平面向量经典例题分析

合集下载

第13讲 平面向量十大题型总结(解析版)-2024高考数学常考题型

第13讲 平面向量十大题型总结(解析版)-2024高考数学常考题型

第13讲平面向量十大题型总结【题型目录】题型一:平面向量线性运算题型二:平面向量共线问题题型三:平面向量垂直问题题型四:平面向量的夹角问题题型五:平面向量数量积的计算题型六:平面向量的模问题题型七:平面向量的投影问题题型八:万能建系法解决向量问题题型九:平面向量中的最值范围问题题型十:平面向量中多选题【典型例题】题型一:平面向量线性运算【例1】在ABC △中,D 是AB 边上的中点,则CB =()A .2CD CA+ B .2CD CA- C .2CD CA- D .2CD CA+ 【答案】C【解析】:CA CD AC CD CD AC CD AD CD DB CD CB -=+=++=+=+=22【例2】在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC-B .1344AB AC-C .3144+AB AC D .1344+AB AC 【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC=+=+=++ 1113124444BA BA AC BA AC=++=+,所以3144EB AB AC =-,故选A.【例3】在ABC 中,点P 为AC 中点,点D 在BC 上,且3BD DC = ,则DP =()A .1144AB AC+B .1144AB AC--C .1144AB AC-D .1144AB AC-+【答案】B【解析】∵点P 为AC 中点,∴12AP AC = ,∵3BD DC =,()3AD AB AC AD ∴-=- ,∴1344AD AB AC =+ ,∴113244DP AP AD AC AB AC =-=-- =1144AB AC --,故选:B.【例4】在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,且EB AB AC λμ=+,则λ=________,μ=_________.【答案】3414-【解析】如下图所示:D Q 为BC 的中点,则()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,E 为AD 的中点,所以,()1124AE AD AB AC ==+,因此,()131444EB AB AE AB AB AC AB AC =-=-+=- ,即34λ=,14μ=-.故答案为:34;14-.【例5】如图,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 中点,点F 为线段BC 的中点,则FE =()A .2136AB AC+B .2136AB AC-+C .1263AB AC+D .1263AB AC-+点F 为线段BC 的中点,13BD BA AD BA BC BA =+=+=+ 又2BD FE = ,2136FE AB AC ∴=-+.【题型专练】1.设,,D E F 分别为ABC 的三边BC,CA,AB 的中点,则EB FC +=()A .ADB .12ADC .12BCD .BC【答案】A【解析】111()()()222EB FC BA BC CA CB AB AC AD +=-+-+=+=,故选:A2.设D为△ABC所在平面内的一点,若3,AD BD CD CA CBλμ==+,则μλ=_____.【答案】3-【解析】如图所示:3CD CA AD CA BD=+=+,CA=+3(CD CB-),即有CD=﹣1322CA CB+,因为CD CA CBλμ=+,所以λ=﹣12,μ=32,则μλ=﹣3,故答案为:﹣3.3.在ABC中,4AC AD=,P为BD上一点,若13AP AB ACλ=+,则实数λ的值()A.18B.316C.16D.38【答案】C【解析】4AC AD=,14AD AC∴=,则14BD AD AB AC AB=-=-,1233BP AP AB AB AC AB AC ABλλ⎛⎫=-=+-=-⎪⎝⎭,由于P为BD上一点,则//BP BD,设BP k BD=,则21344kAC AB k AC AB AC k ABλ⎛⎫-=-=-⎪⎝⎭,所以423kkλ⎧=⎪⎪⎨⎪=⎪⎩,解得16λ=.4.在ABC 中,2AB =,4BC =,60ABC ∠=︒,AD 为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,则λμ+=()A .13B .23C .38D .58【答案】D【解析】AD 是BC 边上的高,∴90ADB ∠=︒,在ADB △中,1cos 22BD BD ABD AB ∠===,解得1BD =, 4BC =,∴14BD BC =,∴14AD AB BD AB BC =+=+, O 为AD 中点,∴1111122428AO AD AB BC AB BC ⎛⎫==+=+ ⎪⎝⎭ , AO AB BC λμ=+ ,∴1128AB BC AB BC λμ+=+ ,∴12λ=,18μ=,∴115288λμ+=+=.5.已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么()A .AO OD =B .2AO OD=C .3AO OD=D .4AO OD =【答案】A【解析】D 为BC 边中点,∴2OB OC OD +=,∵20OA OB OC ++=,∴0OA OD =+,即AO OD =.6.设D 为ABC 所在平面内一点,且满足3CD BD =,则()A .3122AD AB AC =-B .3122=+AD AB ACC .4133AD AB AC =-D .4133AD AB AC=+ ∴2CB BD =,即12BD CB = .()12123122AD AB BD ABCBAB AB ACAB AC ∴=+=+=+-=- 故选:A.题型二:平面向量共线问题【例1】已知向量()1,2a =- ,()sin ,cos b αα= ,若//a b,则tan α=()A .12-B .2-C .12D .2【例2】与模长为13的向量()12,5d =平行的单位向量为()A .1251313⎛⎫ ⎪⎝⎭,B .1251313⎛⎫-- ⎪⎝⎭,C .1251313⎛⎫ ⎪,或1251313⎛⎫-- ⎪,D .1251313⎛⎫- ⎪,或1251313⎛⎫- ⎪,【例3】已知向量()1,2AB =,(),7BC m =,()3,1CD =-,若A ,B ,D 三点共线,则m =________.【例4】设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ=___.【答案】21【解析】因向量λ+a b 与2+a b 平行,所以()b a b a ba μμμλ22+=+=+,所以⎩⎨⎧==μμλ21,解得⎪⎩⎪⎨⎧==2121μλ【例5】在ABC ∆中,点P 满足3BP PC = ,过点P 的直线与AB 、AC 所在的直线分别交于点M 、N ,若AM AB λ= ,()0,0AN AC μλμ=>>,则λμ+的最小值为()A .212+B .12+C .32D .52【答案】B【解析】如下图所示:3BP PC = ,即()3AP AB AC AP -=- ,1344AP AB AC∴=+ ,AM AB λ= ,()0,0AN AC μλμ=>> ,1AB AM λ∴=,1AC ANμ= ,1344AP AM ANλμ∴=+ ,M 、P 、N 三点共线,则13144λμ+=.()133********λμλμλμλμμλ⎛⎫∴+=++=++≥=+ ⎪⎝⎭,当且仅当μ=时,等号成立,因此,λμ+的最小值为312+,故选:B.【题型专练】1.已知非零向量a ,b ,c ,若(1)a x = ,,(41)b =- ,,且//a c ,//b c则x =()A .4B .4-C .14D .14-【答案】D【解析】:因非零向量c b a ,,,且//a c ,//b c ,所以a 与b 共线,所以()x 411=-⨯,所以41-=x 2.已知向量的(7,6)AB =,(3,)BC m =- ,(1,2)AD m =- ,若A ,C ,D 三点共线,则m =______.3.已知向量a ,b 是两个不共线的向量,且35OA a b =+,47OB a b =+,OC a mb =+,若A ,B ,C 三点共线,则m =()A .1B .1-C .2D .2-【答案】A【解析】法一:b a b a b a OB AO AB 27453+=++--=+=,()b m a b m a b a OC BO BC 7374-+-=++--=+=,因A ,B ,C 三点共线,所以AB 与BC 共线,所以()[]()b m a b m a b a 73732-+-=-+-=+λλλ,所以()⎩⎨⎧-=-=7231m λλ,解得⎪⎩⎪⎨⎧=-=131m λ法二:由,,A B C 三点共线,得(1)(4)(72)OC xOA x OB x a x b =+-=-+-,故41,72,x x m -=⎧⎨-=⎩解得1m =.4.设12e e,是两个不共线的向量,若向量12m e ke =-+(k ∈R )与向量212n e e =-共线,则A .0k =B .1k =C .2k =D .12k =【答案】D【解析】因为向量12=-+ m e ke (k ∈R )与向量212=-n e e 共线,所以存在实数λ,使得λ=m n ,所以有2211(2)λ-+=- e ke e e ,因此12k λλ=⎧⎨-=-⎩,解得12k =.5.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM = ,AC nAN =,则m n +=()A .1B .32C .2D .3【答案】C【解析】连接AO ,由O 为BC 中点可得,1()222m n AO AB AC AM AN =+=+,M 、O 、N 三点共线,122m n∴+=,2m n ∴+=.故选:C.6.已知M 为ABC 的边AB 的中点,N 为ABC 内一点,且13AN AM BC =+ ,则AMNBCNS S =△△()A .16B .13C .12D .23【答案】B【解析】因为13AN AM BC =+,所以13MN BC = ,所以MN ∥BC ,又因为M 为边AB 的中点,所以点A 到MN 的距离等于点N 到BC 的距离,所以13AMNBCNMN S S BC== △△,题型三:平面向量垂直问题【例1】已知向量(1)(32)m =-,,=,a b ,且()+⊥a b b ,则m =()A .8-B .6-C .6D .8【答案】D【解析】:()()()2,42,3,1-=-+=+m m b a ,因()b b a ⊥+,所以()0=⋅+b b a ,即()()()022122,32,4=--=--m m ,所以8=m 【例2】已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】22【解析】由题意可得:11cos 452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:22k =.【例3】已知单位向量,a b 的夹角为60°,则在下列向量中,与b 垂直的是()A .b a 2+B .ba +2C .ba 2-D .ba -2【答案】D【思路导引】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【解析】由已知可得:11cos 601122⋅=︒=⨯⨯=a b a b .A :∵215(2)221022+⋅=⋅+=+⨯=≠a b b a b b ,∴本选项不符合题意;B :∵21(2)221202+⋅=⋅+=⨯+=≠a b b a b b ,∴本选项不符合题意;C :∵213(2)221022-⋅=⋅-=-⨯=-≠a b b a b b ,∴本选项不符合题意;D :∵21(2)22102-⋅=⋅-=⨯-=b b b a b b ,∴本选项符合题意.故选D .【例4】已知向量(2,1),(3,)a b m →→=-=,且()a b a →→→+⊥,则实数m =___________.【答案】1【分析】先求出+=(1,1)a b m →→+,再解方程1(2)1(1)0m ⨯-+⨯+=即得解.【详解】解:由题得+=(1,1)a b m →→+,因为()a b a →→→+⊥,所以()=0a b a →→→+g ,所以1(2)1(1)0,1m m ⨯-+⨯+=∴=.故答案为:1【例5】已知非零向量m,n 满足4|3|=m |n |,1cos ,3<>=m n .若()t ⊥+n m n ,则实数t 的值为()A .4B .–4C .94D .–94【答案】B 【解析】由()t ⊥+n m n 可得()0t ⋅+=n m n ,即20t ⋅+=m n n ,所以2221|cos |3||t |||<,>|||=-=-=-⋅⋅⨯⨯n n n m n m n m n m n ||4334||3=-=-⨯=-n m .故选B .【例6】已知向量AB 与AC 的夹角120,且|AB |=3,|AC |=2,若AP AB AC λ=+ ,且AP BC ⊥ ,则实数λ的值为_____.【答案】712【解析】向量与的夹角为,且所以.由得,,即,所以,即,解得.【题型专练】1.ΑΒC ∆是边长为2的等边三角形,已知向量a ,b 满足2ΑΒ= a ,2ΑC =+a b ,则下列结论正确的是()A .1=b B .⊥a bC .1⋅=a b D .()4ΒC-⊥a b 【答案】D【解析】如图由题意,(2)2BC AC AB a b a b =-=+-= ,故||2b = ,故A 错误;|2|2||2a a ==,所以||1a = ,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=- ,故,B C 错误;设,B C 中点为D ,则2AB AC AD += ,且AD BC ⊥ ,所以()4C a b +⊥B ,故选D .2.已知1e ,2e 12-e 与12λ+e e 的夹角为60 ,则实数λ的值是.【答案】33【解析】解法一:因1e ,2e 11==,021=⋅e e所以221212112122)()λλλ-⋅+=+⋅-⋅-=-e e e e e e e e ,12|2-=e ,12||λ+===e e ,2cos60λ==,解得:33λ=.解法二:建立坐标系,设()()1,0,0,121==e e ()()λλ,1,1,3212=+-=-e e e ,所以()()2221213λ+=+=-+=)()λλ-=+-3212e e e所以由数量积的定义得︒⨯+⨯=-60cos 1232λλ,解得:33λ=.3.已知向量()(),2,1,1a m b ==,若()a b b +⊥ ,则m =__________.【答案】4-【分析】根据向量的坐标运算即可求解.【详解】由题意可得()1,3a b m +=+,则130m ++=,解得4m =-.故答案为:4-4.已知向量(,2),(2,4)m a a n a =+=- ,且()n m n ⊥-,则实数=a _____________.【答案】2【分析】根据向量坐标运算及向量垂直的坐标表示即得.【详解】因为(,2)(2,4)(2,2)m n a a a a -=+--=-,又()n m n ⊥- ,所以2(2)(2)40a a ⨯-+-⨯=,解得2a =.故答案为:2.5.在ABC 中,()1,2,3A k -,()2,1,0B -,()2,3,1C -,若ABC 为直角三角形,则k 的值为()A .23B .83C .-1D .325-题型四:平面向量的夹角问题【例1】已知平面向量a ,b满足||4,||1== a b ,()a b b -⊥ ,则cos ,a b 〈〉= ()A .14B .4C.4D .4【例2】已知(2,0)a = ,1,22b ⎛= ⎝⎭r ,则a b - 与12a b + 的夹角等于()A .150°B .90°C .60°D .30°【例3】已知向量a=(2,1),()3,1b =- ,则()A.若c =-⎝⎭ ,则a c ⊥B .向量a 在向量b 上的投影向量为12b-C .a 与a b -D .()//a b a+【例4】若向量a ,b 满足||a = ,(2,1)b =-,5a b ⋅=- ,则a 与b 的夹角为_________.【例5】已知向量a b ,满足566a b a b ==⋅=-,,,则cos ,a a b +=()A .3135-B .1935-C .1735D .1935【例6】若非零向量,a b 满足32a b a b ==+,则a 与b 夹角的余弦值为________.【例7】设向量(68)=-,a ,(34)=,b ,t =+c a b,t ∈R ,若c 平分a与b 的夹角,则t 的值为.【答案】2【解析】解法一:()t t b t a c 48,36++-=+=,所以()()t t t c a 14100488366+=+++--=⋅;()()1425484363+=+++-=⋅t t t c b 510==因c 平分a 与b 的夹角,所以=c b c a ==,所以()1425214100+=+t t ,解得2=t解法二:因c 平分a 与b的夹角,所以()()⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-=⎫⎛=58,054,3108,6λλλb a c ,又因()t t b t a c 48,36++-=+=,所以()()t t 3658480+-=+⨯,解得2=t 【例8】已知A B C △的三个顶点分别为(3(60)(5A B C ,,,,,求ACB ∠的大小.【答案】C【解析】()()3,1,0,2=-=CB CA()()()2312022222=+==+-=所以21223012cos -=⨯⨯+⨯-==∠CB CA ACB ,所以︒=∠120ACB 【题型专练】1.设非零向量、ab满足||2||,||||a b a b b =+= ,则向量a 与b的夹角为()A .30°B .60︒C .120︒D .150︒2.已知(2,1)a =-,||b =,且()10a b a +⋅= ,则,a b 〈〉= ___________.3.已知向量,a b 满足||1a =,||a b =+1)b =- ,则,a b 的夹角等于___________.4.若两个非零向量a 、b 满足2a b a b a +=-=,则a b - 与b 的夹角___________.5.已知单位向量a ,b 满足0a b ⋅=,若向量c =+,则sin ,a c =()A B C D6.已知向量,a b 满足()()3,4,·28a b a b a b ==+-=,则向量a 与b 所成的夹角为()A .π6B .π3C .π2D .2π37.已知向量a ,b 满足||2||2b a == ,|2|2a b -= ,则向量a ,b 的夹角为()A .30°B .45︒C .60︒D .90︒8.已知向量()PA =,(1,PB =,则APB ∠=A .30︒B .60︒C .120︒D .150︒【答案】D【解析】根据题意,可以求得2,2PA PB ===,所以333cos 222PA PB APB PA PB⋅∠===-⋅,结合向量所成角的范围,可以求得150APB ∠=︒,故选D .9.非零向量a ,b 满足:-=a b a ,()0⋅-=a a b ,则-a b 与b 夹角的大小为A .135︒B .120︒C .60︒D .45︒【答案】A【解析】 非零向量a ,b 满足()0⋅-=a a b ,∴2=⋅a a b,由-=a b a 可得2222-⋅+=a a b b a,解得=b ,()22cos 2θ-⋅⋅-∴===--a b ba b b a b ba b,θ为-a b 与b 的夹角,135θ∴= ,故选A .10.已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos,=a c ___________.【答案】23【解析】因为2=c a,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .11.已知向量(4,3),(1,2)a b =-=-,,a b的夹角为θ,则sin θ=__________.【答案】55【解析】依题意[]0,πθ∈,所以255cos ,sin 55||||a b a b θθ⋅===-== .故答案为.12.已知向量,a b 满足5,6,6==⋅=-a b a b ,则cos ,+=a a b ()A .3531-B .3519-C .3517D .3519【答案】D【思路导引】计算出()a ab ⋅+ 、a b + 的值,利用平面向量数量积可计算出cos ,a a b <+>的值.【解析】5a = ,6b = ,6a b ⋅=- ,()225619a a b a a b ∴⋅+=+⋅=-= .7a b +== ,因此()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+ .故选D .题型五:平面向量数量积的计算【例1】(2021新高考2卷)已知向量0,||1,||||2,a b c a b c a b b c c a ++====⋅+⋅+⋅=_______.【答案】29-【解析】方法一:因为0=++c b a ,所以()02=++cb a ,即0222222=+++++c b c a b a c b a所以0222441=+++++c b c a b a ,所以9222-=++c b c a b a ,所以29-=++c b c a b a 方法二:因为0=++c b a ,所以c b a -=+,所以()()22c b a -=+,即2222cb a b a=++所以4241=++b a ,所以21-=b a ,同理b c a -=+,所以()()22b ca -=+,即2222b c a c a =++,所以4241=++c a ,所以21-=c a ,同理a c b -=+,所以()()22a c b -=+,即2222a c b c b =++,所以1244=++c b ,所以27-=⋅c b ,所以29-=++c b c a b a 【例2】在△ABC 中,6,AB O =为△ABC 的外心,则AO AB ⋅等于A B .6C .12D .18【答案】D【解析】试题分析:如图,过点O 作OD AB ⊥于D ,则()36018AO AB AD DO AB AD AB DO AB ⋅=+⋅=⋅+⋅=⨯+=,应选D.【例3】已知边长为3的正2ABC BD DC = ,,则AB AD ⋅=()A .3B .9C .152D .6【例4】已知ABC 为等边三角形,AB =2,设点P ,Q 满足AP AB λ=,(1)AQ AC λ=-,R λ∈,若2BQ CP ⋅=-,则λ=()A .12B .12C .12±D故选:A.【例5】在ABC 中,6A π=,||AB =||4AC =,3BD BC =,则AB AD ⋅=______.【答案】24-【分析】利用基底,AB AC 3AD AB BD AB BC =+=+ ,BC AC = 23AD AB AC ∴=-+ ,∴()232AB A AB AD AB AB C =⋅-+=-⋅ 【题型专练】1.如图,在△ABC 中,AD ⊥AB ,BC =,1AD = ,则AC AD ⋅=()A .B CD .3-2.在ABC 中,3AB AC ==,DC BD 2=﹒若4AD BC ⋅=,则AB AC ⋅=______.3.ABC 中,90C ∠=︒,2AC =,P 为线段BC 上任一点,则AP AC ⋅=()A .8B .4C .2D .64.已知ABC 为等边三角形,D 为BC 的中点,3AB AD ⋅=,则BC =()A BC .2D .45.如图,在ABC 中,3BAC ∠=,2AD DB =,P 为CD 上一点,且满足2AP mAC AB =+,若||3AC =,||4AB =,则AP CD ⋅的值为()A .-3B .1312-C .1312D .1126.在平行四边形ABCD 中,AC =6,AB AD ⋅=5,则BD =____________.【详解】AC AB BC AB AD =+=+ ,则2AC AB = 236226AD AB AD +=-⋅=,AD AB - ,则222BD AD AB AD =-⋅+ 7.已知在ABC 中,90C ∠=︒,4CA =,3CB =,D 为BC 的中点,2AE EB =,CE 交AD 于F ,则CE AD ⋅=_______【答案】73-##123-题型六:平面向量的模问题【例1】已知(1)t =,a ,(6)t =-,b ,则|2|+a b 的最小值为________.【答案】52【解析】:()()()40205362444462262,2222222+-=+-+++=-++=-+=+t t t t t t t t t t a对称轴2=t ,所以当2=t 时,524040202=+-=a 【例2】(2021新高考1卷)已知O 为坐标原点,点1(cos ,sin )P αα,2(cos ,sin )P ββ-,3(cos(),sin())P αβαβ++,(1,0)A ,则:A .12||||OP OP = B .12||||AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α===== ,同理2||2|sin |2AP β== ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯= ,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC【例3】已知向量a ,b 的夹角为60°,||2=a ,||1=b ,则|2|+a b =.【答案】324211244+⨯⨯⨯+====+3212==【例4】已知a 与b 均为单位向量,其中夹角为θ,有下列四个命题1p :||1+>a b ⇔θ∈[0,23π)2p :||1+>a b ⇔θ∈(23π,π]3p :||1->a b ⇔θ∈[0,3π)4p :||1->a b ⇔θ∈(3π,π]其中真命题是(A )1p ,4p (B)1p ,3p (C)2p ,3p (D)3p ,4p 【答案】A【解析】由||1+>a b 得,221∙>a +2a b +b ,即∙a b >12-,即cos θ=||||∙a b a b >12-,∵θ∈[0,π],∴θ∈[0,23π),由||1->a b 得,22-1∙>a 2a b +b ,即∙a b <12,即cos θ=||||∙a b a b <12,∵θ∈[0,π],∴θ∈(3π,π],故选A .【例5】设a ,b 是两个非零向量A .若||||||+=-a b a b ,则⊥a bB .若⊥a b ,则||||||+=-a b a b C .若||||||+=-a b a b ,则存在实数λ,使得λ=b a D .若存在实数λ,使得λ=b a ,则||||||+=-a b a b 【答案】C【解析】对于A b b a a2222-=⇒+-=+⋅+⇒=θ,所以1cos -=θ,所以︒=180θ,所以A 错,B 错;C 对,D 有可能为︒0【题型专练】1.设向量(10),a =,22()22=-b ,若t =+c a b (t ∈R),则||c 的最小值为A B .1C .2D .12【答案】C【解析】()⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=+=t t t b t a c 22,22122,220,12222221⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=t t 222122122121212222≥+⎪⎪⎭⎫ ⎝⎛+=++=+++=t t t t t t 2.已知向量(1,2)a =- ,(21,1)b m =- ,且a b ⊥,则|2|a b -= ()A .5B .4C .3D .23.已知向量a ,b满足1a =,2b =,a b -=,则2a b +=()A .B .C D4.已知[02π)αβ∈、,,(cos ,sin )a αα=r,(cos(),sin())b αβαβ=++,且23a b -=,则β可能为()A .π3B .2π3C .πD .4π3【答案】BD【分析】根据向量模的运算列方程,化简求得cos β的值,进而求得正确答案.5.平面向量a 与b 的夹角为60︒,(3,4),||1==a b ,则|2|a b += _____________.6.已知向量,a b 满足||2,(2,2)a b == ,且|2|6a b += ,则||a b += __________.7.设,a b 为单位向量,且||1+=a b ,则||a b -=______________.【解析】因为,a b为单位向量,所以1a b ==r r所以1a b +==,解得:21a b ⋅=-所以a b -==8.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵33-=+a b a b ,∴22(3)(3)-=+a b a b ,∴2269-⋅+=a ab b 2296+⋅+a a b b ,又||||1==a b ,∴0⋅=a b ,∴⊥a b ;反之也成立,故选C .9.已知向量a ,b 夹角为045,且|a |=1,|2-a b |b |=.【答案】.【解析】∵|2-a b |=平方得224410-= a a b +b ,即260--=|b |b |,解得|b |=(舍)题型七:平面向量的投影问题【例1】已知向量(2,1),(1,1)a b =-= ,则a 在b上的投影向量的模为()A B .12C .2D .1【例2】已知6a =,3b =,向量a 在b 方向上投影向量是4e ,则a b ⋅ 为()A .12B .8C .-8D .2【例3】已知平面向量a ,b ,满足2a =,1b =,a 与b 的夹角为23π,2b 在a 方向上的投影向量为()A .1-B .12aC .12a - D .1【例4】已知平面向量a ,b 满足2=a ,()1,1b =,a b +=r r a 在b 上的投影向量的坐标为()A .22⎛ ⎝⎭B .()1,1C .()1,1--D .⎛ ⎝⎭【例5】已知O 为正三角形ABC 的中心,则向量OA 在向量AB 上的投影向量为()A .ABB C .12AB-D .12AB故选:C【例6】设向量a 在向量b 上的投影向量为m ,则下列等式一定成立的是()A .||a b m bb ⋅=⋅ B .2||a b m bb ⋅=⋅ C .m b a b⋅=⋅ D .ma b a⋅=⋅【题型专练】1.已知()1,2a = ,()1,2b =- ,则a 在b上的投影向量为()A .36,55⎛⎫- ⎪B .36,55⎛⎫- ⎪C .36,55⎛⎫-- ⎪D .36,55⎛⎫ ⎪2.如图,在平面四边形ABCD 中,120ABC BCD ∠=∠= ,AB CD =,则向量CD 在向量AB 上的投影向量为()A .2AB -B .12AB -C .12AB D .2AB 【答案】B【分析】根据图形求出向量AB 与CD的夹角,再根据投影向量的公式进行求解即可.【详解】延长AB ,DC 交于点E ,如图所示,3.已知向量()1,3a =,()2,4b =-,则下列结论正确的是()A .()a b a+⊥r r r B .2a b +=C .向量a 与向量b 的夹角为34πD .b 在a的投影向量是()1,34.已知()3,1a =-,()1,2b =,下列结论正确的是()A .与b同向共线的单位向量是⎝⎭B .a 与bC .向量a在向量b 上的投影向量为12,55⎛⎫ ⎪⎝⎭D .15a b b⎛⎫-⊥ ⎪ 5.关于平面向量,有下列四个命题,其中说法正确的是()A .若1,,120a b a b ===︒,则()2a b a+⊥r r r B .点()()1,1,3,2M N --,与向量MN同方向的单位向量为43,55⎛⎫- ⎪⎝⎭C .若20a b a b a +=-=≠ ,则+r r a b 与a b - 的夹角为60°D .若向量()()2,1,6,2a b =-= ,则向量b 在向量a 上的投影向量为2a-同方向的单位向量为6.己知空间向量||3,||2a b ==,且2a b ⋅=,则b 在a 上的投影向量为________.【答案】29a ##29a7.已知1a =,2b =,且()a ab ⊥+,则a 在b 上的投影向量为()A .b -B .bC .14b- D .14b【答案】C 【详解】因为()a a b ⊥+ ,所以()0a a b ⋅+= ,即220,0a a b a a b +⋅=+⋅= ,又因为1a = ,设,a b 的夹角为θ,所以1a b ⋅=-,a 在b 上的投影为:cos b a b a θ⋅=⋅ ,所以a 在b 上的投影向量为214cos b a b b b ba b θ⋅⋅=⋅=⋅- .故选:C8.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为ABC.D.【答案】A【解析】AB =(2,1),CD =(5,5),则向量AB 在向量CD方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅==CD AB AB θ9.若向量,a b满足22a a b =+= ,则a 在b 方向上投影的最大值是AB.CD.【答案】B【详解】由题意2,22a a b =+= ,所以2||4164b a b +⋅+=,设,a b 的夹角为θ,则2||8cos 120b b θ++= ,所以212cos 8b bθ+=- ,所以a 在b 方向上投影为2123cos 2()(48b b a bb θ+=⨯-=-+,因为3b b +≥cos a θ≤ ,故选B.题型八:万能建系法解决向量问题边长为a 的等边三角形已知夹角的任意三角形正方形矩形平行四边形直角梯形等腰梯形圆建系必备(1)三角函数知识cos ,sin x r y r q q ==;(2)向量三点共线知识(1)OC OB OAl l =+-(对面女孩看过来).【例1】如图,在等腰梯形ABCD 中,2,3,4AB BC CD BC BE ==== ,则CA DE ⋅=()A .43B .154-C .558-D .6516-3315,0,,0,1,D C A ⎛⎛⎫⎛⎫【例2】如图,正八边形ABCDEFGH 中,若AE AC AF λμ=+()R λμ∈,,则λμ+的值为________.正八边形的中心【详解】、HD BF 所在的直线分别为x y 、轴建立平面直角坐标系,正八边形的中心M 点,3608⎛∠=∠=∠=∠= ⎝AOB COB AOH EOD 18045135-= ,所以22.5∠= BAC ,13522.5112.5∠-∠=-= HAB CAB ,所以∠HAC y 轴,、AOM MOC 为等腰直角三角形,2,则2=====OD OF OE OA OC ,()0,2F ,2===OM MC ,所以()2,2--A ,(2,-C【点睛】本题主要考查了平面向量坐标法解决几何问题,建立坐标系是解题的关键,还考查了向量的加法运算,考查方程思想及转化思想,属于中档题.【题型专练】1.如图,在梯形ABCD 中,//AB DC ,10AB =,7BC =,2CD =,5AD =,则AC BD ⋅=___________.则5,02A ⎛⎫- ⎪⎝⎭,532,2C ⎛⎫ ⎪ ⎪⎝⎭,15,02B ⎛⎫ ⎪⎝⎭,530,2D ⎛ ⎝953,22AC ⎛⎫∴= ⎪ ⎪⎝⎭ ,1553,22BD ⎛⎫=- ⎪ ⎪⎝⎭,AC BD ∴⋅ 故答案为:15-.2.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD = _________;PB PD ⋅=_________.【答案】(1).(2).1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=-,()0,1PB =- ,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.题型九:平面向量中的最值范围问题【例1】如下图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,3BCD π∠=,CB CD ==M 为边BC 上的动点,则AM DM ⋅的最小值为()A .83B .214C .114-D .133-【例2】ABC 是边长为4的等边三角形,点D 、E 分别在边AC 、BC 上,且DE BC ⊥,则DA DE ⋅的最小值为()AB .C .3D .-3则(0,0),(2,23),(4,0)C A B【例3】四边形ABCD 中,4AB =,60A B ∠=∠=︒,150D ∠=︒,则DA DC ⋅的最小值为()AB .C .3D .-3∴90,60DCB E ∠=︒∠= ,设CE x =,则3,DC x DA =∴()423cos150DA DC x x ⋅=-⋅⋅ 所以当1x =时,DA DC ⋅的最小值为【例4】如图,在梯形ABCD 中,//AD BC ,2AD =,9BC =,5AB =,cos 5B =,若M ,N 是线段BC上的动点,且1MN = ,则DM DN ⋅的最小值为()A .134B .132C .634D .352//AD BC ,32AD =,9BC =,5AB =(9,0)C ∴,∴3cos 5A xB AB ==,3,4A A x y ==9(3,4),(,4)2A D ∴,【例5】已知边长为2的菱形ABCD 中,点F 为BD 上一动点,点E 满足2BE EC =,3AE BD ⋅=-,则AF BE⋅的最小值为()A .0B .23C .43D .2【例6】已知向量a,b,c共面,且均为单位向量,0a b⋅=,则ab c++的最大值是()A B C1D1【例7】骑自行车是一种能有效改善心肺功能的耐力性有氧运动,深受大众喜爱,如图是某一自行车的平面结构示意图,已知图中的圆A (前轮),圆DABE △,BEC △,ECD 均是边长为4的等边三角形.设点P 为后轮上的一点,则在骑动该自行车的过程中,AC BP ⋅的最小值为()A .12B .24C .36D .18故选:A【例8】已知AB AC ⊥ ,1AB t = ,AC t = ,若点P 是ABC ∆所在平面内一点,且4AB AC AP AB AC=+ ,则PB PC ⋅的最大值等于()A .13B .15C .19D .21【答案】A【解析】以题意,以点A 为坐标原点,以AB 所在的直线为x 轴,AC 所在的直线为y 轴建立如图所示的平面直角坐标系,所以点(1,4)P ,1(,0)B t,(0,)C t ,所以11(1,4)(1,4)(1)(1)4(4)PB PC t t t t ⋅=----=-⨯--⨯- =1174t t --17-≤=13(当且仅当14t t =,即12t =时取等号),所以PB PC ⋅ 的最大值为13.故选A .【题型专练】1.已知梯形ABCD 中,3B π∠=,2AB =,4BC =,1AD =,点P ,Q 在线段BC 上移动,且1PQ =,则DP DQ ⋅的最小值为()A .1B .112C .132D .1142.在ABC 中,902A AB AC ∠=== ,,点M 为边AB 的中点,点P 在边BC 上运动,则AP MP ⋅的最小值为___________.【答案】78【分析】建立平面直角坐标系,利用数量积的坐标运算求出3.ABC 为等边三角形,且边长为2,则AB 与BC 的夹角大小为120,若1BD =,CE EA =,则AD BE ⋅的。

典型例题:平面向量的线性运算

典型例题:平面向量的线性运算

平面向量的线性运算例1一辆汽车从A点出发向西行驶了100公里到达B点,然后又改变方向向西偏北050走了200公里到达C点,最后又改变方向,向东行驶了100公里到达D点。

(1)作出向量AB,BC,CD;(2)求AD。

分析:解答本题应首先确立指向标,然后再根据行驶方向确定出有关向量,进而求解。

解析:(1)如图所示。

(2)由题意易知,AB与CD方向相反,故AB与CD共线。

又AB CD=,∴在四边形ABCD中,//=,AB CD且AB CD∴四边形ABCD为平行四边形。

故200==(公里)。

AD BC评注:准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点。

例2化简:()()---。

AB CD AC BD分析:该例为一基础题目,可有多种解法。

解法1:原式AB CD AC BD=--+=+++()()AB DC CA BD=+++AB BD DC CA=+=0AD DA评注:该解法是将向量减法转化为加法进行化简的。

解法2:原式AB CD AC BD=--+=()-DC DB-()AB AC=CB BC+=0评注:本解法是利用AB AC CB-=进行化简的。

-=,DC DB BC解法3:设O为平面内任意一点,则有原式AB CD AC BD=--+=-----+-OB OA OD OC OC OA OD OB()()()()=--+-++-OB OA OD OC OC OA OD OB=0评注:本解法是利用MN ON OM=-关系进行化简的。

例3对于下列各种情况,各向量的终点的集合分别是什么图形(1)把所有单位向量的起点平行移动到同一点P ;(2)把平行于直线l 的所有单位向量的起点平行移动到直线l 的点P ;(3)把平行于直线l 的所有向量的起点平行移动到直线l 的点P 。

分析:数学中的向量是自由向量,可以重新选择起点进行平移,只要平移前后两个向量相等即可。

解析:(1)是以P 点为圆心,以1个单位长为半径的圆;(2)是直线l 上与P 的距离为1个单位长的两个点;(3)是直线l 。

人教A版高中数学必修第二册6.2平面向量的运算 经典例题及课后练习题

人教A版高中数学必修第二册6.2平面向量的运算 经典例题及课后练习题

6.2 平面向量的运算复习巩固1. 如果a 表示“向东走10km ”, b 表示“向西走5km ”, c 表示“向北走10km ”, d 表示“向南走5km ”,那么下列向量具有什么意义? (1)a a +;(2)a b +;(3)a c +; (4)b d +;(5)b c b ++;(6)d a d ++. 【答案】(1)向东走20km ;(2)向东走5km ;(3)向东北走;(4)向西南走;(5)向西北走;(6)向东南走. 【分析】由向量加法及其几何意义和位移的关系可得.【详解】由题意知:a 表示“向东走10km ”, b 表示“向西走5km ”, c 表示“向北走10km ”,d 表示“向南走5km ”(1)a a +r r表示“向东走20km ” (2)a b +表示“向东走5km ”(3)a c +表示“向东北走”(4)b d +r u r表示“向西南走”(5)b c b ++表示“向西北走”(6)d a d ++表示“向东南走”2. 一架飞机向北飞行300km ,然后改变方向向西飞行400km ,求飞机飞行的路程及两次位移的合成.【答案】飞机飞行的路程为700km ;两次位移的合成是向北偏西约53°方向飞行500km . 【分析】由向量的加减运算,即可得出结论.【详解】由向量的加减运算可知:飞机飞行的路程是700km ;两次位移的合成是向北偏西约53°,方向飞行500km .3. 一艘船垂直于对岸航行,航行速度的大小为16/km h ,同时河水流速的大小为4/km h 求船实际航行的速度的大小与方向(精确到l °).【答案】,方向与水流方向成76°角 【分析】利用向量的加法运算,模的运算,勾股定理,即可得出结论.【详解】设船的航行速度为1v ,水流速度为2v ,船的实际航行速度为v ,v 与2v 的夹角为α,则||416//)v km km h === 由16tan 44α==,得76α︒≈.船实际航行的速度的大小为,方向与水流方向成76°角. 4. 化简:(1)AB BC CA ++; (2) ()AB MB BO OM +++; (3)OA OC BO CO +++; (4)AB AC BD CD -+-; (5)OA OD AD -+; (6)AB AD DC --; (7)NQ QP MN MP ++-. 【答案】(1)0.(2)AB (3)BA .(4)0(5)0(6)CB .(7)0 【分析】根据平面向量的加法与减法的运算法则,对每一个小题进行化简计算即可. 【详解】解:(1)原式0AC AC =-=.(2)原式AB BO OM MB AB =+++= (3)原式OA OC OB OC BA =+--=.(4)原式0AB BD DC CA =+++=(5)原式0OA AD DO =++=(6)原式()AB AD DC AB AC CB =-+=-=.(7)原式0MN NQ QP PM =+++= 5. 作图验证:(1)11()()22a b a b a ++-=(2)11()()22a b a b b +--= 【答案】(1)见解析(2)见解析 【分析】根据向量的平行四边形法则,画图验证即可.【详解】解:如图,在平行四边形ABCD 中,设,A B a A D b ==,则11(),()22AO a b OB a b =+=-.(1)因为AO OB AB +=,所以11()()22a b a b a ++-=(2)因为AO OB AO BO AO OD AD -=+=+=,所以11()()22a b a b b +--=6. (1)已知向量a ,b ,求作向量c ,使0a b c ++=. (2)(1)中表示a ,b ,c 的有向线段能构成三角形吗?【答案】(1)见解析.(2)当a ,b 共线时,不能构成三角形,当a ,b 不共线时能构成三角形. 【分析】作平行四边形OADB ,使得OA a =,OB b =,可得a b OD +=,由于0a b c ++=,可得OD c OC =-=-,或作ABC ∆,使得AB a =,BC b =,CA c =,即可得出.【详解】(1)方法一:如图所示,当向量a ,b 两个不共线时,作平行四边形OADB ,使得OA a =,OB b =,则a b OD +=,又0a b c ++=,所以0OD c +=,即OD c OC =-=-,方法二:利用向量的三角形法则,如下图:作ABC ∆,使得AB a =,BC b =,CA c =,则0AB BC CA ++=,即0a b c ++=,当向量a ,b 两个共线时,如下图:使得AB a =,BC b =,DE c =则AB BC a b +=+,()DE a b =-+, 所以,0AB BC DE ++=,即0a b c ++=.(2)向量a ,b 两个不共线时,表示a ,b ,c 的有向线段能构成三角形, 向量a ,b 两个共线时,a ,b ,c 的有向线段不能构成三角形. 7. 已知a ,b 为两个非零向量, (1)求作向量,a b a b +-;(2)当向量a ,b 成什么位置关系时,满足a b a b +=-?(不要求证明)【答案】(1)见解析.(2)a b ⊥r r【分析】根据向量的三角形法则,作出图象即可.【详解】(1)当向量a ,b 两个不共线时,作ABC ∆,使得AB a =,BC b =,AC c =,DB d =,所以a b AC c +==,a b DB d -==当向量a ,b 两个同向且共线时,作AB a =,BC b =,AC c =,所以a b AC c +==,a b AD d -==当向量a ,b 两个反向且共线时,作AB a =,BC b =,AC c =,所以a b AC c +==,a b AD d -==,(2)当a b ⊥时,满足a b a b +=-,如图,作矩形ABCD ,作AB a =,AD b =,所以,AC a b =+,DB a b =-. 8. 化简:(1)()()522423a b b a -+-; (2)()()634a b c a b c -+--+-; (3)()()113256923a b a a b ⎡⎤-+--⎢⎥⎣⎦; (4)()()()()x y a b x y a b -+---.【答案】(1)22a b --;(2)102210a b c -+;(3)132a b +;(4)2()x y b -【分析】根据平面向量的线性运算法则,对每一个小题进行计算即可. 【详解】(1)()()522423101081222a b b a a b b a a b -+-=-+-=--.(2)()()6346186444102210a b c a b c a b c a b c a b c -+--+-=-++-+=-+.(3)()()()()1115113256932693232262a b a a b a b a a b a b ⎡⎤-+--=-+--=+⎢⎥⎣⎦.(4)()()()()()()()2x y a b x y a b x y x y a x y x y b x y b -+---=--++-+-=-. 9. 11,33AM AB AN AC ==.求证13MN BC =.。

高中数学第二章平面向量向量应用举例例题与探究(含解析)

高中数学第二章平面向量向量应用举例例题与探究(含解析)

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。

思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。

证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。

图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。

∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。

∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。

又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。

绿色通道:1。

向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。

这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。

平面向量应用题详细分析

平面向量应用题详细分析

平面向量应用题详细分析在数学中,平面向量是描述平面上的物理量的工具。

它们可以用来表示位移、速度、力等概念,并在实际问题中有广泛的应用。

本文将详细分析几个平面向量应用题,以帮助读者更好地理解和掌握该概念。

1. 线段的中点假设平面上有两个点A(x1, y1)和B(x2, y2),要求求出线段AB的中点。

我们知道中点M(x, y)的坐标可以通过如下公式求得:x = (x1 + x2) / 2y = (y1 + y2) / 2这是因为中点的横坐标等于两个点横坐标之和的一半,纵坐标同理。

根据这个公式,我们可以轻松求得线段AB的中点。

2. 向量的模向量的模表示向量的长度,可以用于计算距离、速度等问题。

设向量A的坐标为A(x, y),则向量A的模可以通过如下公式求得:|A| = √(x^2 + y^2)这个公式的推导可以通过勾股定理得到。

根据这个公式,我们可以计算出向量的模,从而解决各种与长度有关的问题。

3. 向量的加减法向量的加减法可以用于计算合力、位移等问题。

设向量A的坐标为A(x1, y1),向量B的坐标为B(x2, y2),则向量A加向量B的结果可以通过如下公式求得:A +B = (x1 + x2, y1 + y2)同理,向量A减向量B的结果可以通过如下公式求得:A -B = (x1 - x2, y1 - y2)这样,我们可以使用向量的加减法快速求解各种平面力学问题。

4. 向量的数量积向量的数量积(内积)可以用于计算两个向量之间的夹角、投影等问题。

设向量A的坐标为A(x1, y1),向量B的坐标为B(x2, y2),则向量A和向量B的数量积可以通过如下公式求得:A·B = x1 * x2 + y1 * y2根据这个公式,我们可以计算出两个向量之间的夹角,进而解决各种涉及角度的平面问题。

通过以上几个平面向量的应用题分析,我们可以看到平面向量在解决各种实际问题中起到了重要的作用。

掌握了平面向量的基本概念和运算法则,我们可以更加准确地描述和解决与平面上物理量相关的问题。

平面向量经典例题讲解

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________一、选择题(题型注释)1. 空间四边形OABC 中,OA a =,OB b =, OC c =,点M 在OA 上,且MA OM 2=,N 为BC 的中点,则MN =( ) A 121-32a b c + B 211322a b c ++C 112-223a b c +D 221-a b c +【答案】B 【解析】试题分析:因为N 为BC 1()2ON OB OC =+,12()2MN ON OM OB OC OA =-=+-=112b c a +-,选B2.已知平面向量a ,b 满足||1=a ,||2=b ,且()+⊥a b a ,则a 与b 的夹角是( )(A (B (C (【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+⋅=∴+⋅=,||1=a ,||2=b ,设夹角为θ,则2112cos a a b+⋅=+⨯考点:本题考查向量数量积的运算点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角3.若OA 、OB 、OC 三个单位向量两两之间夹角为60OA OB OC ++= 【答案】D 【解析】试题分析: OA 、OB 、OC 三个单位向量两两之间夹角为60°222222232coa b c a b c ab bc ac a b ++=+++++=+4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC a =,BD b =,则AF =( )A.1142a b + B.1233a b +C.1124a b + D.2133a b +【答案】D【解析】试题分析:AEB 与FED ∆相似,且相似比为3:1,所以1DF DC =,,AB AD a AD AB b +=-=,解得,,a b a bAD AB +-==121AF AD DF AD AB a b =+=+=+,故考点:平面向量的加减法5.在边长为1的等边ABC ∆中,,D E 分别在边BC 与AC 上,且BD DC =,2AE EC = 则AD BE ⋅=( )AC A 【解析】试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =,2AE EC = 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系,设),(y x E ,由EC AE =2可得:考点:平面向量的坐标运算6.在平行四边形ABCD 中,AC 为一条对角线,(2,4)AB =,(1,3)AC =,则DA =( )A .(2,4)B .(3,5)C .(1,1)D .(-1,-1) 【答案】C . 【解析】试题分析:()(1,1)DA AD AC AB =-=--=. 考点:平面向量的线性运算.7.已知向量()1,2a =,()//a b b +,则b 可以为( )A .()1,2B .()1,2-C .()2,1D .()2,1- 【答案】A 【解析】试题分析:设),(y x b =,则)2,1(++=+y x b a ,因()//a b b +,所以0)2()1(=+-+y x y x ,02=-x y ,只有A满足考点:向量共线的条件8.已知向量(2,3),(1,2)a b ==-,若4ma b +与2a b -共线,则m 的值为( ) A . 2 C .2- 【答案】D 【解析】试题分析:由已知得4ma b+)83,42()2,1(4)3,2(+-=-+=m m m ,又因为4ma b +与2a b -共线, 所以有228140)83(4)1()42(-=⇒-=⇒=+⨯--⨯-m m m m ,故选D .考点:1.向量的坐标运算;2.向量平行的坐标条件.9.已知平面直角坐标系内的两个向量)2,1(=→a ,)23,(-=→m m b ,且平面内的任一向量→c 都可以唯一的表示成→→→+=b a c μλμλ,(为实数),则实数m 的取值范围是( )A .(,2)-∞B .(2,)+∞C .(,)-∞+∞D .(,2)(2,)-∞+∞【答案】D【解析】试题分析:平面内的任一向量→c 都可以唯一的表示成→→→+=b a c μλμλ,(为实数)的充要条件是)2,1(=→a ,)23,(-=→m m b 不共线,即()132202m m m ⨯--⨯≠⇒≠,故选 D.考点:平面向量的基底及向量共线 10.若向量(1,2)=-a ,(2,1)=b ,(4,2)--c =,则下列说法中错误..的是( ) A. a b ⊥B. 向量a 与向量c 的夹角为90︒C. b ∥cD.对同一平面内的任意向量d ,都存在一对实数12,k k ,使得12k k =d b+c 【答案】D 【解析】A 正确;0)2()2()4(1=-⨯-+-⨯=⋅c a ,所以B 正故C 正确;因为c b ,是共线D 错 考点:向量的夹角11.已知向量()3,4a =,)A .1C .1±D 【解析】试题分析:因为()3,4a =,所以,解得:1λ=±,故选D . 考点:1、向量的数乘运算;2、向量的模. 12.若向量()2,1a =-,()0,2b =,则以下向量中与a b +垂直的是( )A .()1,2-B .()1,2C .()2,1D .()0,2 【答案】A 【解析】试题分析:∵向量()2,1a =-,()0,2b =,∴(2,1)a b +=,而12(2)10⨯+-⨯=,∴以下向量中与a b +垂直的是()1,2-.考点:向量垂直的充要条件.13.在边长为1的正三角形ABC 中,设2BC BD =,CA CE λ=,若1A DB E ⋅=-则λ的值为( )(A (B )2 (C )1(D C【解析】试题分析:由题意可得: =211AB BC BC AB CA BC CAλλ⋅++⋅+⋅14.已知向量(1,2)a =, (1,0)b =,(3,4)c =,若λ为实数,()a b c λ+⊥,则)D 【解析】试题分析:()1,2a bλλ+=+,因为()a b c λ+⊥,所以()()31420a b c λλ+⋅=++⨯=,解得故D 正确. ;向量的数量积.15.在△ABC 中,已知||4,||1AB AC ==,,则AB AC ⋅的值为( ) (A )2-(B )2(C )4±(D )2± 【答案】D 【解析】试题分析:由题根据三角形面积公式不难得到角A 的正弦值,然后得到其对应的余弦值,结合平面向量数量积运算求得结果.cosA AB AC AB AC ∴⋅=⨯⨯故选D 考点:平面向量的数量积二、填空题(题型注释) 16.已知两个非零向量a 与b ,定义|a×b|=|a|·|b|sin θ,其中θ为a 与b 的夹角.若a =(-3,4),b =(0,2),则|a×b|的值为________. 【答案】6 【解析】|a|5,|b|=2,a·b=-3×0+4×2=8,所以cos θθ∈[0,π],所以sin θ故根据定义可知|a×b|=|a|·|b|sin θ 6.17.△ABC 中AB =2,AC 点D 是△ABC 的重心,则AD ·BC =________.E 为边BC 是△ABC 的重心,所以AD =3AE =3(AB +AC )3(AB +AC ),又BC =AC -AB ,所以AD ·BC =3(AB +AC )·(AC -AB )(AC 2-AB 2)=18.已知a =(2,0),||3b =,,a b 的夹角为2|a b -= 【解析】 试题分析:2224416a b a a b b -=-⋅+=-.考点:向量的基本运算.19.已知A 、B 、C 是球O 的球面上三点,∠BAC=90°,AB=2,BC=4,球O 的表面积为48π,则异面直线AB 与OC 所成角余弦值为 .【解析】试题分析:过O 作BC 的垂线,垂足为M ,以MA 所在线为x 轴,以MC 所在线为y 轴,以MO 所在线为z 轴,建立直角坐标系,所以(2,00)A ,,(0,2,0)B -,(0,2,0)C ,,(2,2,0)BA =,(0,2,OC =考点:1.空间向量法;2.夹角公式. 20.已知||1a =,||2b =,a 与b 的夹角为120︒,0a c b ++=,则a 与c 的夹角为 .【答案】90︒ 【解析】试题分析:要求a 与c 的夹角一般可先求两向量的数量积a c ⋅,而()c a b =-+,因此a c ⋅=()a a b -⋅+=2a ab --⋅,而根据已知,这是可求的,而且其结果是0,故a ⊥c ,夹角为90︒.考点:向量的夹角.21.已知0=++c b a ,且a 与c 的夹角为︒60,,则〉〈b a ,cos 等于 .【解析】试题分析:∵0=++c b a ,∴()b a c =-+,∴22202||||cos60b a c a c =++, ∴2223||||a a c a c =++,∴222||||0a a c c --=,∴||||a c =, ∴2203()||||||cos60a b a a c a a c a a c ∙=-+=--∙=--=-23||32,2||||||3||a ab a b a b a a -∙>===-.考点:1.向量的运算;2.两向量的夹角公式. 22.已知点G 为ABC △的重心,过点G 作直线与AB ,AC 两边分别交于,M N两点,且,AM xAB = ,AN y AC = ,x y R ∈,则【答案】3 【解析】试题分析:根据题意画出图像,因为G 为ABC △的重心,所以()2111111AG AB AC AM AN AM ⎛⎫=⨯+=+=+⎪,因为:,,M G N 三点共线,所以答案为: 3.考点:1.向量的运算;2.三点共线的性质.23.已知向量),2,4(),3,1,2(x b a -=-=,若//a b ,则=x ; 【答案】-6 【解析】试题分析:由b a λ=可知,2λ=-,所以6x =-.考点:空间向量共线定理. 24.设向量(3,1),(2,2)a b ==-,若()()a b a b λλ+⊥-,则实数λ= .【解析】试题分析:由已知得(3a b λλ+=+(3a b λλ-=- 由()()a b a b λλ+⊥-得()()0a b a b λλ+⋅-=所以有即0842=-λ,解得考点:向量的数量积的坐标运算. 25.已知向量(1,2)a =-,(2,3)b =,若m a b λ=+与n a b =-的夹角为钝角,则实数λ的取值范围是 . 【答案】9λ<且1x ≠- 【解析】试题分析:m a b λ=+(2,23)λλ=-++,n a b =-(3,1)=--,若m a b λ=+与n a b =-的夹角为钝角,则()()3(2)(23)0a b a b λλλ+⋅-=--+-+<,即:9λ<,又m n 与不共线,则(2)λ--+3+(23)0λ+≠,即:1λ≠-,则9λ<且1x ≠-考点:1.向量的夹角;2.向量的数量积;3.共线向量;4.向量的坐标运算公式; 26.已知向量b a ,满足则a 在b 上的投影为_______________.试题分析:设a 与b 的夹角为θ,∵向量a ,b满足(∴22146a a b b a b +⋅+=+⋅+=,∴a b ⋅=1.∴cos a b a b⋅⋅=12,再由围为[0,ππ.若向量a 与b 满足||2a =,||2b =,()a b a -⊥.则向量a 与b 的夹角等于 ;||a b += 10. 试题分析:()a b a -⊥,()0a b a -⋅=,22a a b ∴=⋅=,2cos ,2a b a b a b⋅∴==,,4a b π=,()2222a b a ba ab b+=+=+⋅+24410=++=.222(2)()21226a b a b a a b b a b +⋅-=+⋅-=+⋅-⨯=-,1a b ⋅=,所以1cos ,2a b a b a b ⋅<>==,,a b π<>=.考点:向量的数量积与向量的夹角.三、解答题(题型注释),若b ka -与.(2)13k =-.2)两向量()(),,,a x y b x y ==平行,满足条件是).)()()2,21,3,1x --=-,则分5,6.- 分⑵因为()()1,31,5=-,)(()4,12,2,1BC =--, 8分所以)()2,51k k k -==---a b ,)7,2-. 10分 70=,向量共线.BM =BC ,CN =CD ,OA =,OB=b ,用a 、b 表示OM 、ON 、MN . 26【解析】BA =,BM =6BA =6,OM =OB +BM =6a +6b .OD ,ON =OC +CN =2OD +6OD =3OD =3a +3b .MN =ON -OM =2a -6b(2)小问cos6014a b a b ⋅=⋅=⨯()()222222a b a b a a b b -⋅+=+⋅-=+2)∵()()2a b a b λ+⊥-,∴()()20a b a b λ+⋅-=,∴()22220a a b b λλ+-⋅-=,∴()22320λ--=,点评:解决此题的关键是掌握平面向量数(1试题解析:(1)因为⊥a b ,所以=0⋅a b ,2分4分因为cos 0θ≠,所以6分(2)由a ∥b ,得8分11分14分考点:向量平行与垂直,两角和正弦及二倍角公式33.(本题满分9分)已知向量)sin ,(cos αα=a ,)sin ,(cos ββ=b ,(1)求cos()αβ-的值; (2,求sin α的值。

平面向量经典例题分析

平面向量经典例题分析

平面向量的解题技巧一. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的何意义,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式.例1.(2007年北京卷理)已知是所在平面内一点,为边中点,且,那么()A.B.C.D.例2.(2006年安徽卷)在平行四边形中,,M 为BC的中点,则______.(用表示)。

例3.(2006年广东卷)如图所示,D是△ABC的边AB上的中点,则向量( ) (A)(B)(C)(D)4.设平面向量、、的和.如果向量、、,满足且顺时针旋转后与同向,其中,则()(A)(B)(C)(D)二.向量的坐标运算5.( 2006年重庆卷)与向量、的夹角相等,且模为1的向量是 ( ) (A)(B)或(C)(D)或6.(2006年天津卷)设向量与的夹角为,且,,则_.7.(2006年湖北卷)已知向量,是不平行于轴的单位向量,且,则=()(A)(B)(C)(D)三. 平面向量与三角函数的结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大.8.(2007年陕西卷理17.)设函数,其中向量=(m,cos2x),=(1+sin2x,1),x∈R,且函数y=f(x)的图象经过点,(Ⅰ)求实数m的值;(Ⅱ)求函数f(x)的最小值及此时x的值的集合.9.(2007年湖北卷理16)已知的面积为,且满足,设和的夹角为.(I)求的取值范围;(II)求函数的最大值。

方法技巧专题26 平面向量(解析版)

方法技巧专题26 平面向量(解析版)

方法技巧专题26 平面向量解析版【一】向量的概念1.例题【例1】给出下列结论:①数轴上相等的向量,它们的坐标相等;反之,若数轴上两个向量的坐标相等,则这两个向量相等; ②对于任何一个实数,数轴上存在一个确定的点与之对应;③数轴上向量AB 的坐标是一个实数,实数的绝对值为线段AB 的长度,若起点指向终点的方向与数轴同方向,则这个实数取正数,反之取负数;④数轴上起点和终点重合的向量是零向量,它的方向不确定,它的坐标是0. 其中正确结论的个数是( ) A.1 B.2C.3D.4【答案】D【解析】①向量相等,则它们的坐标相等,坐标相等,则向量相等,①正确;②实数和数轴上的点是一一对应的关系,即有一个实数就有一个点跟它对应,有一个点也就有一个实数与它对应,②正确;③数轴用一个实数来表示向量AB ,正负决定其方向,绝对值决定其长度,③正确; ④数轴上零向量其起点和终点重合,方向不确定,大小为0,其坐标也为0,④正确. 【例2】下列命题中,正确的个数是( ) ①单位向量都相等;②模相等的两个平行向量是相等向量;③若a ,b 满足b a >且a 与b 同向,则a b >; ④若两个向量相等,则它们的起点和终点分别重合; ⑤若a b b c ∥,∥,则a c ∥. A .0个 B .1个C .2个D .3个【答案】A【解析】对于①,单位向量的大小相等,但方向不一定相同,故①错误; 对于②,模相等的两个平行向量是相等向量或相反向量,故②错误; 对于③,向量是有方向的量,不能比较大小,故③错误;对于④,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故④错误; 对于⑤,0b =时,a b b c ∥,∥,,则a 与c 不一定平行. 综上,以上正确的命题个数是0. 2.巩固提升综合练习 【练习1】给出下列命题: ①若c b b a ==,则c a=;②若A ,B ,C ,D 是不共线的四点,则DC AB =是四边形ABCD 为平行四边形的充要条件;③b a==且b a //;④若c b b a //,//,则c a //; 其中正确命题的序号是 . 【答案】①②【解析】①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵DC AB ==且DC AB //, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,=且DC AB //,,因此,DC AB =.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. ④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②.【二】平面向量的线性表示1.例题【例1】在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( )A.AC AB 4143- B. AC AB 4341- C. AC AB 4143+ D. AC AB 4341+ 【解析】根据向量的运算法则,可得,所以,故选A.【例2】在梯形ABCD 中,AB →=3DC →,则BC →等于( )A .-13AB →+23AD → B .-23AB →+43AD → C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形, 则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【例3】已知A ,B ,C 为圆O 上的三点,若()12AO AB AC =+则AB 与AC 的夹角为__________. 【解析】由()12AO AB AC =+可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°,故AB 与AC 的夹角为90°. 2.巩固提升综合练习【练习1】在正方形ABCD 中,E 为DC 的中点,若AE AB AC λμ=+,则λμ+的值为( ) A .12-B .12C .1-D .1【答案】B【解析】由题得1111111122222222AE AD AC BC AC AC AB AC AB AC =+=+=-+=-+, 11,1,22λμλμ∴=-=∴+=.故选:B【练习2】已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++OC OB OA 22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】如图所示:设AB 的中点是E ,△O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,△2EO →=OC →, △OP →=13()4EO →+OE →=EO →,△P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【练习3】如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A.2116B.32C.2516D.3【答案】A【解析】连接BD,取AD 中点为O,可知ABD △为等腰三角形,而,AB BC AD CD ⊥⊥,所以BCD 为等边三角形,BD =.设(01)DE tDC t =≤≤AE BE ⋅223()()()2AD DE BD DE AD BD DE AD BD DE BD DE DE =+⋅+=⋅+⋅++=+⋅+ =233322t t -+(01)t ≤≤ 所以当14t =时,上式取最小值2116,选A.【三】向量共线的应用1.例题【例1】设两个非零向量a 与b不共线.(1)若b a AB +=,b a BC 82+=,)(3b a CD-=,求证:D B A ,,三点共线;(2)试确定实数k ,使b a k +和b k a+共线.【答案】(1)见解析;(2)k =±1.【解析】(1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)假设k a +b 与a +k b 共线,则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0. 消去λ,得k 2-1=0,∴k =±1.【例2】已知点()3,1A ,()1,4B -,则与向量AB 的方向相反的单位向量是( ) A.43,55⎛⎫-⎪⎝⎭ B.43,55⎛⎫-⎪⎝⎭ C.34,55⎛⎫-⎪⎝⎭D.34,55⎛⎫- ⎪⎝⎭1.共线向量定理:向量a (0≠a )与b 共线,当且仅当有唯一一个实数λ,使得a b λ=2.平面向量共线定理的三个应用:3.求解向量共线问题的注意事项:(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用;(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线;(3)直线的向量式参数方程:B P A ,,三点共线OB t OA t OP +-=⇔)1((O 为平面内任一点,R t ∈).【解析】(4,3)AB =-,∴向量AB 的方向相反的单位向量为4343(,)(,)5555||AB AB --=-=-,2.巩固提升综合练习【练习1】设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【练习2】设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________.【解析】因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.【四】平面向量基本定理及应用 1.例题【例1】如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(,)DE AB AD R λμλμ=+∈,则λμ+等于( ).A .12-B .12C .1D .1-【答案】A【解析】由平面向量基本定理,化简()11DE DA AE DA AC AD AB AD 44=+=+=-++ 13AB AD 44=-,所以13λ,μ44==-,即1λμ2+=-,【例2】在中,点满足,当点在射线(不含点)上移动时,若,则 的 取值范围为__________.【答案】【解析】因为点在射线(不含点)上,设,又,所以, 所以 , , 故的取值范围.2.巩固提升综合练习【练习1】如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n △R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB →+13AD →,又AC→=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12△m +n =32. 故应填答案32.ABC ∆D 34BD BC =E AD A AE AB AC λμ=+()221λμ++()1,+∞E AD A ,0AE k AD k =<34BD BC=()()33444kk AE k AB AD k AB AC AB AB AC ⎡⎤=+=+-=+⎢⎥⎣⎦4{34kk λμ==()2222295291114168510k t k k λμ⎛⎫⎛⎫=++=++=++> ⎪ ⎪⎝⎭⎝⎭()221λμ++()1,+∞【练习2】如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,EA BE 2=,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【五】平面向量的坐标运算1.例题【例1】已知向量)3,2(=a,)2,3(=b ,则=-b a ( )A .2B .2C .52D .50【答案】A【解析】由已知,(2,3)(3,2)(1,1)-=-=-a b ,所以||-==a b故选A【例2】在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3 D.6+2+1 【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3), △|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点, 求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【例3】在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1]【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又△OA →+OB →+OD →=(x -1,y +3), △|OA →+OB →+OD →|=(x -1)2+(y +3)2.△|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解.如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),△OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, △OA →+OB →+OD →=OD →-ON →=ND →,△|OA →+OB →+OD →|=|ND →|,△|ND →|max =|NC →|+1=7+1,|ND →|min =7-1.2.巩固提升综合练习【练习1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C. 5D .2【解析】如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z=0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z的最大值是3,即λ+μ的最大值是3.【练习2】如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65 D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1, AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).△AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫ ⎝⎛+-μλμλ2,2,△⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,△M ,N 分别为BC ,CD 的中点, △AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【例1】已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( ) A.C.D.0【答案】C 【解析】.【例2】若()3,4a =-,则与a 同方向的单位向量0a =____________【答案】34,55⎛⎫- ⎪⎝⎭【解析】与a 同方向的单位向量0134(3,4)(,)555aa a ==-=-2.巩固提升综合练习【练习1】如图,在平面四边形ABCD 中,90CBA CAD ∠=∠=︒,30ACD ∠=︒,AB BC =,点E 为线段BC 的中点.若AC AD AE λμ=+(,R λμ∈),则λμ的值为_______.【解析】以A 为原点,建立如图所示的平面直角坐标系,不妨设AB =BC =2, 则有A (0,0),B (2,0),C (2,2),E (2,1),AC =, AD =,过D 作DF⊥x 轴于F ,∠DAF=180°-90°-45°=45°, DF=32=D(), AC =(2,2),AD=(3-),AE =(2,1),因为AC AD AE λμ=+,所以,(2,2)=λ(3-,3)+μ(2,1),所以,2223μλμ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:43λμ⎧=⎪⎪⎨⎪=⎪⎩λμ【练习2】已知向量a =(3,1),b =(1,3),c =(k ,-2),若(a -c )△b ,则向量a 与向量c 的夹角的余弦值是( )A.55 B.15 C .-55 D .-15【解析】 △a =(3,1),b =(1,3),c =(k ,-2),△a -c =(3-k,3),△(a -c )△b , △(3-k )·3=3×1,△k =2,△a ·c =3×2+1×(-2)=4,△|a |=10,|c |=22, △cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A.【一】平面向量数量积的概念 1.例题【例1】在如图的平面图形中,已知0120,2,1=∠==MON ON OM ,NA CN MA BM 2,2==则OM BC •的值为( )1.两个向量的夹角:(1)定义:已知两个非零向量a 和b ,作a =,b =,则θ=∠AOB 叫做向量a 与b 的夹角.(2)范围:向量夹角θ的范围是πθ≤≤0;a 与b 同向时,夹角θ=0°;a 与b反向时,夹角θ=180°.(3)向量垂直:如果向量a 与b 的夹角是90°,则a 与b垂直,记作b a ⊥.2.平面向量的数量积的概念:(1)已知两个非零向量a 与b ,则数量θcos b a ⋅叫做a 与b的数量积,记作b a •,即:b a •=θcos b a ⋅,其中θ是a 与b的夹角.规定:00=•a ;(2)b a •的几何意义:数量积b a•等于a 的长度a与b在a的方向上的投影θcos b的乘积. 3.数量积的运算律:(1)交换律:a b b a•=•;(2)分配律:()c b c a c b a •+•=•+;(3)对R ∈λ,()())(b a b a b aλλλ•=•=•.4.计算向量数量积的三种常用方法:(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即b a •=θcos b a⋅,其中θ是a 与b的夹角.(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.OA OBA .B .C .D .0【答案】C【解析】如图所示,连结MN , 由 可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C 选项.【例2】已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( ) A .-3 B .-2 C .2 D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .2.巩固提升综合练习【练习1】如图,AB 是半圆O 的直径,C 、D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点.若6OA =,则MD NC ⋅的值是( )A.12B.C.26D.36【答案】C 【解析】连接,OC OD ,由C 、D 是弧AB 的三等分点,得∠AOD =∠BOC =60°,()()MD NC OD OM OC ON ⋅=-⋅-OD OC OD ON OM OC OM ON =⋅-⋅-⋅+⋅66cos6062cos12026cos12022=⨯⨯-⨯⨯-⨯⨯-⨯18664=++-26=.【练习2】已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【练习3】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.【解析】∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t .∴t =2.1.例题【例1】已知平面向量,a b不共线,且1a=,1a b⋅=,记b与2a b+的夹角是θ,则θ最大时,a b-=()A.1B C D.2【答案】C【解析】设|b|=x,则()22·22?2b a b a b b x+=+=+,22|2+|=44?8a b a a b b++=+所以()2·22cos 28b a bb a bx θ++==++易得cos 0θ>,()()()2222222222211cos 124811411222263x x x x xx θ+===+⎛⎫-++--+⎪+++⎝⎭, 当24x =时,2cos θ取得最小值,θ取得最大值, 此时22||=2?12a b a a b b --+=-=故选C.【例2】已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【例3】设向量a =(1,0),b =(−1,m ),若()a mab ⊥-,则m =_________. 【解析】(1,0),(1,)a b m ==-,(,0)(1,)(1,)ma b m m m m ∴-=--=+-,由()a ma b ⊥-得:()0a ma b ⋅-=,()10a ma b m ∴⋅-=+=,即1m =-.2.巩固提升综合练习【练习1】若两个非零向量a ,b 满足2a b a b a +=-=,则向量a b +与a b -的夹角是( ) A.6πB.2π C.23π D.56π 【解析】将2a b a b a +=-=平方得:22222224a a b b a a b b a +⋅+=-⋅+=,解得:2203a b b a⎧⋅=⎪⎨=⎪⎩ . 222()()1cos ,42||||a b a b a b a b a b a a b a b +⋅--<+->===-+-.所以向量a b +与a b -的夹角是23π.【练习2】已知非零向量a与b满足b a2=,且b b a⊥-)(,则a与b的夹角为( ) A .π6B .π3C .2π3D .5π6【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【练习3】已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 【解析】由|2a -b |=10,得4 a 2-4 a ·b +b 2=10,得4-4×|b |×cos45°+|b |2=10,即-6-22|b |+|b |2=0,解得|b |=32或|b |=-2(舍去).1.例题【例1】已知e b a ,,是平面向量,e 是单位向量.若非零向量a 与e的夹角为3π,向量b 满足0342=+•-b e b ,则b a-的最小值是( )A .1-3B .13+C .2D .3-2 【答案】A 【解析】设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.【例2】在ABC △,若0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC △的形状为( ) A.直角三角形 B.等腰三角形C.等边三角形D.无法判断【答案】C【解析】由题意可得:()cos cos AB BC B AC BC C AB AC BC AB AC AB AC ⎛⎫⨯⨯-⨯⨯ ⎪+⋅=+ ⎪⎝⎭()cos cos BC C B =⨯-,故()cos cos 0BC C B ⨯-=,cos cos ,B C B C ∴==,且:cos 1cos 2AB AC A AB AC A ABACAB AC⨯⨯⋅===⨯,则3A π=, 结合,3B C A π==可知△ABC 为等边三角形.【例3】如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b △R ),则ab 的值为( )A.14 B .1 C.12 D.18【解析】由题意易知E 1(2,1),E 2(2,-1),△e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,△(2a +2b )24-(a -b )2=1,整理可得4ab =1,△ab =14.【答案】 A2.巩固提升综合练习【练习1】在平面四边形ABCD 中,o90=∠BAD ,1,2==AD AB ,若CB CA BC BA AC AB •=•+•34, 则CD CB 21+的最小值为____.【答案】【解析】如图,以的中点为坐标原点,以方向为轴正向,建立如下平面直角坐标系.则,,设,则,,因为所以,即:整理得:,所以点在以原点为圆心,半径为的圆上. 在轴上取,连接可得,所以,所以由图可得:当三点共线时,即点在图中的位置时,最小.此时最小为.【练习2】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =(2)0x =时,取得最大值,为3; 5π6x =时,取得最小值,为23-.【解析】解:(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为,所以ππ7π[,]666x +∈, 从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,取到最大值3; 当π6x +=π,即5π6x =时,取到最小值23-.1.已知O,A,B 是平面上的三个点,直线AB 上有一点C ,且20AC CB +=,则OC =( ) A.2OA OB - B.2OA OB -+C.2133OA OB - D.1233OA OB -+【答案】A【解析】因为20AC CB +=,所以2()()0OC OA OB OC -+-=, 所以OC =2OA OB -, 故选:A.2.已知G 是ABC ∆的重心,D 是AB 的中点 则GA GB GC +-=____________ 【答案】4GD【解析】因为D 是AB 的中点,G 是ABC ∆的重心,则2CG GD =,即2GC GD =- 又1()2GD GA GB =+,所以2GA GB GD +=, 所以2(2)4GA GB GC GD GD GD +-=--=, 故答案为:4GD .3.在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____.【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.4.在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________. 【答案】1-.【解析】建立如图所示的直角坐标系,则B ,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒, 因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE y x =-,直线AE的斜率为-y x =.由(3y x y ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)122BD AE =-=-.5.已知数列{}n a 为等差数列,且满足12107OA a OB a OC =+,若AB AC λ=(R λ∈),点O 为直线BC 外一点,则1009a =( )A . 3B . 2C . 1D .12【答案】D6.设向量a,b 满足|+|=a b ||-=a b ,则a ·b =( ).A .1B .2C .3D .5 【解析】∵|+|=a b (a +b )2=10,即a 2+b 2+2a ·b =10.①∵||-=a b ,∴(a -b )2=6,即a 2+b 2-2a ·b =6.②由①②可得a ·b =1.故选A.7.已知a =(3,2),b =(2,-1),若λa +b 与a +λb 平行,则λ=________.【解析】 △a =(3,2),b =(2,-1),△λa +b =(3λ+2,2λ-1),a +λb =(3+2λ,2-λ),△λa +b △a +λb ,△(3λ+2)(2-λ)=(2λ-1)(3+2λ), 解得λ=±18.在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2 D .211 【解析】如图,取AE 的中点G ,连接BG △AE →=23AD →,BF →=13BC →,△AG →=12AE →=13AD →=13BC →=BF →,△EF →=GB →,△|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,△|EF →|=|GB →|=25,故选B.9.已知锐角△ABC 的外接圆的半径为1,△B =π6,则BA →·BC →的取值范围为__________.【解析】如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,△B =π6.由正弦定理得a sin A =c sin C =2,△a=2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,△BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A=32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. △π3<A <π2,△π3<2A -π3<2π3,△32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,△3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32. △BA →·BC →的取值范围为⎥⎦⎤ ⎝⎛+233,3.10.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心 【解析】因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心. 【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a △b =(a 1,a 2)△(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m △OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( ) A .4 B .2 C .2 2 D .23【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m △OP →+n △(x ,y )=⎪⎭⎫ ⎝⎛4,21△(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π△(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π△⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π△y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x △⎥⎦⎤⎢⎣⎡3,6ππ时,由π6≤x ≤π3△π3≤2x ≤2π3△0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1△2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 12.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( ) A .-2 B .-32 C .-43 D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标, 则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以 P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y )所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.13.已知O 是正△ABC 的中心.若CO AB ACλμ→→→=+,其中λ, R μ∈,则λμ的值为( ) A . 14-B . 13-C . 12- D . 2 【解析】由题O 是正△ABC 的中心,延长CO 交AB 与.D 则()()221112,332333CO CD CA CB AC AB AC AB AC ⎡⎤==+=-+-=-⎢⎥⎣⎦ 即121,,.332λλμμ==-=- 故选C.。

平面向量常见题型汇编(含答案)

平面向量常见题型汇编(含答案)
变式11:如图, 为 的外心, 为钝角, 是边 的中点,则 的值为
解析:外心 在 上的投影恰好为它们的中点,分别设为 ,
所以 在 上的投影为 ,而 恰好为 中点,
故考虑 ,
所以
2.范围问题
例题8: 若过点 的直线 与 相交于 两点,则 的取值范围是_______
解析:本题中因为 位置不断变化,所以不易用数量积定义求解,可考虑利用投影,即过 作直线 的垂线,
,则 , ,
由 , 为中点可得: 为 中点,从而 在 方向上的投影分别为 ,由 即可求得 的范围为
3.综合问题
例题10:已知 为直角三角形 的外接圆, 是斜边 上的高,且 , ,点 为线段 的中点,若 是 中绕圆心 运动的一条直径,则 _________
解析:本题的难点在于 是一条运动的直径,所以很难直接用定义求解。
解析:由 可将三角形放入平面直角坐标系中,建立如图坐标系,
其中 , ,
∵ ∴
∵ ,即 当且仅当 时取等号

变式2:已知点A在线段BC上(不含端点),O是直线BC外一点,且 ,则 的最小值是___________
分析:本题主要考查了不等式,不等式求最值问题,属于中档题。解决此类问题,重要的思路是如何应用均值不等式或其他重要不等式,很多情况下,要根据一正、二定、三取等的思路去思考,本题根据条件构造 ,研究的式子分别加1后变形,即可形成所需条件,应用均值不等式.
解析: ,
变式9:在平面上, , ,若 ,则 的取值范围是
分析:以 为入手点,考虑利用坐标系求解,题目中用字母表示:设 ,则 ,所求 范围即为求 的范围。下一步将题目的模长翻译成 关系,再寻找关于 的不等关系即可
解析:如图以 为轴建立坐标系:设 ,

平面向量常见典型考题赏析

平面向量常见典型考题赏析

1 平面向量概念
平面向量是一类特殊的空间向量,其满足:具有特定二维空间内位置特征、两个分量对称分布,且可以表示为一个点(位置)和指向该点的箭头。

本质上,平面向量可以理解为表示变化(可以视为某种“力”的方向)的符号。

一个平面向量可以表示为一个有方向的“线段”,它与坐标轴平行。

2 平面向量的应用
平面向量代表物体在x-y平面内的变化,广泛应用于机械制图、空气动力学、流体力学、声学和电磁学等领域,为解决这些领域中出现的复杂问题提供了重要依据。

它不仅可以表示出力多种变化情况,而且可以将复杂的问题拆解为可操作的向量表达算法,从而简化问题求解过程。

此外,平面向量还可以用于优化和测量路径,为用户提供更有效率的路径规划服务。

3 平面向量的典型考题
(1)已知向量AB=[5,3],CD=[-3,-7],求AB-CD的向量值;
解:AB-CD=[5+3,3+7]=[8,10]
(2)已知向量AB=[3,-2],求|AB|的值;
解:|AB|=根号((3)^2+(2)^2)=根号(13)=3.60555。

平面向量专题(优秀经典专题梳理练习及答案详解).

平面向量专题(优秀经典专题梳理练习及答案详解).

,
y1
,
Bx2
,
y2
,则
uuur AB
x2
x1,
y2
y1

③若 ar =(x,y),则 ar =( x, y);
④若
ar
x1,
y1
r
,b
x2 ,
y2
,则
ar
//
r b
x1 y2
x2
y1
0

3、平面向量的相关计算
①向量的模与平方的关系: ar ar ar 2 | ar |2 。
②乘法公式成立
性质。 ⑥平面内两点间的距离公式
设 a (x, y) ,则| a |2 x2 y2 或| a | x2 y 2 。
二、练习:
→→ 1、已知点 A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB在CD方向上的投影为( )
A.3 2 2
B.3 15 2
C.-3 2 2
D.-3 15 2
q=(c+a,b),若 p∥q,则角 A 的大小是( )
A.30°
B.45°
C.60°
D.90°
3、解析:∵p∥q,∴b·(b-c)=(a-c)·(a+c),整理得 b2+c2-a2=bc,故 cos A=b2+c2-a2 2bc
=1,故 A=60°. 2
答案:C
4、已知向量 a=(1,2),b=(-2,m),若 a∥b,则|2a+3b|=( )
r
r
rr
已知两个向量 a (x1, y1),b (x2, y2) ,则 a ·b = x1x2 y1 y2 。
rr
rr
rr
⑤垂直:如果 a 与 b 的夹角为 900 则称 a 与 b 垂直,记作 a ⊥b 。

平面向量的应用题解析

平面向量的应用题解析

平面向量的应用题解析平面向量是解析几何中重要的概念之一,广泛应用于不同领域的问题求解。

本文将通过几个具体的应用题,来解析平面向量在实际问题中的运用。

一、题目一:平面向量求面积假设有一个三角形ABC,已知向量AB为a向量,向量AC为b向量。

求证:三角形ABC的面积等于向量a和向量b的叉积的绝对值的一半。

解析:首先,我们可以通过向量减法得到向量AB和向量AC之间的关系:向量AB = 向量AC - 向量BC。

由于向量BC等于向量AC - 向量AB,所以向量BC也可以用向量a和向量b表示,即向量BC = 向量AC - 向量AB = b - a。

根据向量的叉积公式,向量a和向量b的叉积等于向量a和向量BC (即向量b - 向量a)的模长乘以它们之间的夹角的正弦值。

设向量AB和向量AC的夹角为θ,则有向量a和向量b的叉积等于|a × (b - a)| = |a × (b - a)| = |a||b - a|sinθ。

而三角形ABC的面积等于底边AB的长度|AB|乘以高度h,其中h= |AC|sinθ。

由于|AB| = |a|,所以有三角形ABC的面积等于|a × (b - a)|的一半。

二、题目二:平面向量求几何中点坐标给定三个点A(x1, y1)、B(x2, y2)和C(x3, y3),求证:点D(xd, yd)为线段AB的中点,当且仅当向量CD为向量AB的一半。

解析:设向量AB为a向量,向量CD为b向量。

由于点D为线段AB的中点,所以点D的横坐标xd和纵坐标yd分别是线段AB两个端点横坐标的平均值和纵坐标的平均值。

即xd = (x1 + x2)/2,yd = (y1 + y2)/2。

另一方面,向量AB在坐标系中的坐标表示为(bx - ax, by - ay),其中ax、ay为点A的横纵坐标,bx、by为点B的横纵坐标。

同样地,向量CD在坐标系中的坐标表示为(dx - cx, dy - cy),其中cx、cy为点C的横纵坐标,dx、dy为点D的横纵坐标。

(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题

(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题

(名师选题)(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题单选题1、魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB=()A.表高×表距表目距的差+表高B.表高×表距表目距的差−表高C.表高×表距表目距的差+表距D.表高×表距表目距的差−表距答案:A分析:利用平面相似的有关知识以及合分比性质即可解出.如图所示:由平面相似可知,DEAB =EHAH,FGAB=CGAC,而DE=FG,所以DE AB =EHAH=CGAC=CG−EHAC−AH=CG−EHCH,而CH=CE−EH=CG−EH+EG,即AB =CG−EH+EG CG−EH ×DE =EG×DE CG−EH +DE = 表高×表距表目距的差+表高.故选:A.小提示:本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.2、已知单位向量a ⃗,b⃗⃗,则下列说法正确的是( ) A .a ⃗=b ⃗⃗B .a ⃗+b ⃗⃗=0⃗⃗C .|a ⃗|=|b ⃗⃗|D .a ⃗//b⃗⃗ 答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a ⃗,b ⃗⃗为单位向量,向量a ⃗,b⃗⃗的方向不一定相同,A 错误; 对于B ,向量a ⃗,b ⃗⃗为单位向量,但向量a ⃗, b⃗⃗不一定为相反向量,B 错误; 对于C ,向量a ⃗,b ⃗⃗为单位向量,则|a ⃗|=|b⃗⃗|=1,C 正确; 对于D ,向量a ⃗,b ⃗⃗为单位向量,向量a ⃗,b ⃗⃗的方向不一定相同或相反,即a ⃗与b⃗⃗不一定平行,D 错误. 故选:C.3、已知向量a ⃑=(−1,m ),b ⃗⃑=(2,4),若a ⃑与b⃗⃑共线,则m =( ) A .−1B .1C .−2D .2答案:C分析:根据平面向量共线坐标表示可得答案.由题意得2m =−4,即m =−2.故选:C4、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( )A .向东南走3√2kmB .向东北走3√2kmC .向东南走3√3kmD .向东北走3√3km答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km ,即向东北走3√2km .故选:B.5、已知向量a ⃑,b ⃗⃑满足|a ⃑|=2,|b ⃗⃑|=1,a ⃑⋅(a ⃑−2b ⃗⃑)=2,则a ⃑与b⃗⃑的夹角为( ) A .30°B .60°C .120°D .150°答案:B分析:由题意,先求出a ⃑⋅b⃗⃑,然后根据向量的夹角公式即可求解. 解:因为a ⃑⋅(a ⃑−2b ⃗⃑)=a ⃑2−2a ⃑⋅b ⃗⃑=|a ⃑|2−2a ⃑⋅b ⃗⃑=4−2a ⃑⋅b ⃗⃑=2,所以a ⃑⋅b⃗⃑=1, 设a ⃑与b ⃗⃑的夹角为θ,则cosθ=a ⃗⃑⋅b ⃗⃑|a ⃗⃑||b ⃗⃑|=12, 因为θ∈[0°,180°],所以θ=60°,故选:B.6、已知非零平面向量a ⃗,b ⃗⃗,c ⃗,下列结论中正确的是( )(1)若a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗,则a ⃗=b ⃗⃗;(2)若|a ⃗+b ⃗⃗|=|a ⃗|+|b ⃗⃗|,则a ⃗//b⃗⃗ (3)若|a ⃗+b ⃗⃗|=|a ⃗−b ⃗⃗|,则a ⃗⊥b ⃗⃗(4)若(a ⃗+b ⃗⃗)⋅(a ⃗−b ⃗⃗)=0,则a ⃗=b ⃗⃗或a ⃗=−b⃗⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4)答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果.已知非零平面向量a ⃗,b ⃗⃗,c ⃗,(1)若a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗,则(a ⃗−b ⃗⃗)⋅c ⃗=0,所以a ⃗=b ⃗⃗或(a ⃗−b ⃗⃗)⊥c ⃗,即(1)错;(2)若|a ⃗+b ⃗⃗|=|a ⃗|+|b ⃗⃗|,则a ⃗与b ⃗⃗同向,所以a ⃗//b⃗⃗,即(2)正确;(3)若|a ⃗+b ⃗⃗|=|a ⃗−b ⃗⃗|,则|a ⃗|2+|b ⃗⃗|2+2a ⃗⋅b ⃗⃗=|a ⃗|2+|b ⃗⃗|2−2a ⃗⋅b ⃗⃗,所以2a ⃗⋅b ⃗⃗=0,则a ⃗⊥b⃗⃗;即(3)正确; (4)若(a ⃗+b ⃗⃗)⋅(a ⃗−b ⃗⃗)=0,则|a ⃗|2−|b ⃗⃗|2=0,所以|a ⃗|=|b⃗⃗|,不能得出向量共线,故(4)错; 故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.7、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,C =30∘,c =10.如果△ABC 有两解,则a 的取值范围是( )A .[10,20]B .[10,10√3]C .(10,10√3)D .(10,20)答案:D分析:作出图形,根据题意可得出关于a 的不等式,由此可解得a 的取值范围.如下图所示:因为△ABC 有两解,所以asinC =12a <c =10<a ,解得10<a <20.故选:D.8、如图,四边形ABCD 是平行四边形,则12AC ⃗⃗⃗⃗⃗⃑+12BD ⃗⃗⃗⃗⃗⃗⃑=( )A .AB ⃗⃗⃗⃗⃗⃑B .CD ⃗⃗⃗⃗⃗⃑C .CB ⃗⃗⃗⃗⃗⃑D .AD ⃗⃗⃗⃗⃗⃑答案:D分析:由平面向量的加减法法则进行计算.由题意得AC ⃗⃗⃗⃗⃗⃑=AB ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑,BD ⃗⃗⃗⃗⃗⃗⃑=AD ⃗⃗⃗⃗⃗⃑−AB⃗⃗⃗⃗⃗⃑,所以12AC ⃗⃗⃗⃗⃗⃑+12BD ⃗⃗⃗⃗⃗⃗⃑=12(AB ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑)=AD ⃗⃗⃗⃗⃗⃑. 故选:D.9、向量a ⃗,b ⃗⃗满足a ⃗=(1,√3),|b ⃗⃗|=1,|a ⃗+b ⃗⃗|=√3,则b ⃗⃗在a ⃗方向上的投影为( )A .-1B .−12C .12D .1 答案:B解析:根据题条件,先求出a ⃗⋅b⃗⃗,再由向量数量积的几何意义,即可求出结果. 因为向量a ⃗,b ⃗⃗满足a ⃗=(1,√3),|b ⃗⃗|=1,|a ⃗+b⃗⃗|=√3, 所以|a ⃗|2+2a ⃗⋅b ⃗⃗+|b ⃗⃗|2=3,即4+2a ⃗⋅b ⃗⃗+1=3,则a ⃗⋅b⃗⃗=−1, 所以b ⃗⃗在a ⃗方向上的投影为|b →|cos <a →,b →>=a →⋅b→|a →|=−12. 故选:B.10、如图,正六边形ABCDEF 的边长为2,动点M 从顶点B 出发,沿正六边形的边逆时针运动到顶点F ,若FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑的最大值和最小值分别是m ,n ,则m +n =( )A .9B .10C .11D .12答案:D分析:连接AC ,根据正六边形的特征可得FD ⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑,从而可得FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=|AC ⃗⃗⃗⃗⃗⃑||AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩,再根据当M 在BC 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐增大,当M 从D 移动到F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐减小,即可求得m ,n ,从而得出答案.解:连接AC ,在正六边形ABCDEF 中,FD ⃗⃗⃗⃗⃗⃑=AC⃗⃗⃗⃗⃗⃑,∴FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=|AC ⃗⃗⃗⃗⃗⃑||AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩,∵正六边形ABCDEF 的边长为2,∴|AC⃗⃗⃗⃗⃗⃑|=2√3, 因为当M 在BC 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐增大,当M 从D 移动到F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐减小,所以当M 在CD 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩取得最大值,为2√3,当M 移动到点F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩取得最小值,为0.∴m =2√3×2√3=12,n =2√3×0=0,∴m +n =12.故选:D.小提示:填空题11、已知△ABC 中,AB =2,AC =1,AB ⃗⃗⃗⃗⃗⃑⋅AC ⃗⃗⃗⃗⃗⃑=1,O 为△ABC 所在平面内一点,且OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑,则AO⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑的值为___________ 答案:−1分析:在OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑中,将OB ⃗⃗⃗⃗⃗⃑=OA ⃗⃗⃗⃗⃗⃑+AB ⃗⃗⃗⃗⃗⃑,OC ⃗⃗⃗⃗⃗⃑=OA ⃗⃗⃗⃗⃗⃑+AC ⃗⃗⃗⃗⃗⃑代入,用AB ⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑表示AO ⃗⃗⃗⃗⃗⃑,可得AO⃗⃗⃗⃗⃗⃑=13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑,故AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑=(13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑)⋅(AC ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑),展开根据已知条件代入数据计算即可. ∵OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑,∴OA ⃗⃗⃗⃗⃗⃑+2(OA ⃗⃗⃗⃗⃗⃑+AB ⃗⃗⃗⃗⃗⃑)+3(OA ⃗⃗⃗⃗⃗⃑+AC ⃗⃗⃗⃗⃗⃑)=0⃗⃑,∴AO ⃗⃗⃗⃗⃗⃑=13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑, ∴AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑=(13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑)⋅(AC ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑)=12AC ⃗⃗⃗⃗⃗⃑2−13AB ⃗⃗⃗⃗⃗⃑2−16AB ⃗⃗⃗⃗⃗⃑⋅AC ⃗⃗⃗⃗⃗⃑=−1.所以答案是:−1.小提示:关键点点睛:解答本题的关键点在于将AO ⃗⃗⃗⃗⃗⃑用AB⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑线性表示,将AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑转化为AB ⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑之间的数量积运算问题来求解.12、若OA →=a →,OB →=b →,则∠AOB 平分线上的向量OM →可以表示为________.答案:λ(a →|a →|+b →|b →|),λ∈R分析:根据题意,以OA →|OA →|,OB →|OB →|为邻边作平行四边形OACB 则四边形为菱形,根据平面向量加法的平行四边形法则得OC →=OA→|OA →|+OB →|OB →|=a →|a →|+b →|b →|,由OM →,OC →共线,最后根据向量共线定理得OM →=λOC →,从而得出答案.解:∵ OA →=a →,OB →=b →,∴ OA→|OA →|=a→|a →|,OB →|OB →|=b →|b →|,∴以OA →|OA →|,OB →|OB →|为邻边作平行四边形OACB 则为菱形,∴OC 平分∠AOB ,∴根据向量加法的平行四边形法则可得:OC →=OA→|OA →|+OB→|OB →|=a →|a →|+b→|b →|,∵ OM →,OC →共线,∴由共线定理可得存在唯一的实数λ使得:OM →=λOC →=λ(a →|a →|+b →|b →|).所以答案是:λ(a →|a →|+b →|b →|),λ∈R .小提示:本题考查平面向量加法的平行四边形法则和向量共线定理,解题的关键是利用菱形的对角线平分对角这一重要性质.13、点A (−1,0),B(5,−4),AP⃗⃗⃗⃗⃗⃑=PB ⃗⃗⃗⃗⃗⃑,点P 的坐标为______. 答案:(2,−2)分析:设P(x,y),由已知条件,利用向量的坐标运算求解即可.由已知得,设P (x,y ),由已知得(x,y )−(−1,0)=(5,−4)−(x,y ),∴(x,y )=(2,−2),所以答案是:(2,−2).小提示:本题考查平面向量的坐标运算,属基础题.关键掌握向量的坐标等于终点的坐标减去起点的坐标.14、已知向量a ⃑、b ⃗⃗、c ⃑,且|a ⃑|=3,|b ⃗⃗|=5,|c ⃑|=1,a ⃑⋅b ⃗⃗=0,则|a ⃑+b ⃗⃗−c ⃑|的最小值为______.答案:√34−1##−1+√34分析:根据题意,建立直角坐标系,写出a ⃗、b ⃗⃗、a ⃗+b ⃗⃗坐标,求出c ⃑终点轨迹,数形结合即可求解.不妨设a ⃗=(3,0),b ⃗⃗=(0,5),a ⃗+b⃗⃗=(3,5), |c ⃑|=1,则c ⃑起点在原点,终点轨迹为单位圆x 2+y 2=1,∴当a ⃗+b ⃗⃗与c ⃑同向时,|a ⃑+b ⃗⃗−c ⃑|最小,为√32+52−1= √34−1.所以答案是:√34−1.15、已知a ⃑、b ⃗⃑是平面内两个互相垂直的单位向量,若c ⃑满足(a ⃑−c ⃑)⋅(b ⃗⃑−c ⃑)=0,则|c ⃑|的最大值为___________.答案:√2分析:首先根据数量积公式展开,再化简|c⃑|=√2cosα,利用三角函数的有界性求最值.(a⃗−c⃗)⋅(b⃗⃗−c⃗)=0⇔a⃑⋅b⃗⃑−(a⃑+b⃗⃑)⋅c⃑+c⃑2=0,∴|c⃗|2=(a⃗+b⃗⃗)⋅c⃗=|a⃗+b⃗⃗||c⃗|cosα=√2|c⃑|cosα,即|c⃑|=√2cosα,|c⃑|max=√2.所以答案是:√2解答题16、已知四边形ABCD是由△ABC与△ACD拼接而成的,且在△ABC中,2AB−BC=AC2+AB2−BC2AB.(1)求角B的大小;(2)若∠BAD=π3,∠ADC=5π6,AD=1,BC=2.求AB的长.答案:(1)B=π3 (2)AB=3分析:(1)由余弦定理结合2AB−BC=AC 2+AB2−BC2AB,即可求出角B的大小.(2)设AC=x,∠CAB=α,在△ABC中,由正弦定理可得√3=x sinα①,在△ADC中,由正弦定理可得x= 12sin(α−π6)②,联立①②,可得tanα=√32,在△ABC中,由正弦定理可求出AC,再由余弦定理即可求出AB的长.(1)∵2AB−BC=AC 2+AB2−BC2AB,∴整理可得,BC2+AB2﹣AC2=BC•AB,∴在△ABC中,由余弦定理可得cos B=BC2+AB2−AC22AB⋅BC =12,0<B<π,∴B=π3.(2)∵B=π3,∠BAD=π3,∠ADC=5π6,AD=1,BC=2,∴设AC=x,∠CAB=α,则在△ABC中,由正弦定理BCsin∠CAB =ACsinB,可得2sinα=xsinπ3,可得√3=x sinα,①在△ADC中,由正弦定理ACsinD =ADsin(π−∠D−∠DAC),可得xsin5π6=1sin[π6−(π3−α)],可得x=12sin(α−π6),②,∴联立①②,可得sinα=2√3sin(α−π6),可得tanα=√32,可得cosα=√11+tan2α=2√77,sinα=√217,∴在△ABC中,由正弦定理BCsinα=ACsinB,可得AC=2×sinπ3√217=√7,∵由余弦定理AC2=BC2+AB2﹣2AB•BC•cos B,可得7=4+AB2﹣2×2×AB×12,可得AB2﹣2AB﹣3=0,∴解得AB=3,(负值舍去).17、在锐角△ABC中,已知m⃗⃗⃑=(2sin(A+C),√3),n⃗⃑=(cos2B,2cos2B2−1),且m⃗⃗⃑//n⃗⃑.(1)求角B的大小;(2)若AC=1,求△ABC面积的最大值.答案:(1)π6(2)2+√34分析:(1)根据向量平行,结合二倍角正弦公式、降幂公式,化简整理,结合角B的范围,可求得答案;(2)根据(1)得角B,代入余弦定理,结合基本不等式,可得ac最大值,代入面积公式,即可得答案. (1)因为m⃗⃗⃑//n⃗⃑,所以2sin(A+C)(2cos2B2−1)=√3cos2B,因为A+B+C=π,所以sin(A+C)=sin(π−B)=sinB,所以2sinBcosB=sin2B=√3cos2B,所以tan2B=sin2Bcos2B=√3,因为锐角三角形,B∈(0,π2),所以2B∈(0,π),所以2B=π3,B=π6.(2)设角A、B、C所对的边为a,b,c,则AC=b=1,由余弦定理得cosB=a 2+c2−b22ac=√32,所以a2+c2−1=√3ac,即a2+c2=√3ac+1,又a2+c2≥2ac,所以√3ac+1≥2ac,解得ac≤2+√3,当且仅当a=c时等号成立,所以△ABC面积的最大值S max=12acsinB=12×(2+√3)×12=2+√34.18、已知向量a⃑=(1,1),b⃗⃑=(0,−2),在下列条件下分别求k的值:(1)a⃑+b⃗⃑与ka⃑−b⃗⃑平行;(2)a⃑+b⃗⃑与ka⃑−b⃗⃑的夹角为2π3.答案:(1)−1(2)−1±√3分析:(1)首先求出a⃑+b⃗⃑与ka⃑−b⃗⃑,再根据向量平行的坐标表示得到方程,解得即可;(2)首先利用向量数量积的坐标运算求出(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗),再根据平面向量数量积的定义得到方程,解得即可;(1)解:因为a⃑=(1,1),b⃗⃑=(0,−2),所以a⃗+b⃗⃗=(1,−1),ka⃗−b⃗⃗=(k,k+2),又a⃗+b⃗⃗与ka⃗−b⃗⃗平行,所以−k=k+2,解得k=−1;(2)解:因为a⃗+b⃗⃗=(1,−1),ka⃗−b⃗⃗=(k,k+2),所以(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗)=1×k+(−1)×(k+2)=−2,因为a⃗+b⃗⃗与ka⃗−b⃗⃗夹角为2π3,所以(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗)=|a⃗+b⃗⃗||a⃗−b⃗⃗|cos2π3,即−2=−√2×√k2+(k+2)2×12,解得k=−1±√3.19、在△ABC中,a,b,c分别是角A,B,C的对边,B=π3,a=3.(1)若A=π4,求b.(2)若______,求c的值及△ABC的面积.请从①b=√13,②sinC=2sinA,这两个条件中任选一个,将问题(2)补充完整,并作答.答案:(1)3√62;(2)选①c=4,S△ABC=3√3;选②c=6,S△ABC=9√32分析:(1)根据正弦定理计算即可得出结果;(2)利用余弦定理或正弦定理求出c的值,再结合三角形的面积公式计算即可.(1)B=π3,a=3,A=π4,由正弦定理,得bsinB=asinA,所以b=asinA ×sinB=√22√32=3√62;(2)选①:由余弦定理,得b2=a2+c2−2accosB,即13=c2+9−2×3c×12,整理,得c2−3c−4=0,由c>0,得c=4,所以S△ABC=12acsinB=12×3×4×√32=3√3;选②:因为sinC=2sinA,由正弦定理,得c=2a,所以c=6,所以S△ABC=12acsinB=12×6×3×√32=9√32.。

高一数学平面向量知识点与典型例题解析

高一数学平面向量知识点与典型例题解析

.高一数学第八章平面向量第一讲向量的概念与线性运算一.【要点精讲】1.向量的概念①向量:既有大小又有方向的量。

几何表示法AB ,a;坐标表示法a xi y j (x, y) 。

向量的模(长度),记作| AB |. 即向量的大小,记作|a| 。

向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0 的向量,记为0,其方向是任意的,规定0平行于任何向量。

(与0 的区别)③单位向量|a0 |=1。

④平行向量(共线向量)方向相同或相反的非零向量,记作a∥bx 1 x 2y y⑤相等向量记为 a b 。

大小相等,方向相同(x1, y ) (x ,y ) 1 21 2 22.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a,b,在平面内任取一点A,作AB a,BC b,则向量AC 叫做a与b 的和,记作a+b,即a+b AB BC ACCCbaa+bB a+bBDab ab三角形法则平行四边形法则A(1)A特殊情况:aab ba a bbA B C C A B( ( 3 )2 )向量加法的三角形法则可推广至多个向量相加:.AB BC CD PQ QR AR,但这时必须“首尾相连”。

②向量减法:同一个图中画出 a b、a b要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。

(2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积3.两个向量共线定理:向量b与非零向量a 共线有且只有一个实数,使得b = a 。

二.【典例解析】题型一:向量及与向量相关的基本概念概念例1 判断下列各命题是否正确a b ,则ab (1)零向量没有方向(2)若(3)单位向量都相等(4) 向量就是有向线段(5)两相等向量若共起点,则终点也相同(6)若a b ,b c ,则a c;(7)若a // b ,b // c ,则a //c (8) a b 的充要条件是| a | |b | 且 a // b ;(9) 若四边形ABCD是平行四边形,则A B CD, BC DA练习. (四川省成都市一诊)在四边形ABCD中,“A→B=2D→C”是“四边形ABCD为梯形”的A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件题型二:考查加法、减法运算及相关运算律例2化简(AB CD) (AC BD) =练习 1.下列命题中正确的是A.OA OB AB B.AB BA 0C.0 AB 0 D.AB BC CD AD2.化简AC BD CD AB 得.A.AB B.D A C.BC D. 03.如图,D、E、F 分别是△ABC的边AB、BC、CA的中点,则( )→+B→E+C→F=0 B.B→D-C→F+D→F=0 A.AD→+C→E-C→F=0 D.B→D-B→E-→FC=0 C.AD题型三: 结合图型考查向量加、减法例 3 在ABC 所在的平面上有一点P ,满足PA PB PC AB ,则PBC 与ABC 的面积之比是( )1 12 3A.3B.2 C.3 D.4例4 重心、垂心、外心性质→练习: 1.如图,在ΔABC中,D、E 为边AB的两个三等分点,CA =3a,A→CB→=2b,求CD→,CE .DE2 已知a b = a b求证a b B C3 若O为ABC 的内心,且满足(OB OC) (OB OC 2OA )0 ,则ABC 的形状为()A.等腰三角形B.正三角形C.直角三角形D.钝角三角形→+C→B=0,则O→C=( ) 4.已知O、A、B 是平面上的三个点,直线AB上有一点C,满足2AC2→-1 →-O→B B.-O→A+2O→B C. →D.-A.2OA OA OB3 3 1→+2→OA OB 3 3..→-3O→B+2O→C=0,则|AB|→5.已知平面上不共线的四点O,A,B,C.若OA→| BC|等于________.→+P→B+P→C=A→B,则( )6.已知平面内有一点P 及一个△ABC,若PAA.点P 在△ABC外部B.点P 在线段AB 上C.点P 在线段BC上D.点P 在线段AC上→=2D→B,C→D=1→+λC→B,则λ等于( ) 7.在△ABC中,已知 D 是AB边上一点,若AD3CA2 1A.3B.3 C.-13 D.-23题型四: 三点共线问题例4 设e1,e2 是不共线的向量,已知向量A B 2e1 ke ,CB e 3e ,CD 2e e2 1 2 1 2,若A,B,D 三点共线,求k 的值→例5 已知A、B、C、P 为平面内四点,A、B、C 三点在一条直线上PC→=mPA→+nPB ,求证:m+n=1.练习:1.已知:AB 3( e1 e2 ), BC e1 e2 , CD 2e1 e2 ,则下列关系一定成立的是()A、A,B,C三点共线B、A,B,D 三点共线C、C,A,D 三点共线D、B,C,D 三点共线→=2a+k b,C→B=a+b,C→D=2a-b,且A,B,2.(原创题)设a,b 是两个不共线的向量,若ABD 三点共线,则实数k 的值等于________.第2 讲平面向量的基本定理与坐标表示一.【要点精讲】1.平面向量的基本定理如果e1,e2 是一个平面内的两个不共线向量,那么对这一平面内的任一..向量 a ,有且只有一对实数1, 2 使: a1ee 其中不共线的向量12 2e 叫做表示这一 1,e2平面内所有向量的一组基底 .2.平面向量的坐标表示如图, 在直角坐标系内,我们分别取与 x 轴、 y 轴方向相同的 _单位向量 _ i 、 j 作为基底任作一个向量 a ,有且只有一对实数 x 、 y ,使得 a xi yj ⋯ ⋯ ⋯ ⋯ ○1 ,把 (x, y)叫做向量 a 的(直角)坐标,记作a (x, y) ⋯ ⋯ ⋯ ⋯ ○2 其中 x 叫做 a 在 x 轴上的坐标, y叫做 a 在y 轴上的坐标,○2 式叫做 向量的坐标表示与 a 相等的向量的坐标也为 (x, y) 特别地, i (1,0) , j (0,1) , 0 (0,0)特别提醒:设O Axi yj ,则向量 OA 的坐标 (x, y) 就是点 A的坐标;反过来,点A的坐标 (x, y) 也就是向量 OA 的坐标 因此, 在平面直角坐标系内, 每一个平面向量都是可以用一对 实数唯一表示3.平面向量的坐标运算(1) 若 a(x 1, y 1) , b (x , y ) 22,则 a b =(x 1 x 2 , y 1 y 2 ) , a b = (x x , yy )1212(2) 若 ( ,) B ,则 AB(3)若 a (x, y) 和实数,则A x 1 y , ( x 2 , y )12a ( x, y)4.向量平行的充要条件的坐标表示:设a =(x 1, y 1) , b =(x 2, y 2) 其中 b aa ∥b (b 0 )的充要条件是x 1y 2x 2 y 1 0A二.【典例解析】题型一 . 利用一组基底表示平面内的任一向量OC1 4 OA, O D 1 2OB C,AD 与 BC 交于点 M ,M[例 1] 在△ OAB 中,设O A =a , OB =b ,用 a ,b 表示 OM .O DB 练习:1.若已知 e 1 、e 是平面上的一组基底, 则下列各组向量中不能作为基底的一组是( )2..A . e 1 与—e 2B . 3e 1 与 2e 2C . e 1 +e 与 2e 1— e 2 D . e 与21e 1→=λA →E +μA →F ,其中 λ、 μ∈2.在平行四边形 ABCD 中, E 和 F 分别是边 CD 和 BC 的中点,若 AC R ,则 λ+ μ=________.题型二 : 向量加、减、数乘的坐标运算例 3 已 知 A ( — 2,4 )、 B ( 3, — 1 )、 C ( — 3, — 4 ) 且CM3 ,CN2CB ,求点 M 、N 的坐标及向量 MN 的坐标 .CA→练习:1. (2008 年高考辽宁卷 )已知四边形 ABCD 的三个顶点 A(0,2),B(- 1,-2),C(3,1),且BC =2A →D ,则顶点 D 的坐标为( )7 A .(2,2)B .(2,-1 2)C .(3,2)D .(1,3)2.若 M(3, -2) N(-5, -1) 且MP1 2 MN , 求 P 点的坐标;3.若 M(3, -2)N(-5, -1),点 P 在 MN 的延长线上,且1 MPMN2,求 P 点的坐标;24.(2009 年广东卷文)已知平面向量 a =( x,1) ,b =(-), 则向量 a b ()x, xA 平行于 x 轴B .平行于第一、三象限的角平分线 C.平行于 y 轴D .平行于第二、四象限的角平分线→→ =2GD,5.在三角形 ABC 中,已知 A(2,3),B(8,- 4),点 G(2,- 1)在中线 AD 上,且 AG则点 C 的坐标是( )A . (-4,2)B . (-4,- 2)C .(4,- 2)D . (4,2)6.设向量 a =(1,- 3),b =(-2,4),c =(-1,- 2),若表示向量 4a 、4b -2c 、2(a -c )、d 的 有向线段首尾相接能构成四边形,则向量d 为().A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6)7.已知A(7,1)、B(1,4),直线y=1→=2C→B,则实数 a 等于( )2ax 与线段AB交于C,且AC4 5 A.2 B.1 C.5 D.3 题型三: 平行、共线问题例4 已知向量 a (1 sin ,1),b1( ,1 sin )2,若a ∥b,则锐角等于()A.30 B.45 C.60 D.75例5.(2009 北京卷文)已知向量 a (1,0), b (0,1), c ka b(k R), d a b ,如果c// d 那么( )A.k 1且c 与d 同向B.k 1且c 与d反向C.k 1且c 与d同向D.k1且c 与d 反向练习:1.若向量a=(-1,x)与 b =(-x, 2)共线且方向相同,求x2.已知点O(0,0),A(1,2),B(4,5)及OP OA tAB ,求(1)t 为何值时,P在x 轴上?P 在y 轴上?P 在第二象限。

平面向量常见典型考题赏析

平面向量常见典型考题赏析

平面向量常见典型考题赏析随着科技的发展,平面向量的应用越来越广泛,在数学中,平面向量也是一个重要的内容。

本文将以《平面向量常见典型考题赏析》为标题,讨论平面向量的概念及常见考题。

一、平面向量的概念平面向量是由两个实数组成的有序对,也可以由一个实数组成的有序三元组,它表示一个点在二维坐标系(x-y坐标系)中的位置。

例如,平面向量<3,7>表示直角坐标系中点(3,7)。

平面向量运算有四种主要方法:加法、减法、数乘、叉乘。

(1)平面向量的加法:平面向量的加法在图象上是两个向量的并集,它的运算结果为结果向量的长度与其角度。

设<x1,y1>和<x2,y2>是两个平面向量,则x1+x2,y1+y2为两个向量的和:<x1+x2,y1+y2>。

(2)平面向量的减法:平面向量的减法在图象上表示两个向量以同一起点开始,以第一个向量结束,以第二个向量为方向反向延长的向量。

设<x1,y1>和<x2,y2>是两个平面向量,则<x1-x2,y1-y2>为两个向量的差。

(3)平面向量的数乘:平面向量的数乘是把向量和一个实数相乘后得到的新的向量。

设<x1,y1>为一个平面向量,它与实数k相乘,可得到新的向量<kx1,ky1>。

(4)平面向量的叉乘:平面向量的叉乘是两个平面向量的积,它的结果是一个实数,可以表示两个向量的夹角大小,设<x1,y1>和<x2,y2>是两个向量,则它们的叉积为:x1x2+y1y2。

二、平面向量常见典型考题赏析1、求两个向量的和解:设<x1,y1>和<x2,y2>是两个平面向量,则两个向量的和为:<x1+x2,y1+y2>。

2、求两个向量的积解:设<x1,y1>和<x2,y2>是两个平面向量,则两个向量的积为:x1x2+y1y2。

高中数学第六章平面向量及其应用经典大题例题(带答案)

高中数学第六章平面向量及其应用经典大题例题(带答案)

高中数学第六章平面向量及其应用经典大题例题单选题1、在△ABC 中,点D 在边AB 上,BD =2DA .记CA ⃗⃗⃗⃗⃗ =m →,CD⃗⃗⃗⃗⃗ =n →,则CB ⃗⃗⃗⃗⃗ =( ) A .3m →−2n →B .−2m →+3n →C .3m →+2n →D .2m →+3n →答案:B分析:根据几何条件以及平面向量的线性运算即可解出.因为点D 在边AB 上,BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ ,即CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =2(CA ⃗⃗⃗⃗⃗ −CD⃗⃗⃗⃗⃗ ), 所以CB ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ −2CA ⃗⃗⃗⃗⃗ =3n ⃗ −2m ⃗⃗ =−2m →+3n →.故选:B .2、已知单位向量a →,b →,则下列说法正确的是( )A .a →=b →B .a →+b →=0→C .|a →|=|b →|D .a →//b →答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同,A 错误;对于B ,向量a →,b →为单位向量,但向量a →, b →不一定为相反向量,B 错误;对于C ,向量a →,b →为单位向量,则|a →|=|b →|=1,C 正确;对于D ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同或相反,即a →与b →不一定平行,D 错误. 故选:C.3、向量PA ⃗⃗⃗⃗⃗ =(k,12),PB ⃗⃗⃗⃗⃗ =(4,5),PC⃗⃗⃗⃗⃗ =(10,k).若A,B,C 三点共线,则k 的值为( ) A .−2B .1C .−2或11D .2或−11答案:C分析:求得BA ⃗⃗⃗⃗⃗ ,,利用向量共线的充要条件,可得关于k 的方程,求解即可. 解:由题可得:BA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ =(k,12)−(4,5)=(k −4,7), CA u u u rCA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PC ⃗⃗⃗⃗⃗ =(k,12)−(10,k )=(k −10,12−k ). 因为A,B,C 三点共线,所以BA⃗⃗⃗⃗⃗ ∥CA ⃗⃗⃗⃗⃗ ,所以(k −4)(12−k )−7(k −10)=0,整理得k 2−9k −22=0,解得k =−2或k =11.故选:C.4、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD的中点,与BF 交于点O ,且AO ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ ,则x +y 的值为( )A .1B .57C .1417D .56答案:C分析:由向量的线性运算法则化简得到AO ⃗⃗⃗⃗⃗ ==(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ 和BO ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解.根据向量的线性运算法则,可得AO⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +y(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) =xAB ⃗⃗⃗⃗⃗ −yAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(AD ⃗⃗⃗⃗⃗ +DC⃗⃗⃗⃗⃗ ) =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(2AF ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )=(x −y)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ +12yAB ⃗⃗⃗⃗⃗ =(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0;又由BO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ −xBA ⃗⃗⃗⃗⃗ +y ⋅43BE ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0,解得x =817,y =617,所以x +y =1417. 故选:C.5、若|AB⃗⃗⃗⃗⃗ |=5,|AC ⃗⃗⃗⃗⃗ |=8,则|BC ⃗⃗⃗⃗⃗ |的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13) AE答案:C分析:利用向量模的三角不等式可求得|BC⃗⃗⃗⃗⃗ |的取值范围. 因为|BC⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |,所以,||AC ⃗⃗⃗⃗⃗ |−|AB ⃗⃗⃗⃗⃗ ||≤|BC ⃗⃗⃗⃗⃗ |≤|AC ⃗⃗⃗⃗⃗ |+|AB ⃗⃗⃗⃗⃗ |,即3≤|BC ⃗⃗⃗⃗⃗ |≤13. 故选:C.6、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D7、若点M 是△ABC 所在平面内的一点,且满足3AM ⃗⃗⃗⃗⃗⃗ -AB⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→,则△ABM 与△ABC 的面积之比为( ) A .1∶2B .1∶3C .1∶4D .2∶5答案:B分析:由平面向量的加法结合已知可得M 为AD 的三等分点,然后由等高的三角形面积之比等于底边之比可得. 如图,D 为BC 边的中点,则AD ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) 因为3AM⃗⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→ 所以3AM⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ , 所以AM ⃗⃗⃗⃗⃗⃗ =23AD⃗⃗⃗⃗⃗ 所以S △ABM =23S △ABD =13S △ABC .故选:B8、如图,等腰梯形ABCD 中,AB =BC =CD =3AD ,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE ⃗⃗⃗⃗⃗ =( )A .−1318AB ⃗⃗⃗⃗⃗ +518AC ⃗⃗⃗⃗⃗ B .−1318AB ⃗⃗⃗⃗⃗ +118AC ⃗⃗⃗⃗⃗ C .−1118AB ⃗⃗⃗⃗⃗ +49AC ⃗⃗⃗⃗⃗ D .−1118AB ⃗⃗⃗⃗⃗ +119AC⃗⃗⃗⃗⃗ 答案:B 分析:以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,利用平面向量线性运算的相关运算化简即可. FE⃗⃗⃗⃗⃗ =FC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +23CD ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )+23(BA ⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ ) =12AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ −29AB ⃗⃗⃗⃗⃗ −49AC ⃗⃗⃗⃗⃗ =−1318AB ⃗⃗⃗⃗⃗ +118AC⃗⃗⃗⃗⃗ 故选:B多选题9、在△ABC 中,若(a 2+c 2−b 2)tanB =√3ac ,则角B 的值可以为( )A .π6B .π3C .2π3D .5π6答案:BC分析:利用余弦定理边化角可整理得到sinB ,结合B ∈(0,π)可得结果.∵(a 2+c 2−b 2)tanB =√3ac ,∴a 2+c 2−b 22ac ⋅tanB =cosB ⋅sinB cosB =sinB =√32, 又B ∈(0,π),∴B =π3或2π3.故选:BC.10、下列说法中正确的是( )A .平面向量的一个基底{e 1⃗⃗⃗ ,e 2⃗⃗⃗ }中,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量.B .在平面向量基本定理中,若a =0⃗ ,则λ1=λ2=0.C .若单位向量e 1⃗⃗⃗ 、e 2⃗⃗⃗ 的夹角为2π3,则e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量是−12e 2⃗⃗⃗ .D .表示同一平面内所有向量的基底是唯一的.答案:ABC分析:由平面向量基本定理,依次判定即可选项A :作为基底的两个向量一定不共线,零向量与任意向量共线,因此e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量,故A 正确; 选项B :a =0⃗ =0⋅e 1⃗⃗⃗ +0⋅e 2⃗⃗⃗ ,由在同一基底下向量分解的唯一性,有λ1=λ2=0,故B 正确;选项C :e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量为:e 1⃗⃗⃗⃗ ⋅e 2⃗⃗⃗⃗ |e 2⃗⃗⃗⃗ |e 2⃗⃗⃗ =−12e 2⃗⃗⃗ ,故C 正确; 选项D :平面内任何两个不共线的向量都可作为基底,因此基底不是唯一的,故D 错误故选:ABC11、如图,B 是AC 的中点,BE⃗⃗⃗⃗⃗ =2OB ⃗⃗⃗⃗⃗ ,P 是平行四边形BCDE 内(含边界)的一点,且OP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB⃗⃗⃗⃗⃗ (x,y ∈R ),则下列结论正确的为( )A .当x =0时,y ∈[2,3]B .当P 是线段CE 的中点时,x =−12,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x −y 的最大值为−1答案:BCD解析:利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP⃗⃗⃗⃗⃗ ,求出x ,y 判断出B 对,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ,然后可判断出D 正确. 当x =0时,OP⃗⃗⃗⃗⃗ =yOB ⃗⃗⃗⃗⃗ ,则P 在线段BE 上,故1≤y ≤3,故A 错 当P 是线段CE 的中点时,OP ⃗⃗⃗⃗⃗ =OE ⃗⃗⃗⃗⃗ +EP ⃗⃗⃗⃗⃗ =3OB ⃗⃗⃗⃗⃗ +12(EB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =3OB ⃗⃗⃗⃗⃗ +12(−2OB ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=−12OA ⃗⃗⃗⃗⃗ +52OB ⃗⃗⃗⃗⃗ ,故B 对 x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则:OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ;又OP⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ;∴x ⩽0,y ⩾1; 由图形看出,当P 与B 重合时:OP ⃗⃗⃗⃗⃗ =0⋅OA ⃗⃗⃗⃗⃗ +1⋅OB⃗⃗⃗⃗⃗ ; 此时x 取最大值0,y 取最小值1;所以x −y 取最大值−1,故D 正确故选:BCD小提示:名师点评若OC⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ,则A,B,C 三点共线⇔x +y =1. 12、下列说法正确的有( )A .若|a →+b →|=|b →|且b →≠0,则a →=0→B .设a →,b →是非零向量,若|a →+b →|=|a →−b →|,则a →⊥b →C .若a →b →=a →c →且a →≠0,则b →=c →D .设a →,b →是非零向量,若|a →+b →|=|a →|−|b →|,则存在实数λ,使得a →=λb → 答案:BD分析:A. 举反例说明该命题错误;B.若|a →+b →|=|a →−b →|,所以a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 分析得a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.A. 若a →=−2b →≠0→也满足已知,但是a →≠0→,所以该命题错误;B.若|a →+b →|=|a →−b →|,所以a →2+b →2+2a →⋅b →=a →2+b →2−2a →⋅b →,∴a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 若|a →+b →|=|a →|−|b →|,则|a →|2+|b →|2+2a →b →=|a →|2+|b →|2−2|a →||b →|,得a →b →=−|a →||b →|,则a →,b →的夹角的余弦cosθ=−1,则a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.故选:BD13、已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,∠C =45°,c =√2,a =x ,若满足条件的三角形有两个,则x 的值可能为( )A .1B .1.5C .1.8D .2答案:BC分析:利用正弦定理求得sinA =12x ,再根据三角形有两解的条件可得A ∈(45∘,135∘),且A ≠90∘,由此求出x 的范围即可得解.在△ABC 中,由正弦定理得,sinA =asinC c =∘√2=12x , 因满足条件的三角形有两个,则必有A ∈(45∘,135∘),且A ≠90∘,即√22<sinA <1, 于是得√22<12x <1,解得√2<x <2,显然x 可取1.5,1.8. 故选:BC填空题14、给出下列命题:①零向量没有确定的方向;②在正方体ABCD -A 1B 1C 1D 1中,AC ⃗⃗⃗⃗⃗ =A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ;③若向量a 与向量b ⃗ 的模相等,则a ,b⃗ 的方向相同或相反; ④在四边形ABCD 中,必有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ . 其中正确命题的序号是________.答案:①②分析:根据零向量、相等向量、向量和及向量模等概念逐一判断.①正确;②正确,因为AC ⃗⃗⃗⃗⃗ 与A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的大小和方向均相同;③|a|=|b ⃗ |,不能确定其方向,所以a 与b ⃗ 的方向不能确定;④只有当四边形ABCD 是平行四边形时,才有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ .综上可知,正确命题为①②. 故答案为:①②15、如图所示,在矩形ABCD 中,AB =√2,BC =2,点E 在边CD 上,且DE ⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ ,则AE ⃗⃗⃗⃗⃗ BE⃗⃗⃗⃗⃗ 的值是________. 答案:329 sin sin a c A C分析:由于向量的数量积可以进行坐标运算,所以将几何问题转化为代数问题,建立以A 为原点, AB 所在直线为x 轴的平面直角坐标系,分别写出A 、B 、E 的坐标,再通过向量的坐标运算即可求出向量的数量积.解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =√2,BC =2,∴A (0,0),B (√2,0),C (√2,2),D (0,2),∵点E 在边CD 上,且DE⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ , ∴E (2√23,2).∴AE ⃗⃗⃗⃗⃗ =(2√23,2),BE ⃗⃗⃗⃗⃗ =(−√23,2), ∴AE ⃗⃗⃗⃗⃗ BE ⃗⃗⃗⃗⃗ =−49+4=329. 16、设a →,b →为单位向量,且|a →+b →|=1,则|a →−b →|=______________.答案:√3分析:整理已知可得:|a +b ⃗ |=√(a +b ⃗ )2,再利用a ,b ⃗ 为单位向量即可求得2a ⋅b ⃗ =−1,对|a −b⃗ |变形可得:|a −b ⃗ |=√|a |2−2a ⋅b⃗ +|b ⃗ |2,问题得解. 因为a ,b ⃗ 为单位向量,所以|a |=|b⃗ |=1 所以|a +b ⃗ |=√(a +b ⃗ )2=√|a |2+2a ⋅b ⃗ +|b ⃗ |2=√2+2a ⋅b⃗ =1 解得:2a ⋅b⃗ =−1 所以|a −b ⃗ |=√(a −b ⃗ )2=√|a |2−2a ⋅b⃗ +|b ⃗ |2=√3 所以答案是:√3小提示:本题主要考查了向量模的计算公式及转化能力,属于中档题.解答题17、康平滕龙阁,位于康平县中央公园中心,建在有“敖包朝霞”之称的敖包山旧址上,是老百姓心中的祥瑞之地.如图,小明同学为测量滕龙阁的高度,在滕龙阁的正东方向找到一座建筑物AB,高为8米,在地面上的点M(B,M,D三点共线)测得楼顶A,滕龙阁顶部C的仰角分别为15°和60°,在楼顶A处测得阁顶部C的仰角为30°,试替小明求滕龙阁的高度?(精确到0.01米)答案:37.86米分析:在△ACM中,利用正弦定理求得CM,然后在Rt△CDM中,由CD=CMsin60°求解.解:由题意得,在Rt△ABM中,AM=ABsin15°,在△ACM中,∠CAM=30°+15°=45°,∠AMC=180°−15°−60°=105°,所以∠ACM=30°,由正弦定理AMsin∠ACM =CMsin∠CAM,得CM=sin∠CAMsin∠ACM ⋅AM=√2ABsin15°,又sin15°=sin(45°−30°)=√22×√32−√22×12=√6−√24,在Rt△CDM中,CD=CMsin60°=√6AB2sin15°=√62×√6−√24=24+8√3≈37.86.答:滕龙阁的高度约为37.86米.18、如图,在直角梯形OABC中,OA//CB,OA⊥OC,OA=2BC=2OC,M为AB上靠近B的三等分点,OM交AC于D,P为线段BC上的一个动点.(1)用OA ⃗⃗⃗⃗⃗ 和OC⃗⃗⃗⃗⃗ 表示OM ⃗⃗⃗⃗⃗⃗ ; (2)求OD DM ;(3)设OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ ,求λ⋅μ的取值范围. 答案:(1)OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ;(2)3;(3)[0,34]. 分析:(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,OD⃗⃗⃗⃗⃗⃗ 将由这一组基向量的唯一表示出而得解; (3)由动点P 设出CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12),结合平面向量基本定理,λ⋅μ建立为x 的函数求解. (1)依题意CB ⃗⃗⃗⃗⃗ =12OA ⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ , ∴AM ⃗⃗⃗⃗⃗⃗ =23(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=23(OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )−23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ +13OA ⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ , ∴OM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +(23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ )=23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ; (2)因OM 交AC 于D ,由(1)知OD ⃗⃗⃗⃗⃗⃗ =tOM ⃗⃗⃗⃗⃗⃗ =t(23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ )=OD ⃗⃗⃗⃗⃗⃗ =2t 3OA ⃗⃗⃗⃗⃗ +2t 3OC ⃗⃗⃗⃗⃗ , 由共起点的三向量终点共线的充要条件知,2t 3+2t 3=1,则t =34,OD ⃗⃗⃗⃗⃗⃗ =3DM ⃗⃗⃗⃗⃗⃗ ,|OD ⃗⃗⃗⃗⃗⃗||DM ⃗⃗⃗⃗⃗⃗⃗ |=3; (3)由已知OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +12OA ⃗⃗⃗⃗⃗ , 因P 是线段BC 上动点,则令CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12), OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ =λ(OA ⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ )+μ(OC ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ )=(λ+μx)OA ⃗⃗⃗⃗⃗ +(μ−λ)OC ⃗⃗⃗⃗⃗ , 又OC ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ 不共线,则有{μ−λ=1λ+μx =12⇒{λ=μ−1μ=32+2x, 0≤x ≤12⇒1≤x +1≤32⇒1≤μ≤32, λ⋅μ=μ(μ−1)=(μ−12)2−14在μ∈[1,32]上递增,所以μ=1,(λ⋅μ)min =0,μ=32,(λ⋅μ)max =34,故λ⋅μ的取值范围是[0,34].小提示:由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量的解题技巧
一. 向量的概念,向量的基本运算
(1)理解向量的概念,掌握向量的何意义,了解共线向量的概念.
(2)掌握向量的加法和减法.
(3)掌握实数与向量的积,理解两个向量共线的充要条件.
(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.
(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
(6)掌握平面两点间的距离公式.
例1.(2007年北京卷理)已知是所在平面内一点,为
边中点,且,那么()
A.B.C.D.命题意图:本题考查能够结合图形进行向量计算的能力.
解:
. 故选A.
例2.(2006年安徽卷)在平行四边形中,,M 为BC的中点,则______.(用表示)
命题意图:本题主要考查向量的加法和减法,以及实数与向量的积.
解:由得,,所以。

例3.(2006年广东卷)如图所示,D是△ABC的边AB上的中点,则向量( ) (A)(B)(C)(D)
命题意图:本题主要考查向量的加法和减法运算能力.
解:,故选A.
4.设平面向量、、的和.如果向量、、,满足
且顺时针旋转后与同向,其中,则()
(A)(B)
(C)(D)
命题意图:本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.
常规解法:∵,∴故把2 (i=1,2,3),分别按顺时针旋转30后与重合,故,应选D.
巧妙解法:令,则,由题意知,从而排除B,C,同理排除A,故选D.
点评:巧妙解法巧在取,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.
二.向量的坐标运算
5.( 2006年重庆卷)与向量、的夹角相等,且模为1的向量是 ( ) (A)(B)或
(C)(D)或
命题意图:本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.
解:设与向量、的夹角相等,且模为1的向量为,
则解得
故或,选B.
6.(2006年天津卷)设向量与的夹角为,且,,则_.
命题意图:本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.
解:设,由

∴时,,故填
7.(2006年湖北卷)已知向量,是不平行于轴的单位向量,且,则=()
(A)(B)(C)(D)
命题意图:本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.
解:设,则依题意有,故选B.
三. 平面向量与三角函数的结合
(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.
(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大.
8.(2007年陕西卷理17.)设函数,其中向量=(m,cos2x),
=(1+sin2x,1),x∈R,且函数y=f(x)的图象经过点,
(Ⅰ)求实数m的值;(Ⅱ)求函数f(x)的最小值及此时x的值的集合.
解:(Ⅰ),
由已知,得.
(Ⅱ)由(Ⅰ)得,
当时,的最小值为,由,得值的集合为
9.(2007年湖北卷理16)已知的面积为,且满足,设
和的夹角为.
(I)求的取值范围;(II)求函数的最大值。

解:(Ⅰ)设中角的对边分别为,
则由,,可得,.
(Ⅱ)

,,.即当时,;当时,.
10.(2007年广东卷理)已知的三个顶点的直角坐标分别为、、.
(1)若,求的值;(2)若为钝角,求的取值范围;
解:(1),,若,则,
∴,∴;
(2)为钝角,则,解得,∴c的取值范围是。

11.(2007年山东卷文17)在中,角、、的对边分别为、、,

(1)求;(2)若,且,求.
解:(1)
又,解得.
,是锐角,.
(2)∵,,.
又,,.
..
12.(2006年湖北)设函数,其中向量
,.
(Ⅰ)求函数的最大值和最小正周期;
(Ⅱ)将函数的图像按向量平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的.
命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.
解:(Ⅰ)由题意得,
所以,的最大值为,最小正周期是.
(Ⅱ)由得,即,(k∈Z)
于是,(k∈Z)
因为k为整数,要使最小,则只有k=1,此时即为所求. 13.(2006年全国卷II)已知向量,,.
(Ⅰ)若,求;(Ⅱ)求的最大值.
命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.
解(Ⅰ)若,则,由此得(),所以;
(Ⅱ)由,得
当时,取得最大值,即当时,最大值为.
四. 平面向量与解析几何的结合
14.(2006年陕西卷)如图,三定点、、
,三动点D、E、M满足,,
,.
(I)求动直线DE斜率的变化范围;
(II)求动点M的轨迹方程。

命题意图:本小题主要考查平面向量的计算方法、三角公式、三角函数的性质及图像和圆锥曲线方程的求法等基本知识,考查推理和运算能力.
解:如图, (Ⅰ) 设,,,
则,
, 知
∴即
同理.

∵ , ∴.
(Ⅱ) ∵,,

∴即,∴.
∵, .
即所求轨迹方程为: ,
15.(2006年全国卷II)已知抛物线的焦点为F,A、B是抛物线上的两动点,且
(),过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;
(Ⅱ)设△ABM的面积为S,写出的表达式,并求S的最小值.
命题意图:本小题主要考查平面向量的计算方法、和圆锥曲线方程,以及函数的导数的应用等基本知识,考查推理和运算能力.
解:
(Ⅰ)由已知条件,得,.
设,,则,.
由,得即
将(1)式两边平方并把,代入得(3)
解(2)(3)式得,,且有,
抛物线方程为,求导得.
所以过抛物线上A、B两点的切线方程分别是,
即,.
解出两条切线的交点M的坐标为即.
∵,
所以
所以为定值,其值为0.
(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,,,因而.
因为|AF|、|BF|分别等于A、B到抛物线准线y=-1的距离,所以
于是,
由知S≥4,且当λ=1时,S取得最小值4.。

相关文档
最新文档