北安市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

合集下载

北安市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

北安市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

北安市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知角的终边经过点,则的值为( )α(sin15,cos15)-oo2cos αA .B .C.D .012+12342. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有()①三棱锥M ﹣DCC1的体积为定值②DC 1⊥D 1M③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④3. 矩形ABCD 中,AD=mAB ,E 为BC 的中点,若,则m=()A .B .C .2D .34. 下列命题中正确的是()A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”C .“”是“”的充分不必要条件D .命题“∀x ∈R ,2x >0”的否定是“”5. 设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( )A .m ∥α,n ∥β且α∥β,则m ∥nB .m ⊥α,n ⊥β且α⊥β,则m ⊥nC .m ⊥α,n ⊂β,m ⊥n ,则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β6. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( )A .{5}B .{1,2,5}C .{1,2,3,4,5}D .∅7. i 是虚数单位,=()A .1+2iB .﹣1﹣2iC .1﹣2iD .﹣1+2i8. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .809. 已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( )A .y=x ﹣4B .y=2x ﹣3C .y=﹣x ﹣6D .y=3x ﹣210.已知点F 是抛物线y 2=4x 的焦点,点P 在该抛物线上,且点P 的横坐标是2,则|PF|=()A .2B .3C .4D .5班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42B.0.28C.0.3D.0.712.=()A.﹣i B.iC.1+i D.1﹣i二、填空题13.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 . 14.已知i是虚数单位,复数的模为 .15.设曲线y=x n+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为x n,令a n=lgx n,则a1+a2+…+a99的值为 .16.如果直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行.那么a等于 .17.由曲线y=2x2,直线y=﹣4x﹣2,直线x=1围成的封闭图形的面积为 .18.运行如图所示的程序框图后,输出的结果是 三、解答题19.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=,M是AB的中点.(1)求证:CM⊥EM;(2)求MC与平面EAC所成的角.20.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线.(1)求证:AD =;122b 2+2c 2-a 2(2)若A =120°,AD =,=,求△ABC 的面积.192sin B sin C 3521.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4。

北安市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

北安市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
A.3 5. 点 A 是椭圆 B.2 C.1
D.
1 2
上一点,F1、F2 分别是椭圆的左、右焦点,I 是△AF1F2 的内心.若 ,则该椭圆的离心率为( )
A.
B.
C.
D. )
6. 若多项式 x2+x10=a0+a1(x+1)+…+a8(x+1)8+a9(x+1)9+a10(x+1)10,则 a8=( A.45 B.9 C.﹣45 D.﹣9 ) 7. 已知数列{an}是等比数列前 n 项和是 Sn,若 a2=2,a3=﹣4,则 S5 等于( A.8 B.﹣8 2x﹣1 C.11 D.﹣11 ) C.∀x∈N+,(x﹣1)2>0 D.∃x∈R,tanx=2 ) 8. 下列命题中的假命题是( A.∀x∈R, >0 9. 下列命题中正确的个数是(
第 6 页,共 12 页
④若直线 l 上有无数个点不在平面 α 内,则 l∥α 或 l 与平面相交,故④错误. 故选:B. 【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关 系的合理运用. 10.【答案】C 【解析】解:| |=3,| |=1, 与 的夹角为 可得 =| || |cos< , >=3×1× = , ,
,其中 m,n∈N*,则 m+n= .
18.如图,在正方体 ABCD﹣A1B1C1D1 中,点 P、Q 分别是 B1C1、CC1 的中点,则直线 A1P 与 DQ 的位置关系 是 .(填“平行”、“相交”或“异面”)
三、解答题
19.(本小题满分 12 分)求下列函数的定义域: (1) f x ()=1+(1+a)x﹣x2﹣x3,其中 a>0. (Ⅰ)讨论 f(x)在其定义域上的单调性; (Ⅱ)当 x∈时,求 f(x)取得最大值和最小值时的 x 的值.

北安市第二中学2018-2019学年高三上学期11月月考数学试卷含答案

北安市第二中学2018-2019学年高三上学期11月月考数学试卷含答案

北安市第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k 的值是( ) A .1B.C.D.2. 有下列关于三角函数的命题 P 1:∀x ∈R ,x ≠k π+(k ∈Z ),若tanx >0,则sin2x >0;P 2:函数y=sin (x﹣)与函数y=cosx 的图象相同;P 3:∃x 0∈R ,2cosx 0=3;P 4:函数y=|cosx|(x ∈R )的最小正周期为2π,其中真命题是( ) A .P 1,P 4B .P 2,P 4C .P 2,P 3D .P 1,P 23. 定义在(0,+∞)上的单调递减函数f (x ),若f (x)的导函数存在且满足,则下列不等式成立的是( )A .3f (2)<2f (3)B .3f (4)<4f (3)C .2f (3)<3f (4)D .f (2)<2f (1) 4. 函数f (x )=xsinx 的图象大致是( )A. B.C. D.5. 已知函数y=f (x )的周期为2,当x ∈[﹣1,1]时 f (x )=x 2,那么函数y=f (x )的图象与函数y=|lgx|的图象的交点共有( )A .10个B .9个C .8个D .1个6. 已知菱形ABCD 的边长为3,∠B=60°,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( ) A .15π B.C.πD .6π7. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0 B .1C .2D .38. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( )A .kB .﹣kC .1﹣kD .2﹣k9. 设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P ∩(∁U Q )=( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}10.设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A .5B.C.D.11.函数y=x+cosx 的大致图象是( )A. B.C. D.12.设函数f (x )=的最小值为﹣1,则实数a 的取值范围是( )A .a ≥﹣2B .a >﹣2C .a ≥﹣ D .a>﹣二、填空题13.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .14.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 .15.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 16.函数()x f x xe =在点()()1,1f 处的切线的斜率是. 17.Sn =++…+= .18.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 三、解答题19.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥a+b.20.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分A B C D E,其频率分布直方图如下图所示.别记为,,,,(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;C D E三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中(Ⅱ)该团导游首先在,,随机选出2名团员为主要协调负责人,求选出的2名团员均来自C组的概率.21.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.22.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.23.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v (x)可以达到最大,并求出最大值.(精确到1辆/小时).24.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,计算得x i=80,y i=20,x i y i=184,x i2=720.(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.北安市第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.2.【答案】D【解析】解:对于P1,∀x∈R,x≠kπ+(k∈Z),若tanx>0,则sin2x=2sinxcosx==>0,则P1为真命题;对于P2,函数y=sin(x﹣)=sin(2π+x﹣)=sin(x+)=cosx,则P2为真命题;对于P3,由于cosx∈[﹣1,1],∉[﹣1,1],则P3为假命题;对于P4,函数y=|cosx|(x∈R),f(x+π)=|cos(x+π)|=|﹣cosx|=|cosx|=f(x),则f(x)的最小正周期为π,则P4为假命题.故选D.【点评】本题考查全称性命题和存在性命题的真假,以及三角函数的图象和周期,运用二倍角公式和诱导公式以及周期函数的定义是解题的关键,属于基础题和易错题.3.【答案】A【解析】解:∵f(x)为(0,+∞)上的单调递减函数,∴f′(x)<0,又∵>x,∴>0⇔<0⇔[]′<0,设h(x)=,则h(x)=为(0,+∞)上的单调递减函数,∵>x>0,f′(x)<0,∴f(x)<0.∵h(x)=为(0,+∞)上的单调递减函数,∴>⇔>0⇔2f (3)﹣3f (2)>0⇔2f (3)>3f (2),故A 正确;由2f (3)>3f (2)>3f (4),可排除C ; 同理可判断3f (4)>4f (3),排除B ; 1•f (2)>2f (1),排除D ; 故选A .【点评】本题考查利用导数研究函数的单调性,求得[]′<0是关键,考查等价转化思想与分析推理能力,属于中档题.4. 【答案】A【解析】解:函数f (x )=xsinx 满足f (﹣x )=﹣xsin (﹣x )=xsinx=f (x ),函数的偶函数,排除B 、C , 因为x ∈(π,2π)时,sinx <0,此时f (x )<0,所以排除D , 故选:A .【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.5. 【答案】A【解析】解:作出两个函数的图象如上∵函数y=f (x )的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f (x )在区间[0,10]上有5次周期性变化, 在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数, 在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0; x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A .【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.6. 【答案】A【解析】解:如图所示,设球心为O ,在平面ABC 中的射影为F ,E 是AB 的中点,OF=x ,则CF=,EF=R 2=x 2+()2=(﹣x )2+()2,∴x=∴R2=∴球的表面积为15π.故选:A.【点评】本题考查球的表面积,考查学生的计算能力,确定球的半径是关键.7.【答案】C【解析】解:命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题;综上,以上3个命题中真命题的个数是2.故选:C8.【答案】D【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,∴f(2016)=20163a+2016b+1=k,∴20163a+2016b=k﹣1,∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.故选:D.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.9.【答案】D【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5},∴∁U Q={1,2,6},又P={1,2,3,4},∴P∩(C U Q)={1,2}故选D.10.【答案】C【解析】解:∵双曲线焦点在y轴上,故两条渐近线为y=±x,又已知渐近线为,∴=,b=2a,故双曲线离心率e====,故选C.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键.11.【答案】B【解析】解:由于f(x)=x+cosx,∴f(﹣x)=﹣x+cosx,∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.【点评】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力,属于中档题.12.【答案】C【解析】解:当x≥时,f(x)=4x﹣3≥2﹣3=﹣1,当x=时,取得最小值﹣1;当x<时,f(x)=x2﹣2x+a=(x﹣1)2+a﹣1,即有f(x)在(﹣∞,)递减,则f(x)>f()=a﹣,由题意可得a﹣≥﹣1,解得a≥﹣.故选:C.【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.二、填空题13.【答案】90°.【解析】解:∵∴=∴ ∴α与β所成角的大小为90°故答案为90°【点评】本题用向量模的平方等于向量的平方来去掉绝对值.14.【答案】.【解析】解:在区间[﹣2,3]上任取一个数a , 则﹣2≤a ≤3,对应的区间长度为3﹣(﹣2)=5,若f (x )=x 3﹣ax 2+(a+2)x 有极值,则f'(x )=x 2﹣2ax+(a+2)=0有两个不同的根, 即判别式△=4a 2﹣4(a+2)>0,解得a >2或a <﹣1, ∴﹣2≤a <﹣1或2<a ≤3,则对应的区间长度为﹣1﹣(﹣2)+3﹣2=1+1=2,∴由几何概型的概率公式可得对应的概率P=,故答案为:【点评】本题主要考查几何概型的概率的计算,利用函数取得极值的条件求出对应a 的取值范围是解决本题的关键.15.【答案】6π,18+ 【解析】16.【答案】2e 【解析】 试题分析:()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .考点:利用导数求曲线上某点切线斜率. 17.【答案】【解析】解:∵ ==(﹣),∴S n =++…+= [(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣)=,故答案为:.【点评】本题主要考查利用裂项法进行数列求和,属于中档题.18.【答案】[]2,6 【解析】考点:简单的线性规划.【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点(),x y与原点()0,0的距离;(2(),x y与点(),a b间的距离;(3)yx可表示点(),x y与()0,0点连线的斜率;(4)y bx a--表示点(),x y与点(),a b连线的斜率.三、解答题19.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(a+b)2=a+b+2ab≤2(a+b)=4,∴a+b≤2,∴f(x)≥a+b=2≥a+b,即f(x)≥a+b.20.【答案】【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.21.【答案】【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以,圆心坐标是(0,﹣7),半径长r=5.…因为直线l被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l的距离为.…因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2x﹣y+b=0.所以圆心到直线l的距离为,…因此,解得b=﹣2,或b=﹣12.…所以,所求直线l的方程为y=2x﹣2,或y=2x﹣12.即2x﹣y﹣2=0,或2x﹣y﹣12=0.…【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用.22.【答案】【解析】(本题满分为12分)解:(1)由题意知:A=2,…∵T=6π,∴=6π得ω=,…∴f(x)=2sin(x+φ),∵函数图象过(π,2),∴sin (+φ)=1,∵﹣<φ+<,∴φ+=,得φ=…∴A=2,ω=,φ=,∴f (x )=2sin (x+).…(2)∵将y=f (x )图象上所有点的横坐标缩短到原来的(纵坐标不变),可得函数y=2sin (x+)的图象,然后再将新的图象向轴正方向平移个单位,得到函数g (x )=2sin[(x ﹣)+]=2sin (﹣)的图象.故y=g (x )的解析式为:g (x )=2sin (﹣).…【点评】本题主要考查了由y=Asin (ωx+φ)的部分图象确定其解析式,考查了函数y=Asin (ωx+φ)的图象变换,函数y=Asin (ωx+φ)的解析式的求法,其中根据已知求出函数的最值,周期,向左平移量,特殊点等,进而求出A ,ω,φ值,得到函数的解析式是解答本题的关键.23.【答案】【解析】解:(Ⅰ) 由题意:当0≤x ≤20时,v (x )=60;当20<x ≤200时,设v (x )=ax+b再由已知得,解得故函数v (x )的表达式为.(Ⅱ)依题并由(Ⅰ)可得当0≤x <20时,f (x )为增函数,故当x=20时,其最大值为60×20=1200当20≤x ≤200时,当且仅当x=200﹣x ,即x=100时,等号成立.所以,当x=100时,f (x )在区间(20,200]上取得最大值.综上所述,当x=100时,f (x )在区间[0,200]上取得最大值为, 即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.24.【答案】【解析】解:(1)由题意,n=10,=x=8,=y i=2,i∴b==0.3,a=2﹣0.3×8=﹣0.4,∴y=0.3x﹣0.4;(2)∵b=0.3>0,∴y与x之间是正相关;(3)x=7时,y=0.3×7﹣0.4=1.7(千元).。

郊区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(2)

郊区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(2)

郊区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. i 是虚数单位,i 2015等于( )A .1B .﹣1C .iD .﹣i2. 二项式的展开式中项的系数为10,则()(1)(N )n x n *+Î3x n =A .5 B .6C .8D .10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.3. 如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135°4. 已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( )A .y=x ﹣4B .y=2x ﹣3C .y=﹣x ﹣6D .y=3x ﹣25. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .06. 从1,2,3,4中任取两个数,则其中一个数是另一个数两倍的概率为( )A .B .C .D .7. 全称命题:∀x ∈R ,x 2>0的否定是( )A .∀x ∈R ,x 2≤0B .∃x ∈R ,x 2>0C .∃x ∈R ,x 2<0D .∃x ∈R ,x 2≤08. 如图,空间四边形OABC 中,,,,点M 在OA 上,且,点N 为BC 中点,则等于()A .B .C .D .9. 执行如图的程序框图,则输出S 的值为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .2016B .2C .D .﹣110.阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为()A .3B .4C .5D .611.sin 3sin1.5cos8.5,,的大小关系为( )A .sin1.5sin 3cos8.5<<B .cos8.5sin 3sin1.5<<C.sin1.5cos8.5sin 3<<D .cos8.5sin1.5sin 3<<12.函数是指数函数,则的值是( )2(44)xy a a a =-+A .4B .1或3C .3D .1二、填空题13.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 . 14.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ>②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)15.【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两()2,0,{,0x x x f x x lnx x a+≤=->个零点,则正实数的值为______.a 16.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 . 17.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .18.若复数是纯虚数,则的值为 .34sin (cos 55z αα=-+-tan α【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.三、解答题19.已知函数f (x )=x 2﹣(2a+1)x+alnx ,a ∈R (1)当a=1,求f (x )的单调区间;(4分)(2)a >1时,求f (x )在区间[1,e]上的最小值;(5分)(3)g (x )=(1﹣a )x ,若使得f (x 0)≥g (x 0)成立,求a 的范围.20.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t 0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t 0,试确定t 0的取值范围21.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.22.如图,已知椭圆C,点B坐标为(0,﹣1),过点B的直线与椭圆C的另外一个交点为A,且线段AB的中点E在直线y=x上.(1)求直线AB的方程;(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q.①证明:OM•ON为定值;②证明:A、Q、N三点共线.23.已知定义在的一次函数为单调增函数,且值域为.[]3,2-()f x []2,7(1)求的解析式;()f x (2)求函数的解析式并确定其定义域.[()]f f x 24.如图,AB 是⊙O 的直径,C ,F 为⊙O 上的点,CA 是∠BAF 的角平分线,过点C 作CD ⊥AF 交AF 的延长线于D 点,CM ⊥AB ,垂足为点M .(1)求证:DC 是⊙O 的切线;(2)求证:AM •MB=DF •DA .郊区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D【解析】解:i 2015=i 503×4+3=i 3=﹣i ,故选:D【点评】本题主要考查复数的基本运算,比较基础. 2. 【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A .(1)(N )n x n *+Î3x 3C n 3C 10n =5n =3. 【答案】B 【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题. 4. 【答案】A【解析】解:设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=﹣2,x 12=﹣2y 1,x 22=﹣2y 2.两式相减可得,(x 1+x 2)(x 1﹣x 2)=﹣2(y 1﹣y 2)∴直线AB 的斜率k=1,∴弦AB 所在的直线方程是y+5=x+1,即y=x ﹣4.故选A , 5. 【答案】 B 【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.6.【答案】C【解析】解:从1,2,3,4中任取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况,其中一个数是另一个数两倍的为(1,2),(2,4)共2个,故所求概率为P==故选:C【点评】本题考查列举法计算基本事件数及事件发生的概率,属基础题.7.【答案】D【解析】解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选D.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.8.【答案】B【解析】解:===;又,,,∴.故选B.【点评】本题考查了向量加法的几何意义,是基础题.9.【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k<2016,s=﹣1,k=1满足条件k<2016,s=,k=2满足条件k<2016,s=2.k=3满足条件k<2016,s=﹣1,k=4满足条件k <2016,s=,k=5…观察规律可知,s 的取值以3为周期,由2015=3*671+2,有满足条件k <2016,s=2,k=2016不满足条件k <2016,退出循环,输出s 的值为2.故选:B .【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s ,k 的值,观察规律得到s 的取值以3为周期是解题的关键,属于基本知识的考查. 10.【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n <i ,s=2,n=1满足条件n <i ,s=5,n=2满足条件n <i ,s=10,n=3满足条件n <i ,s=19,n=4满足条件n <i ,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为4,有n=4时,不满足条件n <i ,退出循环,输出s 的值为19.故选:B .【点评】本题主要考查了循环结构的程序框图,属于基础题. 11.【答案】B 【解析】试题分析:由于()cos8.5cos 8.52π=-,因为8.522πππ<-<,所以cos8.50<,又()sin 3sin 3sin1.5π=-<,∴cos8.5sin 3sin1.5<<.考点:实数的大小比较.12.【答案】C 【解析】考点:指数函数的概念.二、填空题13.【答案】 6 .【解析】解:根据题意可知:f (x )﹣2x 是一个固定的数,记为a ,则f (a )=6,∴f (x )﹣2x =a ,即f (x )=a+2x ,∴当x=a 时,又∵a+2a =6,∴a=2,∴f (x )=2+2x ,∴f (x )+f (﹣x )=2+2x +2+2﹣x =2x +2﹣x +4≥2+4=6,当且仅当x=0时成立,∴f (x )+f (﹣x )的最小值等于6,故答案为:6.【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题. 14.【答案】②③【解析】试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k =-=(,)A B ϕ∴=<②对:如1y =;③对;(,)2A B ϕ==≤;④错;(,)A B ϕ==11,(,)A B ϕ==>因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111]考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.15.【答案】e【解析】考查函数,其余条件均不变,则:()()20{x x x f x ax lnx+≤=-当x ⩽0时,f (x )=x +2x ,单调递增,f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点;则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,即有有且只有一个实根。

北安市高中2018-2019学年上学期高三数学期末模拟试卷含答案

北安市高中2018-2019学年上学期高三数学期末模拟试卷含答案

北安市高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .302. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )A .B .C .D .3. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件4. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.5. 设双曲线焦点在y 轴上,两条渐近线为,则该双曲线离心率e=( )A .5B .C .D .6. 由两个1,两个2,两个3组成的6位数的个数为( ) A .45B .90C .120D .3607. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .8. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .B .4C .D .29. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5 C .9 D .2710.设集合A={x|2x ≤4},集合B={x|y=lg (x ﹣1)},则A ∩B 等于( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2]11.已知角α的终边经过点(sin15,cos15)- ,则2cos α的值为( )A .124+B .124- C. 34 D .012.如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1, =﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .31二、填空题13.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .14.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .15.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .16.若在圆C:x2+(y﹣a)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是.17.如图:直三棱柱ABC﹣A′B′C′的体积为V,点P、Q分别在侧棱AA′和CC′上,AP=C′Q,则四棱锥B﹣APQC的体积为.18.在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD,则AD的长为.三、解答题19.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.20.已知等差数列{a n}满足a2=0,a6+a8=10.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和.21..(1)求证:(2),若.22.(本小题满分13分)如图,已知椭圆22:14x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.23.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.24.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF∥平面BEC1(2)求A到平面BEC1的距离.北安市高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.2.【答案】D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D.【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.3.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.4.【答案】C5.【答案】C【解析】解:∵双曲线焦点在y轴上,故两条渐近线为y=±x,又已知渐近线为,∴=,b=2a,故双曲线离心率e====,故选C.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键.6.【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C62C42C22=90个不同的六位数,故选:B.【点评】本题考查了分步计数原理,关键是转化,属于中档题.7.【答案】A【解析】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.8.【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C9.【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=±1,令log(x2+1)=2,得x2+1=4,x=.2则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C.【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.10.【答案】D【解析】解:A={x|2x≤4}={x|x≤2},由x﹣1>0得x>1∴B={x|y=lg(x﹣1)}={x|x>1}∴A∩B={x|1<x≤2}故选D.11.【答案】B【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.12.【答案】D【解析】解:由=﹣(2x n+1),得+(2x n+1)=,设,以线段P n A、P n D作出图形如图,则,∴,∴,∵,∴,则,即x n+1=2x n+1,∴x n+1+1=2(x n+1),则{x n+1}构成以2为首项,以2为公比的等比数列,∴x5+1=2•24=32,则x5=31.故选:D.【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.二、填空题13.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.14.【答案】1 2考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.15.【答案】240.【解析】解:a=(cosx﹣sinx)dx=(sinx+cosx)=﹣1﹣1=﹣2,则二项式(x2﹣)6=(x2+)6展开始的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.16.【答案】﹣3<a<﹣1或1<a<3.【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a<﹣1或1<a<3.故答案为:﹣3<a<﹣1或1<a<3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.17.【答案】V【解析】【分析】四棱锥B﹣APQC的体积,底面面积是侧面ACC′A′的一半,B到侧面的距离是常数,求解即可.【解答】解:由于四棱锥B﹣APQC的底面面积是侧面ACC′A′的一半,不妨把P移到A′,Q移到C,所求四棱锥B﹣APQC的体积,转化为三棱锥A′﹣ABC体积,就是:故答案为:18.【答案】5.【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,∵CD⊥BC,∴CD∥AE,∵CD=5,BD=2AD,∴,解得AE=,在RT△ACE,CE===,由得BC=2CE=5,在RT△BCD中,BD===10,则AD=5,故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cosA==,又∵A∈(0,π),∴A=;(Ⅱ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理=,得a===3.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.20.【答案】【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.∴,解得,∴a n﹣1+(n﹣1)=n﹣2.(2)=.∴数列{}的前n项和S n=﹣1+0+++…+,=+0++…++,∴=﹣1++…+﹣=﹣2+﹣=,∴S n=.21.【答案】【解析】解:(1)∵,∴a n+1=f (a n )=,则,∴{}是首项为1,公差为3的等差数列;(2)由(1)得, =3n ﹣2,∵{b n }的前n项和为,∴当n ≥2时,b n =S n ﹣S n ﹣1=2n ﹣2n ﹣1=2n ﹣1,而b 1=S 1=1,也满足上式,则b n =2n ﹣1,∴==(3n ﹣2)2n ﹣1,∴=20+4•21+7•22+…+(3n ﹣2)2n ﹣1,①则2T n =21+4•22+7•23+…+(3n ﹣2)2n,②①﹣②得:﹣T n =1+3•21+3•22+3•23+…+3•2n ﹣1﹣(3n ﹣2)2n ,∴T n =(3n ﹣5)2n+5.22.【答案】【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,∴ 直线AP 的斜率0101y k x -=,BP 的斜率0201y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有200012200011114y y y k k x x x -+-⋅===-.(4分)23.【答案】解:(I)由已知可得AM⊥CD,又M为CD的中点,∴;3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,∴,,5分设为面BCE的法向量,由可得=(1,2,﹣),∴cos<,>==,∴面DCE与面BCE夹角的余弦值为4分24.【答案】【解析】解:(1)取BC1的中点H,连接HE、HF,则△BCC1中,HF∥CC1且HF=CC1又∵平行四边形AA1C1C中,AE∥CC1且AE=CC1∴AE∥HF且AE=HF,可得四边形AFHE为平行四边形,∴AF∥HE,∵AF⊄平面REC1,HE⊂平面REC1∴AF∥平面REC1.…(2)等边△ABC中,高AF==,所以EH=AF=由三棱柱ABC﹣AB1C1是正三棱柱,得C1到平面AA1B1B的距离等于1∵Rt△A1C1E≌Rt△ABE,∴EC1=EB,得EH⊥BC1可得S△=BC1•EH=××=,而S△ABE=AB×BE=2由等体积法得V A﹣BEC1=V C1﹣BEC,∴S△×d=S△ABE×,(d为点A到平面BEC1的距离)即××d=×2×,解之得d=∴点A到平面BEC1的距离等于.…【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.。

北安市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

北安市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

北安市高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是( )A .2m B .2m C .4 m D .6 m2. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-3. 不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1} 4. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .①B .②C .③D .④6. 抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=( ) A.B.C. D.7. 函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D. 8. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.9. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )A .点A 处B .线段AD 的中点处C .线段AB 的中点处D .点D 处11.在正方体1111ABCD A BC D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11B C12.在△ABC 中,已知D 是AB 边上一点,若=2,=,则λ=( )A .B .C .﹣D .﹣二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.14.当0,1x ∈()时,函数()e 1xf x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.15.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .22所示的框图,输入,则输出的数等于18.已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是.(用区间表示)三、解答题19.已知正项数列{a n}的前n项的和为S n,满足4S n=(a n+1)2.(Ⅰ)求数列{a n}通项公式;(Ⅱ)设数列{b n}满足b n=(n∈N*),求证:b1+b2+…+b n<.20.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.21.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(I)当a=3时,求函数f(x)在[,2]上的最大值和最小值;(Ⅱ)函数f(x)既有极大值又有极小值,求实数a的取值范围.22.已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)﹣f(x2).(1)求f(1)的值;(2)若当x>1时,有f(x)<0.求证:f(x)为单调递减函数;(3)在(2)的条件下,若f(5)=﹣1,求f(x)在[3,25]上的最小值.23.(本小题满分12分)∆的内角,,ABCa b c,(sin,5sin5sin)A B C所对的边分别为,,=+,m B A C(5sin6sin,sin sin)=--垂直.n B C C A(1)求sin A的值;∆的面积S的最大值.(2)若a=ABC24.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.北安市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13..14.[2e,)-+∞15.616.8或﹣1817.18.(1,+∞)三、解答题19.20.21.22.23.(1)45;(2)4.24.。

北安市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

北安市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前 n 项和.重点突出对运算及化归能 力的考查,属于中档难度.
20.已知等比数列{an}的前 n 项和为 Sn,an>0,a1= ,且﹣ (Ⅰ)求数列{an}的通项公式;


成等差数列.
(Ⅱ)设数列{bn}满足 bn•log3(1﹣Sn+1)=1,求适合方程 b1b2+b2b3+…+bnbn+1=
第 5 页,共 16 页
北安市实验中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】A 【解析】解:由约束条件 作出可行域如图,
联立
,得 A(6,2),
化目标函数 z=x﹣y 为 y=x﹣z, 由图可知,当直线 y=x﹣z 过点 A 时,直线在 y 轴上的截距最小,z 有最大值为 4. 故选:A. 【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题. 2. 【答案】A 【解析】g(1)=a﹣1, 若 f[g(1)]=1, 则 f(a﹣1)=1, 即 5|a﹣1|=1,则|a﹣1|=0, 解得 a=1 3. 【答案】C. 【 解 析 】
) B.( ,
]
二、填空题
13.阅读如图所示的程序框图,运行相应的程序,若输入的 X 的值为 2,则输出的结果是 .
第 2 页,共 16 页
14.如图,正方形 O ' A ' B ' C ' 的边长为 1 cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .
1111] 15.已知 sinα+cosα= ,且 <α< ,则 sinα﹣cosα 的值为 .

城区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

城区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

1 3
10.函数 y=a1﹣x(a>0,a≠1)的图象恒过定点 A,若点 A 在直线 mx+ny﹣1=0(mn>0)上,则 为( A.3
的最小值
11.一个算法的程序框图如图所示,若运行该程序后输出的结果为 ,则判断框中应填入的条件是(

A.i≤5?B.i≤4? C.i≥4? D.i≥5? 12.设 a,b,c,∈R+,则“abc=1”是“ A.充分条件但不是必要条件 B.必要条件但不是充分条件 ”的( )
第 6 页,共 14 页

故选:C. 【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题. 5. 【答案】C 【解析】解:由 f′(x)=3x2﹣3=3(x+1)(x﹣1)=0 得到 x1=1,x2=﹣1(舍去) ∵函数的定义域为[0,2] ∴函数在(0,1)上 f′(x)<0,(1,2)上 f′(x)>0, ∴函数 f(x)在区间(0,1)单调递减,在区间(1,2)单调递增, 则 f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m 由题意知,f(1)=m﹣2>0 由①②得到 m>6 为所求. 故选 C 【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大 值 6. 【答案】 B ①; f(1)+f(1)>f(2),即﹣4+2m>2+m②
故 y=4 为函数图象的渐近线, 故选:C 【点评】本题考查的知识点是函数的图象,函数的值域,难度中档. 2. 【答案】D 【解析】解:y=x+1 不是奇函数; y=﹣x2 不是奇函数; 是奇函数,但不是减函数; y=﹣x|x|既是奇函数又是减函数, 故选:D. 【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题. 3. 【答案】C 【解析】当 x {2, 1,1, 2, 4} 时, y log 2 | x | 1 {1,1, 0} ,所以 A I B {1,1} ,故选 C. 4. 【答案】C 【解析】解:设 g(x)=xex,y=mx﹣m, 由题设原不等式有唯一整数解, 即 g(x)=xex 在直线 y=mx﹣m 下方, g′(x)=(x+1)ex, g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增, 故 g(x)min=g(﹣1)=﹣ ,y=mx﹣m 恒过定点 P(1,0), 结合函数图象得 KPA≤m<KPB, 即 ≤m< ,

北安市一中2018-2019学年高三上学期11月月考数学试卷含答案

北安市一中2018-2019学年高三上学期11月月考数学试卷含答案

北安市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知圆的半径为1,为该圆的两条切线,为两切点,那么O ,PA PB ,A B PA PB∙u u u r u u u r的最小值为A 、B 、C 、D 、4-3-4-+3-+2. 两条平行直线3x ﹣4y+12=0与3x ﹣4y ﹣13=0间的距离为( )A .B .C .D .53. 设集合,,则( ){}|||2A x R x =∈≤{}|10B x Z x =∈-≥A B =I A.B.C. D. {}|12x x <≤{}|21x x -≤≤{}2,1,1,2--{}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.4. 已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是()A .B .C .2015D .5. 口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( )A .0.42B .0.28C .0.3D .0.76. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( )A .4﹣B .4﹣C .D .+7. 已知集合,且使中元素和中的元素{}{}421,2,3,,4,7,,3A k B a a a ==+*,,a N x A y B ∈∈∈B 31y x =+A 对应,则的值分别为( )x ,a k A . B . C . D .2,33,43,52,58. 在二项式的展开式中,含x 4的项的系数是( )A .﹣10B .10C .﹣5D .59. 已知数列的各项均为正数,,,若数列的前项和为5,则{}n a 12a =114n n n n a a a a ++-=+11n n a a +⎧⎫⎨⎬+⎩⎭n ( )n =A .B .C .D .3536120121班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5B4C3D211.已知,,其中是虚数单位,则的虚部为( )i z 311-=i z +=32i 21z z A .B .C .D .1-54i -i 54【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.12.设函数()()()21ln 31f x g x ax x =-=-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为()A .94B .C.92D .4二、填空题13.已知椭圆+=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,且θ∈[,],则该椭圆离心率e 的取值范围为 .14.已知i 是虚数单位,复数的模为 .15.已知,,与的夹角为,则 .||2=a ||1=b 2-a 13b 3π|2|+=a b 16.在中,有等式:①;②;③;④ABC ∆sin sin a A b B =sin sin a B b A =cos cos a B b A =.其中恒成立的等式序号为_________.sin sin sin a b cA B C+=+17.函数()x f x xe =在点()()1,1f 处的切线的斜率是 .18.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .三、解答题19.如图,椭圆C 1:的离心率为,x 轴被曲线C 2:y=x 2﹣b 截得的线段长等于椭圆C 1的短轴长.C 2与y 轴的交点为M ,过点M 的两条互相垂直的直线l 1,l 2分别交抛物线于A 、B 两点,交椭圆于D 、E 两点,(Ⅰ)求C 1、C 2的方程;(Ⅱ)记△MAB ,△MDE 的面积分别为S 1、S 2,若,求直线AB 的方程.20.(本题10分)解关于的不等式2(1)10ax a x -++>.21.已知函数f (x )=|2x+1|,g (x )=|x|+a (Ⅰ)当a=0时,解不等式f (x )≥g (x );(Ⅱ)若存在x ∈R ,使得f (x )≤g (x )成立,求实数a 的取值范围.22.【南师附中2017届高三模拟二】如下图扇形是一个观光区的平面示意图,其中为,半AOB AOB ∠23π径为,为了便于游客观光休闲,拟在观光区内铺设一条从入口到出口的观光道路,道路由圆弧OA 1km A B 、线段及线段组成.其中在线段上,且,设.AC CD BD D OB //CD AO AOC θ∠=(1)用表示的长度,并写出的取值范围;θCD θ(2)当为何值时,观光道路最长?θ23.已知曲线C 1的极坐标方程为ρ=6cos θ,曲线C 2的极坐标方程为θ=(p ∈R ),曲线C 1,C 2相交于A ,B两点.(Ⅰ)把曲线C 1,C 2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB 的长度. 24.本小题满分12分已知椭圆2.C Ⅰ求椭圆的长轴长;C Ⅱ过椭圆中心O 的直线与椭圆交于A 、B 两点A 、B 不是椭圆的顶点,点M 在长轴所在直线上,且C C C ,直线BM 与椭圆交于点D ,求证:AD AB 。

北安市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

北安市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

北安市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数的定义域是()A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)2. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为()A .B .C .D .23. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )A .1B .2C .3D .44. 已知函数()在定义域上为单调递增函数,则的最小值是( )2()2ln 2f x a x x x =+-a R ∈A .B .C .D .14125. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( )①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0;③(x 1﹣x 2)[f (x 1)﹣f(x2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤6. 已知偶函数f (x )满足当x >0时,3f (x )﹣2f ()=,则f (﹣2)等于()A .B .C .D .7. 若,,且,则λ与μ的值分别为( )A .B .5,2C .D .﹣5,﹣28. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( )A .p ∧qB .¬p ∧qC .p ∧¬qD .¬p ∧¬q班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( )A .4B .6C .8D .1010.已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是()A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)11.已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .12.用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .πB .2πC .4πD .π二、填空题13.棱长为214.若全集,集合,则15.函数f (x )=(x >3)的最小值为 .16.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数()1e ex x f x =-e 的底数,则不等式的解集为________.()()2240f x f x -+-<18.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 . 三、解答题19.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=.(1)求数列{}n a 的通项公式n a ;(2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .20.圆锥底面半径为,其中有一个内接正方体,求这个内接正方体的棱长.1cm 21.已知函数f (x )=﹣x 2+ax ﹣lnx (a ∈R ).(I )当a=3时,求函数f (x )在[,2]上的最大值和最小值;(Ⅱ)函数f (x )既有极大值又有极小值,求实数a 的取值范围.22.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.23.【常州市2018届高三上武进区高中数学期中】已知函数,.()()221ln f x ax a x x =+--R a ∈⑴若曲线在点处的切线经过点,求实数的值;()y f x =()()1,1f ()2,11a ⑵若函数在区间上单调,求实数的取值范围;()f x ()2,3a⑶设,若对,,使得成立,求整数的最小值.()1sin 8g x x =()10,x ∀∈+∞[]20,πx ∃∈()()122f x g x +≥a 24.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S北安市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A【解析】解:由题意得:2x ﹣1≥0,即2x ≥1=20,因为2>1,所以指数函数y=2x 为增函数,则x ≥0.所以函数的定义域为[0,+∞)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域. 2. 【答案】B【解析】解:抛物线y 2=4x 的准线l :x=﹣1.∵|AF|=3,∴点A 到准线l :x=﹣1的距离为3∴1+x A =3∴x A =2,∴y A =±2,∴△AOF 的面积为=.故选:B .【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A 的坐标是解题的关键. 3. 【答案】C【解析】解:随机变量x 1~N (2,1),图象关于x=2对称,x 2~N (4,1),图象关于x=4对称,因为P (x 1<3)=P (x 2≥a ),所以3﹣2=4﹣a ,所以a=3,故选:C .【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解. 4. 【答案】A 【解析】试题分析:由题意知函数定义域为,,因为函数),0(+∞2'222()x x a f x x++=2()2ln 2f x a x x x=+-()在定义域上为单调递增函数在定义域上恒成立,转化为在a R ∈0)('≥x f 2()222h x x x a =++),0(+∞恒成立,,故选A. 110,4a ∴∆≤∴≥考点:导数与函数的单调性.5. 【答案】 D【解析】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示.f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故选D.6.【答案】D【解析】解:∵当x>0时,3f(x)﹣2f()=…①,∴3f()﹣2f(x)==…②,①×3+③×2得:5f(x)=,故f(x)=,又∵函数f(x)为偶函数,故f(﹣2)=f(2)=,故选:D.【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x>0时,函数f(x)的解析式,是解答的关键.7.【答案】A【解析】解:由,得.又,,∴,解得.故选:A .【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题. 8. 【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p :∀x ∈R ,2x <3x 为假命题,则¬p 为真命题.令f (x )=x 3+x 2﹣1,因为f (0)=﹣1<0,f (1)=1>0.所以函数f (x )=x 3+x 2﹣1在(0,1)上存在零点,即命题q :∃x ∈R ,x 3=1﹣x 2为真命题.则¬p ∧q 为真命题.故选B . 9. 【答案】【解析】解析:选D.双曲线C 的方程为-=1,其焦点为(±2,0),由题意得=2,x 22y 22p 2∴p =4,即拋物线方程为y 2=8x ,双曲线C 的渐近线方程为y =±x ,由,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.{y 2=8x y =±x)10.【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式xf (x )<0的解为:或解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D .11.【答案】 A【解析】解:取a=﹣时,f (x )=﹣x|x|+x ,∵f (x+a )<f (x ),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.12.【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为:=4π故选:C.二、填空题13.【答案】12【解析】考点:球的体积与表面积.【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.14.【答案】{|0<<1}【解析】∵,∴{|0<<1}。

城区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x2. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )A .2个B .3 个C .4 个D .8个3. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A ) 13 ( B ) 49 (C ) 23 (D ) 894. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )A .①③B .②④C .①②③D .②③④5. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80D .S 21=846. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?7. 如图,长方形ABCD 的长AD=2x ,宽AB=x (x ≥1),线段MN 的长度为1,端点M 、N 在长方形ABCD 的四边上滑动,当M 、N 沿长方形的四边滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 的周长与G 围成的面积数值的差为y ,则函数y=f (x )的图象大致为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .8. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.9. 已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为( )A .M >N >PB .P <M <NC .N >P >M10.已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .9811.下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台12.若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .2二、填空题13.设不等式组表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 .14.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= .15.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°.已知山高BC=100m ,则山高MN= m .16.设R m ∈,实数x ,y 满足23603260y mx y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.17.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .18.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.三、解答题19.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b +=>>的两个焦点,(1,2P 是椭圆上1122|,||PF F F PF 成等差数列.(1)求椭圆C 的标准方程;、(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.20.已知椭圆+=1(a >b >0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l :y=kx+m (k ≠0),与该椭圆交于P 、Q 两点,直线OP 、OQ 的斜率依次为k 1、k 2,满足4k=k 1+k 2,试问:当k 变化时,m 2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.21.已知数列{a n}满足a1=a,a n+1=(n∈N*).(1)求a2,a3,a4;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.22.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.23.已知函数f(x)=ax3+2x﹣a,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.(i)证明:n≥2时存在唯一x n且;(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.24.记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:(Ⅰ)集合M,N;(Ⅱ)集合M∩N,∁R(M∪N).城区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A【解析】解:∵2f (x )+xf ′(x )>x 2, 令x=0,则f (x )>0,故可排除B ,D .如果 f (x )=x 2+0.1,时 已知条件 2f (x )+xf ′(x )>x 2成立,但f (x )>x 未必成立,所以C 也是错的,故选 A 故选A .2. 【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3}, ∴集合S=A ∩B={1,3},则集合S 的子集有22=4个,故选:C .【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.3. 【答案】C【解析】由1(),21(2),2AD AB AC BE AB AC ⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩ 22422()()33333AB AC AD BE AD BE ⋅=-⋅+=.4. 【答案】 D【解析】解:要使这些曲线上存在点P 满足|MP|=|NP|,需曲线与MN 的垂直平分线相交. MN的中点坐标为(﹣,0),MN斜率为=∴MN 的垂直平分线为y=﹣2(x+),∵①4x+2y ﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.②x 2+y 2=3与y=﹣2(x+),联立,消去y 得5x 2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN 的垂直平分线有交点,③中的方程与y=﹣2(x+),联立,消去y 得9x 2﹣24x ﹣16=0,△>0可知③中的曲线与MN 的垂直平分线有交点,④中的方程与y=﹣2(x+),联立,消去y 得7x 2﹣24x+20=0,△>0可知④中的曲线与MN 的垂直平分线有交点, 故选D5. 【答案】【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+172d )不恒为常数.S 19=19a 1+19×18d2=19(a 1+9d )=76,同理S 20,S 21均不恒为常数,故选B. 6. 【答案】C【解析】解:模拟执行程序框图,可得 S=2,i=0不满足条件,S=5,i=1 不满足条件,S=8,i=3 不满足条件,S=11,i=7 不满足条件,S=14,i=15由题意,此时退出循环,输出S 的值即为14, 结合选项可知判断框内应填的条件是:i ≥15? 故选:C .【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S ,i 的值是解题的关键,属于基本知识的考查.7. 【答案】 C【解析】解:∵线段MN 的长度为1,线段MN 的中点P ,∴AP=,即P 的轨迹是分别以A ,B ,C ,D 为圆心,半径为的4个圆,以及线段GH ,FE ,RT ,LK ,部分. ∴G 的周长等于四个圆弧长加上线段GH ,FE ,RT ,LK 的长,即周长==π+4x ﹣2+2x ﹣2=6x+π﹣4,面积为矩形的面积减去4个圆的面积,即等于矩形的面积减去一个整圆的面积为,∴f (x )=6x+π﹣4﹣=,是一个开口向下的抛物线,∴对应的图象为C ,故选:C.【点评】本题主要考查函数图象的识别和判断,根据条件确定点P的轨迹是解决本题的关键,综合性较强,难度较大.8.【答案】C9.【答案】A【解析】解:∵0<a<b<c<1,∴1<2a<2,<5﹣b<1,<()c<1,5﹣b=()b>()c>()c,即M>N>P,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键.10.【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(﹣1),又f(x)在R上是奇函数,所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,故选A.【点评】本题考查函数的奇偶性与周期性.11.【答案】C【解析】解:①是底面为梯形的棱柱;②的两个底面不平行,不是圆台;③是四棱锥;④不是由棱锥截来的,故选:C.12.【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离d min=,∴(x﹣3)2+y2的最小值是:.故选:A.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.二、填空题13.【答案】.【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外区域D:表示正方形OABC,(如图)其中O为坐标原点,A(2,0),B(2,2),C(0,2).因此在区域D内随机取一个点P,则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,且在扇形OAC的外部,如图中的阴影部分∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π∴所求概率为P==故答案为:【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.14.【答案】27-. 【解析】考点:向量的夹角.【名师点睛】平面向量数量积的类型及求法 (1)求平面向量的数量积有三种方法:一是定义cos a b a b θ⋅=;二是坐标运算公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简 15.【答案】 150【解析】解:在RT △ABC 中,∠CAB=45°,BC=100m ,所以AC=100m .在△AMC 中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,由正弦定理得,,因此AM=100m .在RT △MNA 中,AM=100m ,∠MAN=60°,由得MN=100×=150m .故答案为:150.16.【答案】[3,6]-. 【解析】17.【答案】.【解析】解:过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有V=×2×h××2,当球的直径通过AB与CD的中点时,h最大为2,则四面体ABCD的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.18.【答案】【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键.三、解答题19.【答案】【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.下面证明54m =时,716QA QB ⋅=-恒成立. 当直线l 的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,()11,A x y ,()22,B x y ,由1x ty =+及2212x y +=,得22(2)210t y ty ++-=, 所以0∆>,∴12122221,22t y y y y t t +=-=-++. 111x ty =+,221x ty =+,∴112212125511(,)(,)()()4444x y x y ty ty y y -⋅-=--+=2(1)t +121211()416y y t y y -++=22222211212217(1)242162(2)1616t t t t t t t t --+-++⋅+=+=-+++. 综上所述,在x 轴上存在点5(,0)4Q 使得716QA QB ⋅=-恒成立.20.【答案】【解析】解:(1)依题意可得,解得a=2,b=1所以椭圆C 的方程是…(2)当k 变化时,m 2为定值,证明如下:由得,(1+4k 2)x 2+8kmx+4(m 2﹣1)=0.…设P (x 1,y 1),Q (x 2,y 2).则x 1+x 2=,x 1x 2=…(•) …∵直线OP 、OQ 的斜率依次为k 1,k 2,且4k=k 1+k 2,∴4k==,得2kx 1x 2=m (x 1+x 2),…将(•)代入得:m 2=,…经检验满足△>0.…【点评】本题考查椭圆的方程的求法,直线与椭圆方程的综合应用,考查分析问题解决问题的能力以及转化思想的应用.21.【答案】【解析】解:(1)由a n+1=,可得a2==,a3===,a4===.(2)猜测a n=(n∈N*).下面用数学归纳法证明:①当n=1时,左边=a1=a,右边==a,猜测成立.②假设当n=k(k∈N*)时猜测成立,即a k=.则当n=k+1时,a k+1====.故当n=k+1时,猜测也成立.由①,②可知,对任意n∈N*都有a n=成立.22.【答案】解:(I)由已知可得AM⊥CD,又M为CD的中点,∴;3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,∴,,5分设为面BCE的法向量,由可得=(1,2,﹣),∴cos<,>==,∴面DCE与面BCE夹角的余弦值为4分23.【答案】【解析】解:(Ⅰ)f'(x)=3ax2+2,若a≥0,则f'(x)>0,函数f(x)在R上单调递增;若a<0,令f'(x)>0,∴或,函数f(x)的单调递增区间为和;(Ⅱ)(i)由(Ⅰ)得,f n(x)=nx3+2x﹣n在R上单调递增,又f n(1)=n+2﹣n=2>0,f n()====﹣当n≥2时,g(n)=n2﹣n﹣1>0,,n≥2时存在唯一x n且(i i)当n≥2时,,∴(零点的区间判定)∴,(数列裂项求和)∴,又f1(x)=x3+2x﹣1,,(函数法定界),又,∴,∴,(不等式放缩技巧)命题得证.【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.24.【答案】【解析】解:(1)由2x﹣3>0 得x>,∴M={x|x>}.由(x﹣3)(x﹣1)>0 得x<1 或x>3,∴N={x|x<1,或x>3}.(2)M∩N=(3,+∞),M∪N={x|x<1,或x>3},∴C R(M∪N)=.【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题.。

北安市高中2018-2019学年高三上学期11月月考数学试卷含答案

北安市高中2018-2019学年高三上学期11月月考数学试卷含答案

北安市高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________ 姓名__________ 分数__________一、选择题1. 若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为( )A .B .C .D .2. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.3. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .14. 若偶函数y=f (x ),x ∈R ,满足f (x+2)=﹣f (x ),且x ∈[0,2]时,f (x )=1﹣x ,则方程f (x )=log 8|x|在[﹣10,10]内的根的个数为( ) A .12B .10C .9D .85. 若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )A .B .C .D .26. 已知点M 的球坐标为(1,,),则它的直角坐标为( )A .(1,,)B .(,,)C .(,,)D .(,,)7. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D . 8. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3 D .﹣1或﹣39. 设变量x ,y 满足,则2x+3y 的最大值为( )A .20B .35C .45D .5510.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 11.等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6B .9C .36D .7212.若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( )A .B .C .D .二、填空题13.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .14.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 .15.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________. 16.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .17.已知(1+x+x 2)(x )n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .18.如图,是一回形图,其回形通道的宽和OB1的长均为1,回形线与射线OA交于A1,A2,A3,…,若从点O到点A3的回形线为第1圈(长为7),从点A3到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈…依此类推,第8圈的长为.三、解答题19.已知函数f(x)=ax2+2x﹣lnx(a∈R).(Ⅰ)若a=4,求函数f(x)的极值;(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.20.已知椭圆C:+=1(a>b>0)的一个长轴顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.21. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.22.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.23.设函数f(x)=x3﹣6x+5,x∈R(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.24.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和S n.北安市高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:因为F(﹣2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B.【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.2.【答案】B3.【答案】【解析】选C.由题意得log2(a+6)+2log26=9.即log2(a+6)=3,∴a+6=23=8,∴a=2,故选C.4.【答案】D【解析】解:∵函数y=f(x)为偶函数,且满足f(x+2)=﹣f(x),∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),∴偶函数y=f(x)为周期为4的函数,由x∈[0,2]时,f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.数形结合可得交点个为8,故选:D.5.【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x﹣2)2+y2=2的圆心(2,0),半径为,双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,可得:,可得a2=b2,c=a,e==.故选:B.【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.6.【答案】B【解析】解:设点M的直角坐标为(x,y,z),∵点M的球坐标为(1,,),∴x=sin cos=,y=sin sin=,z=cos=∴M的直角坐标为(,,).故选:B.【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM所转过的角,这里M 为点P 在xOy 面上的投影.这样的三个数r ,φ,θ叫做点P 的球面坐标,显然,这里r ,φ,θ的变化范围为r ∈[0,+∞),φ∈[0,2π],θ∈[0,π],7. 【答案】A 【解析】试题分析:由题意知函数定义域为),0(+∞,2'222()x x a f x x++=,因为函数2()2ln 2f x a x x x=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒成立,10,4a ∴∆≤∴≥,故选A. 1考点:导数与函数的单调性. 8. 【答案】A【解析】解:两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得 a=﹣3,或a=1. 故选:A .9. 【答案】D【解析】解:满足约束条件的平面区域如下图所示:令z=2x+3y 可得y=,则为直线2x+3y ﹣z=0在y 轴上的截距,截距越大,z 越大作直线l :2x+3y=0把直线向上平移可得过点D 时2x+3y 最大,由可得x=5,y=15,此时z=55故选D【点评】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,找出目标函数的最优解点的坐标是解答本题的关键.10.【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.11.【答案】D【解析】解:设等比数列{a n }的公比为q ,∵a 1=3,a 1+a 3+a 5=21,∴3(1+q 2+q 4)=21,解得q 2=2. 则a 2a 6=9×q 6=72.故选:D .12.【答案】D【解析】解:y=tan (ωx+),向右平移个单位可得:y=tan[ω(x ﹣)+]=tan (ωx+)∴﹣ω+k π=∴ω=k+(k ∈Z ), 又∵ω>0∴ωmin =. 故选D .二、填空题13.【答案】 .【解析】解:直线x ﹣y=1的斜率为1,(m+3)x+my ﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.14.【答案】.【解析】解:在区间[﹣2,3]上任取一个数a , 则﹣2≤a ≤3,对应的区间长度为3﹣(﹣2)=5,若f (x )=x 3﹣ax 2+(a+2)x 有极值,则f'(x )=x 2﹣2ax+(a+2)=0有两个不同的根, 即判别式△=4a 2﹣4(a+2)>0,解得a >2或a <﹣1, ∴﹣2≤a <﹣1或2<a ≤3,则对应的区间长度为﹣1﹣(﹣2)+3﹣2=1+1=2,∴由几何概型的概率公式可得对应的概率P=,故答案为:【点评】本题主要考查几何概型的概率的计算,利用函数取得极值的条件求出对应a 的取值范围是解决本题的关键.15.【答案】(,33-【解析】()231033f x x x ⎛=-+>⇒∈- ⎝'⎭ ,所以增区间是33⎛⎫- ⎪ ⎪⎝⎭16.【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a 的值. 【解答】解:直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,∴,解得 a=1.故答案为 1.17.【答案】 5 .【解析】二项式定理.【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利用(x)n(n∈N+)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.18.【答案】63.【解析】解:∵第一圈长为:1+1+2+2+1=7第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23…第n圈长为:n+(2n﹣1)+2n+2n+n=8n﹣1故n=8时,第8圈的长为63,故答案为:63.【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.三、解答题19.【答案】【解析】满分(14分).解法一:(Ⅰ)当a=4时,f(x)=4x2+2x﹣lnx,x∈(0,+∞),.…(1分)由x∈(0,+∞),令f′(x)=0,得.xf′(x)﹣0 +f(x)↘极小值↗故函数f(x)在单调递减,在单调递增,…(3分)f(x)有极小值,无极大值.…(4分)(Ⅱ),令f′(x)=0,得2ax2+2x﹣1=0,设h(x)=2ax2+2x﹣1.则f′(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0当a=0时,方程的解为,满足题意;…(5分)当a>0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,且h(0)=﹣1,h(1)=2a+1>0,所以满足题意;…(6分)当a<0,△=0时,,此时方程的解为x=1,不符合题意;当a<0,△≠0时,由h(0)=﹣1,只需h(1)=2a+1>0,得.…(7分)综上,.…(8分)(说明:△=0未讨论扣1分)(Ⅲ)设t=1﹣x,则t∈(0,1),p(t)=g(1﹣t)=at2+2t﹣3﹣lnt,…(9分),由,故由(Ⅱ)可知,方程2at2+2t﹣1=0在(0,1)内有唯一的解x0,且当t∈(0,x0)时,p′(t)<0,p(t)单调递减;t∈(x0,1)时,p′(t)>0,p(t)单调递增.…(11分)又p(1)=a﹣1<0,所以p(x0)<0.…(12分)取t=e﹣3+2a∈(0,1),则p(e﹣3+2a)=ae﹣6+4a+2e﹣3+2a﹣3﹣lne﹣3+2a=ae﹣6+4a+2e﹣3+2a﹣3+3﹣2a=a(e﹣6+4a﹣2)+2e﹣3+2a>0,从而当t∈(0,x0)时,p(t)必存在唯一的零点t1,且0<t1<x0,即0<1﹣x1<x0,得x1∈(0,1),且x0+x1>1,从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x1>1.…(14分)解法二:(Ⅰ)同解法一;…(4分)(Ⅱ),令f′(x)=0,由2ax2+2x﹣1=0,得.…(5分)设,则m∈(1,+∞),,…(6分)问题转化为直线y=a与函数的图象在(1,+∞)恰有一个交点问题.又当m∈(1,+∞)时,h(m)单调递增,…(7分)故直线y=a与函数h(m)的图象恰有一个交点,当且仅当.…(8分)(Ⅲ)同解法一.(说明:第(Ⅲ)问判断零点存在时,利用t→0时,p(t)→+∞进行证明,扣1分)【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.20.【答案】【解析】解:(Ⅰ)∵椭圆一个顶点为A (2,0),离心率为,∴∴b=∴椭圆C的方程为;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0设M(x1,y1),N(x2,y2),则x1+x2=,∴|MN|==∵A(2,0)到直线y=k(x﹣1)的距离为∴△AMN的面积S=∵△AMN的面积为,∴∴k=±1.【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是正确求出|MN|.21.【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为⊥AB 平面ADF ,所以平面ADF 的一个法向量)0,0,1(1=n .由31=知P 为FD 的三等分点且此时)32,32,0(P .在平面APC 中,)32,32,0(=,)0,2,1(=AC .所以平面APC 的一个法向量)1,1,2(2--=n .……………………10分所以36|||||,cos |212121==><n n n n ,又因为二面角C AP D --的大小为锐角,所以该二面角的余弦值为36.……………………………………………………………………12分 22.【答案】【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.23.【答案】【解析】解:(Ⅰ)∴当,∴f(x)的单调递增区间是,单调递减区间是(Ⅱ)由(Ⅰ)的分析可知y=f(x)图象的大致形状及走向,∴当的图象有3个不同交点,即方程f(x)=α有三解.24.【答案】【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,∴=(a2+2)(a4﹣2),(1+2d)2=(3+d)(﹣1+3d),d2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n}的前n项和S n,S n=.。

城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(2)

城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(2)

城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在中,,,则等于( )ABC ∆60A =o1b =sin sin sin a b cA BC++++A .B CD 2. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是()A .B .C .D .3. 集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩B=( )A .{x|x <1}B .{x|﹣1≤x ≤2}C .{x|﹣1≤x ≤1}D .{x|﹣1≤x <1}4. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )A .30°B .60°C .120°D .150°5. 下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=6. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则()A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-<9. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .10.复数的虚部为()A .﹣2B .﹣2iC .2D .2i11.设a=lge ,b=(lge )2,c=lg,则()A .a >b >cB .c >a >bC .a >c >bD .c >b >a12.已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( )A .y=x ﹣4B .y=2x ﹣3C .y=﹣x ﹣6D .y=3x ﹣2二、填空题13.已知点是抛物线上的点,且到该抛物线焦点的距离为3,则到原点的距离为.P 24y x =P P 14.如图所示,圆中,弦的长度为,则的值为_______.C AB 4AB AC ×u u u r u u u r【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.15.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .16.若函数f (x )=3sinx ﹣4cosx ,则f ′()= .17.已知函数f (x )=x m 过点(2,),则m= . 18.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 . 三、解答题19.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C 的方程和离心率;(Ⅱ) 设动直线与y 轴相交于点,点关于直线的对称点在椭圆上,求的最小值.20.已知函数f (x )=|x ﹣2|.(1)解不等式f (x )+f (x+1)≤2(2)若a <0,求证:f (ax )﹣af (x )≥f (2a ) 21.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ).(1)当a=时,求f (x )在区间[1,e]上的最大值和最小值;12(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x)为f 1(x),f 2(x)的“活动函数”.已知函数.。

北安市第一中学2018-2019学年高三上学期11月月考数学试卷含答案

北安市第一中学2018-2019学年高三上学期11月月考数学试卷含答案

北安市第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么()A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点2. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形3. cos80cos130sin100sin130︒︒-︒︒等于( )AB .12 C .12-D.4. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为()A .B .C .D .π5. 不等式组在坐标平面内表示的图形的面积等于( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .6. 对于区间[a ,b]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b]中的任意数x 均有|f (x )﹣g (x )|≤1,则称函数f (x )与g (x )在区间[a ,b]上是密切函数,[a ,b]称为密切区间.若m (x )=x 2﹣3x+4与n (x )=2x ﹣3在某个区间上是“密切函数”,则它的一个密切区间可能是( )A .[3,4]B .[2,4]C .[1,4]D .[2,3]7. 一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A .i ≤5?B .i ≤4?C .i ≥4?D .i ≥5?8. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C .D .(ln y x =+2y x =tan y x =xy e=9. 若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为()A .B .C .D .10.已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .11.命题“存在实数x ,使x >1”的否定是( )A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤112.若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为()A .(0,+∞)B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)二、填空题13.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m中的整数m的值是 .14.不等式的解集为R,则实数m的范围是 .15.下列说法中,正确的是 .(填序号)①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称;③y=()﹣x是增函数;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0.16.(x﹣)6的展开式的常数项是 (应用数字作答).17.若函数f(x)=﹣m在x=1处取得极值,则实数m的值是 . 18.已知函数为定义在区间[﹣2a,3a﹣1]上的奇函数,则a+b= .三、解答题19.(本小题满分12分)如图四棱柱ABCD­A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.(1)求证:BD⊥MC1;(2)求四棱柱ABCD­A1B1C1D1的体积.20.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;(Ⅱ)求点D到平面AMP的距离.21.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.1cm22.圆锥底面半径为,其中有一个内接正方体,求这个内接正方体的棱长.23.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.24.已知函数f(x)=lnx﹣ax﹣b(a,b∈R)(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1﹣λ)x2,0<λ<1,求λ的取值范围.北安市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),∴F'(x)=f'(x)﹣f′(x0)∴F'(x0)=0,又由a<x0<b,得出当a<x<x0时,f'(x)<f′(x0),F'(x)<0,当x0<x<b时,f'(x)<f′(x0),F'(x)>0,∴x=x0是F(x)的极小值点故选B.【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.2.【答案】D【解析】解:∵sinC+sin(B﹣A)=sin2A,∴sin(A+B)+sin(B﹣A)=sin2A,∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,∴2cosAsinB=sin2A=2sinAcosA,∴2cosA(sinA﹣sinB)=0,∴cosA=0,或sinA=sinB,∴A=,或a=b,∴△ABC为等腰三角形或直角三角形故选:D.【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.3.【答案】D【解析】=︒︒-︒︒=︒+︒=︒=︒+︒=-︒试题分析:原式()()cos80cos130sin80sin130cos80130cos210cos30180cos30=考点:余弦的两角和公式.4.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.5.【答案】B【解析】解:作出不等式组对应的平面区域,则对应的平面区域为矩形OABC,则B(3,0),由,解得,即C(,),∴矩形OABC的面积S=2S△0BC=2×=,故选:B【点评】本题主要考查二元一次不等式组表示平面区,利用数形结合是解决本题的关键.6.【答案】D【解析】解:∵m(x)=x2﹣3x+4与n(x)=2x﹣3,∴m(x)﹣n(x)=(x2﹣3x+4)﹣(2x﹣3)=x2﹣5x+7.令﹣1≤x2﹣5x+7≤1,则有,∴2≤x≤3.故答案为D.【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题.7.【答案】B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i≤4.故选:B.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.8.【答案】A【解析】试题分析:所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与不相同,D 为非()()f x f x -=-()f x 奇非偶函数,故选A.考点:函数的单调性与奇偶性.9. 【答案】B【解析】解:因为F (﹣2,0)是已知双曲线的左焦点,所以a 2+1=4,即a 2=3,所以双曲线方程为,设点P (x 0,y 0),则有,解得,因为,,所以=x 0(x 0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B .【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力. 10.【答案】 A【解析】解:取a=﹣时,f (x )=﹣x|x|+x ,∵f (x+a )<f (x ),∴(x ﹣)|x ﹣|+1>x|x|,(1)x <0时,解得﹣<x <0;(2)0≤x ≤时,解得0;(3)x >时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B 、D ;取a=1时,f (x )=x|x|+x ,∵f (x+a )<f (x ),∴(x+1)|x+1|+1<x|x|,(1)x <﹣1时,解得x >0,矛盾;(2)﹣1≤x ≤0,解得x <0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.11.【答案】C【解析】解:∵命题“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”故选C12.【答案】C【解析】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.二、填空题13.【答案】 6 .【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;∴判断框中的条件为i<6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题14.【答案】 .【解析】解:不等式,x2﹣8x+20>0恒成立可得知:mx2+2(m+1)x+9x+4<0在x∈R上恒成立.显然m<0时只需△=4(m+1)2﹣4m(9m+4)<0,解得:m<﹣或m>所以m<﹣故答案为:15.【答案】 ②④ 【解析】解:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1或k=0,故错误;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称,故正确;③y=()﹣x是减函数,故错误;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0,故正确.故答案为:②④【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档. 16.【答案】 ﹣160 【解析】解:由于(x﹣)6展开式的通项公式为T r+1=•(﹣2)r•x6﹣2r,令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣8=﹣160,故答案为:﹣160.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.17.【答案】﹣2【解析】解:函数f(x)=﹣m的导数为f′(x)=mx2+2x,由函数f(x)=﹣m在x=1处取得极值,即有f′(1)=0,即m+2=0,解得m=﹣2,即有f′(x)=﹣2x2+2x=﹣2(x﹣1)x,可得x=1处附近导数左正右负,为极大值点.故答案为:﹣2.【点评】本题考查导数的运用:求极值,主要考查由极值点求参数的方法,属于基础题.18.【答案】 2 .【解析】解:∵f (x )是定义在[﹣2a ,3a ﹣1]上奇函数,∴定义域关于原点对称,即﹣2a+3a ﹣1=0,∴a=1,∵函数为奇函数,∴f (﹣x )==﹣,即b •2x ﹣1=﹣b+2x ,∴b=1.即a+b=2,故答案为:2. 三、解答题19.【答案】【解析】解:(1)证明:如图,连接AC ,设AC 与BD 的交点为E ,∵四边形ABCD 为菱形,∴BD ⊥AC ,又AA 1⊥平面ABCD ,BD ⊂平面ABCD ,∴A 1A ⊥BD ;又A 1A ∩AC =A ,∴BD ⊥平面A 1ACC 1,又MC 1⊂平面A 1ACC 1,∴BD ⊥MC 1.(2)∵AB =BD =2,且四边形ABCD 是菱形,∴AC =2AE =2=2,AB 2-BE 23又△BMC 1为等腰三角形,且M 为A 1A 的中点,∴BM 是最短边,即C 1B =C 1M .则有BC 2+C 1C 2=AC 2+A 1M 2,即4+C 1C 2=12+()2,C 1C 2解得C 1C =,463所以四棱柱ABCD ­A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C=AC ×BD ×C 1C =×2×2×=8.121234632即四棱柱ABCD ­A 1B 1C 1D 1的体积为8.220.【答案】【解析】(Ⅰ)证明:取CD 的中点E ,连接PE 、EM 、EA∵△PCD 为正三角形∴PE ⊥CD ,PE=PDsin ∠PDE=2sin60°=∵平面PCD ⊥平面ABCD∴PE ⊥平面ABCD∵四边形ABCD 是矩形∴△ADE 、△ECM 、△ABM 均为直角三角形由勾股定理得EM=,AM=,AE=3∴EM 2+AM 2=AE 2,∴∠AME=90°∴AM ⊥PM (Ⅱ)解:设D 点到平面PAM 的距离为d ,连接DM ,则V P ﹣ADM =V D ﹣PAM∴而在Rt △PEM 中,由勾股定理得PM=∴∴∴,即点D 到平面PAM 的距离为21.【答案】【解析】解(Ⅰ)由点P 的坐标和三角函数的定义可得:于是f (θ)===2(Ⅱ)作出平面区域Ω(即△ABC )如图所示,其中A (1,0),B (1,1),C (0,1).因为P ∈Ω,所以0≤θ≤,∴f (θ)==,且,故当,即时,f (θ)取得最大值2;当,即θ=0时,f (θ)取得最小值1.【点评】本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.22..【解析】试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可.试题解析:过圆锥的顶点和正方体底面的一条对角线作圆锥的截面,得圆锥的轴截面,正方体对S CD SEF 角面,如图所示.11CDD C 设正方体棱长为,则,,1CC x =11C D =作于,则,,SOEF ⊥O SO =1OE =∵,∴1ECC EOS ∆∆:11CC EC SO EO==∴.x =cm考点:简单组合体的结构特征.23.【答案】【解析】解:(Ⅰ)证明:如果g(x)是定义域(0,+∞)上的增函数,则有g′(x)=2ax+b+=>0;从而有2ax2+bx+c>0对任意x∈(0,+∞)恒成立;又∵a<0,则结合二次函数的图象可得,2ax2+bx+c>0对任意x∈(0,+∞)恒成立不可能,故当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+c•lnx不是“K函数”,事实上,对于二次函数f(x)=ax2+bx+c,k==a(x1+x2)+b=2ax0+b;又f′(x0)=2ax0+b,故k=f′(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+c•lnx,不妨设0<x1<x2,则k==2ax0+b+;而g′(x0)=2ax0+b+;故=,化简可得,=;设t=,则0<t<1,lnt=;设s(t)=lnt﹣;则s′(t)=>0;则s(t)=lnt﹣是(0,1)上的增函数,故s(t)<s(1)=0;则lnt≠;故g(x)=ax2+bx+c•lnx不是“K函数”.【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题.24.【答案】【解析】解:(Ⅰ)f(x)的导数为f′(x)=﹣a,由题意可得f′(1)=0,且f(1)=1,即为1﹣a=0,且﹣a﹣b=1,解得a=1.b=﹣2,经检验符合题意.故a=1,b=﹣2;(Ⅱ)由(Ⅰ)可得f′(x)=﹣a,x>1,0<<1,①若a≤0,f′(x)>0,f(x)在(1,+∞)递增;②0<a<1,x∈(1,),f′(x)>0,x∈(,+∞),f′(x)<0;③a≥1,f′(x)<0.f(x)在(1,+∞)递减.综上可得,a≤0,f(x)在(1,+∞)递增;0<a<1,f(x)在(1,)递增,在(,+∞)递减;a≥1,f(x)在(1,+∞)递减.(Ⅲ)f′(x0)=﹣a=﹣a,直线AB的斜率为k===﹣a,f′(x0)<k⇔<,即x2﹣x1<ln[λx1+(1﹣λ)x2],即为﹣1<ln[λ+(1﹣λ)],令t=>1,t﹣1<lnt[λ+(1﹣λ)t],即t﹣1﹣tlnt+λ(tlnt﹣lnt)<0恒成立,令函数g(t)=t﹣1﹣tlnt+λ(tlnt﹣lnt),t>1,①当0<λ时,g′(t)=﹣lnt+λ(lnt+1﹣)=,令φ(t)=﹣tlnt+λ(tlnt+t﹣1),t>1,φ′(t)=﹣1﹣lnt+λ(2+lnt)=(λ﹣1)lnt+2λ﹣1,当0<λ≤时,φ′(t)<0,φ(t)在(1,+∞)递减,则φ(t)<φ(1)=0,故当t>1时,g′(t)<0,则g(t)在(1,+∞)递减,g(t)<g(1)=0符合题意;②当<λ<1时,φ′(t)=(λ﹣1)lnt+2λ﹣1>0,解得1<t<,当t∈(1,),φ′(t)>0,φ(t)在(1,)递增,φ(t)>φ(1)=0;当t∈(1,),g′(t)>0,g(t)在(1,)递增,g(t)>g(1)=0,则有当t∈(1,),g(t)>0不合题意.即有0<λ≤.【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键.。

长安区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

长安区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

长安区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x )=3x +x 的零点所在的一个区间是( )A .(﹣3,﹣2)B .(﹣2,﹣1)C .(﹣1,0)D .(0,1)2. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( )A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 23. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C . D.(ln y x =+2y x =tan y x =xy e=4. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是()A .(0,1)B .(0,]C .(0,)D .[,1)5. 已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为()A .B .C .D .6. 过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB|=10,则AB 的中点到y 轴的距离等于( )A .1B .2C .3D .47. 已知均为正实数,且,,,则( ),,x y z 22log xx =-22log yy -=-22log z z -=A . B .C .D .x y z <<z x y <<z y z <<y x z<<8. 已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( )A .B .﹣C .4D .9. 设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=()A .{x|x <﹣2或x >4}B .{x|x <0或x >4}C .{x|x <0或x >6}D .{x|0<x <4}10.对任意的实数k ,直线y=kx+1与圆x 2+y 2=2的位置关系一定是( )A .相离B .相切班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .相交但直线不过圆心D .相交且直线过圆心11.已知命题p :2≤2,命题q :∃x 0∈R ,使得x 02+2x 0+2=0,则下列命题是真命题的是()A .¬pB .¬p ∨qC .p ∧qD .p ∨q12.双曲线=1(m ∈Z )的离心率为()A .B .2C .D .3二、填空题13.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了.14.在矩形ABCD 中,=(1,﹣3),,则实数k= .15.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件.16.在复平面内,复数与对应的点关于虚轴对称,且,则____.17.将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的()0,2()4,0()7,3(),m n m n +值是.18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间()ln 4f x x x =+-内,则正整数的值为________.()1k k +,k 三、解答题19.如图,在边长为a 的菱形ABCD 中,∠ABC=60°,PC ⊥面ABCD ,E ,F 是PA 和AB 的中点.(1)求证:EF ∥平面PBC ;(2)求E 到平面PBC 的距离.20.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,S 2=4,且a 2,a 5,a 14成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)从数列{a n }中依次取出第2项,第4项,第8项,…,第2n 项,…,按原来顺序组成一个新数列{b n },记该数列的前n 项和为T n ,求T n 的表达式. 21.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=(a 1x xe -.∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间;(Ⅱ)若函数f (x )在上无零点,求a 的最小值;10,2⎛⎫⎪⎝⎭(Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.22.已知数列的前项和公式为.{}n a 2230n S n n =-(1)求数列的通项公式;{}n a n a (2)求的最小值及对应的值.n S23.(本小题满分12分)设p :实数满足不等式39a ≤,:函数()()32331932a f x x x x -=++无极值点.(1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛⎫-+++> ⎪ ⎪⎝⎭⎝⎭,若是t ⌝的必要不充分条件,求正整数m 的值.24.数列{a n }满足a 1=,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2a n }的前n 项和;(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.长安区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增,又f (﹣1)=﹣1<0,f (0)=30+0=1>0,∴f (﹣1)f (0)<0,可知:函数f (x )的零点所在的区间是(﹣1,0).故选:C .【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题. 2. 【答案】A【解析】解:设x <0时,则﹣x >0,因为当x >0时,f (x )=x 3﹣2x 2所以f (﹣x )=(﹣x )3﹣2(﹣x )2=﹣x 3﹣2x 2,又因为f (x )是定义在R 上的奇函数,所以f (﹣x )=﹣f (x ),所以当x <0时,函数f (x )的表达式为f (x )=x 3+2x 2,故选A . 3. 【答案】A 【解析】试题分析:所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与不相同,D 为非()()f x f x -=-()f x 奇非偶函数,故选A.考点:函数的单调性与奇偶性.4. 【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,∵=0,∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆.又M 点总在椭圆内部,∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2.∴e 2=<,∴0<e <.故选:C .【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答. 5. 【答案】A【解析】解:由(0,2)上的函数y=f (x )的图象可知f (x )=当0<2﹣x <1即1<x <2时,f (2﹣x )=2﹣x 当1≤2﹣x <2即0<x ≤1时,f (2﹣x )=1∴y=f(2﹣x)=,根据一次函数的性质,结合选项可知,选项A正确故选A.6.【答案】D【解析】解:抛物线y2=4x焦点(1,0),准线为l:x=﹣1,设AB的中点为E,过A、E、B分别作准线的垂线,垂足分别为C、G、D,EF交纵轴于点H,如图所示:则由EG为直角梯形的中位线知,EG====5,∴EH=EG﹣1=4,则AB的中点到y轴的距离等于4.故选D.【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想.7.【答案】A【解析】考点:对数函数,指数函数性质.8.【答案】B【解析】解:∵f(x)是定义在R上周期为2的奇函数,∴f(log35)=f(log35﹣2)=f(log3),∵x∈(0,1)时,f(x)=3x﹣1∴f(log3)═﹣故选:B9.【答案】D【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象关于y轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0),故f(x﹣2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f(x﹣2)<0,可得0<x<4,故选:D.【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题. 10.【答案】C【解析】解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在∵(0,1)在圆x2+y2=2内∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心故选C.11.【答案】D【解析】解:命题p:2≤2是真命题,方程x2+2x+2=0无实根,故命题q:∃x0∈R,使得x02+2x0+2=0是假命题,故命题¬p,¬p∨q,p∧q是假命题,命题p∨q是真命题,故选:D12.【答案】B【解析】解:由题意,m2﹣4<0且m≠0,∵m∈Z,∴m=1∵双曲线的方程是y2﹣x2=1∴a2=1,b2=3,∴c2=a2+b2=4∴a=1,c=2,∴离心率为e==2.故选:B.【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b2.二、填空题13.【答案】乙,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。

城区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(1)

24. 记函数 f(x) =log2(2x﹣3) 的定义域为集合 M, 函数 g(x) = (Ⅰ)集合 M,N; (Ⅱ)集合 M∩N,∁R(M∪N).
的定义域为集合 N. 求 :
第 5 页,共 16 页
城区第三中学校 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题
在曲线上存在点 P 满足|MP|=|NP|的所有曲线方程是(
A.①③ B.②④ C.①②③ D.②③④ 5. Sn 是等差数列{an}的前 n 项和,若 3a8-2a7=4,则下列结论正确的是( A.S18=72 C.S20=80 B.S19=76 D.S21=84

6. 如图所示的程序框图输出的结果是 S=14,则判断框内应填的条件是(
城区第三中学校 2018-2019 学年高三上学期 11 月月考数学试卷含答案 一、选择题
1. 设函数 f(x)在 R 上的导函数为 f′(x),且 2f(x)+xf′(x)>x2,下面的不等式在 R 内恒成立的是( ) A.f(x)>0 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________ B.f(x)<0 C.f(x)>x D.f(x)<x ) 2. 集合 A={1,2,3},集合 B={﹣1,1,3},集合 S=A∩B,则集合 S 的子集有( A.2 个 B.3 个 C.4 个 D.8 个 (A)
第 7 页,共 16 页
故选:C.

大安市第三中学2018-2019学年高三上学期11月月考数学试卷含答案

大安市第三中学2018-2019学年高三上学期11月月考数学试卷含答案

大安市第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题34意在考查学生空间想象能力和计算能l 的方程为( )D .x ﹣2y+5=0的最大值为( )2x y =+C .12 D .15﹣z=))A .i ≤21B .i ≤11C .i ≥21D .i ≥118. 某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为()A .5B .7C .9D .119. 已知函数,其中,对任意的都成立,在122()32f x x ax a =+-(0,3]a ∈()0f x ≤[]1,1x ∈-和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )T T =A .B .C .D .201522015320152320152210.已知函数f (x )=x 2﹣,则函数y=f (x )的大致图象是( )A .B .C .D .11.若函数f (x )=﹣a (x ﹣x 3)的递减区间为(,),则a 的取值范围是()A .a >0B .﹣1<a <0C .a >1D .0<a <112.某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即(),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总()2~100,X N a 0a >人数的,则此次数学考试成绩在100分到110分之间的人数约为( )110(A ) 400( B ) 500(C ) 600(D ) 800二、填空题13.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .14.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = . 15.= .16.设p :∃x ∈使函数有意义,若¬p 为假命题,则t 的取值范围为 .17.如图,在矩形中,,点为线段(含端点)上一个动点,且,ABCD AB =Q CD DQ QC λ=u u u r u u u rBQ交于,且,若,则 .AC P AP PC μ=u u u r u u u rAC BP ⊥λμ-=18.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为 . 三、解答题19.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.20.已知椭圆C : +=1(a >b >0)的左,右焦点分别为F 1,F 2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,若斜率为k (k ≠0)的直线l 与x 轴,椭圆C 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧)且∠RF 1F 2=∠PF 1Q ,求证:直线l 过定点,并求出斜率k 的取值范围.A BCDPQ21.已知点F(0,1),直线l1:y=﹣1,直线l1⊥l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H.设点H的轨迹为曲线r.(Ⅰ)求曲线r的方程;(Ⅱ)过点P作曲线r的两条切线,切点分别为C,D,(ⅰ)求证:直线CD过定点;(ⅱ)若P(1,﹣1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由.阿啊阿22.已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间[]上的最大值和最小值.23.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)24.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表:推销员编号12345工作年限x/年35679推销金额y/万元23345(1)以工作年限为自变量x,推销金额为因变量y,作出散点图;(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.大安市第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】2.【答案】B【解析】解:∵直线x+2y﹣3=0的斜率为﹣,∴与直线x+2y﹣3=0垂直的直线斜率为2,故直线l的方程为y﹣(﹣2)=2(x﹣2),化为一般式可得2x﹣y﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.3.【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题y的基础.(2)目标函数的意义,有的可以用直线在轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.4.【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-5. 【答案】C【解析】解:sin (﹣510°)=sin (﹣150°)=﹣sin150°=﹣sin30°=﹣,故选:C .6. 【答案】C【解析】解:z====+i ,当1+m >0且1﹣m >0时,有解:﹣1<m <1;当1+m >0且1﹣m <0时,有解:m >1;当1+m <0且1﹣m >0时,有解:m <﹣1;当1+m <0且1﹣m <0时,无解;故选:C .【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题. 7. 【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i ≤10,应不满足条件,继续循环∴当i ≥11,应满足条件,退出循环填入“i ≥11”.故选D . 8. 【答案】C【解析】解:若果树前n 年的总产量S 与n 在图中对应P (S ,n )点则前n 年的年平均产量即为直线OP 的斜率由图易得当n=9时,直线OP 的斜率最大即前9年的年平均产量最高,故选C 9. 【答案】C【解析】试题分析:因为函数,对任意的都成立,所以,解得22()32f x x ax a =+-()0f x ≤[]1,1x ∈-()()1010f f -≤⎧⎪⎨≤⎪⎩或,又因为,所以,在和两数间插入共个数,使之与,构成等3a ≥1a ≤-(0,3]a ∈3a =122015,...a a a 2015比数列,,,两式相乘,根据等比数列的性质得,T 122015...a a a =g 201521...T a a a =g ()()2015201521201513T a a ==⨯,故选C.T =201523考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.10.【答案】A【解析】解:由题意可得,函数的定义域x ≠0,并且可得函数为非奇非偶函数,满足f (﹣1)=f (1)=1,可排除B 、C 两个选项.∵当x >0时,t==在x=e 时,t 有最小值为∴函数y=f (x )=x 2﹣,当x >0时满足y=f (x )≥e 2﹣>0,因此,当x >0时,函数图象恒在x 轴上方,排除D 选项故选A 11.【答案】A【解析】解:∵函数f (x )=﹣a (x ﹣x 3)的递减区间为(,)∴f ′(x )≤0,x ∈(,)恒成立即:﹣a (1﹣3x 2)≤0,,x ∈(,)恒成立∵1﹣3x 2≥0成立∴a >0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决. 12.【答案】A 【解析】P (X ≤90)=P (X ≥110)=,P (90≤X ≤110)=1-=,P (100≤X ≤110)=,1000×=400. 故选A.11015452525二、填空题13.【答案】 6 .【解析】解:∵|z|=1,|z ﹣3+4i|=|z ﹣(3﹣4i )|≤|z|+|3﹣4i|=1+=1+5=6,∴|z ﹣3+4i|的最大值为6,故答案为:6.【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题. 14.【答案】 .【解析】解:∵数列{S n }是首项和公比都是3的等比数列,∴S n =3n .故a 1=s 1=3,n ≥2时,a n =S n ﹣s n ﹣1=3n ﹣3n ﹣1=2•3n ﹣1,故a n =.【点评】本题主要考查等比数列的通项公式,等比数列的前n 项和公式,数列的前n 项的和Sn 与第n 项an 的关系,属于中档题. 15.【答案】 2 .【解析】解: =2+lg100﹣2=2+2﹣2=2,故答案为:2.【点评】本题考查了对数的运算性质,属于基础题. 16.【答案】 .【解析】解:若¬P 为假命题,则p 为真命题.不等式tx 2+2x ﹣2>0有属于(1,)的解,即有属于(1,)的解,又时,,所以.故t >﹣.故答案为t >﹣. 17.【答案】1-【解析】以为原点建立直角坐标系,如图:A设,,.AB =1AD =B C直线的方程为,AC y x =直线的方程为,BP 3y =+直线的方程为,DC 1y =由,得,13y y =⎧⎪⎨=+⎪⎩Q 由,得,3y x y ⎧=⎪⎨⎪=+⎩3)4P ∴,,由,得.DQ=QC DQ =-=DQ QC λ=u u u r u u u r 2λ=由,得,AP PC μ=u u u r u u ur 331))])444μμ=-=∴,.3μ=1λμ-=-18.【答案】 3π .【解析】解:将棱长均为3的三棱锥放入棱长为的正方体,如图∵球与三棱锥各条棱都相切,∴该球是正方体的内切球,切正方体的各个面切于中心,而这个切点恰好是三棱锥各条棱与球的切点由此可得该球的直径为,半径r=∴该球的表面积为S=4πr 2=3π故答案为:3π【点评】本题给出棱长为3的正四面体,求它的棱切球的表面积,着重考查了正多面体的性质、多面体内切球和球的表面积公式等知识,属于基础题. 三、解答题19.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC1中,根据勾股定理得:AC1=2,则圆C1方程为:(x﹣2)2+(y﹣2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,=OD′=C2B′=2,即圆心C2(﹣2,﹣2),在直角三角形A′B′C2中,根据勾股定理得:A′C2=2,则圆C1方程为:(x+2)2+(y+2)2=8,∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.20.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b==c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.21.【答案】【解析】满分(13分).解:(Ⅰ)由题意可知,|HF|=|HP|,∴点H到点F(0,1)的距离与到直线l1:y=﹣1的距离相等,…(2分)∴点H的轨迹是以点F(0,1)为焦点,直线l1:y=﹣1为准线的抛物线,…(3分)∴点H的轨迹方程为x2=4y.…(4分)(Ⅱ)(ⅰ)证明:设P(x1,﹣1),切点C(x C,y C),D(x D,y D).由y=,得.∴直线PC:y+1=x C(x﹣x1),…(5分)又PC过点C,y C=,∴y C+1=x C(x﹣x1)=x C x1,∴y C+1=,即.…(6分)同理,∴直线CD的方程为,…(7分)∴直线CD过定点(0,1).…(8分)(ⅱ)由(Ⅱ)(ⅰ)P(1,﹣1)在直线CD的方程为,得x1=1,直线CD的方程为.设l:y+1=k(x﹣1),与方程联立,求得x Q=.…(9分)设A(x A,y A),B(x B,y B).联立y+1=k(x﹣1)与x2=4y,得x2﹣4kx+4k+4=0,由根与系数的关系,得x A+x B=4k.x A x B=4k+4…(10分)∵x Q﹣1,x A﹣1,x B﹣1同号,∴+=|PQ|==…(11分)==,∴+为定值,定值为2.…(13分)【点评】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力.22.【答案】【解析】解:(1)∵函数f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+sin(2x+),∴它的最小正周期为=π.(2)在区间上,2x+∈[,],故当2x+=时,f(x)取得最小值为1+×(﹣)=0,当2x+=时,f(x)取得最大值为1+×1=1+.23.【答案】【解析】解:(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,∴C1是以原点为圆心,以1为半径的圆,∵曲线C2:(t为参数),∴C2的普通方程为x﹣y+=0,是直线,联立,解得x=﹣,y=.∴C2与C1只有一个公共点:(﹣,).(2)压缩后的参数方程分别为:(θ为参数):(t为参数),化为普通方程为::x2+4y2=1,:y=,联立消元得,其判别式,∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.24.【答案】【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为.则,∴年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4.(3)由(2)可知,当x=11时,=0.5x+0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.。

北安市第三中学校2018-2019学年高二上学期第二次月考试卷数学

北安市第三中学校2018-2019学年高二上学期第二次月考试卷数学

北安市第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=( )A .B .C .D .2. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是()A .2+B .1+C .D .3. 复数的值是( )ii -+3)1(2A .B .C .D .i 4341+-i 4341-i 5351+-i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.4. 数列1,﹣4,7,﹣10,13,…,的通项公式a n 为()A .2n ﹣1B .﹣3n+2C .(﹣1)n+1(3n ﹣2)D .(﹣1)n+13n ﹣25. 集合的真子集共有(){}1,2,3A .个B .个C .个D .个6. 下列推断错误的是( )A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件7. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A .B .C .D .8. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=()A .{﹣2}B .{2}C .{﹣2,2}D .∅ 9. 已知数列的首项为,且满足,则此数列的第4项是( ){}n a 11a =11122n n n a a +=+A .1B . C. D .12345810.在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°11.已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=( )A .﹣1B .1C .﹣D .12.函数y=的图象大致为( )A .B .C .D .二、填空题13.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .15.若函数y=ln (﹣2x )为奇函数,则a= .16.如图所示,圆中,弦的长度为,则的值为_______.C AB 4AB AC ×【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.17.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .18.已知函数,则的值是_______,的最小正周期是______.22tan ()1tan x f x x =-()3f π()f x 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.三、解答题19.如图,过抛物线C:x2=2py(p>0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=﹣4.(Ⅰ)p的值;(Ⅱ)R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求△MNT的面积的最小值.20.已知函数f(x)=在(,f())处的切线方程为8x﹣9y+t=0(m∈N,t∈R)(1)求m和t的值;(2)若关于x的不等式f(x)≤ax+在[,+∞)恒成立,求实数a的取值范围.21.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.22.(本小题满分12分)已知直三棱柱中,上底面是斜边为的直角三角形,分别是的中点.111C B A ABC -AC F E 、11AC B A 、(1)求证:平面;//EF ABC (2)求证:平面平面.⊥AEF B B AA 1123.(本小题满分12分)的内角所对的边分别为,,ABC ∆,,A B C ,,a b c (sin ,5sin 5sin )m B A C =+ 垂直.(5sin 6sin ,sin sin )n B C C A =-- (1)求的值;sin A(2)若,求的面积的最大值.a =ABC ∆S 24.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数为偶函数且图象经过原点,()f x 其导函数的图象过点.()'f x ()12,(1)求函数的解析式;()f x (2)设函数,其中m 为常数,求函数的最小值.()()()'g x f x f x m =+-()g x北安市第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:依题意可知F 坐标为(,0)∴B 的坐标为(,1)代入抛物线方程得=1,解得p=,∴抛物线准线方程为x=﹣,所以点B 到抛物线准线的距离为=,则B 到该抛物线焦点的距离为.故选D .2. 【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD 的面积为,故选:A . 3. 【答案】C 【解析】.i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+4.【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n﹣2,故通项公式a n=(﹣1)n+1(3n﹣2).故选:C.5.【答案】C【解析】考点:真子集的概念.6.【答案】C【解析】解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”,正确;对于B,命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0,正确;对于C,若p且q为假命题,则p,q至少有一个为假命题,故C错误;对于D,x2﹣3x+2>0⇒x>2或x<1,故“x<1”是“x2﹣3x+2>0”的充分不必要条件,正确.综上所述,错误的选项为:C,故选:C.【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.7.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C8.【答案】A【解析】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.9.【答案】B【解析】10.【答案】A【解析】解:如图所示,设AB=2,则A(2,0,0),B(2,2,0),B1(2,2,2),C1(0,2,2),E(2,1,0),F(2,2,1).∴=(﹣2,0,2),=(0,1,1),∴===,∴=60°.∴异面直线EF和BC1所成的角是60°.故选:A.【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题. 11.【答案】B【解析】解:由A,B是以O为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB 为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B .【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键. 12.【答案】D【解析】解:令y=f (x )=,∵f (﹣x )==﹣=﹣f (x ),∴函数y=为奇函数,∴其图象关于原点对称,可排除A ;又当x →0+,y →+∞,故可排除B ;当x →+∞,y →0,故可排除C ;而D 均满足以上分析.故选D .二、填空题13.【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a 的值.【解答】解:直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,∴,解得 a=1.故答案为 1.14.【答案】63【解析】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根,所以a 1=1,a 3=4.设等比数列{a n }的公比为q ,则,所以q=2.则.故答案为63.【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题. 15.【答案】 4 .【解析】解:函数y=ln(﹣2x)为奇函数,可得f(﹣x)=﹣f(x),ln(+2x)=﹣ln(﹣2x).ln(+2x)=ln()=ln().可得1+ax2﹣4x2=1,解得a=4.故答案为:4.16.【答案】817.【答案】 (x﹣1)2+(y+1)2=5 .【解析】解:设所求圆的圆心为(a,b),半径为r,∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,∴圆心(a ,b )在直线x+y=0上,∴a+b=0,①且(2﹣a )2+(1﹣b )2=r 2;②又直线x ﹣y+1=0截圆所得的弦长为,且圆心(a ,b )到直线x ﹣y+1=0的距离为d==,根据垂径定理得:r 2﹣d 2=,即r 2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x ﹣1)2+(y+1)2=5.故答案为:(x ﹣1)2+(y+1)2=5. 18.【答案】,.π【解析】∵,∴,又∵,∴的定义域为22tan ()tan 21tan x f x x x ==-2(tan 33f ππ==221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩()f x ,,将的图象如下图画出,从而(,)(,)(,)244442k k k k k k ππππππππππππ-+-+-++++ k Z ∈()f x 可知其最小正周期为,故填:.ππ三、解答题19.【答案】【解析】解:(Ⅰ)由题意设MN:y=kx+,由,消去y得,x2﹣2pkx﹣p2=0(*)由题设,x1,x2是方程(*)的两实根,∴,故p=2;(Ⅱ)设R(x3,y3),Q(x4,y4),T(0,t),∵T在RQ的垂直平分线上,∴|TR|=|TQ|.得,又,∴,即4(y3﹣y4)=(y3+y4﹣2t)(y4﹣y3).而y3≠y4,∴﹣4=y3+y4﹣2t.又∵y3+y4=1,∴,故T(0,).因此,.由(Ⅰ)得,x1+x2=4k,x1x2=﹣4,=.因此,当k=0时,S△MNT有最小值3.【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题.20.【答案】【解析】解:(1)函数f(x)的导数为f′(x)=,由题意可得,f()=,f′()=,即=,且=,由m∈N,则m=1,t=8;(2)设h(x)=ax+﹣,x≥.h()=﹣≥0,即a≥,h′(x)=a﹣,当a≥时,若x>,h′(x)>0,①若≤x≤,设g(x)=a﹣,g′(x)=﹣<0,g(x)在[,]上递减,且g()≥0,则g(x)≥0,即h′(x)≥0在[,]上恒成立.②由①②可得,a≥时,h′(x)>0,h(x)在[,+∞)上递增,h(x)≥h()=≥0,则当a≥时,不等式f(x)≤ax+在[,+∞)恒成立;当a<时,h()<0,不合题意.综上可得a≥.【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键.21.【答案】【解析】解:由题意设a=n 、b=n+1、c=n+2(n ∈N +),∵最大角是最小角的2倍,∴C=2A ,由正弦定理得,则,∴,得cosA=,由余弦定理得,cosA==,∴=,化简得,n=4,∴a=4、b=5、c=6,cosA=,又0<A <π,∴sinA==,∴△ABC 的面积S===.【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题. 22.【答案】(1)详见解析;(2)详见解析.【解析】试题解析:证明:(1)连接,∵直三棱柱中,四边形是矩形,C A 1111C B A ABC -C C AA 11故点在上,且为的中点,F C A 1F C A 1在中,∵分别是的中点,∴.BC A 1∆F E 、11AC B A 、BC EF //又平面,平面,∴平面.⊄EF ABC ⊂BC ABC //EF ABC考点:1.线面平行的判定定理;2.面面垂直的判定定理.23.【答案】(1);(2)4.45【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得,由同角关系得;(2)由于已cos A sin A 知边及角,因此在(1)中等式中由基本不等式可求得,从而由公式 A 22265bcb c a +-=10bc ≤可得面积的最大值.1sin 2S bc A =试题解析:(1)∵,垂直,(sin ,5sin 5sin )m B A C =+ (5sin 6sin ,sin sin )n B C C A =--∴,2225sin 6sin sin 5sin 5sin 0m n B B C C A ∙=-+-=考点:向量的数量积,正弦定理,余弦定理,基本不等式.111]24.【答案】(1);(2)()2f x x =1m -【解析】(2)据题意,,即()()()2'2g x f x f x m x x m =+-=+-()2222{22m x x m x g x mx x m x -+<=+-≥,,,,①若,即,当时,,故在上12m <-2m <-2m x <()()22211g x x x m x m =-+=-+-()g x 2m ⎛⎫-∞ ⎪⎝⎭,单调递减;当时,,故在上单调递减,在2m x ≥()()22211g x x x m x m =+-=+--()g x 12m ⎛⎫- ⎪⎝⎭,上单调递增,故的最小值为.()1-+∞,()g x ()11g m -=--②若,即,当时,,故在上单调递减;112m -≤≤22m -≤≤2m x <()()211g x x m =-+-()g x 2m ⎛⎫-∞ ⎪⎝⎭,当时,,故在上单调递增,故的最小值为2m x ≥()()211g x x m =+--()g x 2m ⎛⎫+∞ ⎪⎝⎭,()g x .224m m g ⎛⎫= ⎪⎝⎭③若,即,当时,,故在上单调递12m >2m >2m x <()()22211g x x x m x m =-+=-+-()g x ()1-∞,减,在上单调递增;当时,,故在上12m ⎛⎫ ⎪⎝⎭,2m x ≥()()22211g x x x m x m =+-=+--()g x 2m ⎛⎫+∞ ⎪⎝⎭单调递增,故的最小值为.()g x ()11g m =-综上所述,当时,的最小值为;当时,的最小值为;当时,2m <-()g x 1m --22m -≤≤()g x 24m 2m >的最小值为.()g x 1m -。

北安市二中2018-2019学年高三上学期11月月考数学试卷含答案

北安市二中2018-2019学年高三上学期11月月考数学试卷含答案

北安市二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 执行如图所以的程序框图,如果输入a=5,那么输出n=( )A .2B .3C .4D .52. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 3. 在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于( )A .B .C .D .2 4. “a >0”是“方程y 2=ax 表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要5. 设函数f (x )=的最小值为﹣1,则实数a 的取值范围是( )A .a ≥﹣2B .a >﹣2C .a ≥﹣ D .a>﹣6. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 7. 已知点M (a ,b ,c )是空间直角坐标系O ﹣xyz 中的一点,则与点M 关于z 轴对称的点的坐标是( ) A .(a ,﹣b ,﹣c ) B .(﹣a ,b ,﹣c ) C .(﹣a ,﹣b ,c ) D .(﹣a ,﹣b ,﹣c )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 阅读下面的程序框图,则输出的S=( )A .14B .20C .30D .559. 已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( ) A .0.1 B .0.2 C .0.4 D .0.610.已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有( ) A .2个 B .4个 C .6个 D .8个11.阅读如右图所示的程序框图,若输入0.45a =,则输出的k 值是( ) (A ) 3 ( B ) 4 (C ) 5 (D ) 612.若(z a ai =+为纯虚数,其中∈a R ,则7i 1ia a +=+( ) A .i B .1 C .i - D .1-二、填空题13.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 14.已知是等差数列,为其公差,是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________ ①②③④⑤15.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .16.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).17.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤恒成立,则实数的取值范围是 .18.已知f (x )=x (e x +a e -x )为偶函数,则a =________.三、解答题19.(本小题满分12分)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直. (1)求sin A 的值;(2)若a =ABC ∆的面积S 的最大值.206(2)求年推销金额y 关于工作年限x 的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.21.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且csinA=acosC .(I )求C 的值; (Ⅱ)若c=2a ,b=2,求△ABC 的面积.22.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?23.圆锥底面半径为1cm,其中有一个内接正方体,求这个内接正方体的棱长.24.数列{a n}满足a1=,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).(Ⅰ)证明数列{tan2a n}是等差数列,并求数列{tan2a n}的前n项和;(Ⅱ)求正整数m,使得11sina1•sina2•…•sina m=1.北安市二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:a=5,进入循环后各参数对应值变化如下表:p 15 20 结束q 5 25n 2 3∴结束运行的时候n=3.故选:B.【点评】本题考查了程序框图的应用,考查了条件结构和循环结构的知识点.解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果.属于基础题.2.【答案】B【解析】3.【答案】C【解析】因为角、、依次成等差数列,所以由余弦定理知,即,解得所以,故选C答案:C4.【答案】A【解析】解:若方程y2=ax表示的曲线为抛物线,则a≠0.∴“a>0”是“方程y2=ax表示的曲线为抛物线”的充分不必要条件.故选A.【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础.5.【答案】C【解析】解:当x≥时,f(x)=4x﹣3≥2﹣3=﹣1,当x=时,取得最小值﹣1;当x<时,f(x)=x2﹣2x+a=(x﹣1)2+a﹣1,即有f(x)在(﹣∞,)递减,则f(x)>f()=a﹣,由题意可得a﹣≥﹣1,解得a≥﹣.故选:C.【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.6.【答案】D【解析】解:∵f(x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.7.【答案】C【解析】解:∵在空间直角坐标系中,点(x,y,z)关于z轴的对称点的坐标为:(﹣x,﹣y,z),∴点M (a ,b ,c )关于z 轴的对称点的坐标为: (﹣a ,﹣b ,c ). 故选:C .【点评】本小题主要考查空间直角坐标系、空间直角坐标系中点的坐标特征等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.8. 【答案】C【解析】解:∵S 1=0,i 1=1; S 2=1,i 2=2; S 3=5,i 3=3; S 4=14,i 4=4; S 5=30,i=5>4 退出循环, 故答案为C .【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.9. 【答案】A【解析】解:∵随机变量ξ服从正态分布N (2,o 2),∴正态曲线的对称轴是x=2 P (0<X <4)=0.8,∴P (X >4)=(1﹣0.8)=0.1, 故选A .10.【答案】B【解析】解:因为B={0,1,2,3},C={0,2,4},且A ⊆B ,A ⊆C ; ∴A ⊆B ∩C={0,2}∴集合A 可能为{0,2},即最多有2个元素, 故最多有4个子集. 故选:B .11.【答案】 D.【解析】该程序框图计算的是数列前n 项和,其中数列通项为()()12121n a n n =-+()()11111113352121221n S n n n ⎡⎤∴=+++=-⎢⎥⨯⨯-++⎣⎦90.452n S n n >∴>∴最小值为5时满足0.45nS>,由程序框图可得k值是6.故选D.12.【答案】C【解析】∵z为纯虚数,∴a=∴7i3ii1i3aa+-====-+.二、填空题13.【答案】2300【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y10x506y5xyx,求目标函数300y200xZ+=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y天,该公司所需租赁费为Z元,则yxZ300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 14.【答案】①②③④【解析】因为只有是中的最小项,所以,,所以,故①②③正确;,故④正确;,无法判断符号,故⑤错误,故正确答案①②③④答案:①②③④15.【答案】20【解析】考点:棱台的表面积的求解.16.【答案】②【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,∵,∴OM<0<MP.故答案为:②.【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.17.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.111] 18.【答案】【解析】解析:∵f (x )是偶函数,∴f (-x )=f (x )恒成立, 即(-x )(e -x +a e x )=x (e x +a e -x ), ∴a (e x +e -x )=-(e x +e -x ),∴a =-1. 答案:-1三、解答题19.【答案】(1)45;(2)4. 【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得cos A ,由同角关系得sin A ;(2)由于已知边及角A ,因此在(1)中等式22265bc b c a +-=中由基本不等式可求得10bc ≤,从而由公式 1sin 2S bc A =可得面积的最大值.试题解析:(1)∵(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直, ∴2225sin 6sin sin 5sin 5sin 0m n B B C C A ∙=-+-=,考点:向量的数量积,正弦定理,余弦定理,基本不等式.111]20.【答案】【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为.则,∴年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4.(3)由(2)可知,当x=11时,=0.5x+0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.21.【答案】【解析】解:(I)∵a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC,∴sinCsinA=sinAcosC,∴sinCsinA﹣sinAcosC=0,∴sinC=cosC ,∴tanC==, 由三角形内角的范围可得C=;(Ⅱ)∵c=2a ,b=2,C=, ∴由余弦定理可得c 2=a 2+b 2﹣2abcosC ,∴4a 2=a 2+12﹣4a•,解得a=﹣1+,或a=﹣1﹣(舍去)∴△ABC 的面积S=absinC==22.【答案】 【解析】(1)∵f (t )﹣=10(t+),∴≤t+<,故当t+=时,函数取得最大值为当t+=时,函数取得最小值为)由题意可得,当f (时,需要降温,由(Ⅰ)可得f (t )=10﹣2sin(t+),(t+)>(t+)<﹣,即 ≤t+<,【解析】试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可.试题解析:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面11CDD C ,如图所示.设正方体棱长为,则1CC x =,11C D =,作SO EF ⊥于O ,则SO =1OE =, ∵1ECC EOS ∆∆,∴11CC EC SO EO =121x =, ∴2x =cm ,即内接正方体棱长为2cm .考点:简单组合体的结构特征.24.【答案】【解析】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).故tan2a n+1==1+tan2a n,∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.∴=.∴数列{tan2a n}的前n项和=+=.(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.∴tana n=,,∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)=(tana1•cosa m)==,由,得m=40.【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.。

城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=( )A .1+iB .﹣1﹣iC .﹣1+iD .1﹣i2. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y轴上,则的值为()A .B .C .D .3. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是()A .B .C .D .4. 已知实数x ,y 满足,则z=2x+y 的最大值为()A .﹣2B .﹣1C .0D .45. 若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-12z z ()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.6. 命题“存在实数x ,使x >1”的否定是( )A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤17. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α8. 若函数则函数的零点个数为( )21,1,()ln ,1,x x fx x x ⎧-≤=⎨>⎩1()2y f x x =+班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .1B .2C .3D .49. 已知、、的球面上,且,,球心到平面的距离为A B C AC BC ⊥30ABC ∠=oO ABC 1,点是线段的中点,过点作球的截面,则截面面积的最小值为( )M BC MO A B .CD .34π3π10.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )(A )150种 ( B ) 180 种 (C ) 240 种 (D ) 540 种11.设实数,则a 、b 、c 的大小关系为( )A .a <c <bB .c <b <aC .b <a <cD .a <b <c12.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( )A .①④B .①⑤C .②⑤D .③⑤二、填空题13.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.14.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .15.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 . 16.已知函数f (x )=有3个零点,则实数a 的取值范围是 .17.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = . 18.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .三、解答题19.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.A D OCB20.设定义在(0,+∞)上的函数f(x)=ax++b(a>0)(Ⅰ)求f(x)的最小值;(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=,求a,b的值.21.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足2bcosC=2a﹣c.(Ⅰ)求B;(Ⅱ)若△ABC的面积为,b=2求a,c的值.22.已知在等比数列{a n}中,a1=1,且a2是a1和a3﹣1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1+2b2+3b3+…+nb n=a n(n∈N*),求{b n}的通项公式b n.23.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.24.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥ABB1A1平面.(1)证明:BC⊥AB1;(2)若OC=OA,求直线CD与平面ABC所成角的正弦值.城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i故选D.2.【答案】C【解析】解:F1,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,|PF2|==,由勾股定理可得:|PF1|==.==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查计算能力.3.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.4.【答案】D【解析】解:画出满足条件的平面区域,如图示:,将z=2x+y转化为:y=﹣2x+z,由图象得:y=﹣2x+z过(1,2)时,z最大,Z最大值=4,故选:D.【点评】本题考查了简单的线性规划问题,考查了数形结合思想,是一道基础题.5.【答案】B【解析】6.【答案】C【解析】解:∵命题“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”故选C7.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.8.【答案】D【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几0)(=x f 个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图],[b a 0)()(<b f a f 象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.9. 【答案】B【解析】∵,∴,AC BC ⊥90ACB ∠=o∴圆心在平面的射影为D 的中点,O AB∴,∴.112AB ==2AB =∴,cos30BC AC ==o当线段为截面圆的直径时,面积最小,BC∴截面面积的最小值为.234ππ⨯=10.【答案】A【解析】人可以分为和两种结果,所以每所大学至少保送一人的不同保送的方法数为51,1,31,2,2种,故选A .223335353322150C C C A A A ⋅⋅+⋅=11.【答案】A 【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a <c <b .故选:A . 12.【答案】D【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m∥β,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用. 二、填空题13.【答案】【解析】(2a+b)·a=(2,-2+t)·(1,-1)=2×1+(-2+t)·(-1)=4-t=2,∴t=2.答案:214.【答案】 A<G .【解析】解:由题意可得A=,G=±,由基本不等式可得A≥G,当且仅当a=b取等号,由题意a,b是互异的负数,故A<G.故答案是:A<G.【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.15.【答案】 .【解析】解:∵f(x)=cos2x+sinx=1﹣sin2x+sinx=﹣+,故当sinx=时,函数f(x)取得最大值为,故答案为:.【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.16.【答案】 (,1) .【解析】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).17.【答案】 .【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,故a n=.【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an的关系,属于中档题.18.【答案】 64 .【解析】解:由图可知甲的得分共有9个,中位数为28∴甲的中位数为28乙的得分共有9个,中位数为36∴乙的中位数为36则甲乙两人比赛得分的中位数之和是64故答案为:64.【点评】求中位数的关键是根据定义仔细分析.另外茎叶图的茎是高位,叶是低位,这一点一定要注意.三、解答题19.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin(B+C),∴sinBcosC+sinCcosB﹣sinCcosB﹣sinBsinC=0,…(2分)即sinB(cosC﹣sinC)=0,∵sinB≠0,∴tanC=,故C=.…(6分)(2)∵ab×=,∴ab=4,①又c=2,…(8分)∴a2+b2﹣2ab×=4,∴a2+b2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.20.【答案】【解析】解:(Ⅰ)f(x)=ax++b≥2+b=b+2当且仅当ax=1(x=)时,f(x)的最小值为b+2(Ⅱ)由题意,曲线y=f(x)在点(1,f(1))处的切线方程为y=,可得:f(1)=,∴a++b=①f'(x)=a﹣,∴f′(1)=a﹣=②由①②得:a=2,b=﹣121.【答案】【解析】解:(Ⅰ)已知等式2bcosC=2a﹣c,利用正弦定理化简得:2sinBcosC=2sinA﹣sinC=2sin(B+C)﹣sinC=2sinBcosC+2cosBsinC﹣sinC,整理得:2cosBsinC﹣sinC=0,∵sinC≠0,∴cosB=,则B=60°;(Ⅱ)∵△ABC的面积为=acsinB=ac,解得:ac=4,①又∵b=2,由余弦定理可得:22=a2+c2﹣ac=(a+c)2﹣3ac=(a+c)2﹣12,∴解得:a+c=4,②∴联立①②解得:a=c=2.22.【答案】【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:2a2=a1+a3﹣1,∴,∴2q=q2,∵q≠0,∴q=2,∴;(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.n≥2时,由b1+2b2+3b3+…+nb n=a n ①b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.23.【答案】【解析】解:(Ⅰ)若4人全是女生,共有C74=35种情况;若4人全是男生,共有C84=70种情况;故全为女生的概率为=.…(Ⅱ)共15人,任意选出4名同学的方法总数是C154,选出男生的人数为X=0,1,2,3,4…P(X=0)==;P(X=1)==;P(X=2)==;P(X=3)==;P(X=4)==.…故X的分布列为X01234PEX=0×+1×+2×+3×+4×=.…【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.24.【答案】【解析】(I)证明:由题意,因为ABB1A1是矩形,D为AA1中点,AB=2,AA1=2,AD=,所以在直角三角形ABB1中,tan∠AB1B==,在直角三角形ABD中,tan∠ABD==,所以∠AB1B=∠ABD,又∠BAB1+∠AB1B=90°,∠BAB1+∠ABD=90°,所以在直角三角形ABO中,故∠BOA=90°,即BD⊥AB1,又因为CO⊥侧面ABB1A1,AB1⊂侧面ABB1A1,所以CO⊥AB1所以,AB1⊥面BCD,因为BC⊂面BCD,所以BC⊥AB1.(Ⅱ)解:如图,分别以OD,OB1,OC所在的直线为x,y,z轴,以O为原点,建立空间直角坐标系,则A (0,﹣,0),B(﹣,0,0),C(0,0,),B1(0,,0),D(,0,0),又因为=2,所以所以=(﹣,,0),=(0,,),=(,,),=(,0,﹣),设平面ABC的法向量为=(x,y,z),则根据可得=(1,,﹣)是平面ABC的一个法向量,设直线CD与平面ABC所成角为α,则sinα=,所以直线CD与平面ABC所成角的正弦值为.…【点评】本题考查了直线与平面垂直的性质,考查线面角,考查向量方法的运用,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北安市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .2. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A.向右平移个单位 B.向右平移个单位 C.向左平移个单位 D.向左平移个单位3. 已知等差数列的公差且成等比数列,则( )A .B .C .D .4. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x = B .22y x = C .24y x = D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.5.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )A .11?B .12?C .13?D .14?班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6.曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°7.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A.11 B.11.5 C.12 D.12.58.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为()A.9.6 B.7.68 C.6.144 D.4.91529.在抛物线y2=2px(p>0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为()A.x=1 B.x=C.x=﹣1 D.x=﹣10.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为()A.1:2:3 B.2:3:4 C.3:2:4 D.3:1:211.若偶函数y=f(x),x∈R,满足f(x+2)=﹣f(x),且x∈[0,2]时,f(x)=1﹣x,则方程f(x)=log8|x|在[﹣10,10]内的根的个数为()A.12 B.10 C.9 D.812.已知函数f (x )=31+|x|﹣,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .B .C .(﹣,)D .二、填空题13.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.14.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .15.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.16.计算:×5﹣1= .17.已知f (x )=,则f[f (0)]= .18.不等式的解为 .三、解答题19.设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式 (2)设,数列的前项和为,求证:(3)设数列满足(),若数列是递增数列,求实数的取值范围。

20.如图,底面为正三角形的三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,D 为线段B 1C 1中点. (Ⅰ) 证明:AC 1∥平面A 1BD ;(Ⅱ) 在棱CC 1上是否存在一点E ,使得平面A 1BE ⊥平面A 1ABB 1?若存在,请找出点E 所在位置,并给出证明;若不存在,请说明理由.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数()f x 为偶函数且图象经过原点,其导函数()'f x 的图象过点()12,. (1)求函数()f x 的解析式; (2)设函数()()()'g x f x f x m =+-,其中m 为常数,求函数()g x 的最小值.22.如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,EF ∥AD , 平面ADEF ⊥平面ABCD ,且BC=2EF ,AE=AF ,点G 是EF 的中点. (Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE 所成角的正弦值为,求AG 的长.23.永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x元.(1)写出该特产店一天内销售这种蜜饯所获得的利润y(元)与每盒蜜饯的销售价格x的函数关系式;(2)当每盒蜜饯销售价格x为多少时,该特产店一天内利润y(元)最大,并求出这个最大值.24.如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记∠AOP=θ,θ∈(0,π).(1)当θ=时,求点P距地面的高度PQ;(2)试确定θ的值,使得∠MPN取得最大值.北安市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B2.【答案】A【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.3.【答案】A【解析】由已知,,成等比数列,所以,即所以,故选A答案:A4. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x . 5. 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k 值为12, 则退出循环时的k 值为13, 故退出循环的条件应为:k ≥13?, 故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.6. 【答案】B【解析】解:y /=3x 2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°. 故选B .【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.7. 【答案】C【解析】解:由题意,0.06×5+x ×0.1=0.5,所以x 为2,所以由图可估计样本重量的中位数是12. 故选:C .8. 【答案】C【解析】解:由题意可知,设汽车x 年后的价值为S ,则S=15(1﹣20%)x, 结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C .9.【答案】C【解析】解:由题意可得抛物线y2=2px(p>0)开口向右,焦点坐标(,0),准线方程x=﹣,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4﹣(﹣)=5,解之可得p=2故抛物线的准线方程为x=﹣1.故选:C.【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.10.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.11.【答案】D【解析】解:∵函数y=f(x)为偶函数,且满足f(x+2)=﹣f(x),∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),∴偶函数y=f(x)为周期为4的函数,由x∈[0,2]时,f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.数形结合可得交点个为8,故选:D.12.【答案】A【解析】解:函数f (x )=31+|x|﹣为偶函数,当x ≥0时,f (x )=31+x﹣∵此时y=31+x为增函数,y=为减函数,∴当x ≥0时,f (x )为增函数, 则当x ≤0时,f (x )为减函数, ∵f (x )>f (2x ﹣1), ∴|x|>|2x ﹣1|, ∴x 2>(2x ﹣1)2, 解得:x ∈,故选:A .【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.二、填空题13.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.14.【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x ﹣2y ,再利用z 的几何意义求最值,只需求出直线z=x ﹣2y 过图形上的点A 的坐标,即可求解.【解答】解:方程x 2+y 2﹣2x+4y=0可化为(x ﹣1)2+(y+2)2=5, 即圆心为(1,﹣2),半径为的圆,(如图)设z=x ﹣2y ,将z 看做斜率为的直线z=x ﹣2y 在y 轴上的截距, 经平移直线知:当直线z=x ﹣2y 经过点A (2,﹣4)时,z 最大, 最大值为:10. 故答案为:10. 15.【答案】【解析】解:(1)证明:l 1的斜率显然存在,设为k ,其方程为y -2pt 2=k (x -2pt ).① 将①与拋物线x 2=2py 联立得, x 2-2pkx +4p 2t (k -t )=0,解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k -t )2).由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2), ∴k PQ =2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )=-2t ,即直线PQ 的斜率为-2t .(2)由y =x 22p 得y ′=xp,∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k =2ptp =2t .其切线方程为y -2pt 2=2t (x -2pt ), 又C 的准线与y 轴的交点T 的坐标为(0, -p2). ∴-p2-2pt 2=2t (-2pt ).解得t =±12,即t 的值为±12.16.【答案】 9 .【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.17.【答案】1.【解析】解:f(0)=0﹣1=﹣1,f[f(0)]=f(﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.18.【答案】{x|x>1或x<0}.【解析】解:即即x(x﹣1)>0解得x>1或x<0故答案为{x|x>1或x<0}【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出三、解答题19.【答案】【解析】解:∵S n=2-a n,即a n+S n=2,∴a n+1+S n+1=2.两式相减:a n+1-a n+S n+1-S n=0.即a n+1-a n+a n+1=0,故有2a n+1=a n,∵a n≠0,,∵b n+1=b n+a n(n=1,2,3,…),得b2-b1=1,,,,.将这n-1个等式相加,得又∵b1=1,.(2)证明:.而①-②得=8-(n=1,2,3,…).∴T n<8.(3)由(1)知由数列是递增数列,∴对恒成立,即恒成立,即恒成立,当为奇数时,即恒成立,∴,当为偶数时,即恒成立,∴,综上实数的取值范围为20.【答案】【解析】证明:(Ⅰ)连接AB1,交A1B于点F,连接DF,△AB1C1中,D,F分别为A1B,B1C1中点,所以DF∥AC1.…因为DF⊂平面A1BD,AC1⊄平面A1BD,所以AC1∥平面A1BD.…解:(Ⅱ)存在点E,为CC1中点,使得平面A1BE⊥平面A1ABB1…证明如下:方法1:△A1BE中,因为A1E=BE,且F为A1B中点,所以,EF⊥A1B.△AB1E中,同理有EF⊥AB1.…因为A1B∩AB1=F,A1B,AB1⊂平面A1ABB1,所以EF⊥平面A1ABB1…又EF ⊂平面A 1BE ,所以,平面A 1BE ⊥平面A 1ABB 1… 方法2:取AB 中点G ,连接EF ,CG ,FG .因为FG ∥AA 1,且,CE ∥AA 1,且,所以FG ∥CE ,且FG=CE ,所以,四边形CEFG 为平行四边形,所以CG ∥EF … 因为AA 1⊥平面ABC ,CG ⊂平面ABC ,所以CG ⊥AA 1. 又CG ⊥AB ,且AA 1∩AB=A ,AA 1,AB ⊂平面A 1ABB 1, 所以,CG ⊥平面A 1ABB 1…因为CG ∥EF ,所以EF ⊥平面A 1ABB 1…又EF ⊂平面A 1BE ,所以,平面A 1BE ⊥平面A 1ABB 1…【点评】本题考查线面平行的证明,考查满足面面垂直的点是否存在的判断与证明,是中档题,解题时要认真审题,注意空间思维能力的培养.21.【答案】(1)()2f x x =;(2)1m -【解析】(2)据题意,()()()2'2g x f x f x m x x m =+-=+-,即()2222{22m x x m x g x mx x m x -+<=+-≥,,,,①若12m <-,即2m <-,当2m x <时,()()22211g x x x m x m =-+=-+-,故()g x 在2m ⎛⎫-∞ ⎪⎝⎭,上单调递减;当2m x ≥时,()()22211g x x x m x m =+-=+--,故()g x 在12m ⎛⎫- ⎪⎝⎭,上单调递减,在()1-+∞,上单调递增,故()g x 的最小值为()11g m -=--. ②若112m -≤≤,即22m -≤≤,当2m x <时,()()211g x x m =-+-,故()g x 在2m ⎛⎫-∞ ⎪⎝⎭,上单调递减; 当2m x ≥时,()()211g x x m =+--,故()g x 在2m ⎛⎫+∞ ⎪⎝⎭,上单调递增,故()g x 的最小值为224m mg ⎛⎫=⎪⎝⎭. ③若12m >,即2m >,当2m x <时,()()22211g x x x m x m =-+=-+-,故()g x 在()1-∞,上单调递减,在12m ⎛⎫ ⎪⎝⎭,上单调递增;当2m x ≥时,()()22211g x x x m x m =+-=+--,故()g x 在2m ⎛⎫+∞ ⎪⎝⎭,上单调递增,故()g x 的最小值为()11g m =-.综上所述,当2m <-时,()g x 的最小值为1m --;当22m -≤≤时,()g x 的最小值为24m ;当2m >时,()g x 的最小值为1m -.22.【答案】【解析】(本小题满分12分)(Ⅰ)证明:因为AE=AF ,点G 是EF 的中点, 所以AG ⊥EF .又因为EF ∥AD ,所以AG ⊥AD .…因为平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD=AD , AG ⊂平面ADEF , 所以AG ⊥平面ABCD .…(Ⅱ)解:因为AG ⊥平面ABCD ,AB ⊥AD ,所以AG 、AD 、AB 两两垂直. 以A 为原点,以AB ,AD ,AG 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系 则A (0,0,0),B (4,0,0),C (4,4,0), 设AG=t (t >0),则E (0,1,t ),F (0,﹣1,t ),所以=(﹣4,﹣1,t),=(4,4,0),=(0,1,t ).…设平面ACE的法向量为=(x ,y ,z ),由=0,=0,得,令z=1,得=(t,﹣t,1).因为BF与平面ACE所成角的正弦值为,所以|cos<>|==,…即=,解得t2=1或.所以AG=1或AG=.…【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.23.【答案】【解析】解:(1)当0<x≤20时,y=[20+4(20﹣x)](x﹣8)=﹣4x2+132x﹣800,当20<x<40时,y=[20﹣(x﹣20)](x﹣8)=﹣x2+48x﹣320,∴(2)①当,∴当x=16.5时,y取得最大值为289,②当20<x<40时,y=﹣(x﹣24)2+256,∴当x=24时,y取得最大值256,综上所述,当蜜饯价格是16.5元时,该特产店一天的利润最大,最大值为289元.24.【答案】【解析】解:(1)由题意得PQ=50﹣50cosθ,从而当时,PQ=50﹣50cos=75.即点P距地面的高度为75米.(2)由题意得,AQ=50sinθ,从而MQ=60﹣50sinθ,NQ=300﹣50sinθ.又PQ=50﹣50cosθ,所以tan,tan.从而tan∠MPN=tan(∠NPQ﹣∠MPQ)==.令g(θ)=.θ∈(0,π)则,θ∈(0,π).由g′(θ)=0,得sinθ+cosθ﹣1=0,解得.当时,g′(θ)>0,g(θ)为增函数;当x时,g′(θ)<0,g(θ)为减函数.所以当θ=时,g(θ)有极大值,也是最大值.因为.所以.从而当g(θ)=tan∠MNP取得最大值时,∠MPN取得最大值.即当时,∠MPN取得最大值.【点评】本题考查了与三角函数有关的最值问题,主要还是利用导数研究函数的单调性,进一步求其极值、最值.。

相关文档
最新文档