2019-2020学年安徽省马鞍山市高一下学期期末数学试卷 (解析版)
安徽省马鞍山市2019-2020学年高一(下)期末数学试题(wd无答案)
安徽省马鞍山市2019-2020学年高一(下)期末数学试题一、单选题(★) 1. 已知数列的通项公式为,则的值是()A.9B.13C.17D.21(★) 2. 在区间[-1,2]上随机取一个数 x,则| x|≤1的概率为( )A.B.C.D.(★★) 3. 已知 a, b, c,d∈ R,下列结论正确的是()A.若a>b,b<c,则a>c B.若a>b,则c﹣a<c﹣bC.若a>b,则ac2>bc2D.若a>b,c>d,则ac>bd(★) 4. 某同学高一数学九次测试的成绩记录如图所示,则其平均数和众数分别为()A.81,88B.82,88C.81,86D.82,86(★) 5. 从6个篮球、2个排球中任选3个球,则下列事件中,是必然事件的是().A.3个都是篮球B.至少有1个是排球C.3个都是排球D.至少有1个是篮球(★★) 6. 已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是( )A.B.C.D.(★★) 7. 在数列{ a n}中,若 a n=5 n﹣16,则此数列前 n项和的最小值为()A.﹣11B.﹣17C.﹣18D.3(★) 8. 在△ ABC中,角 A, B, C的对边分别为 a, b, c,已知 a 2﹣ b 2﹣ c 2+ bc=0,则∠ A等于()A.30°B.60°C.120°D.150°(★★) 9. 在等差数列{ a n}中,若 a 7+ a 9=12,则其前15项的和 S 15=()A.60B.90C.120D.180(★★) 10. 如图:D, C,B三点在地面同一直线上,DC=,从C,D两点测得A点仰角分别是,( ),则A点离地面的高度AB等于( )A.B.C.D.(★★★) 11. 某产品的产量第一年的增长率为 p,第二年的增长率为 q,设这两年平均增长率为 x,则有()A.B.C.D.(★★★) 12. 在数列中,,对于任意自然数,都有,则()A.B.C.D.二、填空题(★★) 13. 将二进制数110转化为十进制数的结果是_____________.(★★) 14. 在△ ABC中,角 A, B, C的对边分别为 a, b, c,已知 b=, c=1, B=45°,则 C=_____.(★★) 15. 执行如图所示的程序框图,输出的结果是_____.(★★) 16. 已知数列{ a n}的前 n项和 S n= n 2+ n,则 a n=_____.(★★★) 17. 已知,若恒成立,则的取值范围是_____.三、解答题(★★) 18. 已知不等式 ax 2+3 x﹣2<0(a≠0).(1)当 a=2时,求不等式的解集;(2)若不等式的解集为{ x| x<1或 x>2},求 a的值.(★) 19. 已知{ a n}是等差数列,其前 n项和为 S n,已知 a 5=5, S 5=15.(1)求数列{ a n}的通项公式;(2)设 a n=log 2 b n,求数列{ b n}的前 n项和 T n.(★★★) 20. 在中,在边上,且,(1)求的长;(2)求的面积.(★★) 21. 某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.(1)求图中 x的值;(2)求这组数据的中位数;(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.(★★★) 22. 已知是等差数列,,公差,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列前项和;(3)设,对于(2)中的,若对恒成立,求的取值范围.。
2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)
(1)求复数z;
(2)若复数z在复平面内所对应的点位于第一象限,且复数m满足 ,求 的最大值和最小值.
20.某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间 、 、…、 、 .
【详解】
∵向量 ,
∴ ,又 ,
∴ ,
∴ .
故选:B.
6.D
【分析】
设出正六棱柱底面边长为 ,可知正六棱柱的高为 ,再通过正六棱锥与正六棱柱的侧面积之比为 可得正六棱锥的高,这样就可以得到答案.
【详解】
设正六棱柱底面边长为 ,由题意可知正六棱柱的高为 ,则可知正六棱柱的侧面积为 .
设正六棱锥的高为 ,可知正六棱锥侧面的一个三角形的边为 上的高为 ,
9.BD
【分析】
根据图表,对各项逐个分析判断即可得解.
【详解】
对A,在前四年有下降的过程,故A错误;
对B,六年的在校生总数为24037,平均值为4006以上,故B正确;
对C, ,未接受高中阶段教育的适龄青少年有468万人以上,故C错误;
对D, ,故D正确.
故选:BD
10.ABC
【分析】
对于A, ,可判断错误;对于B找出反例 不满足题意,判定错误;对于C若 ,则其不正确;对于D, ,则其虚部为0,故正确.故可得答案.
A.近六年,高中阶段在校生规模与毛入学率均持续增长
B.近六年,高中阶段在校生规模的平均值超过4000万人
C.2019年,未接受高中阶段教育的适龄青少年不足420万
D.2020年,普通高中的在校生超过2470万人
10.下列说法不正确的是()
【期末冲刺】2019—2020学年高一年级下学期期末冲刺满分训练卷——第十一章 立体几何初步(解析版)
2019—2020学年高一年级下学期期末冲刺满分训练卷第十章 立体几何初步 期末单元测试卷(范围:新教材人教B 版 必修四 考试时间:90分钟 满分:150分)一、选择题(本题共12道小题,每小题5分,共60分)1.以下命题(其中a 、b 表示直线,α表示平面)中,正确的命题是( )A. 若//a b ,b α⊂,则//a αB. 若//a α,//b α,则//a bC. 若//a b ,b α⊥,则a α⊥D. 若//a α,b α⊂,则//a b答案及解析:1.C【分析】根据线线、线面有关定理对选项逐一分析,由此确定正确选项.【详解】对于A 选项,直线a 可能含于平面α,所以A 选项错误.对于B 选项,,a b 可能异面,所以B 选项错误.对于C 选项,由于//a b ,b α⊥,所以a α⊥,所以C 选项正确.对于D 选项,,a b 可能异面,所以D 选项错误.故选:C【点睛】本小题主要考查空间线线、线面位置关系的判断,属于基础题.2.下列命题正确的是( )A. 有两个面平行,其余各面都是四边形的几何体叫棱柱。
B. 有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。
C. 绕直角三角形的一边旋转所形成的几何体叫圆锥。
D. 用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。
答案及解析:2.B【分析】根据课本中的相关概念依次判断选项即可.【详解】对于A 选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B ,根据课本中棱柱的概念得到是正确的;对于C ,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D ,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为:B.【点睛】这个题目考查了几何体的基本概念,属于基础题.3.在正方体ABCD - A 1B 1C 1D 1中,动点E 在棱BB 1上,动点F 在线段A 1C 1上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O-AEF 的体积( )A. 与x ,y 都有关B. 与x ,y 都无关C. 与x 有关,与y 无关D. 与y 有关,与x 无关答案及解析:3.B【分析】 根据等体积法以及锥体体积公式判断选择.【详解】因为V O -AEF =V E -OAF ,所以,考察△AOF 的面积和点E 到平面AOF 的距离的值,因为BB 1∥平面ACC 1A 1,所以,点E 到平面AOE 的距离为定值,又AO ∥A 1C 1,所以,OA 为定值,点F 到直线AO 的距离也为定值,即△AOF 的面积是定值,所以,四面体O-AEF 的体积与x ,y 都无关,选B 。
马鞍山市重点名校2019-2020学年高一下学期期末复习检测数学试题含解析
马鞍山市重点名校2019-2020学年高一下学期期末复习检测数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .[0,1]B .(0,1]C .(,0)(1,)-∞⋃+∞D .(,0][1,)-∞⋃+∞【答案】A 【解析】 【分析】分别讨论0k =和0k ≠两种情况下,2680kx kx k -++≥恒成立的条件,即可求得k 的取值范围. 【详解】当0k =时,不等式2680kx kx k -++≥可化为80≥,其恒成立当0k ≠时,要满足关于x 的不等式2680kx kx k -++≥任意x ∈R 恒成立,只需2364(8)0k k k k >⎧⎨∆=-+≤⎩ 解得:01k <≤. 综上所述,k 的取值范围是[0,1]. 故选:A. 【点睛】本题考查了含参数一元二次不等式恒成立问题,解题关键是掌握含有参数的不等式的求解,首先需要对二次项系数讨论,注意分类讨论思想的应用,属于基础题. 2.已知角θ的终边过点(12,5)P -,则cos θ的值为 A .513B .1213C .513-D .1213-【答案】B 【解析】 【分析】由三角函数的广义定义cos xrθ=可得cos θ的值. 【详解】 因为12cos 13x r θ===,故选B.【点睛】本题考查三角函数的概念及定义,考查基本运算能力.3.已知sin()sin()m αβαβ-=+,且tan 2tan 0αβ=≠,则实数m 的值为( ) A .2 B .12C .3D .13【答案】D 【解析】 【分析】根据二角和与差的正弦公式化简,sin()sin()m αβαβ-=+,再切化弦,即可求解. 【详解】由题意sin()sin()m αβαβ-=+[]sin cos cos sin sin cos cos sin m αβαβαβαβ-=+ ()()1sin cos 1cos sin m m αβαβ∴-=+ ()()1tan 1tan m m αβ∴-=+又tan 2tan 0αβ=≠()211m m ∴-=+解得13m =故选:D 【点睛】本题考查两角和与差的正弦公式,属于基础题.4.已知数列{}n a 满足*11()1,2,nn n n a a a n N S +=⋅=∈是数列{}n a 的前n 项和,则( )A .201920192a =B .101020192a =C .1010201923S =- D .1011201923S =-【答案】D 【解析】 【分析】由已知递推关系式可以推出数列的特征,即数列2{}n a 和21{}n a -均是等比数列,利用等比数列性质求解即可. 【详解】解:由已知可得22a =,当2n ≥时,由111·2,·2,n n n n n n a a a a +--⎧=⎨=⎩得112(2)n n a n a +-=≥, 所以数列2{}n a 和21{}n a -均是公比为2的等比数列,首项分别为2和1, 由等比数列知识可求得1010110092019122a -=⨯=,()()1010100910112019112212231212S ⨯-⨯-=+=---,故选:D . 【点睛】本题主要考查递推关系式,及等比数列的相关知识,属于中档题.5.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( ) A .40 B .36C .30D .20【答案】C 【解析】试题分析:利用分层抽样的比例关系,设从乙社区抽取n 户,则,解得.考点:考查分层抽样. 6.直线与圆交于不同的两点,则( ) A .B .C .D .【答案】C 【解析】 【分析】先求出圆心到直线的距离,然后根据圆的弦长公式求解可得所求.【详解】 由题意得,圆的圆心为,半径为.圆心到直线的距离为,∴.故选C . 【点睛】求圆的弦长有两种方法:一是求出直线和圆的交点坐标,然后利用两点间的距离公式求解;二是利用几何法求解,即求出圆心到直线的距离,在由半径、弦心距和半弦长构成的直角三角形中运用勾股定理求解,此时不要忘了求出的是半弦长.在具体的求解中一般利用几何法,以减少运算、增强解题的直观性.7.在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20cm 2的概率为 A .16B .13C .23D .45【答案】C 【解析】试题分析:设AC=x ,则BC=12-x (0<x <12) 矩形的面积S=x (12-x )>20 ∴x 2-12x+20<0 ∴2<x <10由几何概率的求解公式可得,矩形面积大于20cm 2的概率10221203p -==-考点:几何概型 8.已知一组正数123,,n x x x x 的平均数为x ,方差为2S ,则12321,21,21,21n x x x x ++++的平均数与方差分别为( ) A .221,21x S ++ B .21,4x S +C .221,4x S +D .21,2x S +【答案】C 【解析】 【分析】根据平均数的性质和方差的性质即可得到结果. 【详解】根据平均数的线性性质,以及方差的性质:将一组数据每个数扩大2倍,且加1,则平均数也是同样的变化, 方差变为原来的4倍,故变换后数据的平均数为:21x +;方差为42S . 故选:C. 【点睛】本题考查平均数和方差的性质,属基础题.9.某校有高一学生400人,高二学生380人,高三学生220人,现教育局督导组欲用分层抽样的方法抽取50名学生进行问卷调查,则下列判断正确的是() A .高一学生被抽到的可能性最大 B .高二学生被抽到的可能性最大 C .高三学生被抽到的可能性最大 D .每位学生被抽到的可能性相等【答案】D 【解析】【分析】根据分层抽样是等可能的选出正确答案. 【详解】由于分层抽样是等可能的,所以每位学生被抽到的可能性相等,故选D. 【点睛】本小题主要考查随机抽样的公平性,考查分层抽样的知识,属于基础题.10.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若直线3450x y +-=恰好与以AB 为直径的圆C 相切,则圆C 面积的最小值为( ) A .14π B .12πC .34π D .π【答案】A 【解析】 【分析】根据题意画出图像,数形结合,根据圆C 面积最小的条件转化为直径等于原点到直线3450x y +-=的距离,再求解圆C 面积即可. 【详解】根据题意画出图像如图所示,圆心C 为线段AB 中点,AOB 为直角三角形,所以CA CB CO R ===,作CD ⊥直线3450x y +-=且交于点D , 直线3450x y +-=与圆C 相切,所以CD R =, 要使圆C 面积的最小,即使半径最小,由图知,当点O 、C 、D 共线时,圆C 的半径最小, 此时原点到直线3450x y +-=的距离为2R ,由点到直线的距离公式:2230405234R ⨯+⨯-=+,解得12R =,所以圆C 面积的最小值214S R ππ==. 故选:A 【点睛】本题主要考查点到直线距离公式和圆切线的应用,考查学生分析转化能力和数形结合的思想,属于中档题. 11.数列{}n a 只有5项,分别是3,5,7,9,11,{}n a 的一个通项公式为( ) A .2n a n =+ B .21n a n =+C .1n a n =+D .21n a n =-【答案】B 【解析】 【分析】根据题意,得到数列{}n a 为等差数列,通过首项和公差,得到通项. 【详解】因为数列{}n a 只有5项,分别是3,5,7,9,11, 所以{}n a 是以3为首项,2为公差的等差数列,()31221n a n n =+-⨯=+.故选:B. 【点睛】本题考查求等差数列的通项,属于简单题.12.在正方体1111ABCD A B C D -中,,P Q 分别是线段11,BC CD 的中点,则下列判断错误的是( ) A .PQ 与1CC 垂直 B .PQ 与AC 垂直 C .PQ 与BD 平行 D .PQ 与11A B 平行【答案】D 【解析】 【分析】利用数形结合,逐一判断,可得结果. 【详解】 如图由,P Q 分别是线段11,BC CD 的中点 所以PQ //BD A 选项正确,因为1CC BD ⊥,所以1CC PD ⊥ B 选项正确,由AC BD ⊥,所以AC PD ⊥ C 选项正确 D 选项错误,由11A B //CD ,而CD 与相交, 所以可知11A B ,PQ 异面 故选:D 【点睛】本题主要考查空间中直线与直线的位置关系,属基础题. 二、填空题:本题共4小题 13.在数列中,,则.【答案】【解析】 【分析】 【详解】 因为,,.14.若直线1(0,0)x ya b a b+=>>始终平分圆22(1)(1)4x y -+-=的周长,则4a b +的最小值为________ 【答案】9 【解析】 【分析】平分圆的直线过圆心,由此求得,a b 的等量关系式,进而利用基本不等式求得最小值. 【详解】由于直线始终平分圆的周长,故直线1(0,0)x ya b a b+=>>过圆的圆心()1,1,即111a b +=,所以()1144445529b a b a a b a b a b a b a b ⎛⎫+=++=++≥+⋅= ⎪⎝⎭.【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值,属于基础题. 15.在等比数列{}n a 中,若245,20a a ==,则6a =__________. 【答案】80 【解析】 【分析】由2426a a a =即可求出【详解】因为{}n a 是等比数列,245,20a a ==所以2426a a a =, 所以64005a =即680a = 故答案为:80 【点睛】本题考查的是等比数列的性质,较简单16.《九章算术》中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面ABC ,2,4PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为__________. 【答案】20π 【解析】【分析】由题意得该四面体的四个面都为直角三角形,且PA ⊥平面ABC ,可得PC =PB =PBC 为直角三角形,可得BC =PB BC ⊥,因此AB BC ⊥,结合几何关系,可求得外接球O 的半径R ===,代入公式即可求球O 的表面积. 【详解】本题主要考查空间几何体.由题意得该四面体的四个面都为直角三角形,且PA ⊥平面ABC ,2PA AB ==,4AC =,PC =PB =因为PBC 为直角三角形,因此BC =BC =(舍).所以只可能是BC = 此时PB BC ⊥,因此AB BC ⊥, 所以平面ABC 所在小圆的半径即为22ACr ==, 又因为2PA =,所以外接球O 的半径R ===所以球O 的表面积为24π20πS R ==. 【点睛】本题考查三棱锥的外接球问题,难点在于确定BC 的长,即得到AB BC ⊥,再结合几何性质即可求解,考查学生空间想象能力,逻辑推理能力,计算能力,属中档题. 三、解答题:解答应写出文字说明、证明过程或演算步骤。
安徽省枞阳县浮山中学2019-2020学年高一下学期开学考试数学试题 扫描版含答案
高一数学试题参考答案及解析一、选择题(本大题共12个小题,每小题5分,共60分) 题号 123456789101112答案DACABDBCCBCB1.【解析】 由2//1222m m m ⇒=⨯⇒==-或a b .故选D. 2、【解析】设等差数列的首项为,由,且,得,解得,则2199110=+=d a a .故选A 3、【解析】根据题意,当时,,故当时,,数列是等比数列,则,故,解得,故选4、【解析】由已知得()()2,1,5,5AB CD ==u u u r u u u r ,因此AB u u u r 在CD uuu r 方向上的投影为3252AB CD CD ⋅==u u u r u u u ru u u r .故选A. 5、【解析】∵12sin 45224ABC S ac ∆=︒==,∴42c = ∴22222cos 451322142252b ac ac =+-︒=+-⨯⨯=,∴5b =, ∴ABC △的外接圆直径252sin bR B== B.6、【解析】由题意得()532,32,ab a⎧=--⎪⎪⎨⎪=-⨯-⎪⎩解得1,6a b =-=-,所以不等式052>+-a x bx 为26510x x --->,即(31)(21)0x x ++<,所以解集为1123x x ⎧⎫-<<-⎨⎬⎩⎭,故选D.7、【解析】由1cos 4A =-,得15sin 4A=,所以ABC △的面积为1115sin 315224bc A bc =⨯=,解得24bc =. 又2b c -=,所以22222cos ()22cos a b c bc A b c bc bc A =+-=-+-212224224()644=+⨯-⨯⨯-=,故8a =.故选8、解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩所表示的平面区域为如图阴影部分,做出目标函数l 0:y=2x ,∵y=2x-z ,∴当y=2x-z 的截距最小时,z 取最大值.当y=2x-z 经过C 点时,z 取最大值.由31070x y x y -+=⎧⎨+-=⎩得C(5,2),此时z 取最大值为2×5-2=8.故选9、【答案】C10、【答案】B11、【解析】设BCD θ∠=,由14sin 2BCD S CD CB θ∆==⋅得25sin θ=,∴5cos θ=±. 在BCD △中,由余弦定理,2222cos BD CD CB CD CB θ=+-⋅, 解得42BD =或4.当42BD =时,由sin sin AC CDBθ=,得252sin 5sin 4210CD B BD θ⨯===, 又由sin sin AC BC B A =,得25sin 22sin 102BC AC B A ==⨯=; 当4BD =时,同理得4AC =.【答案】C 12【答案】B二、填空题(本大题共4个小题,每小题5分,共20分) 13、 2 14、4342n n -- 15、),(∞+4116、1]-,(∞ 13、【解析】由题设23log 3log 40m -=,则23lg3lg4log 3log 42lg2lg3m ==⨯=故应填214、【解析】因为121111()4122121n n a a n n n +-==---+,所以运用累加法即可得到:1122111111111()()()[(1)()()](1)23352321221n n n n a a a a a a n n n ----+-++-=-+-++-=----L L ,所以11143(1)22142n n a a n n -=+-=--,故应填4342n n --. 15、答案 a>1416、【解析】由等差数列性质可知6,,1p q p q +=≥,因为p,q 只有有限几组数值取,要使19p q +的值最小只需p 小点,q 大点,所以1,5p q ==,19p q +=145,当2,4p q == ,19p q +=114,当3p q ==,19p q +=103,所以最小值m=114。
安徽省马鞍山市重点中学2019-2020学年高一下学期期末2份数学学业质量监测试题
一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列各命题中,假命题的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .一度的角是周角的1360,一弧度的角是周角的12π C .根据弧度的定义,180一定等于π弧度D .不论是用角度制还是用弧度制度量角,它们都与圆的半径长短有关 2.函数sin()0,0,||2y A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的图象如图所示,则y 的表达式为( )A .102sin 116x y π⎛⎫=+⎪⎝⎭ B .2sin 26y x π⎛⎫=+⎪⎝⎭C .2sin 26y x π⎛⎫=- ⎪⎝⎭D .102sin 116x y π⎛⎫=-⎪⎝⎭3.若直线220++=ax y 与直线320x y --=平行,则a 的值为 A .3-B .23C .6-D .32-4.已知正项数列{}n a ,若点()4log n na ,在函数()3f x x =-的图像上,则()2357log a a a =( ) A .12B .13C .14D .165.若圆22:4C x y +=上恰有3个点到直线:0(0)l x y b b -+=>的距离为1,1:420l x y -+=,则l 与1l 间的距离为( )A .1B .2C 2D .36.圆22(2)(1)1x y -+-=上的一点到直线:10l x y -+=的最大距离为( ) A 21B .22-C 2D 217.已知函数()()sin 0,0,2f x A x A πωϕωϕ=+>>≤⎛⎫ ⎪⎝⎭的部分图象如图所示,则函数()y f x =的表A .()2sin 12f xx π⎛⎫=+⎪⎝⎭B .()2sin 23f x x π⎛⎫=+⎪⎝⎭C .()22sin 23f x x π⎛⎫=-⎪⎝⎭D .()2sin 23f x x π⎛⎫=-⎪⎝⎭8.如图所示,在正方体ABCD-A 1B 1C 1D 1中,E ,F 分别是AB ,AD 的中点,则异面直线B 1C 与EF 所成的角的大小为( )A .30°B .45°C .60°D .90°9.已知各项均为正数的数列{}n a 的前n 项和为n S ,且()2*212,21,n n a a S n n N+==++∈若对任意的*n N ∈,123111120nn a n a n a n a λ++++-≥++++恒成立,则实数λ的取值范围为( ) A .1,3⎛⎤-∞ ⎥⎝⎦B .7,12⎛⎤-∞ ⎥⎝⎦ C .1,4⎛⎤-∞ ⎥⎝⎦D .1,2⎛⎤-∞ ⎥⎝⎦10.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了( ) A .60里B .48里C .36里D .24里11.某公司为激励创新,计划逐年加大研发奖金投入,若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是( )(参考数据:lg1.120.05=,lg1.30.11=,lg 20.30=) A .2018年B .2019年C .2020年D .2021年12.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
(立体几何基础题)(原卷版)-2020-2021学年高一数学下学期期末考试考前必刷题
2020-2021高一下学期期末考试考前必刷题(苏教版 2019)(立体几何基础题)一、单选题1.(2021·江苏高一课时练习)已知直线a∥平面α,直线a∥平面β,α∩β=b,直线a与直线b()A.相交B.平行C.异面D.不确定2.(2021·江苏高一课时练习)已知平面与平面平行,且直线,则下列说法正确的是()A.与内所有直线平行B.与内的无数条直线平行C.与内的任何一条直线都不平行D.与内的任何一条直线平行3.(2021·江苏高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则该棱台的体积是()A.18+6B.6+C.24D.184.(2021·江苏高一课时练习)在正方体ABCD-A1B1C1D1中,截面A1BD与底面ABCD所成的二面角A1-BD-A的正切值等于()A.B.C.D.5.(2021·江苏高一课时练习)已知一个二面角的两个半平面分别平行于另一个二面角的两个半平面,若这两个二面角的平面角均为锐角,则这两个二面角的关系是()A.相等B.互补C.相等或互补D.既不相等也不互补6.(2021·江苏高一课时练习)侧面都是等腰直角三角形的正三棱锥,底面边长为a时,该三棱锥的表面积是()A.a2B.a2C.a2D.a27.(2021·江苏高一课时练习)已知长方体的表面积是24 cm2,过同一顶点的三条棱长之和是6 cm,则它的体对角线长是()A.cm B.4 cm C.cm D.cm8.(2021·江苏高一课时练习)已知平面α与平面β、γ都相交,则这三个平面可能的交线有()A.1条或2条B.2条或3条C .1条或3条D .1条或2条或3条9.(2021·江苏高一课时练习)如图所示,定点A 和B 都在平面α内,定点P∥α,PB∥α,C 是平面α内异于A 和B 的动点,且PC∥AC ,则∥ABC 为 ( )A .锐角三角形B .直角三角形C .钝角三角形D .无法确定10.(2021·江苏高一课时练习)过球面上任意两点A ,B 作大圆,可能的个数是 ( )A .有且只有一个B .一个或无穷多个C .无数个D .以上均不正确11.(2021·江苏高一课时练习)如图所示,∥A′B′C′是水平放置的∥ABC 的直观图,则在∥ABC 的三边及中线AD 中,最长的线段是 ( )A .AB B .ADC .BCD .AC12.(2021·江苏高一课时练习)将半径为1,圆心角为的扇形围成一个圆锥,则该圆锥的体积为( ) A . B . C . D .13.(2021·江苏高一课时练习)如图的正方体ABCD - A ’B ’C ’D ’中,二面角D ’-AB -D 的大小是A .300B .450C .600D .90014.(2021·江苏高一课时练习)已知S 为四边形外一点,分别为上的点,若平面,则A .//GH SAB .//GH SDC .//GH SCD .以上均有可能15.(2021·江苏高一课时练习)在三棱柱111ABC A B C 中,各棱长均相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是A .B .C .D .16.(2021·江苏高一课时练习)下列命题正确的是( )A .如果一条直线不在平面内,则这条直线就与这个平面平行B .过直线外一点,可以作无数个平面与这条直线平行C.如果一条直线与平面平行,则它与平面内的任何直线平行D.如果一条直线平行于平面内的无数条直线,则该直线与平面平行二、填空题17.(2021·江苏高一课时练习)已知三个球的表面积之比是,则这三个球的体积之比为________. 18.(2021·江苏高一课时练习)已知和是异面直线,且平面,平面,,,则平面与的位置关系是________.19.(2021·江苏高一课时练习)已知一个正四棱柱的对角线的长是9 cm,表面积等于144 cm2,则这个棱柱的侧面积为________ cm2.20.(2021·江苏高一课时练习)有一塔形空间图形由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,则该塔形空间图形的表面积(含最底层正方体的底面面积)为________.21.(2021·江苏高一课时练习)如图,在正方体ABCD —A1B1C1D1中,三棱锥D1—AB1C的表面积与正方体的表面积的比为________.22.(2021·江苏高一课时练习)一个正四棱台,其上、下底面均为正方形,边长分别为8 cm和18 cm,侧棱长为13 cm,则其表面积为____ cm2.23.(2021·江苏高一课时练习)下列说法正确的是________(填序号).①底面是正多边形的棱锥为正棱锥;②各侧棱都相等的棱锥为正棱锥;③各侧面都是等腰三角形的棱锥为正棱锥;④各侧面都是全等的等腰三角形的棱锥是正棱锥;⑤底面是正多边形且各侧面全等的棱锥为正棱锥.24.(2021·江苏高一课时练习)从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:(1)矩形的4个顶点;(2)每个面都是等边三角形的四面体的4个顶点;(3)每个面都是直角三角形的四面体的4个顶点;(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.其中正确结论的个数为________.25.(2021·江苏高一课时练习)水平放置的斜二测直观图如图所示,已知,,则边上的中线的长度为______.26.(2021·江苏高一课时练习)如图,在五面体FE-ABCD中,四边形CDEF为矩形,M、N分别是BF、BC的中点,则MN与平面ADE的位置关系是_______.27.(2021·江苏高一课时练习)已知正三棱锥的棱长都为2,则侧面和底面所成二面角的余弦值为________.28.(2021·江苏高一课时练习)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的母线长为________.29.(2021·江苏高一课时练习)在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别为棱CC1、C1D1、D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.30.(2021·江苏高一课时练习)已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是_______四边形.31.(2021·江苏高一课时练习)如图.M是棱长为2cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是______cm.32.(2021·江苏高一课时练习)三棱锥S-ABC中,G为∥ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的关系为________.。
2019-2020学年高一(下)期末数学试卷 (33)-720(解析版)
2019-2020学年高一(下)期末数学试卷 (33)一、选择题(本大题共12小题,共60.0分)1.不等式x2−x−2>0的解集是()A. (−12,1) B. (1,+∞)C. (−∞,−1)∪(2,+∞)D. (−∞,−12)∪(1,+∞)2.点(0,5)到直线2x−y=0的距离是()A. √52B. √5 C. 32D. √543.某种树的分枝生长规律如图所示,则预计到第6年树的分枝数为()A. 5B. 6C. 7D. 84.在△ABC中,若(a+c)(a−c)=b(b−c),则∠A=()A. 300B. 600C. 1200D. 15005.已知圆C:x2+y2−2x−4y−4=0,则其圆心坐标与半径分别为()A. (1,2),r=2B. (−1,−2),r=2C. (1,2),r=3D. (−1,−2),r=36.已知:△ABC中,a=2,∠B=60°,∠C=75°,则b=()A. √6B. 2C. √3D. √27.已知S n是等差数列{a n}的前n项和,若a2015=S2015=2015,则首项a1=()A. 2015B. −2015C. 2013D. −20138.若直线过P(2,1)点且在两坐标轴上的截距相等,则这样的直线有几条()A. 1条B. 2 条C. 3条D. 以上都有可能9.某几何体的三视图如下所示,则该几何体的体积为()A. 2π+8B. π+8C. 2π+83D. π+8310.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A. 若α⊥β,m⊂α,n⊂β,则m⊥nB. 若α//β,m⊂α,n⊂β,则n//mC. 若m⊥n,m⊂α,n⊂β,则α⊥βD. 若m⊥α,n//m,n//β,则α⊥β11.点P(1,−2)关于点M(3,0)的对称点Q的坐标是()A. (1,2)B. (2,−1)C. (3,−1)D. (5,2)12.已知等差数列{a n},a1=1,a3=3,则数列{1a n a n+1}的前10项和为()A. 1011B. 911C. 910D. 1110二、填空题(本大题共4小题,共20.0分)13.设变量x,y满足约束条件: {x+y⩾3x−y⩾−12x−y⩽3,则目标函数z=3x−2y的最小值为______.14.直线l过点A(−1,3),B(1,1),则直线l的倾斜角为______ .15.平行六面体ABCD−A1B1C1D1的所有棱长均为2,∠A1AD=∠A1AB=∠DAB=60°,那么二面角A1−AD−B的余弦值为______ .16.已知等比数列{a n}的公比为正数,且a1⋅a7=2a32,a2=2,则a1的值是______.三、解答题(本大题共6小题,共70.0分)17.求倾斜角为直线y=−√3x+1的倾斜角的一半,且分别满足下列条件的直线方程:(1)经过点(−4,1);(2)在x轴上的截距为−10.18.已知:△ABC的三个内角A,B,C的对边分别为a,b,c,且满足cos2B−cos(A+C)=0.(Ⅰ)求角B的大小;(Ⅱ)若sinA=3sinC,△ABC的面积为3√3,求b边的长.419.已知等差数列{a n}满足:a5=9,a2+a6=14.(1)求{a n}的通项公式;(2)若b n=1,求数列{b n}的前n项和S n.a n a n+120.如图,圆x2+y2=8内有一点P(−1,2),AB为过点P且倾斜角为α的弦,(1)当α=135°时,求|AB|(2)当弦AB被点P平分时,写出直线AB的方程.(3)求过点P的弦的中点的轨迹方程.21.在等差数列{a n}中,a1=10,d=−2,求数列的前n项和S n的最大值.22.如图,在正三棱柱ABC−A1B1C1中,点D在棱BC上,AD⊥C1D,点E,F分别是BB1,A1B1的中点。
2022-2023北京人大附中高一(上)期中数学试卷【答案版】
2022-2023学年北京市人大附中高一(上)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.下列表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={(x ,y )|y =x },N ={y |y =x }C .M ={1,2},N ={2,1}D .M ={2,4},N ={(2,4)}2.以下函数中是偶函数且在区间(0,+∞)上单调递减的函数是( )A .y =1x 2B .y =1xC .y =x 2D .y =x 3.函数f(x)=x x 2+1的图象大致是( ) A . B .C .D .4.若x 1+x 2=3,x 12+x 22=5,则以x 1,x 2为根的一元二次方程是( )A .x 2﹣3x +2=0B .x 2+3x ﹣2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=05.已知a >b >c ,则下列说法一定正确的是( )A .ab >bcB .|a |>|b |>|c |C .ac 2>bc 2D .2a >b +c6.若命题“∃x ∈R ,一元二次不等式x 2+mx +1<0”为假命题,则实数m 的取值范围( )A .m ≤﹣2或m ≥2B .﹣2<m <2C .m <﹣2或m ≥2D .﹣2≤m ≤27.定义域与对应法则称为函数的两个要素.下列各对函数中,图象完全相同的是( )A .f(x)=(√x)2与g (x )=xB .f(x)=x 4−1x 2+1与g (x )=x 2﹣1C .f(x)=√x 2与g (x )=xD .f(x)=√x x 与g (x )=1 8.“ab >0”是“b a +a b ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.设函数f (x )=x+3x+1,则下列函数中为奇函数的是( )A .f (x ﹣1)﹣1B .f (x ﹣1)+1C .f (x +1)﹣1D .f (x +1)+110.人大附中学生计划在实验楼门口种植蔬菜,现有12米长的围栏,准备围成两边靠墙(墙足够长)的菜园,若P处有一棵树(不考虑树的粗细)与两墙的距离分别是2m和am(0<a≤10),设此矩形菜园ABCD的最大面积为u,若要求将这棵树围在菜园内(包括边界),则函数u=f(a)(单位:m2)的图象大致是()A.B.C.D.二、填空题(本大题共5小题,每小题5分,共25分请把结果填在答题纸上的相应位置)11.函数f(x)=√3−xx的定义域为.12.马上进入红叶季,香山公园的游客量将有所增加,现在公园采取了“无预约,不游园”的措施,需要通过微信公众号提前预约才能进入公园.根据以上信息,“预约”是“游园”的条件.(填充分不必要条件、必要不充分条件、充分必要或者既不充分也不必要).13.已知一元二次方程(a﹣2)x2+4x+3=0有一正根和一负根,则实数a的取值范围为.14.已知函数f(x)=2x−1,g(x)=kx+2(k>0),若∀x1∈[2,3],∃x2∈[﹣1,2],使f(x1)=g(x2)成立,则实数k的取值范围是..15.函数f(x)=ax2﹣(a+1)x+1,x∈(−12,12),若f(x)在定义域上满足:①没有奇偶性;②不单调;③有最大值,则a的取值范围是.三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.(10分)已知集合A={1,2,3},B={x|ax﹣1≥0}.(1)当a=2时,求A∩B与A∪B;(2)若_____,求实数a的取值范围.请从①A∩B=A;②∀x∈A,x∉B;③“x∈B”是“x∈A”的必要条件;这三个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)17.(12分)设函数f(x)=2x2﹣ax+4(a∈R).(1)当a=9时,求不等式f(x)<0的解集;(2)若不等式f(x)≥0对∀x∈(0,+∞)恒成立,求实数a的取值范围.18.(13分)已知函数f(x)=x2+a(a∈R).x(1)判断f(x)的奇偶性并证明;(2)若a=2,判断f(x)在[1,+∞)的单调性,并用单调性定义证明.一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19.已知集合A ={x |﹣5<x <﹣3},B ={x |2a ﹣3<x <a ﹣2},若A ∪B =A ,则实数a 的取值范围是( )A .[1,+∞)B .{﹣1}C .[1,+∞)∪{﹣1}D .R20.已知x >0,y >0,(√x)3+2022√x =a ,(√y −2)3+2022(√y −2)=−a ,则x +y 的最小值是( )A .1B .√2C .2D .421.f (x )=x (x +1)(x +2)(x +3)的最小值为( )A .﹣1B .﹣1.5C .﹣0.9375D .前三个答案都不对22.若集合A 的所有子集中,任意子集的所有元素和均不相同,称A 为互斥集.若A ={a ,b ,c }⊆{1,2,3,4,5},且A 为互斥集,则1a +1b +1c 的最大值为( ) A .116 B .1312 C .74 D .4760二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)23.关于x 的方程x (x−1)=(k−2x)(x 2−x)的解集中只含有一个元素,k = .24.已知k ≥0,函数y ={−x +k +1,x ≥02−x+k,x <0有最大值,则实数k 的取值范围是 . 25.对于集合A ,称定义域与值域均为A 的函数y =f (x )为集合A 上的等域函数.①若A ={1,2},则A 上的等域函数有 个;②若∃A =[m ,n ],使f (x )=a (x ﹣1)2﹣1为A 上的等域函数,a 的取值范围是 .三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答䋈写在答题纸上的相应位置.)26.(15分)对于正整数集合A ,记A ﹣{a }={x |x ∈A ,x ≠a },记集合X 所有元素之和为S (X ),S (∅)=0.若∃x ∈A ,存在非空集合A 1、A 2,满足:①A 1∩A 2=∅;②A 1∪A 2=A ﹣{x };③S (A 1)=S (A 2)称A 存在“双拆”.若∀x ∈A ,A 均存在“双拆”,称A 可以“任意双拆”.(1)判断集合{1,2,3,4}和{1,3,5,7,9,11}是否存在“双拆”?如果是,继续判断可否“任意双拆”?(不必写过程,直接写出判断结果);(2)A ={a 1,a 2,a 3,a 4,a 5},证明:A 不能“任意双拆”;(3)若A 可以“任意双拆”,求A 中元素个数的最小值.2022-2023学年北京市人大附中高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.下列表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={(x,y)|y=x},N={y|y=x}C.M={1,2},N={2,1}D.M={2,4},N={(2,4)}解:对于A,集合M,N表示的点坐标不同,故A错误,对于B,集合M表示点集,集合N表示数集,故B错误,对于C,由集合的无序性可知,M=N,故C正确,对于D,集合M表示数集,集合N表示点集,故D错误.故选:C.2.以下函数中是偶函数且在区间(0,+∞)上单调递减的函数是()A.y=1x2B.y=1x C.y=x2D.y=x解:y=1x2是偶函数,在区间(0,+∞)上单调递减,满足题意,A正确;y=1x是奇函数,不正确;y=x2在区间(0,+∞)上是增函数;不正确;y=x是奇函数,不正确.故选:A.3.函数f(x)=xx2+1的图象大致是()A.B.C.D.解:函数f(x)=xx2+1的定义域为R,f(﹣x)=−xx2+1=−f(x),可得f(x)为奇函数,其图象关于原点对称,可排除选项C;当x>0时,f(x)>0,可排除选项A、D.故选:B .4.若x 1+x 2=3,x 12+x 22=5,则以x 1,x 2为根的一元二次方程是( )A .x 2﹣3x +2=0B .x 2+3x ﹣2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=0解:∵x 1+x 2=3,x 12+x 22=5,∴2x 1x 2=(x 1+x 2)2−(x 12+x 22)=9﹣5=4,解得x 1x 2=2,∵x 1+x 2=3,x 1x 2=2,∴x 1,x 2为根的一元二次方程是x 2﹣3x +2=0.故选:A .5.已知a >b >c ,则下列说法一定正确的是( )A .ab >bcB .|a |>|b |>|c |C .ac 2>bc 2D .2a >b +c解:因为a >b >c ,则a >b 且a >c ,所以a +a >b +c ,即2a >b +c ,故D 正确,当b <0时,ab <bc ,故A 错误,当a =﹣1,b =﹣2,c =﹣3时,|a |<|b |<|c |,故B 错误,当c =0时,ac 2=bc 2,故C 错误,故选:D .6.若命题“∃x ∈R ,一元二次不等式x 2+mx +1<0”为假命题,则实数m 的取值范围( )A .m ≤﹣2或m ≥2B .﹣2<m <2C .m <﹣2或m ≥2D .﹣2≤m ≤2 解:由题意可知,“∀x ∈R ,一元二次不等式x 2+mx +1≥0”为真命题,所以Δ=m 2﹣4≤0,解得﹣2≤m ≤2,故选:D .7.定义域与对应法则称为函数的两个要素.下列各对函数中,图象完全相同的是( )A .f(x)=(√x)2与g (x )=xB .f(x)=x 4−1x 2+1与g (x )=x 2﹣1 C .f(x)=√x 2与g (x )=xD .f(x)=√x x 与g (x )=1解:对于A ,f (x )的定义域为[0,+∞),g (x )的定义域为R ,故A 错误,对于B ,f(x)=x 4−1x 2+1=x 2﹣1,g (x )=x 2+1,f (x )与g (x )的定义域,值域,映射关系均相同, 故f (x )与g (x )图象完全相同,故B 正确,对于C ,f (x )的值域为[0,+∞),g (x )的值域为R ,故C 错误,对于D ,f (x )的定义域为{x |x ≠0},g (x )的定义域为R ,故D 错误.故选:B .8.“ab >0”是“b a +a b ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解:由ab >0可得{a >0b >0或{a <0b <0, 当{a >0b >0时,由基本不等式可得b a +a b ≥2,当a =b 时,等号成立; 当{a <0b <0时,b a >0,a b >0,由基本不等式可得b a +a b ≥2,所以充分性满足; 当b a +a b ≥2时,设t =b a ,则有t +1t ≥2,由对勾函数的性质可得t >0,即b a >0,可得ab >0,所以必要性满足.故“ab >0”是“b a +a b ≥2”的充要条件.故选:C .9.设函数f (x )=x+3x+1,则下列函数中为奇函数的是( ) A .f (x ﹣1)﹣1 B .f (x ﹣1)+1C .f (x +1)﹣1D .f (x +1)+1 解:因为f (x )=x+3x+1=1+2x+1的图象关于(﹣1,1)对称,则f (x ﹣1)﹣1的图象关于原点对称,即函数为奇函数.故选:A .10.人大附中学生计划在实验楼门口种植蔬菜,现有12米长的围栏,准备围成两边靠墙(墙足够长)的菜园,若P 处有一棵树(不考虑树的粗细)与两墙的距离分别是2m 和am (0<a ≤10),设此矩形菜园ABCD 的最大面积为u ,若要求将这棵树围在菜园内(包括边界),则函数u =f (a )(单位:m 2)的图象大致是( )A .B .C .D .解:由题意,设CD =x ,则AD =12﹣x ,所以矩形菜园ABCD 的面积S =x (12﹣x )=﹣x 2+12x =﹣(x ﹣6)2+36,因为要将这棵树围在菜园内,所以{x ≥212−x ≥a,解得:2≤x ≤12﹣a , 当12﹣a >6,也即0<a <6时,在x =6处矩形菜园ABCD 的面积最大,最大面积u =S max =36,当12﹣a ≤6,也即6≤a ≤10时,在x =12﹣a 处矩形菜园ABCD 的面积最大,最大面积u =S max =a (12﹣a ),综上:u =f (a )={36,0<a <6a(12−a),6≤a <10, 根据函数解析式可知,选项B 符合.故选:B .二、填空题(本大题共5小题,每小题5分,共25分请把结果填在答题纸上的相应位置)11.函数f(x)=√3−x x 的定义域为 (﹣∞,0)∪(0,3] .解:因为f(x)=√3−x x, 所以{3−x ≥0x ≠0,解得x ≤3且x ≠0, 即函数的定义域为(﹣∞,0)∪(0,3].故答案为:(﹣∞,0)∪(0,3].12.马上进入红叶季,香山公园的游客量将有所增加,现在公园采取了“无预约,不游园”的措施,需要通过微信公众号提前预约才能进入公园.根据以上信息,“预约”是“游园”的 充分必要 条件.(填充分不必要条件、必要不充分条件、充分必要或者既不充分也不必要). 解:园采取了“无预约,不游园”的措施,意思就是说:游园的前提时预约,只有预约了才可以游园,不预约就不能游园.所以:“预约”是“游园”的 充分必要条件.故答案为:充分必要.13.已知一元二次方程(a ﹣2)x 2+4x +3=0有一正根和一负根,则实数a 的取值范围为 (﹣∞,2) . 解:一元二次方程(a ﹣2)x 2+4x +3=0有一正根和一负根,所以{a −2≠0Δ=16−12(a −2)>03a−2<0,解得a <2, 即实数a 的取值范围为(﹣∞,2).故答案为:(﹣∞,2).14.已知函数f(x)=2x−1,g (x )=kx +2(k >0),若∀x 1∈[2,3],∃x 2∈[﹣1,2],使f (x 1)=g (x 2)成立,则实数k 的取值范围是 [1,+∞) .解:已知函数f(x)=2x−1,g (x )=kx +2(k >0),若∀x 1∈[2,3],∃x 2∈[﹣1,2],使f (x 1)=g (x 2)成立,因为函数f(x)=2x−1在x ∈[2,3]上单调递减,所以f (x )max =f (2)=2,f (x )min =f (3)=1,可得f (x 1)∈[1,2],又因为g (x )=kx +2(k >0)在x ∈[﹣1,2]上单调递增,所以g (x )max =g (2)=2k +2,g (x )min =g (﹣1)=﹣k +2,所以g (x 2)∈[﹣k +2,2k +2],若x 1∈[2,3],∃x 2∈[﹣1,2],使f (x 1)=g (x 2)成立,所以[1,2]⊆[﹣k +2,2k +2],所以{−k +2≤12k +2≥2⇒⇒{k ≥1k ≥0,所以k ≥1. 实数k 的取值范围是:[1,+∞).故答案为:[1,+∞).15.函数f (x )=ax 2﹣(a +1)x +1,x ∈(−12,12),若f (x )在定义域上满足:①没有奇偶性;②不单调;③有最大值,则a 的取值范围是 (−∞,−1)∪(−1,−12) .解:由①可知,a +1≠0,即a ≠﹣1;由③可知,a <0;由②可知,−12<a+12a<12,即−1<a+1a<1,又a<0,则a<a+1<﹣a,解得a<−1 2;综上,实数a的取值范围为(−∞,−1)∪(−1,−12 ).故答案为:(−∞,−1)∪(−1,−12 ).三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.(10分)已知集合A={1,2,3},B={x|ax﹣1≥0}.(1)当a=2时,求A∩B与A∪B;(2)若_____,求实数a的取值范围.请从①A∩B=A;②∀x∈A,x∉B;③“x∈B”是“x∈A”的必要条件;这三个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)解:(1)当a=2时,A={1,2,3},B={x|x≥12 },A∩B={1,2,3},A∪B={x|x≥12};(2)若选①A∩B=A,则A⊆B,当a=0时,B=∅,不符合题意,当a<0时,B={x|x≤1a},不合题意;当a>0时,B={x|x≥1a},则1a≤1,解得a≥1,故a的取值范围为{a|a≥1};若选②∀x∈A,x∉B;当a=0时,B=∅,符合题意,当a<0时,B={x|x≤1a},符合题意;当a>0时,B={x|x≥1a},则1a>3,解得0<a<1 3,故a的取值范围为{a|a<13 };③若选“x∈B”是“x∈A”的必要条件,则A⊆B,当a=0时,B=∅,不符合题意,当a <0时,B ={x |x ≤1a},不合题意;当a >0时,B ={x |x ≥1a },则1a ≤1, 解得a ≥1,故a 的取值范围为{a |a ≥1}.17.(12分)设函数f (x )=2x 2﹣ax +4(a ∈R ).(1)当a =9时,求不等式f (x )<0的解集;(2)若不等式f (x )≥0对∀x ∈(0,+∞)恒成立,求实数a 的取值范围.解:(1)函数f (x )=2x 2﹣ax +4(a ∈R ),当a =9时,f (x )<0,即2x 2﹣9x +4<0,整理得(2x ﹣1)(x ﹣4)<0,解得12<x <4, 故所求不等式的解集为(12,4);(2)f (x )≥0对∀x ∈(0,+∞)恒成立,即2x 2﹣ax +4≥0在x ∈(0,+∞)上恒成立,即a ≤2x +4x 在x ∈(0,+∞)上恒成立,即a ≤(2x +4x )min ,又2x +4x ≥2√2x ×4x =4√2(当且仅当2x =4x 即x =√2时,取“=“). 所以a ≤4√2,故实数a 的取值范围为(−∞,4√2].18.(13分)已知函数f(x)=x 2+a x (a ∈R).(1)判断f (x )的奇偶性并证明;(2)若a =2,判断f (x )在[1,+∞)的单调性,并用单调性定义证明.解:(1)当a =0时,f (x )=x 2为偶函数,当a ≠0时,f (x )=x 2+a x 为非奇非偶函数;证明如下:当a =0时,f (x )=x 2,则f (﹣x )=(﹣x )2=x 2,即f (x )为偶函数,当a ≠0时,f (x )=x 2+a x ,则f (﹣x )=(﹣x )2−a x =x 2−a x ≠±f (x ),即为非奇非偶函数; (2)a =2时,f (x )=x 2+2x ,设1≤x 1<x 2,则x 1﹣x 2<0,x 1+x 2−2x 1x 2>0,则f (x 1)﹣f (x 2)=x 12−x 22+2x 1−2x 2=(x 1﹣x 2)(x 1+x 2−2x 1x 2)<0, 所以f (x 1)<f (x 2),故f (x )在[1,+∞)单调递增. 一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19.已知集合A ={x |﹣5<x <﹣3},B ={x |2a ﹣3<x <a ﹣2},若A ∪B =A ,则实数a 的取值范围是( )A .[1,+∞)B .{﹣1}C .[1,+∞)∪{﹣1}D .R解:∵A ∪B =A ,∴B ⊆A ,①B =∅时,2a ﹣3≥a ﹣2,解得a ≥1;②B ≠∅时,{a <12a −3≥−5a −2≤−3,解得a =﹣1;∴综上可得,a 的取值范围是a ≥1或a =﹣1.故选:C .20.已知x >0,y >0,(√x)3+2022√x =a ,(√y −2)3+2022(√y −2)=−a ,则x +y 的最小值是() A .1 B .√2 C .2 D .4解:设f (t )=t 3+2022t ,函数定义域为R ,f (﹣t )=(﹣t )3+2022×(﹣t )=﹣t 3﹣2022t =﹣f (t ),∴f (t )是奇函数,∀t 1<t 2,有t 13<t 23,则f (t 1)﹣f (t 2)=t 13+2022t 1﹣(t 23+2022t 2)<0,即f (t 1)<f (t 2). ∴函数f (t )是增函数,由x >0,y >0,(√x)3+2022√x =a ,(√y −2)3+2022(√y −2)=−a ,所以√x +√y −2=0,可得√x +√y =2,两边同时平方再利用基本不等式,有4=x +y +2√xy ≤2(x +y ),当且仅当x =y =1时取等号,所以x +y 的最小值为2,故选:C .21.f (x )=x (x +1)(x +2)(x +3)的最小值为( )A .﹣1B .﹣1.5C .﹣0.9375D .前三个答案都不对解:y =x (x +1)(x +2)(x +3)=[x (x +3)][(x +1)(x +2)]=(x 2+3x )[(x 2+3x )+2],令a =x 2+3x =(x +32)2−94≥−94.y =a 2+2a =(a +1)2﹣1,∵a ≥−94,∴a =﹣1时,y 有最小值﹣1.故选:A .22.若集合A 的所有子集中,任意子集的所有元素和均不相同,称A 为互斥集.若A ={a ,b ,c }⊆{1,2,3,4,5},且A 为互斥集,则1a +1b +1c 的最大值为( ) A .116 B .1312 C .74 D .4760解:∵A 为{1,2,3},{1,2,4},[1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},且A 为互斥集,∴A 为{1,2,4},{1,2,5},{1,3,5},{2,3,4},{2,4,5},{3,4,5},要想1a +1b +1c 取得最大值,则a ,b ,c 要最小, 此时a ,b ,c ∈{1,2,4},令a =1,b =2,c =4,则1a +1b +1c =11+12+14=74. 故选:C .二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)23.关于x 的方程x (x−1)=(k−2x)(x 2−x)的解集中只含有一个元素,k = ﹣1或0或3 .解:∵x (x−1)=(k−2x)(x 2−x)的解集中只含有一个元素,∴x ﹣1≠0,且 x =k−2x x, ∴x ≠0,且 x 2+2x ﹣k =0有一个实数根,结合x ≠0且x ≠1,可得k =﹣1或k =0或k =3.故答案为:﹣1或0或3.24.已知k ≥0,函数y ={−x +k +1,x ≥02−x+k,x <0有最大值,则实数k 的取值范围是 [1,+∞) . 解:因为k ≥0,函数y ={−x +k +1,x ≥02−x+k,x <0有最大值, 易知x ≥0时,f (x )=﹣x +k +1单调递减,故此时f (x )≤f (0)=k +1;当x <0时,f (x )=2−x+k 单调递增,结合x →0﹣时,f (x )→2k,所以由题意只需k +1≥2k 即可,解得k ≥1,或k ≤﹣2(舍),故k 的取值范围为[1,+∞).故答案为:[1,+∞).25.对于集合A ,称定义域与值域均为A 的函数y =f (x )为集合A 上的等域函数.①若A ={1,2},则A 上的等域函数有 2 个;②若∃A =[m ,n ],使f (x )=a (x ﹣1)2﹣1为A 上的等域函数,a 的取值范围是 {a |−18<a <0或0<a ≤1} .解:定义域与值域均为A 的函数y =f (x )为集合A 上的等域函数,(1)所以若 f (x )=x ,则 f (1)=1,f (2)=2,所以f (x )=x 的定义域与值域均为A ={1,2},同理若f (1)=2,f (2)=1,也满足题意,所以A 上的等域函数有2个;若a <0,则f (x )=a (x ﹣1)2﹣1≤﹣1<0,因此 n <0,从而f (x )在[m ,n ]上单调递增,{f(m)=m f(n)=n, 所以f (x )=a (x ﹣1)2﹣1=x 有两个不等的负实根,即方程ax 2﹣(2a +1)x +a ﹣1=0有2个不等的负实根,所以{ Δ=(2a +1)2−4a(a −1)>0x 1+x 2=2a+1a <0x 1x 2=a−1a >0,解得−18<a <0; 若a =0,则f (x )=﹣1,不合题意;a >0 时,①若m ≤1≤n ,则f (x )min =﹣1,因此m =﹣1,f (﹣1)=4a ﹣1,f (n )=a (n ﹣1)2﹣1,若1≤n ≤3,则n =f (﹣1)=4a ﹣1,令1≤4a ﹣1≤3,解得12≤a ≤1, 若n >3,则f (n )=n ,所以方程f (x )=a (x ﹣1)2﹣1=x 有大于3的实数根,即方程ax 2﹣(2a +1)x +a ﹣1=0有大于3的实数根,即Δ=(2a +1)2﹣4a (a ﹣1)≥0,解得a ≥−18, 所以a >0时,x =2a+1±√8a+12a ,令2a+1+√8a+12a>3,解得√8a +1>4a ﹣1, 当4a ﹣1≤0时,即0<a ≤14时,不等式显然成立,当a >14时,8a +1>(4a ﹣1)2,解得0<a <1,所以14<a <1,所以0<a <1满足题意, 综上,0<a ≤满足题意;下面讨论a >1时是否存在[m ,n ]满足题意,②若n ≤1,则 f (x )在[m ,n ]上是减函数,因此{f(m)=n f(n)=m,显然m =f (n )≥﹣1, 令{a(m −1)2−1=n a(n −1)2−1=m,相减得a (m +n ﹣2)=﹣1,即m =2−1a −n ,n =2−1a −m , 因此有{a(m −1)2−1=2−1a −m a(n −1)2−1=2−1a −n , 设g (x )=a (x ﹣1)2﹣1﹣(2−1a −x )=0在[﹣1,1]上有两个不等实根,整理得g (x )=ax 2﹣(2a ﹣1)x +a +1a −3,a >1时,由于g (1)=1a −2<0,因此方程g (x )=0一个根大于1,一根小于1,不合要求; ③若1≤m <n ,则f (x )在[m ,n ]上是增函数,因此{f(m)=m f(n)=n,即f (x )=a (x ﹣1)2﹣1=x 在[1,+∞)上有两个不等实根, 即方程ax 2﹣(2a +1)x +a ﹣1=0 在[1,+∞)上有两个不等实根,设h (x )=ax 2﹣(2a +1)x +a ﹣1,则h (1)=﹣2<0,所以h (x )=0 的两根一个大于1,一个小于1,不合题意,综上,a 的取值范围是{a |−18<a <0或0<a ≤1}.故答案为:2;{a |−18<a <0或0<a ≤1}.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答䋈写在答题纸上的相应位置.)26.(15分)对于正整数集合A ,记A ﹣{a }={x |x ∈A ,x ≠a },记集合X 所有元素之和为S (X ),S (∅)=0.若∃x ∈A ,存在非空集合A 1、A 2,满足:①A 1∩A 2=∅;②A 1∪A 2=A ﹣{x };③S (A 1)=S (A 2)称A 存在“双拆”.若∀x ∈A ,A 均存在“双拆”,称A 可以“任意双拆”.(1)判断集合{1,2,3,4}和{1,3,5,7,9,11}是否存在“双拆”?如果是,继续判断可否“任意双拆”?(不必写过程,直接写出判断结果);(2)A ={a 1,a 2,a 3,a 4,a 5},证明:A 不能“任意双拆”;(3)若A 可以“任意双拆”,求A 中元素个数的最小值.解:(1)对集合{1,2,3,4},{1,2,3,4}﹣{4}={1,2,3},且1+2=3,∴集合{1,2,3,4}可以双拆,若在集合中去掉元素1,∵2+3≠4,2+4≠3,3+4≠2,∴集合{1,2,3,4}不可“任意双拆”;若集合{1,3,5,7,9,11}可以“双拆”,则在集合{1,3,5,7,9,11}去除任意一个元素形成新集合B,若存在集合B1,B2,使得B1∩B2=∅,B1∪B2=B,S(B1)=S(B2),则S(B)=S(B1)+S(B2)=2S(B1),即集合B中所有元素之和为偶数,事实上,集合B中的元素为5个奇数,这5个奇数和为奇数,不合题意,∴集合{1,3,5,7,9}不可“双拆”.(2)证明:设a1<a2<a3<a4<a5.反证法:如果集合A可以“任意双拆”,若去掉的元素为a1,将集合{a2,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a2+a5=a3+a4,①,或a5=a2+a3+a4,②,若去掉的是a2,将集合{a1,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a1+a5=a3+a4,③,或a5=a1+a3+a4,④,由①﹣③可得a1=a2,矛盾;由②﹣③得a1=﹣a2,矛盾;由①﹣④可得a1=﹣a2,矛盾;由②﹣④可得a1=a2,矛盾.∴A不能“任意双拆”;(3)设集合A={a1,a2,a3,•,a n},由题意可知S(A)﹣a i(i=1,2,•,n)均为偶数,∴a i(i=1,2,•,n)均为奇数或偶数,若S(A)为奇数,则a i(i=1,2,•,n)均为奇数,∵S(A)=a1+a2+•+a n,∴n为奇数,若S(A)为偶数,则a i(i=1,2,•,n)均为偶数,此时设a i=2b i,则{b1,b2,b3,•,b n}可任意双拆,重复上述操作有限次,便可得各项均为奇数的“任意双拆”集,此时各项之和也是奇数,则集合A中元素个数n为奇数,当n=3时,由题意知集合A={a1,a2,a3}不可“任意双拆”,当n=5时,集合A={a1,a2,a3,a4,a5}不可“任意双拆”,∴n≥7,当n=7时,取集合A={1,3,5,7,9,11,13},∵3+5+7+9=11+13,1+9+13=5+7+11,1+3+5+77=7+13,1+9+11=3+5+13,3+7+9=1+5+13,1+3+5+9=7+11,则集合A可“任意双拆”,∴集合A中元素个数n的最小值为7.。
2019-2020学年山东省菏泽市高一下学期期末数学试卷(A卷) (解析版)
2019-2020学年山东省菏泽市高一第二学期期末数学试卷(A卷)一、选择题(共8小题).1.在一次抛硬币的试验中,同学甲用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了45次,那么出现正面朝上的频率和概率分别为()A.0.45 0.45B.0.5 0.5C.0.5 0.45D.0.45 0.52.复数z=的虚部为()A.2B.﹣2C.﹣3D.﹣3i3.在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A、B两样本的下列数字特征对应相同的是()A.平均数B.标准差C.众数D.中位数4.如图是一个正方体的表面展开图,则图中“有”在正方体中所在的面的对面上的是()A.者B.事C.竟D.成5.加强体育锻炼是青少年生活学习中非常重要的组成部分.某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为60°,每只胳膊的拉力大小均为400N,则该学生的体重(单位:kg)约为()(参考数据:取重力加速度大小为g=10m/s2,≈1.732)A.63B.69C.75D.816.已知向量=(2,3),=(﹣1,2),若m+与﹣2共线,则m的值为()A.﹣2B.2C.D.7.如图所示是一样本的频率分布直方图,样本数据共分3组,分别为[5,10),[10,15),[15,20].估计样本数据的第60百分位数是()A.14B.15C.16D.178.已知正方体ABCD﹣A1B1C1D1棱长为4,P是AA1中点,过点D1作平面α,满足CP⊥平面α,则平面α与正方体ABCD﹣A1B1C1D1的截面周长为()A.4B.12C.8D.8二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全选对的得5分,选对但不全的得3分,有选错的得0分.9.给出如图所示的三幅统计图,则下列命题中正确的有()A.从折线图能看出世界人口的变化情况B.2050年非洲人口将达到大约15亿C.2050年亚洲人口比其他各洲人口的总和还要多D.从1957年到2050年各洲中北美洲人口增长速度最慢10.在△ABC中,角A、B、C所对的边分别为a、b、c,下列结论正确的是()A.若b2+c2﹣a2>0,则△ABC为锐角三角形B.若A>B,则sin A>sin BC.若b=3,A=60°,三角形面积S=3,则a=D.若a cos A=b cos B,则△ABC为等腰三角形11.在△ABC中,D,E,F分别是边BC,AC,AB中点,下列说法正确的是()A.B.C.若点P是线段AD上的动点,且满足=+,则λ+2μ=1D.若△ABC所在平面内一点P满足=λ()(λ≥0),则点P的轨迹一定通过△ABC的内心12.如图,正方体ABCD﹣A1B1C1D1的棱长为1,动点E在线段A1C1上,F、M分别是AD、CD的中点,则下列结论中正确的是()A.FM∥A1C1B.BM⊥平面CC1FC.存在点E,使得平面BEF∥平面CC1D1DD.三棱锥B﹣CEF的体积为定值三、填空题:本大题共4小题,每小题5分,共20分。
2019-2020年高二下学期期末数学试卷(理科) 含解析
2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。
安徽省马鞍山市2019-2020学年高一下期末学业质量监测数学试题含解析
安徽省马鞍山市2019-2020学年高一下期末学业质量监测数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数()y f x =是定义在R 上的奇函数,当0x >时,()2x f x =,则()2f -=( ) A .-4B .14C .14-D .4 【答案】A【解析】【分析】由奇函数的性质可得: ()()f x f x -=-即可求出()2f -【详解】因为()y f x =是定义在R 上的奇函数,所以()()()()22f x f x f f -=-⇒-=-又因为当0x >时,()2x f x =,所以()2224f ==,所以()()224f f -=-=-,选A. 【点睛】本题主要考查了函数的性质中的奇偶性。
其中奇函数主要有以下几点性质:1、图形关于原点对称。
2、在定义域上满足()()f x f x -=-。
3、若定义域包含0,一定有()00f =。
2.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是( )A .0.3B .0.55C .0.7D .0.75【答案】D【解析】【分析】由题意可知摸出黑球的概率,再根据摸出黑球,摸出红球为互斥事件,根据互斥事件的和即可求解.【详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是1(0.450.25)0.3-+=,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率0.30.450.75P =+=,故选D.【点睛】本题主要考查了两个互斥事件的和事件,其概率公式()()()P AUB P A P B =+,属于中档题. 3.已知随机变量X 服从正态分布(),4N a ,且()10.5P X >=,()20.3P X >=,则()0P X <=( ) A .0.2 B .0.3 C .0.7 D .0.8【解析】随机变量X 服从正态分布(),4N a ,所以曲线关于x a =对称,且()0.5P X a >=,由()10.5P X >=,可知1a =,所以()()020.3P X P X <=>=,故选B.4.四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是正方形,且2PA AB ==,则直线PB 与平面PAC 所成角为( )A .6πB .4πC .3πD .2π 【答案】A【解析】【分析】连接AC 交BD 于点O ,连接OP ,证明BO ⊥平面PAC ,进而可得到BPO ∠即是直线PB 与平面PAC 所成角,根据题中数据即可求出结果.【详解】连接AC 交BD 于点O ,因为PA ⊥平面ABCD ,底面ABCD 是正方形,所以BD AC ⊥,BD PA ⊥,因此BD ⊥平面PAC ;故BO ⊥平面PAC ;连接OP ,则BPO ∠即是直线PB 与平面PAC 所成角,又因2PA AB ==,所以22PB =,2BO =. 所以1sin 2BO BPO PB ∠==,所以 6BPO π∠=. 故选A本题主要考查线面角的求法,在几何体中作出线面角,即可求解,属于常考题型.5.在中,已知,,则角的取值范围为( )A .B .C .D .【答案】D【解析】【分析】 由,根据正弦定理可得:,由角范围可得的范围,结合三角形的性质以及正弦函数的图像即可得到角的取值范围【详解】 由于在中,有,根据正弦定理可得, 由于,即,则,即 由于在三角形中,,由正弦函数的图像可得:;故答案选D【点睛】本题考查正弦定理在三角形中的应用,以及三角函数图像的应用,属于中档题.6.已知扇形AOB 的圆心角3AOB π∠=,弧长为2π,则该扇形的面积为( ) A .6πB .12πC .6D .12 【答案】A【解析】【分析】可先由弧长计算出半径,再计算面积.【详解】设扇形半径为R ,则23R ππ=,6R =,12662S =⨯π⨯=π. 故选:A . 【点睛】本题考查扇形面积公式,考查扇形弧长公式,掌握扇形的弧长和面积公式是解题基础.7.如图,已知平行四边形ABCD ,BE EC =,则( )A .12AE AB AD =+B .12AE AB AD =-C .12AE AB AD =+ D .12AE AB AD =-+ 【答案】A 【解析】【分析】根据平面向量的加法运算,即可得到本题答案.【详解】由题,得12=+=+AE AB BE AB AD . 故选:A【点睛】本题主要考查平面向量的加法运算,属基础题.8.在ABC 中,若21b c +=,30B =,45C =,则( ) A .1b =,2c =B .2b =1c =C .22b =,212c =+ D .21b ,22c = 【答案】A【解析】【分析】利用正弦定理列出关系式,把sin B 与sin C 代入得出b 与c 的关系式,再与已知等式联立求出即可.【详解】∵在ABC ∆中,21b c +=,30B =,45C =, ∴由正弦定理得:sin sin b c B C=,即22b c =,联立解得:1,b c ==故选:A.【点睛】 本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于基础题.9.设数列{}n a 满足110a =,且()*13n n a a n n N +-=-∈,则数列1n a 中的最大项为( ) A .17 B .855 C .18 D .19 【答案】A【解析】【分析】利用累加法求得{}n a 的通项公式,再根据1n a ⎧⎫⎨⎬⎩⎭的单调性求得最大项.【详解】因为13n n a a n +-=-故()()()11221452n n n n a a a a a a n n ----+-++-=-+-++- 故()()()()211212172622n n n a a n n n --=--+=-+ 则()21117262n a n n =-+,其最大项是{}n a 的最小项的倒数, 又21755228n a n ⎛⎫=-+ ⎪⎝⎭,当且仅当3n =或4n =时,n a 取得最小值7. 故1n a 得最大项为17. 故选:A.【点睛】本题考查由累加法求数列的通项公式,以及数列的单调性,属综合基础题.10.将函数()cos f x x x =-的图象向左平移56π个单位得到函数()y g x =的图象,则7()12g π的值为( )A .BC .D【答案】A【解析】()cos 2sin()6f x x x x π=-=-,向左平移56π个单位得到函数()y g x ==22sin()3x π+,故7722sin()12123g πππ⎛⎫=+= ⎪⎝⎭11.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且c =2sin tan A C a c=,若sin()sin 2sin 2A B C B -+=,则a b +=( )A .2B .3C .4D .【答案】B【解析】【分析】 利用正弦定理化简2sin tan A C a c=,由此求得cos ,sin C C 的值.利用三角形内角和定理和两角和与差的正弦公式化简sin()sin 2sin 2A B C B -+=,由此求得,a b 的值,进而求得+a b 的值.【详解】利用正弦定理化简2sin tan A C a c =得1cos 02C =>,所以C 为锐角,且sin C ==由于()sin sin C A B =+,所以由sin()sin 2sin 2A B C B -+=得sin()sin()2sin 2A B A B B -++=,化简得sin cos 2sin cos A B B B =.若cos 0B =,则90B =,故2222,1,1,3b a b c a a b ==-==+=.若cos 0B ≠,则sin 2sin A B =,由余弦定理得222422cos 3c b b b b C =+-⋅⋅=,解得1,22,3b a b a b ===+=.综上所述,3a b +=,故选B.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查同角三角函数的基本关系式,考查三角形内角和定理,考查两角和与差的正弦公式,属于中档题.12.在ABC ∆中,角A,B,C 所对的边分别为a,b,c,若cos cos 2cos a B b A c C +=,则C =( )A .6πB .3πC .23πD .56π 【答案】B【解析】【分析】利用正弦定理边化角,结合和差公式以及诱导公式,即可得到本题答案.【详解】因为cos cos 2cos ,sin 0a B b A c C C +=≠,所以sin cos sin cos 2sin cos A B B A C C +=,sin()2sin cos A B C C +=,sin 2sin cos C C C =,1cos 2C =, 0C π<<,3C π∴=.故选:B.【点睛】 本题主要考查利用正弦定理边角转化求角,考查计算能力,属于基础题.二、填空题:本题共4小题13.设无穷等比数列{}n a 的公比为q ,若1345a a a a =+++…,则q =__________________.【解析】【分析】由1345a a a a =+++…可知1q <,算出345a a a +++…用1a 表示的极限,再利用性质计算得出q 即可.【详解】 显然公比不为1,所以公比为q 的等比数列{}n a 求和公式1(1)1-=-n n a q S q, 且1345a a a a =+++…,故01q <<.此时1(1)1-=-n n a q S q当n →∞时,求和极限为11a q -,所以3345...1a a a a q +++=-,故2311345...=11a a q a a a a q q=+++=--,所以2211101a q a q q q =⇒+-=-,故12q -±=,又01q <<,故q =.. 【点睛】 本题主要考查等比数列求和公式1(1)1-=-n n a q S q,当01q <<时1lim 1n n a S q →∞=-. 14.设数列{}n a 是等差数列,12324a a a ++=-,1926a =,则此数列{}n a 前20项和等于______.【答案】180【解析】【分析】根据条件解得公差与首项,再代入等差数列求和公式得结果【详解】因为12324a a a ++=-,1926a =,所以1113324,182610,2a d a d a d +=-+=∴=-=,20120(10)201921802S ∴=⨯-+⨯⨯⨯= 【点睛】本题考查等差数列通项公式以及求和公式,考查基本分析求解能力,属基础题15.函数f(x)=sin 22x 的最小正周期是__________. 【答案】 2π.【解析】【分析】将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.【详解】函数()2sin 2f x x ==142cos x -,周期为2π 【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.16.从分别写有1,2,3,4,5的五张卡片中,任取两张,这两张卡片上的数字之差的绝对值等于1的概率为________. 【答案】25【解析】【分析】基本事件总数n 2510C ==,利用列举法求出这两张卡片上的数字之差的绝对值等于1包含的基本事件有4种情况,由此能求出这两张卡片上的数字之差的绝对值等于1的概率.【详解】从分别写有1,2,3,4,5的五张卡片中,任取两张,基本事件总数n 2510C ==,这两张卡片上的数字之差的绝对值等于1包含的基本事件有:(1,2),(2,3),(3,4),(4,5),共4种情况,∴这两张卡片上的数字之差的绝对值等于1的概率为p 42105==. 故答案为25. 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.三、解答题:解答应写出文字说明、证明过程或演算步骤。
2019-2020学年市第六中学高一上学期期中数学试题(解析版)
2019-2020学年市第六中学高一上学期期中数学试题(解析版)2019-2020学年市第六中学高一上学期期中数学试题一、单选题1.设集合M=[1,2],N={x∈Z|-1A.[1,2]B.(-1,3)C.{1}D.{1,2}【答案】D【解析】集合N为整数集,所以先用列举法求出集合N,然后根据交集的定义求出即可.【详解】解:,.故选:D.【点睛】本题考查交集的概念和运算,解题的关键是先分析出集合中的代表元素是整数,属于基础题.2.已知集合A={x|x>2},B=,则B∩∁RA等于()A.{x|2≤x≤5}B.{x|-1≤x≤5}C.{x|-1≤x≤2}D.{x|x≤-1}【答案】C【解析】已知集合A,B,则根据条件先求出,然后根据交集的定义求出即可.【详解】解:集合A={x|x>2},所以,又集合,则.故选:C.【点睛】本题考查交集和补集的概念和计算,属于基础题.3.函数f(x)=+lg(3x+1)的定义域是()A.(-∞,1)B.C.【答案】B【解析】函数f(x)的定义域即:即被开方数大于等于0,分母不为0,且对数函数的真数有意义,根据条件列出方程组,解出的范围即为所求.【详解】解:函数f(x)=+lg(3x+1)的定义域是,解得:,所以函数f(x)的定义域是.故选:B.【点睛】本题考查求复合函数的定义域,解题的关键是保证每部分都有意义,属于基础题.4.已知f()=x-x2,则函数f(x)的解析式为()A.f(x)=x2-x4B.f(x)=x-x2C.f(x)=x2-x4(x≥0)D.f(x)=-x(x≥0)【答案】C【解析】令(),解出,利用换元法将代入解析式即可得出答案.【详解】解:令(),则,所以(),所以f(x)=x2-x4().故选:C.【点睛】本题考查利用换元法求函数解析式,解题的关键是注意换元之后的定义域,属于基础题.5.与函数相同的函数是()A.B.C.D.【答案】D【解析】试题分析:A中对应关系不同;B中定义域不同;C中定义域不同;D中对应关系,定义域均相同,是同一函数【考点】函数是同一函数的标准6.下列函数中,既是偶函数又在区间上单调递减的是()A.C.D.【答案】C【解析】试题分析:因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数的图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C。
专题10(统计、概率基础题)(解析版)-2020-2021学年高一数学下学期期末考试考前必刷题
2020-2021高一下学期期末考试考前必刷题(苏教版 2019)(统计、概率基础题)一、单选题1.(2021·江苏高一课时练习)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率直方图如图所示,估计棉花纤维的长度的样本数据的80百分位数是()A.29 mm B.29.5 mmC.30 mm D.30.5 mm【答案】A【分析】先求得棉花纤维的长度在30 mm以下的比例为85%,在25 mm以下的比例为85%-25%=60%,从而可得80百分位数一定位于[25,30)内,进而可求出答案【详解】棉花纤维的长度在30 mm以下的比例为(0.01+0.01+0.04+0.06+0.05)×5=0.85=85%,在25 mm以下的比例为85%-25%=60%,因此,80百分位数一定位于[25,30)内,由0.800.60 255290.850.60-+⨯=-,可以估计棉花纤维的长度的样本数据的80百分位数是29 mm.故选:A2.(2021·江苏高一课时练习)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为()A.12B.13C.14D.15【答案】D【分析】先计算抽样比,从而求出样本容量.【详解】抽样比是,所以样本容量是.故选:D.3.(2021·江苏高一课时练习)某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本.已知女生抽了85人,则该校的男生人数为()A.670B.680C.690D.700【答案】C【分析】先计算男生抽取人数,进一步求出该校男生人数.【详解】⨯=人每层的抽样比为,女生抽了85人,所以男生抽取115人,因此共有男生1156690故选:C.4.(2021·江苏高一课时练习)某高三学生在连续五次月考中的数学成绩(单位:分)为:90,90,93,94,93,则该学生在这五次月考中数学成绩的平均数和方差分别为()A.92,2.8B.92,2C.93,2D.93,2.8【答案】A【分析】根据5个样本,分别计算平均数和方差.【详解】该学生在这五次月考中数学成绩的平均数为×(90+90+93+94+93)=92,方差为s2=×[(90-92)2+(90-92)2+(93-92)2+(94-92)2+(93-92)2]=2.8.故选:A5.(2021·江苏高一课时练习)某市有15个旅游景点,经计算,黄金周期间各个景点的旅游人数平均为20万,标准差为s,后来经核实,发现甲、乙两处景点统计的人数有误,甲景点实际为20万,被误统计为15万,乙景点实际为18万,被误统计成23万;更正后重新计算,得到标准差为s1,则s与s1的大小关系为()A.s=s1B.s<s1C.s>s1D.不能确定【答案】C 【分析】首先由统计总数没变,可知两次统计的平均数没有变,再分别列出标准差公式,判断大小关系. 【详解】由已知,两次统计所得的旅游人数总数没有变,即两次统计的各景点旅游人数的平均数是相同的,设为,则s =1s =若比较与的大小,只需比较()()221523x x -+-与()()222018x x -+-的大小即可,而()()2221523754762x x x x -+-=-+,()()2222018724762x x x x -+-=-+,所以()()221523x x -+->()()222018x x -+-,从而.故选:C 【点睛】关键点点睛:本题考查样本平均数和标准差,关键是判断平均数没有变,才能利用标准差公式判断大小. 6.(2021·江苏高一课时练习)已知下表为随机数表的一部分,将其按每5个数字编为一组: 08015 17727 45318 22374 21115 78253 77214 77402 43236 00210 45521 64237 29148 66252 36936 87203 76621 13990 68514 14225 46427 56788 96297 78822已知甲班有60位同学,编号为01~60号,现在利用上面随机数表的某一个数为起点,用简单随机抽样的方法在甲班中抽取4位同学,得到下列四组数据,则抽到的4位同学的编号不可能是( ) A .08,01,51,27 B .27,45,31,23 C .15,27,18,74 D .14,22,54,27【答案】C 【分析】根据选项C 中编号74大于甲班同学的总人数60,即可得到答案. 【详解】因为C中编号74大于甲班同学的总人数60,则抽出的4位同学的编号不可能是C选项.故选:C7.(2021·江苏高一课时练习)某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,50百分位数为b,则有()A.a=13.7,b=15.5B.a=14,b=15C.a=12,b=15.5D.a=14.7,b=15【答案】D【分析】可直接求出平均数,然后对这一列数排列,从而可求出50百分位数【详解】把该组数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17,17,其平均数a=×(10+12+14+14+15+15+16+17+17+17)=14.7,因为50×=5,所以这10名工人一小时内生产零件的50百分位数为b==15.故选:D8.(2021·江苏高一课时练习)年月日,欧盟特别峰会在布鲁塞尔举行,主要讨论年至年长期预算,有个国家代表参加,最终因各方分歧太大,未达成共识.会后某记者从每个国家与会人员中采访了两名成员,调查得到各成员国在预算总量、主要政策领域分配额、欧盟收入来源以及激励机制等多方面都存在分歧.在这个问题中样本容量是()A.B.C.D.不确定【答案】C【分析】根据样本容量的定义可得结果.【详解】⨯=名参会人员,参会国家共有个,记者采访了每个国家的两名成员,共采访了27254得到名参会人员的意见,在这个问题中,样本容量为.故选:C.9.(2021·江苏高一课时练习)下列调查方式中合适的是()A.某单位将新购买的准备开业庆典的箱礼炮全部进行质检B.某班有名同学,指定家庭最富有的人参加“学代会”C.某服装厂的一批件出口服装,随机抽件进行抽样调查D.为了调查最近上映影片的一周内的票房情况,特选周六、周日两天进行调查【答案】C【分析】分析题意,要选择合适的调查方法,需要对全面调查的局限性和抽样调查的必要性结合起来.结合抽样调查和普查的特点逐项判断即可得出合适的选项.【详解】对于A选项,对礼炮的质检带有破坏性,虽然总量不大,但不宜采用普查的方式;对于B选项,“家庭最富有”不具备代表性,样本选择错误;对于C选项,件服装容量较大,随机抽件进行抽样调查较为合适;对于D选项,因调查一周的票房,时间不长,周六、周日是双休日,这两天的票房较高,所以,周六、周日这两天的选取也不具备代表性.故选:C.10.(2021·苏州市第三中学校高一月考)袋内红、白、黑球分别为3个、2个、1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;至少有一个红球B.恰有一个白球;一个白球一个黑球C.至少有一个白球;都是白球D.至少有一个白球;红、黑球各1个【答案】D【分析】利用互斥事件、对立事件的定义直接求解.【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故A不成立;在B中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故B不成立;在C中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故C不成立.在D中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故D成立.故选:D.11.(2021·江苏高一课时练习)某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性都为0.2,用随机数表法在该中学抽取容量为n 的样本,则n 等于( ) A .80 B .160 C .200 D .280【答案】C 【分析】每个个体被抽的可能性等于样本容量除以总体数,由此列出关于的方程并求解出结果. 【详解】 由题意可知:0.2400320280n=++,解得,故选:C.12.(2021·江苏高一课时练习)下列调查方案中,抽样方法合适、样本具有代表性的是( ) A .用一本书第1页的字数估计全书的字数B .为调查某校学生对航天科技知识的了解程度,上学期间,在该校门口,每隔2分钟随机调查一位学生C .在省内选取一所城市中学,一所农村中学,向每个学生发一张卡片,上面印有一些名人的名字,要求每个学生只能在一个名字下面画“√”,以了解全省中学生最崇拜的人物是谁D .为了调查我国小学生的健康状况,共抽取了100名小学生进行调查 【答案】B 【分析】根据抽取的样本具有代表性,即抽取的样本是随机的,逐个分析判断 【详解】A 中,样本缺少代表性(第1页的字数一般较少);B 中,抽样保证了随机性原则,样本具有代表性;C 中,城市中学与农村中学的规模往往不同,学生崇拜的人物也未必在所列的名单之中,这些都会影响数据的代表性;D 中,总体数量很大,而样本容量太少,不足以体现总体特征. 故选:B13.(2021·江苏高一课时练习)“中国天眼”为500米口径球面射电望远镜(FivehundredmetersApertureSphericalTelescope ,简称FAST ),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜.建造“中国天眼”的目的是( )A .通过调查获取数据B .通过试验获取数据C.通过观察获取数据D.通过查询获得数据【答案】C【分析】根据“中国天眼”的特点求解.【详解】“中国天眼”主要是通过观察获取数据.故选:C【点睛】本题主要考查抽样获取数据的方法,还考查了理解辨析的能力,属于基础题.14.(2020·江苏苏州市·高一期末)围棋盒子中有若干粒黑子和白子,从中任意取出2粒,2粒都是黑子的概率为,都是白子的概率为,则取出的2粒颜色不同的概率为()A.B.C.D.【答案】D【分析】先计算2粒都是黑子或2粒都是白子的概率,而取出的2粒颜色不同的对立事件是2粒都是黑子或2粒都是白子,利用对立事件的概率公式求得答案.【详解】2粒都是黑子或2粒都是白子的概率为,取出的2粒颜色不同的概率为.故选:D.【点睛】本题考查了互斥事件的概率加法公式,和对立事件的概率计算公式,属于基础题.15.(2020·江苏常州市·高一期末)抛掷一枚硬币,连续出现9次正面向上,则第10次出现正面向上的概率为()A.B.C.D.【答案】D【分析】由正面向上或正面向下可能性相同可求出所求概率.【详解】第10次抛硬币结果不受前9次结果的影响,由于硬币正面向上或正面向下可能性相同,则概率为,故选:D.【点睛】本题考查了等可能事件的概率,属于基础题.16.(2020·江苏省如东高级中学高一月考)抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,则一次试验中,事件A或事件B至少有一个发生的概率为()A.B.C.D.【答案】A【分析】由古典概型概率公式分别计算出事件A和事件B发生的概率,又通过列举可得事件A和事件B为互斥事件,进而得出事件A或事件B至少有一个发生的概率即为事件A和事件B的概率之和.【详解】事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,∴P(A),P(B),又小于5的偶数点有2和4,不小于5的点数有5和6,所以事件A和事件B为互斥事件,则一次试验中,事件A或事件B至少有一个发生的概率为P(A∴B)=P(A)+P(B),故选:A.【点睛】本题主要考查古典概型计算公式,以及互斥事件概率加法公式的应用,属于中档题.二、填空题17.(2021·江苏高一课时练习)为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本容量是________.【答案】96【分析】由于每个班抽12份,所以8个班共抽96份,所以样本容量为96本题中,400名学生第一次高考模拟考试的数学成绩是总体,从8个班中每班抽取的12名学生的数学成绩是样本,400是总体个数,96是样本容量.故答案为:9618.(2021·江苏高一课时练习)为了了解高一年级学生的视力情况,特别是近视率问题,抽测了其中100名同学的视力情况.在这个过程中,100名同学的视力情况(数据)是________.【答案】总体的一个样本【分析】由样本的定义进行判断即可【详解】100名同学的视力情况(数据)是从总体中抽取的一部分个体所组成的集合,所以是总体的一个样本.故答案为:总体的一个样本19.(2020·江苏常州市·高一期末)如图,把一个表面涂有蓝漆的正方体木块锯成64个完全相同的小正方体,若从中任取一块,则这一块至多有一面涂有蓝漆的概率为_______.【答案】【分析】求出至多有一面涂有蓝漆的小木块个数,即可求出概率大小.【详解】解:有两面涂有蓝漆的小木块有24个,有三面涂有蓝漆的小木块有8个,则至多有一面涂有蓝漆的小木块有32个,故.故答案为: .【点睛】本题考查了等可能事件的概率,属于基础题.本题的关键是准确找到至多有一面涂有蓝漆的小木块个数. 20.(2021·江苏高一课时练习)一个容量为20的样本数据,分组与频数如下表:则样本在[10,50)内的频率为__________【答案】0.7用[10,50)的频数除以20求得[10,50)的频率. 【详解】数据落在区间[10,50)的频率为. 故答案为:0.721.(2021·江苏高一课时练习)1,2,3,4,5,6,7,8,9,10的分位数为______,分位数为________,分位数为________. 【答案】 【分析】直接利用分位数的定义求解. 【详解】因为数据个数为,且已经按照从小到大的顺序排列,又1025% 2.5⨯=,10757.5%⨯=,1090%9⨯=,所以该组数据的分位数为,分位数为,分位数为9109109.522++==x x ; 故答案为:;;.22.(2021·江苏高一课时练习)从一群做游戏的小孩中随机抽出人,一人分一个苹果,让他们返回继续做游戏.过了一会儿,再从中任取人,发现其中有个小孩曾分过苹果,估计参加游戏的小孩的人数为________. 【答案】 【分析】根据随机抽样中每个个体被抽到的概率是相等的,列出方程,即可求解. 【详解】设参加游戏的小孩有人,根据随机抽样中每个个体被抽到的概率是相等的,可得,解得, 即参加游戏的小孩的人数为. 故答案为:.23.(2021·江苏高一课时练习)某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图所示的频率直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.则估计高一参赛学生的成绩的众数、中位数分别为____________.【答案】65,65【分析】频率分布直方图中最高矩形的中点横坐标即为众数,利用平分矩形面积可得中位数.【详解】由题图可知众数为65,又∴第一个小矩形的面积为0.3,∴设中位数为60+x,则0.3+x×0.04=0.5,得x=5,∴中位数为60+5=65.故答案为:65,6524.(2021·江苏高一课时练习)用简单随机抽样的方法从含n个个体的总体中,逐个抽取一个容量为3的样本,若个体a在第一次被抽到的可能性为,那么n=________,在整个抽样中,每个个体被抽到的可能性为________.【答案】8【分析】依据简单随机抽样方式,总体中的每个个体被抽到的概率都是一样的,再结合容量是3,可以看成是抽3次,从而可求得概率.【详解】简单随机抽样时第一次抽样可以理解为从n个个体中抽取一个个体,则每个个体被抽到的可能性是,因此n=8;整个抽样过程中每个个体被抽到的可能性是.故答案为:8,.25.(2021·江苏高一课时练习)将全班同学按学号编号,制作相应的卡片号签,放入同一个箱子里搅拌均匀,从中抽取15个号签,就相应的15名学生对看足球比赛的喜爱程度(很喜爱、喜爱、一般、不喜爱、很不喜爱)进行调查,使用的是________.【答案】抽签法【分析】根据调查过程的特点直接判断所使用的抽样方法.【详解】抽签法分为编号、制签、取样三步,这里用了学生的学号作为编号,后面的抽取过程符合抽签法的实施步骤,所以采用的是抽签法,故答案为:抽签法.26.(2021·江苏高一课时练习)在用抽签法抽样时,有下列五个步骤:(1)从箱中每次抽出1个号签,并记录其编号,连续抽取k次;(2)将总体中的所有个体编号;(3)制作号签;(4)将总体中与抽到的签的编号相一致的个体取出构成样本;(5)将号签放在同一箱中,并搅拌均匀.以上步骤的次序是______________.【答案】(2)(3)(5)(1)(4)【分析】按照抽签法的步骤判断,即编号,做号签,放入容器,进行抽取,构成样本.【详解】利用抽签法第一步要进行编号,然后做号签,放入容器,接下来按照逐个不放回地抽取号签,最后将与编号一致的个体取出构成样本,故这些步骤的先后顺序为(2)(3)(5)(1)(4).故答案为:(2)(3)(5)(1)(4).27.(2021·江苏高一课时练习)已知30个数据的60百分位数是8.2,这30个数据从小到大排列后第18个数据是7.8,则第19个数据是________.【答案】8.6【分析】由题意设第19个数据为x,则=8.2,从而可求得结果【详解】由于60×=18,设第19个数据为x,则=8.2,解得x=8.6,即第19个数据是8.6.故答案为:8.628.(2021·江苏高一课时练习)已知样本数据x1,x2,…,x10,其中x1,x2,x3的平均数为a,x4,x5,x6,…,x10的平均数为b,则样本数据的平均数为________.【答案】【分析】根据题意得出前3个数的和与后7个数的和,从而得出这10个数的和,得到平均数前3个数据的和为3a,后7个数据的和为7b,则这10个数据的和为则样本平均数为10个数据的和除以10,即.故答案为:29.(2021·江苏高一课时练习)某歌手电视大奖赛中,七位评委对某选手打出如下分数:7.9,8.1,8.4,8.5,8.5,8.7,9.9,则其百分位数为________.【答案】【分析】由题意,数据按照从小到大的顺序排列,分析得百分位数即为这组数据的中位数,所以找第个数据.【详解】由题意可知,共有个数据并且已经按照从小到大的顺序排列,其百分位数即为这组数据的中位数,所以其百分位数是第个数据为.故答案为:30.(2021·江苏高一课时练习)下列调查中:①考察一片经济林中树木的平均直径;②疫情开学前,某市对全体高三教师和学生进行血清抗体检测;③省教育机构调查参加高考模拟考试的60万名考生的英语答题情况;④某市委书记用一上午时间随机到全市高中学校检查高三开学情况.适合用抽样调查方法获取数据的是________.(填序号)【答案】①③④【分析】根据抽样调查的特点逐个判断即可【详解】①该问题用普查的方法很难实现,适合用抽样调查的方法获取数据;②检测必须要知道每一位老师和学生是否正常,不能用抽样调查的方法获取数据;③60万名考生的答题情况用普查的方法获取数据不合适,适合用抽样调查的方法获取数据;④一上午时间,市委书记无法检查到全市每一所高中学校,该问题只能用抽样调查的方法获取数据.故答案为:①③④31.(2021·江苏高一课时练习)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为______.【答案】16DX=,数据的方差为,则对应的标准差为因为样本数据的标准差为,,即64=,故答案为.1632.(2021·江苏高一课时练习)用随机数表法从名学生(男生人)中抽取人进行评教,某男生被抽取的机率是__________【答案】【详解】试题分析:每个个体被抽到的概率是相等的,均为.考点:等可能性事件的概率计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年安徽省马鞍山市高一第二学期期末数学试卷一、选择题(共12小题).1.已知数列{a n}的通项公式为a n=4n﹣3,则a5的值是()A.9B.13C.17D.212.在区间[﹣1,2]上随机取一个数x,则|x|≤1的概率为()A.B.C.D.3.已知a,b,c,d∈R,下列结论正确的是()A.若a>b,b<c,则a>c B.若a>b,则c﹣a<c﹣bC.若a>b,则ac2>bc2D.若a>b,c>d,则ac>bd4.某同学高一数学九次测试的成绩记录如图所示,则其平均数和众数分别为()A.81,88B.82,88C.81,86D.82,865.从6个篮球、2个排球中任选3个球,则下列事件中,是必然事件的是()A.3个都是篮球B.至少有1个是排球C.3个都是排球D.至少有1个是篮球6.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.47.在数列{a n}中,若a n=5n﹣16,则此数列前n项和的最小值为()A.﹣11B.﹣17C.﹣18D.38.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2﹣b2﹣c2+bc=0,则∠A等于()A.30°B.60°C.120°D.150°9.在等差数列{a n}中,若a7+a9=12,则其前15项的和S15=()A.60B.90C.120D.18010.如图:D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β,α(α<β),则A点离地面的高度AB等于()A.B.C.D.11.某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有()A.B.C.D.12.在数列{a n}中,a1=1,对于任意自然数n,都有a n+1=a n+n•2n,则a15=()A.14•215+2B.13•214+2C.14•215+3D.13•215+3二、填空题:本大题共5个小题,每小题4分,共20分.13.将二进制数110转化为十进制数的结果是.14.在△ABC中,角A,B,C的对边分别为a,b,c,已知b=,c=1,B=45°,则C=.15.执行如图所示的程序框图,输出的结果是.16.已知数列{a n}的前n项和S n=n2+n,则a n=.17.已知a>0,b>0,若恒成立,则m的取值范围是.三、解答题:本大题共5个小题,满分44分.解答应写出必要的文字说明、证明过程或演算步骤.18.已知不等式ax2+3x﹣2<0(a≠0).(1)当a=2时,求不等式的解集;(2)若不等式的解集为{x|x<1或x>2},求a的值.19.已知{a n}是等差数列,其前n项和为S n,已知a5=5,S5=15.(1)求数列{a n}的通项公式;(2)设a n=log2b n,求数列{b n}的前n项和T n.20.在△ABC中,D在边BC上,且BD=2,DC=1,∠B=60°,∠ADC=150°,求AC 的长及△ABC的面积21.某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的中位数;(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.22.已知{a n}是等差数列,a1=1,公差d>0,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)设b n=(n∈N*),求数列{b n}前n项和S n;(3)设f(λ)=,对于(2)中的S n,若S n>f(λ)对n∈N*恒成立,求λ的取值范围.参考答案一、选择题:本题共12小题,每小题3分,共36分,每小题所给的四个选项中只有一个是正确的.1.已知数列{a n}的通项公式为a n=4n﹣3,则a5的值是()A.9B.13C.17D.21【分析】由题目给出的数列的通项公式直接代入n的值求a5的值.解:由数列{a n}的通项公式为a n=4n﹣3,得a5=4×5﹣3=17.故选:C.2.在区间[﹣1,2]上随机取一个数x,则|x|≤1的概率为()A.B.C.D.【分析】本题利用几何概型求概率.先解绝对值不等式,再利用解得的区间长度与区间[﹣1,2]的长度求比值即得.解:利用几何概型,其测度为线段的长度.∵|x|≤1得﹣1≤x≤1,∴|x|≤1的概率为:P(|x|≤1)=.故选:D.3.已知a,b,c,d∈R,下列结论正确的是()A.若a>b,b<c,则a>c B.若a>b,则c﹣a<c﹣bC.若a>b,则ac2>bc2D.若a>b,c>d,则ac>bd【分析】根据各选项的条件,利用特殊值法或不等式的基本性质即可判断正误.解:A.若a>b,b<c,取a=1,b=0,c=1,则a=c,故A不正确;B.若a>b,则﹣a<﹣b,所以c﹣a<c﹣b,故B正确;C.若a>b,显然当c=0时,ac2>bc2不成立,故C不正确;D.若a>b,c>d,取a=1,b=0,c=﹣1,d=﹣2,则ac<bd,故D不成立.故选:B.4.某同学高一数学九次测试的成绩记录如图所示,则其平均数和众数分别为()A.81,88B.82,88C.81,86D.82,86【分析】根据平均数和众数的概念进行解答.解:同学高一数学九次测试的成绩分别是:68、75、78、83、86、81、86、88、93.平均数=(69+75+78+83+86+81+86+88+93)=82.众数是86.故选:D.5.从6个篮球、2个排球中任选3个球,则下列事件中,是必然事件的是()A.3个都是篮球B.至少有1个是排球C.3个都是排球D.至少有1个是篮球【分析】根据题意,由随机事件的定义分析选项,综合即可得答案.解:根据题意,从6个篮球、2个排球中任选3个球,分析可得:A,B是随机事件,C是不可能事件,D是必然事件;故选:D.6.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.7.在数列{a n}中,若a n=5n﹣16,则此数列前n项和的最小值为()A.﹣11B.﹣17C.﹣18D.3【分析】令a n=5n﹣16≤0,解得n.进而可得此数列前n项和的最小值为S3.解:令a n=5n﹣16≤0,解得n≤3+.则此数列前n项和的最小值为S3==﹣18.故选:C.8.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2﹣b2﹣c2+bc=0,则∠A等于()A.30°B.60°C.120°D.150°【分析】根据余弦定理,不难求出cos A,从而可得A.解:∵a2﹣b2﹣c2+bc=0,则b2+c2﹣a2=bc,∴,∵A∈(0,π),故,即∠A=60°.故选:B.9.在等差数列{a n}中,若a7+a9=12,则其前15项的和S15=()A.60B.90C.120D.180【分析】由等差数列的性质可得:a7+a9=12=a1+a15,再利用求和公式即可得出.解:由等差数列的性质可得:a7+a9=12=a1+a15,则其前15项的和S15==15×=90.故选:B.10.如图:D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β,α(α<β),则A点离地面的高度AB等于()A.B.C.D.【分析】设AB=x,在直角三角形ABC中表示出BC,进而求得BD,同时在Rt△ABD中,可用x和α表示出BD,二者相等求得x,即AB.解:设AB=x,则在Rt△ABC中,CB=∴BD=a+∵在Rt△ABD中,BD=∴a+=,求得x=故选:A.11.某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有()A.B.C.D.【分析】根据题意列出关于x的方程,把(1+p)(1+q)去括号化简后,利用基本不等式ab≤变形,然后开方即可得到正确答案.解:根据题意得:(1+p)(1+q)=(1+x)2,而(1+p)(1+q)=1+p+q+pq≤1+p+q+=,当且仅当p=q时取等号,即(1+x)2≤,两边开方得:1+x≤1+即x≤.故选:C.12.在数列{a n}中,a1=1,对于任意自然数n,都有a n+1=a n+n•2n,则a15=()A.14•215+2B.13•214+2C.14•215+3D.13•215+3【分析】在数列递推式中依次取n=1,2,3…,n﹣1.得到n﹣1个等式,累加后再利用错位相减法求解a n,则答案可求.解:∵a n+1=a n+n•2n,∴,,,…,.累加得:a n﹣a1=1•21+2•22+3•23+…+(n﹣1)•2n﹣1①又2a n﹣2a1=1•22+2•23+3•24+…+(n﹣2)•2n﹣1+(n﹣1)•2n②①﹣②得:﹣a n+a1=2+22+23+24+…+2n﹣1﹣(n﹣1)•2n==(2﹣n)•2n﹣2.∴.∴a15=13•215+3.故选:D.二、填空题:本大题共5个小题,每小题4分,共20分.13.将二进制数110转化为十进制数的结果是6.【分析】将二进制数从右开始,第一位数字是几,再乘以2的0次幂,第二位数字是几,再乘以2的1次幂,以此类推,进行计算即可.解:1102=1×22+1×2+0=4+2=6.故答案为:6.14.在△ABC中,角A,B,C的对边分别为a,b,c,已知b=,c=1,B=45°,则C=30°.【分析】由已知利用正弦定理可得sin C==,结合大边对大角可求C<45°,根据特殊角的三角函数值即可求解C的值.解:∵b=,c=1,B=45°,∴由正弦定理,可得sin C===,∵c<b,可得C<B=45°,∴C=30°.故答案为:30°.15.执行如图所示的程序框图,输出的结果是16.【分析】根据程序框图进行模拟运算即可.解:第一次S=0+1=1,n=3≤7成立,第二次S=1+3=4,n=5≤7成立,第三次S=4+5=9,n=7≤7成立,第四次S=9+7=16,n=9,n≤7不成立,输出S=16,故答案是:16.16.已知数列{a n}的前n项和S n=n2+n,则a n=2n.【分析】利用公式求解.解:∵数列{a n}的前n项和,∴a1=S1=1+1=2,n≥2时,a n=S n﹣S n﹣1=(n2+n)﹣[(n﹣1)2+(n﹣1)]=2n,n=1时,上式成立,∴a n=2n.故答案为:2n.17.已知a>0,b>0,若恒成立,则m的取值范围是(﹣∞,12].【分析】由已知可得(a+3b)()≥m,转化为求解(a+3b)()的最小值,利用基本不等式即可求解.解:知a>0,b>0,若恒成立,所以(a+3b)()≥m,因为(a+3b)()=6+=12,当且仅当时取等号,故m≤12,故答案为:(﹣∞,12]三、解答题:本大题共5个小题,满分44分.解答应写出必要的文字说明、证明过程或演算步骤.18.已知不等式ax2+3x﹣2<0(a≠0).(1)当a=2时,求不等式的解集;(2)若不等式的解集为{x|x<1或x>2},求a的值.【分析】(1)a=2时解一元二次不等式即可;(2)由根与系数的关系求出a的值.解:(1)a=2时,不等式为2x2+3x﹣2<0,分解因式得(2x﹣1)(x+2)<0,解得﹣2<x<,所以不等式的解集为{x|﹣2<x<};(2)不等式的解集为{x|x<1或x>2},所以方程ax2+3x﹣2=0的两根为1和2,由根与系数的关系知,﹣=1+2,解得a=﹣1.19.已知{a n}是等差数列,其前n项和为S n,已知a5=5,S5=15.(1)求数列{a n}的通项公式;(2)设a n=log2b n,求数列{b n}的前n项和T n.【分析】(1)设数列{a n}的首项为a1,公差为d,由已知列关于首项与公差的方程组,求得首项与公差,则数列{a n}的通项公式可求;(2)把数列{a n}的通项公式代入a n=log2b n,得,再由等比数列的前n项和公式求数列{b n}的前n项和T n.解:(1)设数列{a n}的首项为a1,公差为d,则由a5=5,S5=15,得,解得.∴a n=1+(n﹣1)×1=n;(2)由a n=log2b n,得,∴T n=b1+b2+…+b n=.20.在△ABC中,D在边BC上,且BD=2,DC=1,∠B=60°,∠ADC=150°,求AC 的长及△ABC的面积【分析】在△ABC中,根据∠B=60°,BC=3,∠ADC=150°,可得AB=1,结合正弦定理可得AC的长.利用面积公式求△ABC的面积.解:由题意,∠B=60°,BC=3,∠ADC=150°,可知ABD是直角三角形,∴AB=1,AD=在△ADC中,由余弦定理:AC2=AD2+DC2﹣2AD•DC cos150°=7∴AC=;△ABC的面积为==.21.某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的中位数;(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.【分析】(1)由面积和为1,可解得x的值;(2)由中位数两侧的面积相等,可解得中位数;(3)列出所有基本事件共10个,其中符合条件的共4个,从而可以解出所求概率.解:(1)由(0.005+0.010+0.030+0.025+0.010+x)×10=1,解得x=0.02.(2)中位数设为m,则0.05+0.1+0.2+(m﹣70)×0.03=0.5,解得m=75.(3)可得满意度评分值在[60,70)内有20人,抽得样本为2人,记为a1,a2满意度评分值在[70,80)内有30人,抽得样本为3人,记为b1,b2,b3,记“5人中随机抽取2人作主题发言,抽出的2人恰在同一组”为事件A,基本事件有(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共10个,A包含的基本事件个数为4个,利用古典概型概率公式可知P(A)=0.4.22.已知{a n}是等差数列,a1=1,公差d>0,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)设b n=(n∈N*),求数列{b n}前n项和S n;(3)设f(λ)=,对于(2)中的S n,若S n>f(λ)对n∈N*恒成立,求λ的取值范围.【分析】(1)由a2,a5,a14成等比数列列式求得数列公比,可得数列通项公式;(2)把(1)中求得的a n代入b n=,整理后利用裂项相消法求数列{b n}前n 项和S n;(3)由>0,可得数列{S n}是单调递增的,则S1=是S n的最小值,把问题转化为<恒成立,求解不等式可得λ的取值范围.解:(1)由题意,a2,a5,a14成等比数列,∴,即,整理得,∵d>0,∴d=2.∴a n=1+2(n﹣1)=2n﹣1;(2)b n==,∴S n=b1+b2+…+b n==;(3)∵>0.∴数列{S n}是单调递增的,∴S1=是S n的最小值.要使S n>f(λ)对n∈N*恒成立,需f(λ)=<恒成立.解得:3≤λ<7.∴λ的取值范围为[3,7).。