震动的衰减最有效的方案是3.一电阻接到方波交流电源上,在一个周期内产生的热量为Q方;若该电阻接到正弦交变电源上,在一个周期内产生的热量为Q正。

2014年高考物理新课标Ⅰ试题全国卷(含解析)

2014年高考物理新课标Ⅰ试题全国卷(含解析)

2014年高考物理新课标Ⅰ试题全国卷(含解析)2014年高考物理新课标Ⅰ试题全国卷(含解析)14.D本题考察电磁感应现象中感应电流产生的条件,其中的选项C把物理学史中科学家失败的做法也融入了进来,变相地考察了物理学史的知识。

15.B考察了安培力的大小与方向,安培力的大小与导线在磁场中的放置方式有密切的有关系:当垂直于磁场放置时受到的力最大,平行于磁场放置时不受安培力,即不平行也不垂直时介于最大和零之间;安培力的方向总是即垂直于磁场又垂直于导线,即,安培力的方向总是垂直于导线与磁场所决定的平面。

选项D中将导线从中点折成直角,但不知折的方式如何,若折后导线仍在垂直于磁场的平面内,则力将变为原来的倍;若折后导线另一部分平行于磁场,则力减小为原来的一半;若折后导线另一部分即不平行也不垂直于磁场,则力将介于这两者间。

如果导线开始时并不垂直于磁场,则情况更为复杂。

16.D考察带电粒子在磁场中运动的半径公式以及动能与动量的关系。

由上面两式可得已知动能为2倍关系,而r也为2倍关系,所以。

17.A考察受力分析,牛顿运动定律,以及力的合成与分解。

设橡皮筋的伸长量为x,受力分析如图所示,由牛顿第二定律有(1)(2)小球稳定在竖直位置时,形变量为,由平衡条件有(3)对(2)(3)两式可知,而悬点与小球间的高度差分别为与可见所以小球的高度一定升高。

18.C考察法拉第电磁感应定律。

cd间产生稳定的周期性变化的电压,则产生感应电流的磁场的变化是均匀的,根据题目所给信息知道,ab中电流的变化应该是均匀的。

只有C选项有此特点,因此选择C项。

19.BD考察角追及和万有引力定律。

由引力提供向心力可知相邻两次冲日的时间间隔其中表示的是地球的公转角速度,表示的是行星的公转角速度。

将第一式中的结果代入到第二式中有设行星的半径是地球半径的k倍,则上式可化为上式中,也就是地球绕太阳公转的周期,即一年的时间。

对于火星k=1.5,对于木星k=5.2,至此可知,后面的行星冲日时间间隔大约都是1年,但又大于1年,因为只有时才恰恰为一年。

2014届高三名校物理试题解析分项汇编(新课标Ⅰ版)(第01期)专题10 电磁感应(解析版)Word版含解析

2014届高三名校物理试题解析分项汇编(新课标Ⅰ版)(第01期)专题10 电磁感应(解析版)Word版含解析

备注:新课标Ⅰ卷专版所选试题和新课标Ⅱ卷专版所选试题不重复,欢迎同时下载使用。

专题10 电磁感应(解析版)一、单项选择题1.【2014·河南省六市高中毕业班第二次联考】关于物理学家的贡献,下列说法中正确的是A.卡文迪许利用扭秤实验首先较准确地测定了静电力常量B.库仑提出了库仑定律,并最早通过实验测得元电荷e的数值C.第谷通过对行星运动的观测数据进行分析,得出了开普勒行星运动定律D.法拉第发现了电磁感应现象2.【2013·湖北省黄冈市高三5月适应性考试】人类发现电和磁的关系,经历了漫长的岁月。

1820年,丹麦物理学家奥斯特发现了通电导线下小磁针的偏转现象从而发现了电流的磁效应。

1831年,英国物理学家法拉第发现磁铁穿过闭合线圈时,线圈中有电流产生从而发现了电磁感应现象,下列相关说法正确的是A.给小磁针上方的导线通电,小磁针就会发生偏转B.导线下方小磁针偏转的角度大小只与电流的强弱有关C.线圈中感应电流的强弱与磁铁穿过线圈的速度大小有关D.线圈横截面积越大磁铁穿过时产生的感应电流越强2.C 解析:当小磁针指向与磁感线平行时小磁针不会偏转,故A错误;磁针偏转的角度大小与电流的强弱和磁性有关,故B错误;当磁铁穿过线圈的速度变大磁通量变化快感应电动势变大,电流变大,故C正确;穿过线圈的磁通量是磁铁内部的磁感线与磁铁和线圈之间的磁感线之差,故线圈面积越大电流越弱,D错误。

考点:磁场对磁体的作用,法拉第电磁感应定律.3.【2014·江西省江西师大附中高三开学摸底考试】如图所示,质量为m的金属环用线悬挂起来,金属环有一半处于水平且与环面垂直的匀强磁场中,从某时刻开始,磁感应强度均匀减小,则在磁感应强度均匀减小的过程中,关于线拉力大小的下列说法中正确的是()A.大于环重力mg,并逐渐减小B.始终等于环重力mgC.小于环重力mg,并保持恒定D.大于环重力mg,并保持恒定4.【2014·湖北省武汉市部分学校新高三起点调研测试】如图所示,光滑水平面上存在一有界匀强磁场,圆形金属线框在水平拉力的作用下,通过磁场的左边界MN。

近三年高考全国卷一电磁感应

近三年高考全国卷一电磁感应

(2014全国一卷)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表相连。

往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化(2014全国卷一)如图(a),线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间的电压如图(b)所示。

已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是(2015全国卷一)1824年,法国科学家阿拉果完成了著名的“圆盘实验”实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示。

实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后。

下列说法正确的是()A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D..在圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动PSQ M 北 南N S (2017全国卷一)扫描对到显微镜(STM )可用来探测样品表面原子尺寸上的形貌,为了有效隔离外界震动对STM 的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小震动,如图所示,无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及其左右震动的衰减最有效的方案是(2018全国卷一)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心。

轨道的电阻忽略不计。

OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好。

2014年高考物理(高考真题 模拟新题)分类汇编:L单元 电磁感应

2014年高考物理(高考真题 模拟新题)分类汇编:L单元   电磁感应

L单元电磁感应电磁感应现象、楞次定律14.[2018·新课标全国卷Ⅰ] 在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化14.D [解析] 本题考查了感应电流产生的条件.产生感应电流的条件是:只要穿过闭合电路的磁通量发生变化,电路中就会产生感应电流.本题中的A、B选项都不会使电路中的磁通量发生变化,不满足产生感应电流的条件,故不正确.C选项虽然在插入条形磁铁瞬间电路中的磁通量发生变化,但是当人到相邻房间时,电路已达到稳定状态,电路中的磁通量不再发生变化,故观察不到感应电流.在给线圈通电、断电瞬间,会引起闭合电路磁通量的变化,产生感应电流,因此D选项正确.8.(16分)[2018·重庆卷] 某电子天平原理如题8图所示,E形磁铁的两侧为N极,中心为S极,两极间的磁感应强度大小均为B,磁极宽度均为L,忽略边缘效应,一正方形线圈套于中心磁极,其骨架与秤盘连为一体,线圈两端C、D与外电路连接,当质量为m的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流I可确定重物的质量,已知线圈匝数为n,线圈电阻为R,重力加速度为g.问题8图(1)线圈向下运动过程中,线圈中感应电流是从C端还是从D端流出?(2)供电电流I是从C端还是D端流入?求重物质量与电流的关系.(3)若线圈消耗的最大功率为P,该电子天平能称量的最大质量是多少?8.[答案] (1)从C端流出(2)从D端流入2nBILg(3)2nBLgPR本题借助安培力来考查力的平衡,同时借助力的平衡来考查受力平衡的临界状态.[解析] (1)感应电流从C端流出.(2)设线圈受到的安培力为F A,外加电流从D端流入.由F A=mg和F A=2nBIL得m=2nBL gI(3)设称量最大质量为 m0.由m=2nBLgI和P=I2R得m0=2nBLgPR15.、[2018·广东卷] 如图8所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( )A.在P和Q中都做自由落体运动B.在两个下落过程中的机械能都守恒C.在P中的下落时间比在Q中的长D.落至底部时在P中的速度比在Q中的大15.C [解析] 磁块在铜管中运动时,铜管中产生感应电流,根据楞次定律,磁块会受到向上的磁场力,因此磁块下落的加速度小于重力加速度,且机械能不守恒,选项A、B错误;磁块在塑料管中运动时,只受重力的作用,做自由落体运动,机械能守恒,磁块落至底部时,根据直线运动规律和功能关系,磁块在P中的下落时间比在Q中的长,落至底部时在P中的速度比在Q中的小,选项C正确,选项D错误.20.[2018·全国卷] 很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率( )A.均匀增大B.先增大,后减小C.逐渐增大,趋于不变D.先增大,再减小,最后不变20.C [解析] 本题考查楞次定律、法拉第电磁感应定律.竖直圆筒相当于闭合电路,磁铁穿过闭合电路,产生感应电流,根据楞次定律,磁铁受到向上的阻碍磁铁运动的安培力,开始时磁铁的速度小,产生的感应电流也小,安培力也小,磁铁加速运动,随着速度的增大,产生的感应电流增大,安培力也增大,直到安培力等于重力的时候,磁铁匀速运动.所以C 正确.3.(2018·浙江效实中学摸底)如图X21­2所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化,下列说法正确的是( )图X21­2A .当磁感应强度增加时,线框中的感应电流可能减小B .当磁感应强度增加时,线框中的感应电流一定增大C .当磁感应强度减小时,线框中的感应电流一定增大D .当磁感应强度减小时,线框中的感应电流可能不变3.AD [解析] 由法拉第电磁感应定律可知,感应电流的大小取决于磁通量的变化率,与磁感应强度的增与减无关,选项A 、D 正确.4.(2018·石家庄二检)法拉第发明了世界上第一台发电机——法拉第圆盘发电机.如图X21­3所示,用紫铜做的圆盘水平放置在竖直向下的匀强磁场中,圆盘圆心处固定一个摇柄,边缘和圆心处各与一个黄铜电刷紧贴,用导线将电刷与电流表连接起来形成回路.转动摇柄,使圆盘逆时针匀速转动,电流表的指针发生偏转.下列说法正确的是( )图X21­3A .回路中电流的大小变化,方向不变B .回路中电流的大小不变,方向变化C .回路中电流的大小和方向都周期性变化D .回路中电流的方向不变,从b 导线流进电流表4.D [解析] 圆盘辐向垂直切割磁感线,由E =12Br 2ω可得,电动势的大小一定,则电流的大小一定;由右手定则可知,电流方向从圆盘边缘流向圆心,电流从b 导线流进电流表,选项D 正确.5.(2018·浙江六校联考)如图X21­4所示,A 为多匝线圈,与开关、滑动变阻器相连后接入M 、N 间的交流电源,B 为一个接有小灯珠的闭合多匝线圈,下列关于小灯珠发光情况的说法正确的是( )图X21­4A .闭合开关后小灯珠可能发光B .若闭合开关后小灯珠发光,则再将B 线圈靠近A ,则小灯珠更亮C .闭合开关瞬间,小灯珠才能发光D .若闭合开关后小灯珠不发光,将滑动变阻器的滑片左移后,小灯珠可能会发光5.AB [解析] 闭合开关后,A 产生交变磁场,穿过B 的磁通量发生变化,小灯珠通电后可能发光,选项A 正确,选项C 错误;闭合开关后再将B 靠近A ,穿过B 的磁通量的变化率增大,产生的感应电动势增大,小灯珠更亮,选项B 正确;闭合开关后小灯珠不发光,将滑动变阻器的滑片左移后,A 中的电流减小,穿过B 的磁通量的变化率减小,小灯珠不会发光,选项D 错误.法拉第电磁感应定律、自感6. [2018·四川卷] 如图所示,不计电阻的光滑U 形金属框水平放置,光滑、竖直玻璃挡板H 、P 固定在框上,H 、P 的间距很小.质量为0.2 kg 的细金属杆CD 恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m 的正方形,其有效电阻为0.1 Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B =(0.4-0.2t) T ,图示磁场方向为正方向.框、挡板和杆不计形变.则( )A .t =1 s 时,金属杆中感应电流方向从C 到DB .t =3 s 时,金属杆中感应电流方向从D 到C C .t =1 s 时,金属杆对挡板P 的压力大小为0.1 ND .t =3 s 时,金属杆对挡板H 的压力大小为0.2 N6.AC [解析] 由于B =(0.4-0.2 t) T ,在t =1 s 时穿过平面的磁通量向下并减少,则根据楞次定律可以判断,金属杆中感应电流方向从C 到D ,A 正确.在t =3 s 时穿过平面的磁通量向上并增加,则根据楞次定律可以判断,金属杆中感应电流方向仍然是从C 到D ,B 错误.由法拉第电磁感应定律得E =ΔΦΔt =ΔB Δt Ssin 30°=0.1 V ,由闭合电路的欧姆定律得电路电流I =ER =1 A ,在t =1 s 时,B =0.2 T ,方向斜向下,电流方向从C到D ,金属杆对挡板P 的压力水平向右,大小为F P =BILsin 30°=0.1 N ,C 正确.同理,在t =3 s 时,金属杆对挡板H 的压力水平向左,大小为F H =BILsin 30°=0.1 N ,D 错误.2.[2018·江苏卷] 如图X21­1所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B.在此过程中,线圈中产生的感应电动势为( )图X21­1A.Ba 22Δt B.nBa 22Δt C.nBa 2Δt D.2nBa 2Δt2.B [解析] 根据法拉第电磁感应定律知E =n ΔΦΔt =n ΔB·S Δt ,这里的S 指的是线圈在磁场中的有效面积,即S =a 22,故E =n (2B -B )S Δt =nBa22Δt,因此B 项正确.7.(2018·吉林九校联考)如图X21­7所示,磁场垂直于纸面向外,磁场的磁感应强度随x 按B =B 0+kx(x >0,B 0、k 为常量)的规律均匀增大.位于纸面内的正方形导线框abcd 处于磁场中,在外力作用下始终保持dc 边与x 轴平行向右匀速运动.若规定电流沿a→b→c→d→a 的方向为正方向,则从t =0到t =t 1的时间间隔内,图X21­8中关于该导线框中产生的电流i 随时间t 变化的图像正确的是( )图X21­77.A [解析] 线框abcd 向右匀速运动,穿过线框的磁通量均匀增加,由法拉第电磁感应定律知线框中产生恒定电流,由楞次定律知产生顺时针方向的电流,选项A 正确.电磁感应与电路的综合16.[2018·山东卷] 如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好,在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M、F N表示.不计轨道电阻.以下叙述正确的是( )A.F M向右 B.F N向左C.F M逐渐增大 D.F N逐渐减小16.BCD [解析] 根据安培定则可判断出,通电导线在M区产生竖直向上的磁场,在N区产生竖直向下的磁场.当导体棒匀速通过M区时,由楞次定律可知导体棒受到的安培力向左.当导体棒匀速通过N区时,由楞次定律可知导体棒受到的安培力也向左.选项B正确.设导体棒的电阻为r,轨道的宽度为L,导体棒产生的感应电流为I′,则导体棒受到的安培力F安=BI′L=B BLvR+r L=B2L2vR+r,在导体棒从左到右匀速通过M区时,磁场由弱到强,所以F M逐渐增大;在导体棒从左到右匀速通过N区时,磁场由强到弱,所以F N逐渐减小.选项C、D正确.电磁感应与力和能量的综合3. (2018·深圳一模)图X22­3甲为列车运行的俯视图,列车首节车厢下面安装一块电磁铁,电磁铁产生垂直于地面的匀强磁场,列车经过放在铁轨间的线圈时,线圈产生的电脉冲信号传到控制中心,如图乙所示.则列车的运动情况可能是( )图X22­3A.匀速运动 B.匀加速运动C.匀减速运动 D.变加速运动3.C [解析] 当列车通过线圈时,线圈的左边或右边切割磁感线,由E=BLv可得电动势的大小由速度v 决定,由图像可得线圈产生的感应电动势均匀减小,则列车做匀减速运动,选项C正确.8.(2018·广州一模)如图X22­9所示,匀强磁场垂直于铜环所在的平面,导体棒a的一端固定在铜环的圆心O处,另一端紧贴圆环,可绕O匀速转动.通过电刷把铜环、环心与两块竖直平行金属板P、Q连接成如图所示的电路,R1、R2是定值电阻.带正电的小球通过绝缘细线挂在两板间的M点,被拉起到水平位置;合上开关S,无初速度释放小球,小球沿圆弧经过M点正下方的N点到另一侧.已知磁感应强度为B,a的角速度为ω,长度为l,电阻为r,R1=R2=2r,铜环的电阻不计,P、Q两板的间距为d,小球的质量为m、带电荷量为q,重力加速度为g.求:(1)a匀速转动的方向;(2)P、Q间电场强度E的大小;(3)小球通过N 点时对细线拉力F 的大小.图X22­98. (1)导体棒a 沿顺时针方向转动 (2)B ωl25d(3)3mg -2Bq ωl25d[解析] (1)依题意可知,P 板带正电,Q 板带负电.由右手定则可知,导体棒a 沿顺时针方向转动. (2)导体棒a 转动切割磁感线,由法拉第电磁感应定律得电动势的大小 ε=ΔΦΔt =12Bl 2ωΔtΔt =12Bl 2ω由闭合电路的欧姆定律有I =εR 1+R 2+r由欧姆定律可知,PQ 间的电压U PQ =IR 2 故PQ 间匀强电场的电场强度E =U PQd由以上各式解得E =B ωl25d.(3)设细绳的长度为L ,小球到达N 点时速度为v ,由动能定理可得 mgL -EqL =12mv 2又F -mg =mv2L由以上各式解得F =3mg -2Bq ωl25d.2.(2018·广州四校联考)如图X23­2所示,金属棒ab 、cd 与足够长的水平光滑金属导轨垂直且接触良好,匀强磁场的方向竖直向下.则ab 棒在恒力F 作用下向右运动的过程中,有()图X23­2A .安培力对ab 棒做正功B .安培力对cd 棒做正功C .abdca 回路的磁通量先增加后减少D .F 做的功等于回路产生的总热量和系统动能的增量之和2.BD [解析] ab 棒向右运动产生感应电流,电流通过cd 棒,cd 棒受向右的安培力作用随之向右运动.设ab 、cd 棒的速度分别为v 1、v 2,运动刚开始时,v 1>v 2,回路的电动势E =BL (v 1-v 2)R ,电流为逆时针方向,ab 、cd 棒所受的安培力方向分别向左、向右,安培力分别对ab 、cd 棒做负功、正功,选项A 错误,选项B 正确;导体棒最后做加速度相同、速度不同的匀加速运动,且v 1>v 2,abdca 回路的磁通量一直增加,选项C 错误;对系统,由动能定理可知, F 做的功和安培力对系统做的功的代数和等于系统动能的增量,而安培力对系统做的功等于回路中产生的总热量,选项D 正确.3. (2018·孝感模拟)如图X23­3所示,两根等高光滑的14圆弧轨道半径为r 、间距为L ,轨道的电阻不计.在轨道的顶端连有阻值为R 的电阻,整个装置处在竖直向上的匀强磁场中,磁感应强度为B.现有一根长度稍大于L 、电阻不计的金属棒从轨道的最低位置cd 开始,在拉力作用下以速度v 0向右沿轨道做匀速圆周运动至ab 处,则该过程中( )图X23­3A .通过R 的电流方向为由内向外B .通过R 的电流方向为由外向内C .R 上产生的热量为πrB 2L 2v 04RD .通过R 的电荷量为πBLr2R3.BC [解析] 由右手定则可知,电流方向为逆时针方向,选项B 正确;通过R 的电荷量q =ΔΦR =BLrR ,选项D 错误;金属棒产生的瞬时感应电动势E =BLv 0cos v 0r t ,有效值E有=BLv 02,R 上产生的热量Q =E 2有R t =B 2L 2v 202R ·πr 2v 0=πrB 2L 2v 04R ,选项C 正确.电磁感应综合24.[2018·浙江卷] 某同学设计一个发电测速装置,工作原理如图所示.一个半径为R =0.1 m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端与导轨接触良好,O 端固定在圆心处的转轴上.转轴的左端有一个半径为r =R3的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5 kg 的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5 T .a 点与导轨相连,b 点通过电刷与O 端相连.测量a 、b 两点间的电势差U 可算得铝块速度.铝块由静止释放,下落h =0.3 m 时,测得U =0.15 V .(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g 取10 m/s 2)第24题图(1)测U 时,与a 点相接的是电压表的“正极”还是“负极”? (2)求此时铝块的速度大小;(3)求此下落过程中铝块机械能的损失. 24.[答案] (1)正极 (2)2 m/s (3)0.5 J[解析] 本题考查法拉第电磁感应定律、右手定则等知识和分析综合及建模能力. (1)正极(2)由电磁感应定律得U =E =ΔΦΔtΔΦ=12BR 2Δθ U =12B ωR 2v =r ω=13ωR所以v =2U3BR =2 m/s(3)ΔE =mgh -12mv 2ΔE =0.5 J25.[2018·新课标Ⅱ卷] 半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、质量为m 且质量分布均匀的直导体棒AB 置于圆导轨上面,BA 的延长线通过圆导轨中心O ,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在内圆导轨的C 点和外圆导轨的D 点之间接有一阻值为R 的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小g.求(1)通过电阻R 的感应电流的方向和大小: (2)外力的功率.25. [答案] (1)从C 端流向D 端 3ωBr22R(2)32μmgωr+9ω2B2r44R[解析] (1)在Δt时间内,导体棒扫过的面积为ΔS=12ωΔt[(2r)2-r2]①根据法拉第电磁感应定律,导体棒上感应电动势的大小为ε=BΔS Δt②根据右手定则,感应电流的方向是从B端流向A端.因此,通过电阻R的感应电流的方向是从C端流向D 端.由欧姆定律可知,通过电阻R的感应电流的大小I满足I=εR③联立①②③式得I=3ωBr22R.④(2)在竖直方向有mg-2N=0⑤式中,由于质量分布均匀,内、外圆导轨对导体棒的正压力大小相等,其值为N,两导轨对运行的导体棒的滑动摩擦力均为f=μN⑥在Δt时间内,导体棒在内、外圆轨上扫过的弧长为l1=rωΔt⑦和l2=2rωΔt⑧克服摩擦力做的总功为W f=f(l1+l2)⑨在Δt时间内,消耗在电阻R上的功为W R=I2RΔt⑩根据能量转化和守恒定律知,外力在Δt时间内做的功为W=W f+W R○11外力的功率为P=WΔt○12由④至12式得P=32μmgωr+9ω2B2r44R○1333.[答案] (1)BCE(2)(ⅰ)320 K (ⅱ)43p 0 [解析] (1)悬浮在水中的花粉的布朗运动是花粉颗粒的无规律运动,反映了水分子的无规则运动,A 项错误;空中的小雨滴表面有张力,使小雨滴呈球形,B 项正确;液晶具有各向异性,利用这个特性可以制成彩色显示器,C 项正确;高原地区的气压低,因此水的沸点低,D 项错误;干湿泡温度计的湿泡显示的温度低于干泡显示的温度,主要是由于湿泡外纱布中的水蒸发吸热,从而温度降低的缘故,E 正确.(2)(i)活塞b 升至顶部的过程中,活塞a 不动,活塞a 、b 下方的氮气经历等压过程,设气缸容积为V 0,氮气初态体积为V 1,温度为T 1,末态体积为V 2,温度T 2,按题意,气缸B 的容积为V B 4V 1=34V 0+12V 04=78V 0① V 2=34V 0+14V 0=V 0② V 1T 1=V 2T 2③ 由①②③式和题给数据得T 2=320 K .④(ii)活塞b 升至顶部后,由于继续缓慢加热,活塞a 开始向上移动,直到活塞上升的距离是气缸高度的116时,活塞a 上方的氧气经历等温过程,设氧气初态体积为V′1,压强为p′1,末态体积 V′2,压强p′2 ,由题给数据和玻意耳定律有V′1=14V 0,p′1=p 0,V′2=316V 0⑤ p′1V′1=p′2V′2⑥得p′2=43p 0.⑦ 24.(20分)导体切割磁感线的运动可以从宏观和微观两个角度来认识.如图所示,固定于水平面的U 形导线框处于竖直向下的匀强磁场中,金属直导线MN 在与其垂直的水平恒力F 作用下,在导线框上以速度v 做匀速运动,速度v 与恒力F 方向相同;导线MN 始终与导线框形成闭合电路.已知导线MN 电阻为R ,其长度L 恰好等于平行轨道间距,磁场的磁感应强度为B.忽略摩擦阻力和导线框的电阻.(1) 通过公式推导验证:在Δt 时间内,F 对导线MN 所做的功W 等于电路获得的电能W 电,也等于导线MN 中产生的热量Q;(2)若导线MN 的质量m =8.0 g 、长度L =0.10 m ,感应电流I =1.0 A ,假设一个原子贡献一个自由电子,计算导线MN 中电子沿导线长度方向定向移动的平均速率v e (下表中列出一些你可能会用到的数据);(3)经典物理学认为,金属的电阻源于定向运动的自由电子和金属离子(即金属原子失去电子后的剩余部分)的碰撞.展开你想象的翅膀,给出一个合理的自由电子的运动模型;在此基础上,求出导线MN 中金属离子对一个自由电子沿导线长度方向的平均作用力f 的表达式.5.(2018·襄阳模拟)在如图X23­5所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B 的匀强磁场,区域Ⅰ的磁场方向垂直于斜面向上,区域Ⅱ的磁场方向垂直于斜面向下,磁场的宽度均为L.一个质量为m 、电阻为R 、边长也为L 的正方形导线框由静止开始沿斜面下滑,当ab 边刚越过GH 进入磁场区域Ⅰ时,恰好以速度v 1做匀速直线运动;当ab 边下滑到JP 与MN 的中间位置时,又恰好以速度v 2做匀速直线运动,ab 从进入GH 到运动至MN 与JP 的中间位置的过程中的,线框动能的变化量为ΔE k ,重力对线框做的功为W 1,安培力对线框做的功为W 2,下列说法中正确的有( )图X23­5A .在下滑过程中,由于重力做正功,所以有v 2>v 1B .ab 从进入GH 到运动至MN 与JP 的中间位置的过程中机械能守恒C .ab 从进入GH 到运动至MN 与JP 的中间位置的过程中,有(W 1-ΔE k )的机械能转化为电能D .ab 从进入GH 到运动至MN 与JP 的中间位置的过程中,线框动能的变化量ΔE k =W 1-W 25.CD [解析] 根据平衡条件,线框第一次做匀速运动时有mgsin θ=B 2L 2v 1R,第二次做匀速运动时有mgsin θ=4B 2L 2v 2R,则v 2<v 1,选项A 错误;ab 进入磁场后,安培力做负功,机械能减少,选项B 错误;ab 从进入GH 到运动至JP 与MN 的中间位置,由动能定理有W 1-W 2=ΔE k ,选项D 正确;线框克服安培力做的功为W 2,等于产生的电能,且W 2=W 1-ΔE k ,选项C 正确.6.(2018·江西九校联考)如图X23­6所示,空间存在一个有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场的宽度为l.一个质量为m 、边长也为l 的正方形导线框沿竖直方向运动,线框所在的平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行.t =0时刻导线框的上边恰好与磁场的下边界重合(图中位置I),导线框的速度为v 0,经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零,此后,导线框下落,经过一段时间回到初始位置I(不计空气阻力).则( )图X23­6A .上升过程中,导线框的加速度逐渐减小B .上升过程中,导线框克服重力做功的平均功率小于下降过程中重力做功的平均功率C .上升过程中线框产生的热量比下降过程中线框产生的热量多D .上升过程中合力做的功与下降过程中合力做的功相等6.AC [解析] 上升过程中,导线框的加速度a 1=mg +B 2l 2v R m随速度v 的减小而减小,选项A 正确;下降过程中,导线框的加速度a 2=mg -B 2l 2v R m 随速度v 的增大而减小,平均加速度a 1>a 2,由x =12at 2可知上升的时间短,由P =mgh t 知,上升时重力做功的平均功率大,选项B 错误;由于安培力做负功,导线框在下降过程的速度小于同一高度上升时的速度,对全程应用动能定理,上升过程中合力做的功大于下降过程中合力做的功,选项D 错误;在下降过程中的安培力小于同一高度上升时的安培力,上升过程克服安培力做的功多,选项C 正确.4.(2018·湖南四校联考)如图G8­5甲所示,在竖直平面内有四条间距相等的水平虚线L 1、L 2、L 3、L 4,在L 1与L 2、L 3与L 4之间均存在着匀强磁场,磁感应强度的大小为1 T ,方向垂直于竖直平面向里.现有一矩形线圈abcd ,宽度cd =L =0.5 m ,质量为0.1 kg ,电阻为2 Ω,将其从图示位置(cd 边与L 1重合)由静止释放,速度随时间变化的图像如图乙所示,t 1时刻cd 边与L 2重合,t 2时刻ab 边与L 3重合,t 3时刻ab 边与L 4重合,t 2~t 3之间的图线为与t 轴平行的直线,t 1~t 2之间和t 3之后的图线均为倾斜直线,已知t 1~t 2的时间间隔为0.6 s ,整个运动过程中线圈始终位于竖直平面内.(重力加速度g 取10 m/s 2)则( )图G8­5A .在0~t 1时间内,通过线圈的电荷量为2.5 CB .线圈匀速运动的速度为8 m/sC .线圈的长度ad =1 mD .0~t 3时间内,线圈产生的热量为4.2 J4.B [解析] t 2~t 3时间内,线圈做匀速直线运动,而E =BLv 2,F =BEL R ,F =mg ,解得v 2=mgR B 2L 2=8 m/s ,选项B 正确;线圈在cd 边与L 2重合到ab 边与L 3重合的过程中一直做匀加速运动,则ab 边刚进磁场时,cd 边也刚进磁场,设磁场宽度为d ,则3d =v 2t -12gt 2,解得d =1 m ,则ad 边的长度为2 m ,选项C 错误;在0~t 3时间内,由能量守恒定律,有Q =5mgd -12mv 22=1.8 J ,选项D 错误;在0~t 1时间内,通过线圈的电荷量q =ΔΦR=BLd R=0.25 C ,选项A 错误. 5.(2018·青岛质检)如图G8­6所示,光滑斜面PMNQ 的倾角为θ,斜面上放有矩形导体线框abcd ,其中ab 边的长度为l 1,bc 边的长度为l 2,线框的质量为m ,电阻为R.有界匀强磁场的磁感应强度为B ,方向垂直于斜面向上,ef 为磁场的边界,且ef ∥MN.线框在恒力F 作用下从静止开始运动,其ab 边始终保持与底边MN 平行,F 沿斜面向上且与斜面平行.已知线框刚进入磁场时做匀速运动,则下列判断正确的是( )图G8­6A .线框进入磁场前的加速度为F -mgsin θm B .线框进入磁场时的速度为(F -mgsin θ)R B 2l 21C .线框进入磁场时有a→b→c→d→a 方向的感应电流D .线框进入磁场的过程中产生的热量为(F -mgsin θ)l 15. ABC [解析] 线框进入磁场前做匀加速直线运动,由牛顿第二定律得加速度a =F -mgsin θm ,选项A 正确;线框刚进入磁场时做匀速运动,由平衡条件得mgsin θ+B 2l 21v R =F ,则速度v =(F -mgsin θ)R B 2l 21,选项B 正确;线框进入磁场时,磁通量增大,由楞次定律可知,有a→b→c→d→a 方向的感应电流,选项C 正确;线框进入磁场的过程中产生的热量等于安培力做的功,则Q =(F -mgsin θ)l 2,选项D 错误.。

2014高考物理二轮复习:知识必备 专题十 电磁感应基本问题分析

2014高考物理二轮复习:知识必备 专题十 电磁感应基本问题分析

一、感应电动势的几种表达式
1. 穿过回路的磁通量发生变化时E=n Δ
Δt
,一般用来计算Δt时间内的感应
电动势的平均值.
2. 导体棒垂直切割磁感线运动时E=BLv.
3. 导体棒在磁场中以其中一端为圆心转动切割磁感线时E=1
2BL2ω.
二、感应电动势方向(或感应电流方向)判断:
1. 右手定则:适用于导体切割磁感线产生感应电流的方向的判断.
2. 楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.
三种阻碍:
(1) 阻碍原磁通量的变化——增反减同.
(2) 阻碍物体间的相对运动——来拒去留.
(3) 阻碍自身电流的变化——增反减同.
三、自感现象
自感电动势与导体中的电流变化率成正比,比例系数称为导体的自感系数L.线圈的自感系数L跟线圈的形状、长短、匝数等因素有关系.线圈的横截面积越大,线圈越大,匝数越多,它的自感系数就越大.有铁芯的线圈的自感系数比没有铁芯的大得多.。

2014全国高考物理真题分类汇编 磁场.pdf

2014全国高考物理真题分类汇编 磁场.pdf

2014年高考物理真题分类汇编:磁场 15.[2014·新课标全国卷Ⅰ] 关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是( )安培力的方向可以不垂直于直导线安培力的方向总是垂直于磁场的方向安培力的大小与通电D.将直导线从中点折成直角,安培力的大小一定变为原来的一半 [解析] 本题考查安培力的大小和方向.安培力总是垂直于磁场与电流所决定的平面,因此,安培力总与磁场和电流垂直,错误,正确;安培力F=BIL,其中θ是电流方向与磁场方向的夹角,错误;将直导线从中点折成直角,导线受到安培力的情况与直角导线在磁场中的放置情况有关,并不一定变为原来的错误.[2014·新课标全国卷Ⅰ] 如图所示,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未面出),一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.( ) A.2 B. C.1 D. 16.D [解析] 本题考查了带电粒子在磁场中的运动.根据qvB=有= ,穿过铝板后粒子动能减半,则=,穿过铝板后粒子运动半径减半,则=,因此=,正确.[2014·山东卷] 如图所示,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab长为s,竖直边ad长为h.质量均为m、带电荷量分别为+q和-q的两粒子,由a、c两点先后沿ab和cd方向以速率v进入矩形区(两粒子不同时出现在电场中).不计重力.若两粒子轨迹恰好相切,则v等于( ) A. B. C. D. 18.B [解析] 两个粒子都做两个粒子在竖直方向上都做加速度大小相等的匀加速直线运动,因为竖直位移大小相等,所以它们的运动时间相等.两个粒子在水平方向上都做速度大小相等的匀速直线运动,因为运动时间相等,所以水平位移大小相等.综合判断,两个粒子运动到轨迹相切点的水平位移都为,竖直位移都为,由=,=v得v=B正确.[2014·新课标Ⅱ卷] 图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些( )电子与正电子的偏转方向一定不同电子与正电子在磁场中运动轨迹的半径一定相同仅依据粒子运动轨迹无法判断该粒子是质子还是正电子粒子的动能越大,它在磁场中运动轨迹的半径越小 [解析] 电子、正电子和质子垂直进入磁场时,所受的重力均可忽略,受到的洛伦兹力的A正确;由轨道公式R=知 ,若电子与正电子与进入磁场时的速度不同,则其运动的轨迹半径也不相同,故错误.由R==知,错误.因质子和正电子均带正电,且半径大小无法计算出,故依据粒子运动轨迹无法判断该粒子是质子还是正电子,正确.[2014·江苏卷] 如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I,线圈间产生匀强磁场,磁感应强度大小B与I成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I,与其前后表面相连的电压表测出的霍尔电压U满足:U=,式中k为霍尔系数,d为霍尔元件两侧面间的距离.电阻R远大于R,霍尔元件的电阻可以忽略,则( ) A.霍尔元件前表面的电势低于后表面若电源的正负极对调,电压表将反偏与I成正比电压表的示数与R消耗的电功率成正比 [解析] 由于导电物质为电子,在霍尔元件中,电子是向上做定向移动的,根据左手定则可判断电子受到的洛伦兹力方向向后表面,故霍尔元件的后表面相当于电源的负极,霍尔元件前表面的电势应高于后表面A选项错误;若电源的正负极对调,则I与B都反向,由左手定则可判断电子运动的方向不变,选项错误;由于电阻R和R都是固定的,且R和R并联,故I=,则正确;因B与I成正比,I与I成正比,则U=k,R又是定值电阻,所以正确.[2014·安徽卷] “人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的平均动能与等离子体的温度成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变.由此可判断所需的磁感应强度正比于( ) B.T C. D.T2 18.A [解析] 本题是“信息题”:考查对题目新信息的理解能力和解决问题的能力.根据洛伦兹力提供向心力有=m解得带电粒子在磁场中做圆周运动的半径=由动能的定义式=,可得=,结合题目信息可得,选项A正确。

2014年高考真题——理综物理(全国大纲卷)解析版Word版含答案

2014年高考真题——理综物理(全国大纲卷)解析版Word版含答案

2014年普通高等学校统一招生考试理科综合(大纲版)物理试题解析二、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,有的只有一项符合题目要求,有的有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

(2014年 大纲卷)14.—质点沿x 轴做直线运动,其v -t 图像如图所示。

质点在t=0时位于x =5m 处,开始沿x 轴正向运动。

当t =8s 时,质点在x 轴上的位置为( )A .x =3mB .x =8mC .x =9mD .x =14m14.【答案】B 【考点】速度图像【解析】根据图像表示的物理意义可知,图线与时间轴围城的面积表示物体的位移,面积在时间轴之上,表示位移为正,反之表示位移为负。

由图像可知8秒内质点的位移为:(24)2(24)1m 322s m +⨯+⨯=-=,又因为初始时刻质点的位置为x =5m 处,所以8秒末质点在8m 处,B 项正确。

(2014年 大纲卷)15.地球表面附近某区域存在大小为150N/C 、方向竖直向下的电场。

一质量为1.00×10-4kg 、带电量为-1.00×10-7C 的小球从静止释放,在电场区域内下落10.0m 。

对此过程,该小球的电势能和动能的改变量分别为(重力加速度大小取9.80m/s 2,忽略空气阻力)( )A .-1.50×10-4J 和 9.95×10-3JB .1.50×10-4J 和 9.95×10-3JC .-1.50×10-4J 和 9.65×10-3JD .1.50×10-4J 和 9.65×10-3J15.【答案】D【考点】电场力能的性质、动能定理【解析】电场力做功只与初末位置的电势差有关,电场力做正功电势能减少,电场力做负功,电势能增加。

小球带负电,受到的电场力沿竖直方向向上,所以下落过程,电场力做负功,电势能增加,AC 项错误;-74qh 1.0010150/10 1.510W E C N C J -==⨯⨯⨯=⨯电,根据动能定理,合力做功等于动能的变化,有:4-73(q)h (9.810 1.0010150/)109.6510G W W mg E C N C J ---=-=⨯-⨯⨯⨯=⨯电,D 项正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年高考物理真题分类汇编:电磁感应(2014上海)17.如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形。

则磁场()(A)逐渐增强,方向向外(B)逐渐增强,方向向里(C)逐渐减弱,方向向外(D)逐渐减弱,方向向里17.CD [解析] 本题考查了楞次定律,感应电流的磁场方向总是阻碍引起闭合回路中磁通量的变化,体现在面积上是“增缩减扩”,而回路变为圆形,面积是增加了,说明磁场是在逐渐减弱.因不知回路中电流方向,故无法判定磁场方向,故CD都有可能。

14.[2014·新课标全国卷Ⅰ] 在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化14.D产生感应电流的条件是:只要穿过闭合电路的磁通量发生变化,电路中就会产生感应电流.本题中的A、B选项都不会使电路中的磁通量发生变化,不满足产生感应电流的条件,故不正确.C 选项虽然在插入条形磁铁瞬间电路中的磁通量发生变化,但是当人到相邻房间时,电路已达到稳定状态,电路中的磁通量不再发生变化,故观察不到感应电流.在给线圈通电、断电瞬间,会引起闭合电路磁通量的变化,产生感应电流,因此D选项正确.18.[2014·新课标全国卷Ⅰ] 如图(a)所示,线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是()18.C [解析] 本题考查了电磁感应的图像.根据法拉第电磁感应定律,ab 线圈电流的变化率与线圈cd 上的波形图一致,线圈cd 上的波形图是方波,ab 线圈电流只能是线性变化的,所以C 正确.[2014·江苏卷] 如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )A.Ba 22ΔtB.nBa 22ΔtC.nBa 2ΔtD.2nBa 2Δt1.B [解析] 根据法拉第电磁感应定律知E =n ΔΦΔt =n ΔB 〃S Δt,这里的S 指的是线圈在磁场中的有效面积,即S =a 22,故E =n (2B -B )S Δt =nBa 22Δt,因此B 项正确. 16.[2014·山东卷] 如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好,在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是( )A .F M 向右B .F N 向左C .F M 逐渐增大D .F N 逐渐减小16.BCD [解析] 根据安培定则可判断出,通电导线在M 区产生竖直向上的磁场,在N 区产生竖直向下的磁场.当导体棒匀速通过M 区时,由楞次定律可知导体棒受到的安培力向左.当导体棒匀速通过N 区时,由楞次定律可知导体棒受到的安培力也向左.选项B 正确.设导体棒的电阻为r ,轨道的宽度为L ,导体棒产生的感应电流为I ′,则导体棒受到的安培力F 安=BI ′L =B BL v R +r L =B 2L 2v R +r,在导体棒从左到右匀速通过M 区时,磁场由弱到强,所以F M 逐渐增大;在导体棒从左到右匀速通过N 区时,磁场由强到弱,所以F N 逐渐减小.选项C 、D 正确.6.[2014·四川卷] 如图所示,不计电阻的光滑U 形金属框水平放置,光滑、竖直玻璃挡板H 、P 固定在框上,H 、P 的间距很小.质量为0.2 kg 的细金属杆CD 恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m 的正方形,其有效电阻为0.1 Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B =(0.4-0.2t ) T ,图示磁场方向为正方向.框、挡板和杆不计形变.则( )A .t =1 s 时,金属杆中感应电流方向从C 到DB .t =3 s 时,金属杆中感应电流方向从D 到CC .t =1 s 时,金属杆对挡板P 的压力大小为0.1 ND .t =3 s 时,金属杆对挡板H 的压力大小为0.2 N6.AC [解析] 由于B =(0.4-0.2 t ) T ,在t =1 s 时穿过平面的磁通量向下并减少,则根据楞次定律可以判断,金属杆中感应电流方向从C 到D ,A 正确.在t =3 s 时穿过平面的磁通量向上并增加,则根据楞次定律可以判断,金属杆中感应电流方向仍然是从C 到D ,B 错误.由法拉第电磁感应定律得E =ΔΦΔt =ΔB ΔtS sin 30°=0.1 V ,由闭合电路的欧姆定律得电路电流I =E R =1 A ,在t =1 s 时,B =0.2 T ,方向斜向下,电流方向从C 到D ,金属杆对挡板P 的压力水平向右,大小为F P =BIL sin 30°=0.1 N ,C 正确.同理,在t =3 s 时,金属杆对挡板H 的压力水平向左,大小为F H =BIL sin 30°=0.1 N ,D 错误.20.[2014·安徽卷] 英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r 的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B ,环上套一带电荷量为+q 的小球.已知磁感应强度B 随时间均匀增加,其变化率为k对小球的作用力所做功的大小是( )A .0 B.12r 2qk C .2πr 2qk D .πr 2qk 20.D [解析] 本题考查电磁感应、动能定理等知识点,考查对“变化的磁场产生电场”的理解能力与推理能力.由法拉第电磁感应定律可知,沿圆环一周的感生电动势E 感=ΔΦΔt =ΔB Δt·S =k 〃πr 2,电荷环绕一周,受环形电场的加速作用,应用动能定理可得W =qE 感=πr 2qk .选项D 正确。

20. [2014·全国卷] 很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率( )A .均匀增大B .先增大,后减小C .逐渐增大,趋于不变D .先增大,再减小,最后不变20.C [解析] 本题考查楞次定律、法拉第电磁感应定律.竖直圆筒相当于闭合电路,磁铁穿过闭合电路,产生感应电流,根据楞次定律,磁铁受到向上的阻碍磁铁运动的安培力,开始时磁铁的速度小,产生的感应电流也小,安培力也小,磁铁加速运动,随着速度的增大,产生的感应电流增大,安培力也增大,直到安培力等于重力的时候,磁铁匀速运动.所以C 正确.15. [2014·广东卷] 如图8所示,上下开口、内壁光滑的铜管P 和塑料管Q 竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( )A .在P 和Q 中都做自由落体运动B .在两个下落过程中的机械能都守恒C .在P 中的下落时间比在Q 中的长D .落至底部时在P 中的速度比在Q 中的大15.C [解析] 磁块在铜管中运动时,铜管中产生感应电流,根据楞次定律,磁块会受到向上的磁场力,因此磁块下落的加速度小于重力加速度,且机械能不守恒,选项A 、B 错误;磁块在塑料管中运动时,只受重力的作用,做自由落体运动,机械能守恒,磁块落至底部时,根据直线运动规律和功能关系,磁块在P 中的下落时间比在Q 中的长,落至底部时在P 中的速度比在Q 中的小,选项C 正确,选项D 错误.7.[2014·江苏卷] 如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有( )A .增加线圈的匝数B .提高交流电源的频率C .将金属杯换为瓷杯D .取走线圈中的铁芯7.AB [解析] 根据法拉第电磁感应定律E =n ΔΦΔt知,增加线圈的匝数n ,提高交流电源的频率即缩短交流电源的周期(相当于减小Δt ),这两种方法都能使感应电动势增大故选项A 、B 正确.将金属杯换为瓷杯,则没有闭合电路,也就没有感应电流;取走线圈中的铁芯,则使线圈中的磁场大大减弱,则磁通量的变化率减小.感应电动势减小.故选项C 、D 错误.25. [2014·新课标Ⅱ卷] 半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、质量为m 且质量分布均匀的直导体棒AB 置于圆导轨上面,BA 的延长线通过圆导轨中心O ,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在内圆导轨的C 点和外圆导轨的D 点之间接有一阻值为R 的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小g .求(1)通过电阻R 的感应电流的方向和大小:(2)外力的功率.25. [答案] (1)从C 端流向D 端 3ωBr 22R(2)32μmg ωr +9ω2B 2r 44R[解析] (1)在Δt 时间内,导体棒扫过的面积为ΔS =12ωΔt [(2r )2-r 2]① 根据法拉第电磁感应定律,导体棒上感应电动势的大小为ε=B ΔS Δt② 根据右手定则,感应电流的方向是从B 端流向A 端.因此,通过电阻R 的感应电流的方向是从C 端流向D 端.由欧姆定律可知,通过电阻R 的感应电流的大小I 满足I =εR ③ 联立①②③式得I =3ωBr 22R.④ (2)在竖直方向有mg -2N =0⑤式中,由于质量分布均匀,内、外圆导轨对导体棒的正压力大小相等,其值为N ,两导轨对运行的导体棒的滑动摩擦力均为f =μN ⑥在Δt 时间内,导体棒在内、外圆轨上扫过的弧长为l 1=rωΔt ⑦和l 2=2rωΔt ⑧克服摩擦力做的总功为W f =f (l 1+l 2)⑨在Δt 时间内,消耗在电阻R 上的功为W R =I 2R Δt ⑩根据能量转化和守恒定律知,外力在Δt 时间内做的功为W =W f +W R ⑪外力的功率为P =W Δt ⑫ 由④至12式得P =32μmg ωr +9ω2B 2r 44R⑬ 23.[2014·安徽卷] (16分)如图1所示,匀强磁场的磁感应强度B 为0.5 T ,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“A”形状的光滑金属导轨的MPN (电阻忽略不计),MP 和NP 长度均为2.5m,MN连线水平,长为3 m.以MN中点O为原点、OP为x轴建立一维坐标系Ox.一根粗细均匀的金属杆CD,长度d为3 m,质量m为1 kg、电阻R为0.3 Ω,在拉力F的作用下,从MN处以恒定速度v=1 m/s 在导轨上沿x轴正向运动(金属杆与导轨接触良好).g取10 m/s2.图1图2(1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8 m处电势差U CD;(2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图2中画出Fx关系图像;(3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热.23.[答案] (1)-0.6 V(2)略(3)7.5 J[解析] (1)金属杆C D在匀速运动中产生的感应电动势E=Bl v(l=d),E=1.5 V(D点电势高)当x=0.8 m时,金属杆在导轨间的电势差为零.设此时杆在导轨外的长度为l外,则l外=d-OP-x OP dOP=MP2-()MN22得l外=1.2 m由楞次定律判断D点电势高,故CD两端电势差U CB=-Bl外v, U CD=-0.6 V(2)杆在导轨间的长度l与位臵x关系是l=OP-xOP d=3-32x对应的电阻R1为R1=ld R,电流I=Bl vR1杆受的安培力F安=BIl=7.5-3.75x 根据平衡条件得F=F安+mg sin θF=12.5-3.75x(0≤x≤2)画出的Fx图像如图所示.(3)外力F所做的功W F等于Fx图线下所围的面积,即W F=5+12.52×2 J=17.5 J而杆的重力势能增加量ΔE p=mg sin θ故全过程产生的焦耳热Q=W F-ΔE p=7.5 J24.[2014·北京卷] (20分)导体切割磁感线的运动可以从宏观和微观两个角度来认识.如图所示,固定于水平面的U形导线框处于竖直向下的匀强磁场中,金属直导线MN在与其垂直的水平恒力F作用下,在导线框上以速度v做匀速运动,速度v与恒力F方向相同;导线MN始终与导线框形成闭合电路.已知导线MN电阻为R,其长度L恰好等于平行轨道间距,磁场的磁感应强度为B.忽略摩擦阻力和导线框的电阻.(1) 通过公式推导验证:在Δt时间内,F对导线MN所做的功W等于电路获得的电能W电,也等于导线MN中产生的热量Q;(2)若导线MN的质量m=8.0 g、长度L=0.10 m,感应电流I=1.0 A,假设一个原子贡献一个自由电子,计算导线MN中电子沿导线长度方向定向移动的平均速率v(下表中列出一些你可能会用到的数据);(3)经典物理学认为,金属的电阻源于定向运动的自由电子和金属离子(即金属原子失去电子后的剩余部分)的碰撞.展开你想象的翅膀,给出一个合理的自由电子的运动模型;在此基础上,求出导线MN中金属离子对一个自由电子沿导线长度方向的平均作用力f的表达式.24.[答案] (1)略(2)7.8×10-6 m/s(3)=e v B[解析] (1)导线产生的感应电动势E=BL v导线匀速运动,受力平衡F=F安=BIL在Δt时间内,外力F对导线做功W=F vΔt=F安vΔt=BIL vΔt电路获得的电能W电=qE=IEΔt=BIL vΔt可见,F对导线MN做的功等于电路获得的电能W电;导线MN中产生的热量Q=I2RΔt=IΔt〃IR=qE=W电可见,电路获得的电能W电等于导线MN中产生的热量Q.(2)导线MN中具有的原子数为N=m μN A因为一个金属原子贡献一个电子,所以导线MN中的自由电子数也是N.导线MN单位体积内的自由电子数n=N SL其中,S为导线MN的横截面积.因为电流I=n v e Se 所以v e=InSe=ILNe=ILμmN A e解得v e=7.8×10-6 m/s.(3)下列解法的共同假设:所有自由电子(简称电子,下同)以同一方式运动.方法一:动量解法设电子在第一次碰撞结束至下一次碰撞结束之间的运动都相同,经历的时间为Δt,电子的动量变化为零.因为导线MN的运动,电子受到沿导线方向的洛伦兹力f洛的作用f洛=e v B沿导线方向,电子只受到金属离子的作用力和f洛作用,所以I f-f洛Δt=0其中I f为金属离子对电子的作用力的冲量,其平均作用力为f,则I f=fΔt得f=f洛=e v B方法二:能量解法S设电子从导线的一端到达另一端经历的时间为t,在这段时间内,通过导线一端的电子总数N=It e电阻上产生的焦耳热是由于克服金属离子对电子的平均作用力f做功产生的.在时间t内,总的焦耳热Q=NfL根据能量守恒定律,有Q=W电=EIt=BL v It所以f=e v B方法三:力的平衡解法因为电流不变,所以假设电子以速度v e相对导线做匀速直线运动.因为导线MN的运动,电子受到沿导线方向的洛伦兹力f洛的作用f洛=e v B沿导线方向,电子只受到金属离子的平均作用力f和f洛作有,二力平衡,即f=f洛=e v B.13.[2014·江苏卷] 如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层.匀强磁场的磁感应强度大小为B,方向与导轨平面垂直.质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g.求:(1)导体棒与涂层间的动摩擦因数μ;(2)导体棒匀速运动的速度大小v;(3)整个运动过程中,电阻产生的焦耳热Q.13.[答案] (1)tan θ (2)mgR sin θB 2L 2(3)2mgd sin θ-m 3g 2R 2sin 2θ2B 4L 4[解析] (1)在绝缘涂层上受力平衡 mg sin θ=μmg cos θ解得 μ=tan θ.(2)在光滑导轨上感应电动势 E =Bl v 感应电流 I =E R安培力 F 安=BLI 受力平衡 F 安=mg sin θ解得 v =mgR sin θB 2L 2(3)摩擦生热 Q T =μmgd cos θ能量守恒定律 3mgd sin θ=Q +Q T +12m v 2 解得 Q =2mgd sin θ-m 3g 2R 2sin θ2B 4L 4. 11.[2014·天津卷] 如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2,问(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少?11.(1)由a 流向b (2)5 m/s (3)1.3 J[解析] (1)由右手定则可以直接判断出电流是由a 流向b .(2)开始放臵ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F max ,有F max=m1g sin θ①设ab刚好要上滑时,cd棒的感应电动势为E,由法拉第电磁感应定律有E=BL v②设电路中的感应电流为I,由闭合电路欧姆定律有I=ER1+R2③设ab所受安培力为F安,有F安=ILB④此时ab受到的最大静摩擦力方向沿斜面向下,由平衡条件有F安=m1g sin θ+F max⑤综合①②③④⑤式,代入数据解得v=5 m/s⑥(3)设cd棒的运动过程中电路中产生的总热量为Q总,由能量守恒有m2gx sin θ=Q总+12m2v2⑦又Q=R1R1+R2Q总⑧解得Q=1.3 J24.[2014·浙江卷] 某同学设计一个发电测速装置,工作原理如图所示.一个半径为R=0.1 m的圆形金属导轨固定在竖直平面上,一根长为R的金属棒OA,A端与导轨接触良好,O端固定在圆心处的转轴上.转轴的左端有一个半径为r=R3的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m=0.5 kg的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B=0.5 T.a点与导轨相连,b点通过电刷与O端相连.测量a、b两点间的电势差U可算得铝块速度.铝块由静止释放,下落h=0.3 m时,测得U=0.15 V.(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g取10 m/s2)第24题图(1)测U时,与a点相接的是电压表的“正极”还是“负极”?(2)求此时铝块的速度大小;(3)求此下落过程中铝块机械能的损失.24.[答案] (1)正极(2)2 m/s(3)0.5 J[解析] 本题考查法拉第电磁感应定律、右手定则等知识和分析综合及建模能力.(1)正极(2)由电磁感应定律得U=E=ΔΦΔtΔΦ=12BR 2ΔθU=12BωR2v=rω=13ωR所以v=2U3BR=2 m/s(3)ΔE=mgh-12m v2ΔE=0.5 J33(2014上海).(14分)如图,水平面内有一光滑金属导轨,其MN、PQ边的电阻不计,MP边的电阻阻值R=1.5Ω,MN与MP的夹角为1350,PQ与MP垂直,MP边长度小于1m。

相关文档
最新文档