七数实数复习题(五)
第六章 实数复习题---选择题(含解析)
人教版七下第六章实数复习题---选择题一.选择题(共50小题)1.(2018•铜仁市)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.812.(2018•贺州)4的平方根是()A.2 B.﹣2 C.±2 D.163.(2018秋•无锡期末)若2x﹣5没有平方根,则x的取值范围为()A.x B.x C.x D.x4.(2018秋•安岳县期末)若2m﹣4与3m﹣1是同一个数的两个不等的平方根,则这个数是()A.2 B.﹣2 C.4 D.15.(2018•黔西南州)下列等式正确的是()A.=2 B.=3 C.=4 D.=56.(2018•南京)的值等于()A.B.﹣C.±D.7.(2018•杭州)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±2 8.(2018•安顺)的算术平方根是()A.B.C.±2 D.29.(2018秋•海曙区期末)下列一组数:﹣1,0,﹣(﹣5),|﹣|,﹣22,﹣,其中负数的个数有()A.2个B.3个C.4个D.5个10.(2018秋•东阳市期末)已知一个数的平方是,则这个数的立方是()A.8 B.64 C.8或﹣8 D.64或﹣6411.(2018秋•长兴县期中)下列说法正确的是()①﹣是2的一个平方根②﹣4的算术平方根是2③的平方根是±2④0没有平方根A.①②③B.①④C.①③D.②③④12.(2018春•奉贤区期中)下列说法正确的是()A.﹣81平方根是﹣9B.的平方根是±9C.平方根等于它本身的数是1和0D.一定是正数13.(2018春•十堰期中)当式子的值取最小值时,a的取值为()A.0 B.C.﹣1 D.114.(2017春•邹平县校级月考)若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对15.(2016秋•海淀区校级期中)代数式﹣a﹣2()A.有最小值为﹣1 B.有最大值为﹣1C.有最小值为﹣D.有最大值为﹣16.(2016秋•雁塔区校级月考)若a,b为实数,且满足=0,则b﹣a的值为()A.﹣1 B.1 C.7 D.﹣717.(2018•恩施州)64的立方根为()A.8 B.﹣8 C.4 D.﹣418.(2018•衡阳)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=19.(2018•济宁)的值是()A.1 B.﹣1 C.3 D.﹣320.(2018秋•金东区期末)下列结论正确的是()A.﹣15÷3=5 B.=±3C.=﹣2 D.(﹣3)2=(+3)221.(2018秋•杭州期末)下列等式正确的是()A.±=2 B.=﹣2 C.=﹣2 D.=0.1 22.(2018秋•南海区期末)下列说法错误的是()A.5是25的算术平方根B.1的立方根是±1C.﹣1没有平方根D.0的平方根与算术平方根都是023.(2018秋•安仁县期末)下列说法正确的是()A.25的平方根是5 B.﹣22的算术平方根是2C.0.8的立方根是0.2 D.是的一个平方根24.(2018•成都模拟)下列实数中是无理数的是()A.B.πC.D.25.(2018•鄂尔多斯)在,﹣2018,,π这四个数中,无理数是()A.B.﹣2018 C.D.π26.(2018•沙坪坝区)下列各数:π,,5,3.121212…,中无理数的个数为()A.1个B.2个C.3个D.4个27.(2018•菏泽)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.128.(2018•沈阳)下列各数中是有理数的是()A.πB.0 C.D.29.(2018•温州)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣130.(2018•巴彦淖尔)的算术平方根的倒数是()A.B.C.D.31.(2018•潍坊)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣32.(2018•眉山)绝对值为1的实数共有()A.0个B.1个C.2个D.4个33.(2018秋•鸡东县期末)下列说法正确的是()A.若=a,则a>0B.若a与b互为相反数,则与也互为相反数C.若=()2,则a=bD.若a>b>0,则>b34.(2018秋•金水区校级月考)下列说法正确的是()A.一个数的平方根有两个,它们互为相反数B.一个数的立方根,不是正数就是负数C.如果一个数的立方根是这个数本身,那么这个数一定是﹣1,0,1中的一个D.如果一个数的平方根是这个数本身,那么这个数是1或者035.(2018•南岸区)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a>b B.|a|<|b| C.a+b<0 D.a<﹣b36.(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上37.(2018•北京)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0 38.(2018•湖北)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 39.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0 40.(2018•台湾)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣141.(2019•沙坪坝区)下列各数中,最小的实数是()A.1 B.0 C.﹣3 D.﹣142.(2018•辽阳)在实数﹣2,3,0,﹣中,最大的数是()A.﹣2 B.3 C.0 D.﹣43.(2018•攀枝花)如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q44.(2019•渝中区)若a<2<a+1,则整数a的值为()A.1 B.2 C.3 D.445.(2019•九龙坡区)估计1﹣的值在()A.0到﹣1之间B.﹣1到﹣2之间C.﹣2到﹣3之间D.﹣3到﹣4之间46.(2018•沙坪坝区)佔计+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和947.(2018•沙坪坝区)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间48.(2018秋•西湖区期末)下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=7249.(2018秋•南安市期中)我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣1•i=﹣i,i4=(i2)2=(﹣1)2=1……,则i2018=()A.﹣1 B.1 C.i D.﹣i50.(2018秋•邓州市期中)现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6 B.﹣2 C.2 D.6人教版七下第六章实数复习题---选择题参考答案与试题解析一.选择题(共50小题)1.(2018•铜仁市)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(2018•贺州)4的平方根是()A.2 B.﹣2 C.±2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.3.(2018秋•无锡期末)若2x﹣5没有平方根,则x的取值范围为()A.x B.x C.x D.x【分析】由负数没有平方根得出关于x的不等式,解之可得.【解答】解:由题意知2x﹣5<0,解得x<,故选:D.4.(2018秋•安岳县期末)若2m﹣4与3m﹣1是同一个数的两个不等的平方根,则这个数是()A.2 B.﹣2 C.4 D.1【分析】根据平方根的性质即可求出答案.【解答】解:由题意可知:2m﹣4+3m﹣1=0,解得:m=1,∴2m﹣4=﹣2所以这个数是4,故选:C.5.(2018•黔西南州)下列等式正确的是()A.=2 B.=3 C.=4 D.=5 【分析】根据算术平方根的定义逐一计算即可得.【解答】解:A、==2,此选项正确;B、==3,此选项错误;C、=42=16,此选项错误;D、=25,此选项错误;故选:A.6.(2018•南京)的值等于()A.B.﹣C.±D.【分析】根据算术平方根解答即可.【解答】解:,故选:A.7.(2018•杭州)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±2 【分析】根据=|a|进行计算即可.【解答】解:A、=2,故原题计算正确;B、=2,故原题计算错误;C、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.8.(2018•安顺)的算术平方根是()A.B.C.±2 D.2【分析】直接利用算术平方根的定义得出即可.【解答】解:=2,2的算术平方根是.故选:B.9.(2018秋•海曙区期末)下列一组数:﹣1,0,﹣(﹣5),|﹣|,﹣22,﹣,其中负数的个数有()A.2个B.3个C.4个D.5个【分析】各式计算得到结果,利用负数定义判断即可.【解答】解:因为﹣(﹣5)=5,|﹣|=,﹣22=﹣4,﹣,所以负数有﹣1,﹣22,﹣,故选:B.10.(2018秋•东阳市期末)已知一个数的平方是,则这个数的立方是()A.8 B.64 C.8或﹣8 D.64或﹣64【分析】首先求得平方是=4的数,然后求立方即可.【解答】解:=4,则这个数是±2,则立方是:±8.故选:C.11.(2018秋•长兴县期中)下列说法正确的是()①﹣是2的一个平方根②﹣4的算术平方根是2③的平方根是±2④0没有平方根A.①②③B.①④C.①③D.②③④【分析】根据平方根的定义和性质及算术平方根的定义逐一判断可得.【解答】解:①﹣是2的一个平方根,正确;②﹣4没有算术平方根,错误;③的平方根是±2,正确;④0有平方根,是0,错误;故选:C.12.(2018春•奉贤区期中)下列说法正确的是()A.﹣81平方根是﹣9B.的平方根是±9C.平方根等于它本身的数是1和0D.一定是正数【分析】根据一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根进行分析即可.【解答】解:A、﹣81没有平方根,故原题错误;B、=9的平方根是±3,故原题错误;C、平方根等于它本身的数是0,故原题错误;D、一定是正数,故原题正确;故选:D.13.(2018春•十堰期中)当式子的值取最小值时,a的取值为()A.0 B.C.﹣1 D.1【分析】根据2a+1≥0,求出当式子的值取最小值时,a的取值为多少即可.【解答】解:∵2a+1≥0,∴当式子的值取最小值时,2a+1=0,∴a的取值为﹣.故选:B.14.(2017春•邹平县校级月考)若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【分析】根据非负数的性质列出算式,求出a、b的值,代入代数式计算即可.【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.15.(2016秋•海淀区校级期中)代数式﹣a﹣2()A.有最小值为﹣1 B.有最大值为﹣1C.有最小值为﹣D.有最大值为﹣【分析】根据非负数的性质即可得到结论.【解答】解:原式=﹣(a+1+1)=﹣(a+1)﹣1=﹣()2﹣1=﹣[()2﹣+﹣]﹣1=﹣(﹣)2﹣,.当=时,有最大值﹣,故选:D.16.(2016秋•雁塔区校级月考)若a,b为实数,且满足=0,则b﹣a的值为()A.﹣1 B.1 C.7 D.﹣7【分析】依据非负数的性质可求得a、b的值,然后再代入计算即可.【解答】解:由题意可知:=0,∴a﹣3=0,b+4=0,解得:a=3,b=﹣4.∴b﹣a=﹣4﹣3=﹣7.故选:D.17.(2018•恩施州)64的立方根为()A.8 B.﹣8 C.4 D.﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.18.(2018•衡阳)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=【分析】原式利用平方根、立方根定义计算即可求出值.【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2﹣=,符合题意,故选:D.19.(2018•济宁)的值是()A.1 B.﹣1 C.3 D.﹣3【分析】直接利用立方根的定义化简得出答案.【解答】解:=﹣1.故选:B.20.(2018秋•金东区期末)下列结论正确的是()A.﹣15÷3=5 B.=±3C.=﹣2 D.(﹣3)2=(+3)2【分析】直接利用算术平方根以及立方根的性质以及有理数的乘方运算法则分别化简得出答案.【解答】解:A、﹣15÷3=﹣5,故此选项错误;B、=3,故此选项错误;C、无法化简,故此选项错误;D、(﹣3)2=(+3)2,正确.故选:D.21.(2018秋•杭州期末)下列等式正确的是()A.±=2 B.=﹣2 C.=﹣2 D.=0.1【分析】根据立方根、平方根和算术平方根计算判断即可.【解答】解:A、,错误;B、,错误;C、,正确;D、,错误;故选:C.22.(2018秋•南海区期末)下列说法错误的是()A.5是25的算术平方根B.1的立方根是±1C.﹣1没有平方根D.0的平方根与算术平方根都是0【分析】根据算术平方根和平方根及立方根的定义逐一求解可得.【解答】解:A.5是25的算术平方根,此选项说法正确;B.1的立方根是1,此选项说法错误;C.﹣1没有平方根,此选项说法正确;D.0的平方根与算术平方根都是0,此选项说法正确;故选:B.23.(2018秋•安仁县期末)下列说法正确的是()A.25的平方根是5 B.﹣22的算术平方根是2C.0.8的立方根是0.2 D.是的一个平方根【分析】A、根据平方根的定义即可判定;B、根据算术平方根的定义即可判定;C、根据立方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、25的平方根是±5,故选项错误;B、﹣22的算术平方根是2,负数没有平方根,故选项错误;C、0.008的立方根是0.2,故选项错误;D、是的一个平方根,故选项正确.故选:D.24.(2018•成都模拟)下列实数中是无理数的是()A.B.πC.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是分数,属于有理数;B、π是无理数;C、=3,是整数,属于有理数;D、﹣是分数,属于有理数;故选:B.25.(2018•鄂尔多斯)在,﹣2018,,π这四个数中,无理数是()A.B.﹣2018 C.D.π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:在,﹣2018,,π这四个数中,无理数是π,故选:D.26.(2018•沙坪坝区)下列各数:π,,5,3.121212…,中无理数的个数为()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π,,5,3.121212…,中无理数有π、,故选:B.27.(2018•菏泽)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.1【分析】依据无理数的三种常见类型进行判断即可.【解答】解:在﹣2,0,,0.020020002…,π,中,无理数有0.020020002…,π这2个数,故选:C.28.(2018•沈阳)下列各数中是有理数的是()A.πB.0 C.D.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选:B.29.(2018•温州)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣1【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数,2,0,﹣1,其中负数是:﹣1.故选:D.30.(2018•巴彦淖尔)的算术平方根的倒数是()A.B.C.D.【分析】直接利用实数的性质结合算术平方根以及倒数的定义分析得出答案.【解答】解:=4,则4的算术平方根为2,故2的倒数是:.故选:C.31.(2018•潍坊)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣【分析】直接利用绝对值的性质化简得出答案.【解答】解:|1﹣|=﹣1.故选:B.32.(2018•眉山)绝对值为1的实数共有()A.0个B.1个C.2个D.4个【分析】直接利用绝对值的性质得出答案.【解答】解:绝对值为1的实数共有:1,﹣1共2个.故选:C.33.(2018秋•鸡东县期末)下列说法正确的是()A.若=a,则a>0B.若a与b互为相反数,则与也互为相反数C.若=()2,则a=bD.若a>b>0,则>b【分析】根据实数的性质,相反数的意义,算术平方根的定义解答即可.【解答】解:A.若=a,则a≥0,故本选项错误;B、若a与b互为相反数,则与也互为相反数,故本选项正确;C、若=()2,则a为任意实数,b≥0,故本选项错误;D、若a>b>0,a=9,b=5时,则<b,故本选项错误;故选:B.34.(2018秋•金水区校级月考)下列说法正确的是()A.一个数的平方根有两个,它们互为相反数B.一个数的立方根,不是正数就是负数C.如果一个数的立方根是这个数本身,那么这个数一定是﹣1,0,1中的一个D.如果一个数的平方根是这个数本身,那么这个数是1或者0【分析】根据立方根,平方根的定义选择即可.【解答】解:A、一个正数的平方根有两个,它们互为相反数,故本选项错误;B、一个非零数的立方根,不是正数就是负数,故本选项错误;C、如果一个数的立方根是这个数本身,那么这个数一定是﹣1,0,1中的一个,故本选项正确;D、如果一个数的平方根是这个数本身,那么这个数是0,故本选项错误;故选:C.35.(2018•南岸区)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a>b B.|a|<|b| C.a+b<0 D.a<﹣b【分析】根据绝对值的定义即可求解.【解答】解:由图可得:﹣1<a<0,1<b<2∴a<b,|a|<|b|,a+b>0,a>﹣b.故选:B.36.(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上【分析】根据表示互为相反数的两个数的点,它们分别在原点两旁且到原点距离相等解答.【解答】解:∵点A、点B表示的两个实数互为相反数,∴原点在到在线段AB上,且到点A、点B的距离相等,∴原点在线段AB的中点处,故选:B.37.(2018•北京)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.38.(2018•湖北)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.39.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.40.(2018•台湾)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣1【分析】首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.【解答】解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选:B.41.(2019•沙坪坝区)下列各数中,最小的实数是()A.1 B.0 C.﹣3 D.﹣1【分析】由于正数大于0,0大于负数,要求最小实数,只需比较﹣3与﹣1即可.【解答】解:∵﹣3<﹣1<0<1,∴﹣3是最小的实数,故选:C.42.(2018•辽阳)在实数﹣2,3,0,﹣中,最大的数是()A.﹣2 B.3 C.0 D.﹣【分析】依据正数大于零,零大于负数,正数大于一切负数解答即可.【解答】解:﹣2<﹣<0<3,所以最大的数是3.故选:B.43.(2018•攀枝花)如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q【分析】先相反数确定原点的位置,再根据点的位置确定绝对值最大的数即可解答.【解答】解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最小的数对应的点是点N,故选:B.44.(2019•渝中区)若a<2<a+1,则整数a的值为()A.1 B.2 C.3 D.4【分析】估算出的大小,即可求得a的值.【解答】解:∵4<8<9,∴2<2<3,∴a=2,a+1=3,故选:B.45.(2019•九龙坡区)估计1﹣的值在()A.0到﹣1之间B.﹣1到﹣2之间C.﹣2到﹣3之间D.﹣3到﹣4之间【分析】先估算出的范围,再求出1﹣的范围,即可得出选项.【解答】解:∵3<<4,∴﹣4<﹣<﹣3,∴﹣3<1﹣<﹣2,即1﹣在﹣2到﹣3之间,故选:C.46.(2018•沙坪坝区)佔计+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和9【分析】先将+进行平方,然后估算得到即可.【解答】解:(+)2=39+2=39+,∵21<<23,∴60<39+<61,∴+的运算结果应在7和8之间,故选:C.47.(2018•沙坪坝区)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间【分析】首先化简二次根式进而得出的取值范围进而得出答案.【解答】解:÷﹣1=﹣1=﹣1,∵7<<7.5,∴6<﹣1<6.5,故选:D.48.(2018秋•西湖区期末)下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72【分析】A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据乘方运算法则计算即可判定.【解答】解:A、=3,故选项A错误;B、=﹣2,故选项B正确;C、=,故选项C错误;D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.故选:B.49.(2018秋•南安市期中)我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣1•i=﹣i,i4=(i2)2=(﹣1)2=1……,则i2018=()A.﹣1 B.1 C.i D.﹣i【分析】直接利用已知得出变化规律,进而得出答案.【解答】解:∵i1=i,i2=﹣1,i3=i2•i=﹣1•i=﹣i,i4=(i2)2=(﹣1)2=1……,∴每4个一循环,∵2018÷4=504…2,∴i2018=i2=﹣1,故选:A.50.(2018秋•邓州市期中)现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6 B.﹣2 C.2 D.6【分析】先计算=4,=﹣2,再依据新定义规定的运算a※b=ab+a﹣b计算可得.【解答】解:※=4※(﹣2)=4×(﹣2)+4﹣(﹣2)=﹣8+4+2=﹣2,故选:B.中小学教育资源及组卷应用平台21世纪教育网。
人教版七年级数学下册第6章实数专题作业
【对应训练】 5.计算:
(1)
3 (-2)2 -
1 27
×
(-3)2 +
196 ×3 -64 ÷
(2)| 5 - 6 |-| 5 -3|-| 6 -4|.
12254 ;
解:(1)-39 (2)2 6 -7
6.已知(x-12)2=169,(y-1)3=-0.125,求 x - 2xy -3 4y+x 的值.
4 25
-|
7 -3|.
(3) 0.3;
解: 7
解:1525
21.解方程: (1)(x-2)3=64;
解:x=6
(2)4(3x+1)2-1=0. 解:x=-16 或-12
22.已知实数 x,y 满足 x-2 +(y+1)2=0,则 x-y 等于( A ) A.3 B.-3 C.1 D.-1
【对应训练】
3 3.
-64
的立方根为_3__-__4____.
4.如果 x<0,那么 x 的立方根为( A )
A.3 x
B.3 -x
C.-3 x
D.±3 x
四、对实数的有关概念理解不透彻 【例4】下列命题正确的是( D) A.无理数包括正无理数、0和负无理数 B.无理数不是实数 C.无理数是带根号的数 D.无理数是无限不循环小数
2.已知 M=m-1 m+6 是 m+6 的算术平方根, N=2m-3n+3 n+6 是 n+6 的立方根,试求 M-N 的值.
解:由题意可知 m-1=2,2m-3n+3=3,可得 m=3,n=2, 所以 M= 9 =3,N=3 8 =2,所以 M-N=3-2=1
二、实数的非负性 【例 2】若 x2-1 + y+1 =0,求 x2019+y2020 的值. 分析:由题意可知 x2-1=0,y+1=0,分别求出 x,y, 再代入求值,注意分两种情况.
安徽师大附中七年级数学下册第六章【实数】经典复习题(含答案解析)
一、选择题1.若15的整数部分为a ,小数部分为b ,则a-b 的值为() A .615- B .156- C .815- D .158- 2.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±.A .0个B .1个C .2个D .3个3.16的算术平方根是( )A .2B .4C .2±D .-44.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .85.下列各数中比3-小的数是( )A .2-B .1-C .12-D .06.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 7.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4078.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n 9.若53a =,则a 在( )A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间10.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定 11.下列说法正确的有( )(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数.A .1个B .2个C .3个D .4个二、填空题12.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(212a +的平方根和立方根.13.计算:(1)2323615---(2)12233414.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值. 15.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.16.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 17.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当x=2时,()()1*-3*=x x x ______18.计算:2(3)216--⨯.19.8的相反数是_______,平方得9的数是________.20.若4<a <5,则满足条件的整数 a 分别是_________________. 21.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______.三、解答题22.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.23.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=24.计算:(1223168(2)(3)--(2)22(2)8x -= 25.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=一、选择题1.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个2.16的算术平方根是( )A .2B .4C .2±D .-43.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( )A .1B .2C .3D .44.在0、3、0.536、39、227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( ) A .3 B .4 C .5 D .6 5.下列实数中,是无理数的为( )A .3.14B .13C .5D .96.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n7.设,A B 均为实数,且33,3A m B m =-=-,A B 的大小关系是( ) A .A B > B .A B =C .A B <D .A B ≥ 864 )A .8B .8-C .22D .22± 9.下列有关叙述错误的是( )A 2B 2是2的平方根C .122<<D .22是分数 10.在1.414,3213,5π,23-中,无理数的个数是( ) A .1 B .2C .3D .411.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9二、填空题12.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.13.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值. 14.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.15.把下列各数填在相应的横线里:3,0,10%,﹣112,﹣|﹣12|,﹣(﹣5),2π,0.6,127,0.101001000… 整数集合:{_____________…};分数集合:{_____________…};无理数集合:{_____________…};非负有理数集合{_____________…}.16.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.17.3189124--+. 18.比较3、4 350_______________.(用“<”连接)19.3x -+(y +2)2=0,那么xy 的值为___________.20.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由3101000=,31001000000=,11000593191000000<<,确定359319是______位数; (2)由59319的个位数字是9,确定359319的个位上的数是______; (3)如果划去59319后面的319得到数59,而3327=,3464=,确定359319的十位上的数是______.21.已知实数,x y 满足()2380x y -++=,求xy -的平方根.三、解答题22.计算:31891224-++-+. 23.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.24.观察下列各式,并用所得出的规律解决问题:(1)2=1.414,200=14.14,20000=141.4…0.03=0.1732,3=1.732,300=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2)已知5=2.236,50=7.071,则0.5= ,500= ;(3)31=1,31000=10,31000000=100…小数点变化的规律是: .(4)已知310=2.154,3100=4.642,则310000= ,30.1-= .25.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.一、选择题1.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个2.81的平方根是( )A .9B .-9C .9和9-D .813.下列计算正确的是( ) A .11-=- B .2(3)3-=- C .42=± D .31182-=- 4.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n5.下列实数中,属于无理数的是( )A .3.14B .227C .4D .π6.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与67.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .48.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - 9.在1.414,3213,5π,23中,无理数的个数是( ) A .1 B .2 C .3 D .410.下列等式成立的是( )A .±1B =±2C 6D 3 11.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π;C ,π;D .0.1010101……101,π二、填空题12.先化简,再求值:()222233a ab a ab ⎛⎫---⎪⎝⎭,其中|2|a + 13.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.14.(22-15.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0) 正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.16. ________0.5.(填“>”“<”或“=”) 17.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.18.已知5的整数部分为a ,5-b ,则2ab b +=_________. 19.计算:(1)﹣12﹣(﹣2)(21)+2|20.设a ,b 是两个连续的整数,若a b <<,是,则a b =____.21.比较大小:三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接: 1.5-,38,0,13-,4-23.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.24.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.25.设26+x 、y ,试求x 、y 的值与1x -的立方根.。
部编数学七年级下册专题04《实数》解答题重点题型分类(解析版)含答案
专题04《实数》解答题重点题型分类专题简介:本份资料专攻《实数》中“化简求值题型”、“利用平方根与立方根的性质解方程题型”、“计算解答题型”、“数轴比较大小题型”、“整数部分与小数部分题型”、“创新题型”重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。
考点1:化简求值题型方法点拨:1.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应(数形结合)。
2.数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.3.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.4.绝对值、平方、算术平方根的双重非负性的应用。
1.若0,0a ab <<,化简a b a --【答案】【分析】由0,0a ab <<判断b >0,再判断绝对值里的数的正负,由绝对值的定义去掉绝对值,再计算即可.【详解】解:∵0,0a ab <<,∴b >0,∴0,0a b b a --<->∴a b a --((a b b a =-----a b b a =-+++=【点睛】本题考查二次根式的化简,正确的对含绝对值号的代数式的化简是解题的关键.分类的标准应按正实数,负实数,零分类考虑.掌握好分类标准,不断加强分类讨论的意识.2.先化简后求值:()()()()222232x y y x y x y x y -----+-,其中x ,y满足30x y +=.【答案】xy -,1-【分析】直接利用整式的混合运算法则以及绝对值、算术平方根的性质得出x ,y 的值,进a a而计算得出答案.【详解】解:原式2222244432x xy y x y xy y =-+-++-xy =-,30x y +=Q ,\3402350x y x y +-=ìí--=î,解得:313x y =ìïí=ïî,\原式1313=-´=-.【点睛】本题主要考查了整式的混合运算,绝对值的非负性,算术平方根,解题的关键是正确掌握相关运算法则.3.先化简,再求值:[(3x +y )(3x ﹣y )﹣2x (y +2x )+(y ﹣2x )2]÷(﹣3x ),其中x 、y满足1y =.【答案】﹣3x +2y ,﹣26【分析】原式中括号利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:原式=(9x 2﹣y 2﹣2xy ﹣4x 2+y 2﹣4xy +4x 2)÷(﹣3x )=(9x 2﹣6xy )÷(﹣3x )=﹣3x +2y ,∵1y =,∴x ﹣8≥0且8﹣x ≥0,解得:x =8,∴11y ==-,∴原式=﹣3×8+2×(﹣1)=﹣24﹣2=﹣26.【点睛】此题考查了整式的混合运算﹣化简求值,以及非负数的性质,熟练掌握相关运算法则是解本题的关键.4.已知多项式A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,先化简3A +2B ;再求当x ,y 为有理数且满足x 2y +2y =﹣+17时,3A +2B 的值.【答案】2277,63x y -【分析】根据多项式的加减运算进行化简,进而根据x ,y 为有理数求得,x y 的值,代入求解即可.【详解】Q A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,\()()222232323223A B x xy y x xy y +=+-++-2222369462x xy y x xy y =+-+-+2277x y =-()227x y =-Q x 2+2y =﹣,x ,y 为有理数,22x y \+==-,4,5y x \=-=±2225169x y \-=-=\原式7963=´=【点睛】本题考查了整式的加减化简求值,实数的性质,求得,x y 的值是解题的关键.5.(1)化简:a 2+(5a 2﹣2a )﹣2(a 2﹣3a );(2)先化简,再求值:14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),其中x =23,y =2018.【答案】(1)244a a +;(2)232x x -+,59【分析】(1)去括号后合并同类项即可;(2)利用乘法分配律化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:(1)a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),2225226a a a a a =+--+ ,244a a =+ ;(2)14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),()()21114282444x x y x y =´-+´+´-++ ,21222x x y x y =-+-++ ,232x x =-+ ,当x =23,y =2018时,原式2232323æö=-+´ç÷èø ,419=-+ ,59= .【点睛】此题主要考查了整式的化简求值和实数运算,正确掌握整式的混合运算法则是解题关键.6.已知数a a【答案】2【分析】直接利用数轴得出a 的取值范围,进而化简得出答案.【详解】解:由数轴得:0.50a -<<,a =121a a a-+++=2.【点睛】本题主要考查了实数的运算与数轴,算术平方根的非负性,化简绝对值等知识点,正确化简各式是解本题的关键.7.实数a 、b 、c 在数轴上的对应点位置如图所示,化简:【答案】3b【详解】解:原式=|-c |+|a -b |+a +b -|b -c |,=c +(-a +b )+a +b -(-b +c ),=c -a +b +a +b +b -c ,=3b .【点睛】此题主要考查了实数的运算,关键是掌握绝对值的性质和二次根式的性质.8.若一个正数的两个平方根分别为1a -,27a +,请先化简再求值:()()222123a a a a -+--+.【答案】25a +,9【分析】根据正数的两个平方根互为相反数可求得a 的值,再对原式去括号合并同类项化简后,代入a 的值求解即可.【详解】解:∵一个正数的两个平方根分别为1a -,27a +,∴(a -1)+(2a +7)=0,解得a =-2.()()222123a a a a -+--+2222223a a a a =-+-++25a =+,当a =-2时,原式()2259=-+=.【点睛】本题主要考查了平方根的性质,整式的加减求值.利用正数的两个平方根互为相反数列等式求值是解题的关键.9.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:(1)请仿照上例化简.①②;(2)请化简【答案】(1);②2)【分析】(1)①根据题意仿照求解即可;②根据题意仿照求解即可;(2)先根据被开方数的非负性判断a 的正负,然后根据题意求解即可.【详解】解:(1)①;②===(2)∵∴10a -³,∴0a <∴==【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握相关知识进行求解.10.数形结合是一种重要的数学方法,如在化简a 时,当a 在数轴上位于原点的右侧时,a a =;当a 在数轴上位于原点时,0a =;当a 在数轴上位于原点的左侧时,a a =-.当a ,b ,c 三个数在数轴上的位置如图所示,试用这种方法解决下列问题,(1)当1a =时,求aa =______,当2b =-时,求bb =______.(2)请根据a ,b ,c 三个数在数轴上的位置,求abca b c ++的值.(3)请根据a ,b ,c 三个数在数轴上的位置,化简:a c c a b b c ++++--.【答案】(1)1;1- ;(2)1-;(3)c -.【分析】(1)当1a =时,点a 在原点右边,由题意可知,此时a a =,代入a a 即可求值;当2b =- 时,点b 在原点左边,由题意可知,此时b b =-,代入bb 即可求值;(2)由图中获取a b c 、、三点的位置信息后,结合题意即可求原式的值;(3)由图获取a b c 、、的正、负信息和三个数绝对值的大小后,就可确定原式中绝对值符号里面式子的值的符号,就可化简原式.【详解】解:(1)当1a =时,111a a ==;当2b =-时,212b b ==--,故答案是:1,-1;(2)由数轴可得:0b < ,0c < ,0a > ,∴abca b c ++=1111a b c a b c--++=--=-;(3)由数轴可知:0b c a <<<且c a b <<,∴000a c a b b c +>+<-<,,,∴a c c a b b c++++--()[()][()]a c c a b b c =++-+-+---a c c ab b c=+---+-c =-.【点睛】本题考查了数轴,解决本题的关键是熟记正数的绝对值是它本身,负数的绝对值是它的相反数.在解第3小问这类题时,需注意以下两点:(1)根据在数轴上表示的数中,左边的总小于右边的,确定好所涉及数的大小关系及每个数的正、负信息(涉及异号两数相加的还要获取它们绝对值的大小关系);(2)根据有理数加、减法法则确定好需化简式子中绝对值符号里的式子的正、负,然后再根据绝对值的代数意义将绝对值符号去掉.考点2:利用平方根与立方根的性质解方程题型方法点拨:解方程时应把平方部分看成一个整体,先根据等式基本性质把方程化为平方部分等什么。
七年级实数复习
例6.已知2a 1的算术平方根是 ,3a b 1的平方根是 4, 3 c是 13 的整数部分,求 2b c 的值. a
2
解: 2a 1 3
2 a 1 32 9 a 5 3a b 1 4 3a b 1 16 b 2
1、对算术平方根、平方根、 立方根、实数的概念有了更深 入的认识。 2、掌握了《实数》这一章的 常见题型,对本章知识有了全 面的掌握。
作业: 1、巩固第六章《实数》 2、复习第七章《平面直角坐标系》
四、综合运用
例5.已知x、y互为倒数,c、d互为相反数, 的绝对值为 , a 3 z z的算术平方根是 ,求: c d) xy 5 4( 的值. a 由题意知 解:
xy 1, c d 0, a 3, z 5 当a 3时,原式 1 5 8 ; 3 3 5 原式 4 0 1 5 2 a 当a 3时,原式 1 . -3 3 5 1 8 2 a 所以原式的值为 或 . 3 3
3 13 4, 且c是 13的整数部分 c 3 当a 5, b 2, c 3时 a 2b c 2 5 2 2 32 0
目标检测
1.填空: ( )设a 19 1,a在两个相邻整数之间, 1 则这两个整数是 (2) 3.14 (3)比较大小: 6
有限小数及无限循环小数
整数
分数
有理数
按 性实 质数 分 类
正整数 0 负整数 正分数 负分数
自然数
无理数
无限不循环小数
一般有三种情况
正无理数 负无理数
(1)
2“
”, “
3
”开不尽的数
新人教版初中数学七年级下册第六章《实数》检测试题(含答案)
人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1.若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平方根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个 B.2个 C.3个 D.4个B.的平方根是±4A.6.69 B.6.7 C.6.70 D.±6.708.一个底面是正方形的水池,容积是11.52m3,池深2m,则水池底边长是( C )A.9.25m B.13.52m C.2.4m D.4.2m9. 比较2, , 的大小,正确的是(C )A. 2<<B. 2<<C.<2<D.<<210.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C) A .0个 B .1个om] C .2个D .3个二、填空题11.3的算术平方根是____3____.12.(1)一个正方体的体积是216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示_______9_____的立方根;13.已知a ,b 为两个连续整数,且a<15<b ,则a +b 的值为 7 . 14.已知一个有理数的平方根和立方根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________. 三、解答题17.求下列各数的平方根和算术平方根:(1)1.44;解:1.44的平方根是± 1.44=±1.2,算术平方根是 1.44=1.2. (2)169289; 解:169289的平方根是±169289=±1317,算术平方根是169289=1317.(3)(-911)2.解:(-911)2的平方根是±(-911)2=±911,算术平方根是(-911)2=911.[]18.已知一个正数x的两个平方根分别是3-5m和m-7,求这个正数x的立方根.由已知得(3-5m)+(m-7)=0,-4m-4=0,解得:m=-1.所以3-5m=8,m-7=-8.所以x=(±8)2=64.所以x的立方根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;(3)0.36×4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12人教版初中数学七年级下册第六章《实数》检测卷一、选择题(每题3分,共30分)1. 下列各数中,没有平方根的是( )A. |-4|B. -(-4)C. (-4)2D. -422. 1的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间3. 下列说法中,错误的是( )A. ±2B. 是无理数C.是有理数 D. 4. 下列说法中,错误的是 ( )A. -4是16的一个平方根B. 17是(-17)2的算术平方根C.164的算术平方根是18D. 0.9的算术平方根是0.03 5. 下列语句写成式子正确的是 ( )A. 4是16的算术平方根,即±4B. 4是(-4)2 4C. ±4是16的平方根,即 4D. ±4是16±46. 如图,数轴上点 N 表示的数可能是 ( )A. 10B. 5C. 3D. 27. 在实数0,π,227( ) A. 1个 B. 2个 C. 3个 D. 4个 8. a ,b ,c 在数轴上的对应点如图所示,则|a -b |+|b +c |-|a +c |的值为 ( )A. 2b +2cB. b +cC. 0D. a +b +c 9. 下列四个结论中,正确的是 ( )A.32<52 B. 54<32C.32<2<2 D. 1<2<5410. 一个自然数的算术平方根是a ,则下一个自然数的平方根是 ( ) A. a 2+1 B. ±(a 2+1) C. a 2+1 D. ±a 2+1二、填空题(每题3分,共24分)11.的算术平方根为 ,(-3)2的平方根是 .12. -338的立方根是 ,的立方根是 . 13. 在-5,- 3,0,π,6中,最大的一个数是 .14. =9,则x = ;若x 2=9,则x = .15. 若a <b 且a ,b 为连续正整数,则a 2+b 2的平方根为 .16. 5.70618.044= .17. =3,|b |=5,且ab <0,则a +b 的算术平方根为 .18. 请你辨别:下图依次是面积为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有 个,边长是无理数的正方形有 个.三、解答题(共66分)19. (8分)计算下列各题.(1) |3-|2;(2)20. (8分)求下列各式中的x的值.(1)(x+2)3+27=0;(2)2(2x+1)2-12=0.21. (9分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求x2-y2人教版七年级数学下册第六章实数复习检测试题一、选择题(每小题3分,共30分)1.下列各数中最大的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术平方根3.下列语句中,正确的是( )A.无理数都是无限小数B.无限小数都是无理数C.带根号的数都是无理数D.不带根号的数都是无理数4.的立方根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多一个2),3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点一一对应;②不含根号的数一定是有理数;③负数没有平方根;④是17的平方根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表示数﹣1,1,2,3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上二、填空题(每小题3分,共24分)1.按键顺序是“,,则计算器上显示的数是.2.一个数的平方根和它的立方根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平方根为a+3和2a-15,则这个数是.5.比较大小:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.6.(8分)设的整数部分和小数部分分别是x,y,试求x,y的值与x﹣1的算术平方根.参考答案与解析一、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A二、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2。
人教版七年级数学下册第六章《 实数》单元同步复习题及答案
第六章《实数》单元同步检测试卷一.选择题(共10小题)1.下列各数3.14,,0.,,2.131 331 333 1…(相邻两个1之间3的个数逐次多1),,,其中无理数的个数为()A.2个B.3个C.4个D.5个2.在如图所示的数轴上表示﹣2的点在()A.点A和点B之间B.点B和点C之间C.点C和点D之间D.点D和点E之间3.若a=,b=﹣|﹣|,c=,则a、b、c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a4.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.15.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.6.已知,则的平方根为()A.1B.C.±1D.7.,,则1720的平方根为()A.13.11B.±13.11C.41.47D.±41.478.下列说法:①=﹣10;②数轴上的点与实数成一一对应关系;③﹣3是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个9.若把﹣写成整数a与正的纯小数x的和,那么整数a的值为()A.﹣3B.﹣4C.﹣5D.﹣610.如图,O为原点,实数a、b、c在数轴上对应的点分别为A、B、C,则下列结论正确的是()A.ac<bc B.c2<ac C.b2<bc D.ab<bc二.填空题(共5小题)11.若一个数x的平方根是m﹣3和m﹣7,那么这个数x是.12.已知2x+1的平方根是±3,则﹣5x﹣7的立方根是.13.若k<<k+1(k是整数),则k=.14.当x取时,代数式2﹣取值最大,并求出这个最大值.15.小亮求的近似值,下面是他的草稿纸上的部分内容:3.52=12.25,3.82=14.44,3.92=15.21,3.852=14.8225,3.872=14.9769,3.882=15.0544,3.8752=15.015625依据以上数据,可以得到的近似值(精确到0.01)是.三.解答题(共6小题)16.把下列各数填在相应的大括号中3.1415926,8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,2.5353353335…分数:{…}非负整数:{…}无理数:{…}.17.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求7a﹣2b﹣2c的平方根.18.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.19.阅读理解∵<<,即2<<3.∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.20.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.21.阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:<<,即2<<3,∴的整数部分为2,小数部分为(﹣2)请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案一.选择题(共10小题)1.B.2.C.3.D.4.B.5.C.6.C.7.D.8.C.9.C.10.A.二.填空题(共5小题)11.412.﹣3.13.9.14.5,2.15.3.87.三.解答题(共6小题)16.解:分数:{3.1415926,,0.275,﹣,﹣0.25};非负整数:{8,9,0};无理数:{π,2.5353353335…},故答案为:3.1415926,,0.275,﹣,﹣0.25;8,9,0,;π,2.5353353335…,17.解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,∴a=5,∵3a+b﹣9的立方根是2,∴3a+b﹣9=8,∴b=2,∵c是的整数部分,,∴c=3,∴7a﹣2b﹣2c=35﹣4﹣6=25,∴7a﹣2b﹣2c的平方根是±5.18.解:(1)由题意得:,解得y=3,∴x=4,∴(x﹣y)2=1,∴(x﹣y)2的平方根是±1.(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.19.解:∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.20.解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.21.解:(1)∵,∴的整数部分是7,小数部分是﹣7.故答案为:7;﹣7.(2)∵,∴,∵,∴b=2,∴|a﹣b|+===5.(3)∵,∴11<9+<12,∵9+=x+y,其中x是整数,且0<y<1,∴x=11,y==,∴x﹣y==,∴x﹣y的相反数是:.。
2021学年人教版七年级数学下册《第6章,实数》期末综合复习知识点分类训练(附答案)
2021学年人教版七年级数学下册《第6章,实数》期末综合复习知识点分类训练(附答案)2021学年人教版七年级数学下册《第6章实数》期末综合复习知识点分类训练(附答案)一.平方根1.若2a﹣1与﹣a+2都是正数x的平方根,求a的值和这个正数的值.2.已知|a﹣27|与2(b﹣36)2互为相反数,求的平方根.二.算术平方根3.正数n扩大到原来的100倍,则它的算术平方根()A.扩大到原来的100倍B.扩大到原来的10倍C.比原来增加了100倍D.比原来增加了10倍4.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0 B.4 C.6 D.8 5.给出表格:a 0.0001 0.01 1 100 __ 0.01 0.1 1 10 100 利用表格中的规律计算:已知,则a+b=.(用含k的代数式表示)6.我们规定用(a,b)表示一对数对.给出如下定义:记m=,n =其中(a>0,b>0),将(m,n)与(n,m)称为数对(a,b)的一对“对称数对”.例如:(4,1)的一对“对称数对”为(,1)和(1,);(1)数对(9,3)的一对“对称数对”是;(2)若数对(3,y)的一对“对称数对”相同,则y的值为;(3)若数对(x,2)的一个“对称数对”是(,1),则x的值为;(4)若数对(a,b)的一个“对称数对”是(,3),求ab的值.7.观察与猜想:===2 ===3 (1)与分别等于什么?并通过计算验证你的猜想(2)计算(n为正整数)等于什么?三.非负数的性质:算术平方根8.已知实数a,b为△ABC的两边,且满足﹣4b+4=0,第三边c=,则第三边c上的高的值是()A.B.C.D.9.已知:非负数a、b满足.求的值.四.立方根10.要使式子有意义,则m的取值范围是()A.m≥﹣2,且m≠2 B.m≠2 C.m≥﹣2 D.m≥2 11.已知≈1.2639,≈2.7629,则≈.五.计算器—数的开方12.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.100 C.0.01 D.0.1 13.用计算器探索:(1)=.(2)=.(3)=,。
专题03 《实数》选择、填空重点题型分类-七年级数学下册拔尖题精选精练(原卷版)
专题03 《实数》选择、填空重点题型分类专题简介:本份资料专攻《实数》中“实数的分类”、“求方根”、“平方根有意义题型”、“三姐妹型与易混型”、“估算数值、比较大小”选择、填空重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。
考点1:实数的分类方法点拨:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.180.2、﹣π、2273270.101001中有理数的个数是( ) A .1 B .2 C .3 D .42.下列各数中,3.14158127,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )A .0个B .1个C .2个D .3个3.下列说法中正确的是( )A .小数都是有理数B .有理数是实数C .无限小数都是无理数D .实数是无理数4.将下列各数填入相应的横线上:232510.25,0.3,8, 3.030030003,0,(5),,,125311π---整数:{ …}有理数: { …}无理数: { …} 负实数: { …}.5.把下列各数填入相应的大括号中:332280.3,1,49,0,8,3.14,,,0.10100100012727π--27,,3643|,11,1.212121--自然数集合{ …};负数集合{ …};整数集合{ …};有理数集合{ …};实数集合{ …};无理数集合{ …}.考点2:求方根方法点拨:1.平方根:一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;2.立方根:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;1.10的算术平方根是( )A .10B 10C .10-D .102.3的算术平方根是( )A .±3B 3C .-3D .33.若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数4.下列说法:①-27的立方根是3;②36的算数平方根是6±;③18的立方根是12;9平方根是3±.其中正确说法的个数是( )A .1B .2C .3D .45.已知x 2=36,那么x =___________;如果(-a )2=(7)2,那么a =_____________6.已知x ,y 34x +y -3)2=0,则xy 的立方根是__________.725 _____;﹣64的立方根是 _____.8.如图,正方形ABCD 是由四个长都为a ,宽都为b (a >b )的小长方形拼接围成的.已知每个小长方形的周长为18,面积为454,我们可以通过计算正方形ABCD 面积的方法求出代数式a ﹣b 的值,则这个值为 _____.考点3:平方根有意义题型a≥).方法点拨:任何非负数的算术平方根是非负数,即0a≥(01.下列说法中错误的是()A.正实数都有两个平方根B.任何实数都有立方根C.负实数只有立方数根,没有平方根D.只有正实数才有算术平方根2.如果m有算术平方根,那么m一定是()A.正数B.0C.非负数D.非正数3.如果2a a=-成立,那么a为()A.正数B.负数C.非正数D.非负数4.如果代数式有算术平方根,那么x应满足()A.x为任意实数B.C.D.53x-x的取值范围是______.6.若实数x,y满足等式:222=--,则xy=_________y x x7.若实数x,y满足|x﹣3|1y-0,则(x+y)2的平方根为_______.81=___.a-(2﹣b)2=0a b考点4:三姐妹题型与易混题型方法点拨:(1)任何一个实数a的绝对值是非负数,即|a|≥0;(2)任何一个实数a的平方是非负数,即2a≥0;a≥).(30a≥(0非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.14327-81)A.4 B.﹣4 C.10 D.﹣102.已知x为实数,且33x-﹣321x+=0,则x2+x﹣3的算术平方根为()A.3 B.2 C.3和﹣3 D.2和﹣23.若34x+=,则33(10)x-的值为____________.4.若a3=8,b=2,则a+b=___.5.已知2a﹣1的平方根是±3,3a+b+10的立方根是3,求a+b的算术平方根___.6.已知,a、b互为倒数,c、d互为相反数,1-是e的平方根,则3ab c d e-+++=________.7.如果一个正数a的两个平方根是22x-和63x-,则173a+的立方根为_______.8.若一个正数的两个不同的平方根分别是3x﹣1和4﹣4x,则这个数的立方根是___.9.己知甲数是719的算术平方根,乙数是338的立方根,则甲、乙两个数的积是__.10.已知:2a+1的算术平方根是3,3a﹣b﹣1的立方根是2,320+b a=_____.考点5:估算数值、比较大小题型方法点拨:确定无理数的范围、比较无理数的大小,利用夹逼法解决问题是一种非常重要的解题方法。
北京二中七年级数学下册第六章【实数】经典复习题(含答案)
一、选择题1.下列各式计算正确的是()A.31-=-1 B.38= ±2 C.4= ±2 D.±9=3 2.在实数3-,-3.14,0,π,364中,无理数有()A.1个B.2个C.3个D.4个3.下列说法中错误的有()①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±.A.0个B.1个C.2个D.3个4.下列实数中,是无理数的为()A.3.14 B.13C.5D.95.在实数﹣34,0,9,215中,是无理数的是()A.﹣34B.0 C.9D.21 56.在下列各数中是无理数的有()0.111-,4,5,3π,3.1415926,2.010101(相邻两个0之间有1个1),76.01020304050607,32.A.3个B.4个C.5个D.6个7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A21n-B22n-C23n-D24n-8.30)A.5和6 B.6和7 C.7和8 D.8和99.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B .7C .11D .无法确定10.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±911.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 42=±D .()515-=-二、填空题12.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.13.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.14.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值. 15.“*”是规定的一种运算法则:a*b=a 2-3b . (1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;16.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …}, 正有理数集合{ …}, 无理数集合{ …}. 17.(1)计算:|3|-.(2)求下列各式中x 的值: ③22536x =; ④3(1)64x --=.18.实数2-,227,π-中属于无理数的是________.19.已知5的整数部分为a ,5-b ,则2ab b +=_________. 20.观察下列二次根式的规律求值:1S =2S =3S =… 则20202020S =_______.21_____;16的平方根为_____;()34-的立方根是_____.三、解答题22.计算:2(3)2--23.求下列各式中x 的值.(1)4(x ﹣3)2=9; (2)(x +10)3+125=0.24.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a + 25.计算. (1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭;(2)()328--一、选择题1.有下列四种说法:①数轴上有无数多个表示无理数的点; ②带根号的数不一定是无理数; ③平方根等于它本身的数为0和1; ④没有最大的正整数,但有最小的正整数; 其中正确的个数是( ) A .1B .2C .3D .42.若227(7)0x y z -+++-=,则x y z -+的平方根为( ) A .±2B .4C .2D .±43.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .64.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2D .8的平方根是45.下列实数中,是无理数的为( ) A .3.14B .13 C .5 D .96.下列实数:32233.14640.010*******-;;;; (相邻两个1之依次多一个0);52-,其中无理数有( ) A .2个B .3个C .4个D .5个7.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 138.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .49.设,A B 均为实数,且A B ==,A B 的大小关系是( )A .AB >B .A B =C .A B <D .A B ≥10.在0,3π,227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.13.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9. 问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, . (2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.14.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.15.计算:(1)225--(2)116.0.5325===的值是______________________. 17.计算:(1)﹣12+327-﹣(﹣2)×9 (2)3(3+1)+|3﹣2|18.定义运算“@”的运算法则为:x@y=xy 4+,则2@6 =____.19.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.20.-64的立方根是____,9的平方根是_____,16的算术平方根是_____81_____.21.设a ,b 是两个连续的整数,8若8a b <<,是,则a b =____.三、解答题22.(1)求x 的值:2490x -=; (2()2325227-23.计算: (1)3243333225⎛- ⎝; (2381|136463---24.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-380,134-25.把下列各数填在相应的横线上 1.4,2020,2-,32-,0.31,038-π-,1.3030030003…(每相邻两个3之间0的个数依次加1) (1)整数:______ (2)分数:______ (3)无理数:______一、选择题1.下列各数中,无理数有( )3.14125,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个2.下列各数中比( ) A .2-B .1-C .12-D .03.下列实数中,是无理数的为( )A .3.14B .13 C D 4.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( )A .12- B .12 C .2- D .25.已知实数a 的一个平方根是2-,则此实数的算术平方根是( )A .2±B .2-C .2D .46.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★ab b;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .① B .②C .①②D .①②③7.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个B .4个C .3个D .2个8.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .49.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A .21n -B .22n -C .23n -D .24n -10.估计30的值在哪两个整数之间( ) A .5和6B .6和7C .7和8D .8和911.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3-二、填空题12.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324) (1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.13.已知一个正数m 的平方根为2n +1和4﹣3n . (1)求m 的值;(2)|a ﹣3|b (c ﹣n )2=0,a +b +c 的立方根是多少? 14.求满足条件的x 值: (1)()23112x -= (2)235x -=15.27-的立方根是___________81___________;| 3.14|π-的绝对值是___________.16.已知a 、b 2|3|0a b -++=,则(a +b )2021的值为________. 17.已知290x ,310y +=,求x y +的值.18.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。
精品 七年级数学下册 实数综合复习练习题
精品七年级数学下册实数综合复习练习题1.若 $x^2=(-5)^2,y^3=(-5)^3$,则 $x-y$ 的值为()。
A。
0 B。
-10 C。
0 或 10 D。
10 或 -102.在实数范围内,下列判断正确的是()。
A。
若 $a=b$,则 $a=b$ B。
$a^2=b^2$,则 $a=b$C。
若 $a=(b)^2$,则 $a=b$ D。
若 $3a=3b$,则 $a=b$3.若 $a^2=-a$,则实数 $a$ 在数轴上的对应点一定在()。
A。
原点左侧 B。
原点右侧 C。
原点或原点左侧 D。
原点或原点右侧4.下列说法中正确的是()。
A。
实数 $-a^2$ 是负数 B。
$a^2=a$ C。
$-a$ 一定是正数D。
实数 $-a$ 的绝对值是 $a$5.有下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号;④如果一个数的立方根是这个数本身,那么这个数必是 $1$ 和$-1$。
其中错误的是()。
A。
①②③ B。
①②④ C。
②③④ D。
①③④6.下列判断正确的是()。
A。
$<3<2$ B。
$2<2+3<3$ C。
$1<5-3<2$ D。
$4<3\times5<5$7.若 $a\neq 0$,则式子 $\dfrac{a^2-3a}{a^4}$ 的值是()。
A。
0 B。
2 C。
0 或 -2 D。
0 或 28.阅读下面语句:① $-1$ 的 $3k$ 次方($k$ 是整数)的立方根是 $-1$。
②如果一个数的立方根等于它本身,那么这个数或者是$1$,或者是 $-1$。
③如果 $a\neq 0$,那么 $a$ 的立方根的符号与 $a$ 的符号相同。
④一个正数的算术平方根以及它的立方根都小于原来的数。
⑤两个互为相反数的数开立方所得的结果仍然互为相反数。
在上面语句中,正确的有()。
A。
1句 B。
2句 C。
3句 D。
4句9.$2$ 的平方根是 $\sqrt{2}$;$125$ 的立方根是 $5$;$(\pm 4)^2$ 的算术平方根是 $\pm 4$;$36$ 的平方根是 $6$;$3-27=-24$;$327$ 的平方根是 $\sqrt{327}$;$-64$ 的立方根是 $-4$;$16$ 的平方根是 $4$;如果 $a$ 的平方根是 $\pm 3$,则 $a=\pm 9$。
苏科版数学七年级下册期末复习试卷(五)
七年级期末复习试卷(五)苏科版一、选择题:1.如图,A 、B 两点在数轴上表示的数分别为a 、b ,下列各式成立的是 ( )A .ab>0B .a +b<0C .(b -1)(a +1)>0D .(b -1)(a -1)>02题 4题 2、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3等于 ( ) A .30° B .50° C .20° D .40°3、若不等式组0122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是………………………………( )A. 1a >-;B. 1a ≥-;C. 1a ≤ ;D. 1a < ;4、小明同学把一个含有450角的直角三角板在如图所示的两条平行线m n ,上,测得0120α∠=,则β∠的度数是( )A .450B .550C .650D .7505、如图,直线l 、n 分别截∠A 的两边,且l ∥n .根据图中标示的角,判断下 列各角的度数关系,正确的是 A .∠2+∠5 >180° B .∠2+∠3< 180° C .∠1+∠6> 180°D .∠3+∠4<180°6、一个三角形的3边长分别是xcm 、(x +2)cm 、(x +4)cm ,它的周长不超过20cm ,则x 的取值范围是( ) A .2<x<143 B .2<x ≤143C .2<x<4D .2<x ≤47、如图,直线l//m//n ,等边三角形ABC 的顶点B 、C 分别在直线n 、m 上,边BC 与直线n所夹的角为25°,则∠α的度数为 ( ) A .25° B .45° C .35° D .30°1节链条2节链条50节链条8、如图,∠BAC=40°,DE∥AB,交AC于点F,∠AFE的平分线FG交AB于点H,则()A.∠AFG=70°B.∠AFG>∠AGFC.∠FHB=100°D.∠CFH =2∠EFG9、若关于x、y的二元一次方程组25245x y kx y k+=+⎧⎨-=-⎩的解满足不等式x<0,y>0,则k的取值范围是()A.-7<k<113B.-7<k<13C.-7<k<813D.-3<k<81310、甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱()A.128元B.130元C.150 元D.160元11、如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm,如果某种型号自行车的链条(没有安装前)共有60节链条组成,那么链条的总长度是()二、填空题:1.如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.2.如图所示,∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADE=∠EDF,∠CED=∠FEG.则∠F=.3.关于x的方程3x+2m=x﹣5的解为正数,则m的取值范围是.4.若1(2)31aa x y--+=是二元一次方程,则a=.5.不等式(a-3)x>1的解集是x<13a-,则a的取值范围_______.6、如图所示,两人沿着边长为90 m的正方形,按A→B→C→D→A……的方向行走.甲从熙以65 m/min的速度、乙从B点以72 m/min的速度行走,当乙第一次追上甲时,将在正方形的边上.7、“直角三角形的两个锐角互余”的逆命题是.8、已知不等式组1xx n<⎧⎨>⎩有解,则n的取值范围是.9、某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,有_______种租车方案.10.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=40,则∠ABF= .10题11题11.如图,△ABC的两条中线AM、BN相交于点O,已知△ABC的面积为12,△BOM的面积为2,则四边形MCNO的面积为.12.命题“线段的中点到这条线段两端的距离相等”的逆命题是_______________________________________________.13、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.14、如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20︒,∠ACP=50︒,则∠A+∠P= .14题15题15、如图,在△ABC中,AB=AC,BM、CM分别是∠ABC、∠ACB的平分线,DE经过点M,且DE//BC,则图有个等腰三角形.16、如图,在△ABC中E是BC上的一点,EC=2EB,点D是AC的中点,AE、BD交于点F,AF=3FE,若△ABC的面积为18,给出下列命题:①△ABE的面积为6;②△ABF的面积和四边形DFEC的面积相等;③点F是BD的中点;④四边形DFEC的面积为215.其中,正确的结论有.(把你认为正确的结论的序号都填上)三、解答题:1.(1)已知10a=5,10b=6,求102a﹣3b的值.(2)已知x=7,求1﹣x﹣x(1﹣x)﹣x(1﹣x)2﹣…﹣x(1﹣x)2009的值.2.已知关于x、y的方程组316215x aybx y-=⎧⎨+=⎩的解是76xy=⎧⎨=⎩(1)求(a+10b)2-(a-10b)2的值;(2)若△ABC中,∠A、∠B的对边长即为6a、7b的值,且这个三角形的周长大于12且小于18,求∠C对边AB的长度范围.3.已知关于x、y的方程组24221x y mx y m+=⎧⎨+=+⎩(实数m是常数).(1)若x+y=1,求实数m的值;(2)若-1≤x-y≤5,求m的取值范围;(3)在(2)的条件下,化简:223m m ++-.4.若关于x 、y 的二元一次方程组3522718x y x y m +=⎧⎨+=-⎩的解x 、y 互为相反数,求m 的值.5.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民 “一户一表”生活用水阶梯式计费价格表的一部分:已知小王家2014年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元. (1)求a 、b 的值;(2)随着夏天的到来用水量将增加,为了节约开支,小王计划把6月份水费控制在家庭月 收入的2%,若小王家月收人为9200元,则小王家6月份最多能用水多少吨?6.为了庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:购买服装的套数/套1~45 46~90 91及以上每套服装的价格/元60 50 40(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少元?(2)甲、乙两所学校各有多少名学生准备参加演出?(3)如果甲校有10名学生抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.7.如图,AB∥CD,∠1=∠E,∠2=∠F,AE交CF于点O.求证:AE⊥CF.8.如图,E为DF上的一点,B为AC上的一点,∠1=∠2,∠C=∠D.求证:∠A=∠F.9.如图,在四边形ABCD 中,∠B =∠D =90°,AE 、CF 分别平分∠BAD 和∠BCD .求证:AE ∥CF .10.如图,在六边形ABCDEF 中,AF ∠CD ,∠A=140°,∠C=165°. (1)求∠B 的度数;(2)当∠D= °时,AB∠DE ?为什么?11.如图,有足够多的边长为a 的小正方形(A 类)、长为a 宽为b 的长方形(B 类)以及边长为b的大正方形(C 类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a +2b )(a +b )=a 2+3ab +2b 2(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(2a +b )(a +2b ),在下面虚框中画出图形....,并根据图形回答(2a +b )(a +2b )=_____________ . (2)若取其中的若干个(三种图形都要取到)拼成一个 长方形,使其面积为a 2+5ab +6b 2.①你画的图中需要C 类卡片_______张.②可将多项式a 2+5ab +6b 2分解因式为A 类B 类C 类a图①图③_____ .(3)如图③,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下正确的关系式_____________________(填写选项).A.xy = m2-n24B.x+y=m C.x2-y2=m·n D.x2+y2 =m2+n2212.Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①所示,且∠α=50°,则∠1+∠2=_______;(2)若点P在斜边AB上运动,如图②所示,则∠α、∠1、∠2之间的关系为_______;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请直接写出∠α、∠1、∠2之间的关系:_______;(4)若点P运动到△ABC形外(只需研究图④情形),则∠α、∠1、∠2之间有何关系?并说明理由.图②13.Rt ΔA BC 中,∠C =90°,点D 、E 分别是边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α. (1)若点P 在线段AB 上, 如图(1)所示,且∠α=50°,则 ∠1+∠2= °;(2)若点P 在斜边AB 上运动,如图(2)所示, 则∠α、∠1、∠2之间的关系为: ;(3)若点P 在斜边BA 的延长线上运动(CE <CD ),请直接写出∠α、∠1、∠2之间的关系: _________________________________________________________________________________;(4)若点P 运动到ΔABC 形外(只需下图情形),则∠α、∠1、∠2之间有何关系?猜想并说明理由.ABCE ..D备用图ABCE ..DAB CD P1 2α E14.某商店经营甲、乙两种商品,其进价和售价如下表:已知该商店购进了甲、乙两种商品共160件.(1)若商店在销售完这批商品后要获利1000元,则应分别购进甲、乙两种商品各多少件? (2)若商店的投入资金少于4300元,且要在售完这批商品后获利不少于1250元,则共有几种购货的方案? 其中,哪种购货方案获得的利润最大?15.如图,在△ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以2cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以72cm/s的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF+S△AC E<S△ABC.。
精选人教版初中数学七年级下册第六章《实数》单元测试及答案
精选⼈教版初中数学七年级下册第六章《实数》单元测试及答案⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<> 16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36. 2 ⼈教版初中数学七年级下册第六章《实数》检测卷含答案⼀、选择题(每⼩题3分,共30分) 1. 916的平⽅根是( )A. C. 34 D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多⼀个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个3. 若x 2=16,则5-x 的算术平⽅根是( )A. ± 1B. ±4C. 1或9D. 1或34. 下列说法中,不正确的是( )A. 0.027的⽴⽅根是0.3B. -8的⽴⽅根是-2C. 0的⽴⽅根是0D. 125的⽴⽅根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间6. ⼀个⾃然数的算术平⽅根是a ,则下⼀个⾃然数的算术平⽅根是( )A. B. +1C. a+1D.7. 如图,数轴上A,B和5.1,则A,B两点之间表⽰整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A. B. ≈7.937C. D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10⼆、填空题(每⼩题3分,共24分)11. ⽐较⼤⼩:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平⽅根是.14. ⼩成编写了⼀个程序:输⼊x→x2→⽴⽅根→倒数→算术平⽅根→12,则x为.15. 若数m,n满⾜(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平⽅根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义⼀种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:1-3;(1)3+1+3+||(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平⽅根是±3,3a+b-1的平⽅根是±4,求a+2b的平⽅根.22. (9分)已知某正数的两个平⽅根分别是a +3和2a -15,b 的⽴⽅根是-2,求3a +b 的算术平⽅根.23.⼈教版七年级数学下册第六章实数单元综合能⼒提升测试卷⼀、选择题(每⼩题3分,共30分)1.下列选项中正确的是()A .27的⽴⽅根是±3B .16 的平⽅根是±4C .9的算术平⽅根是3D .⽴⽅根等于平⽅根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是⽆理数的是() A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平⽅根是() A . B .- C . D .± 4.下列四个数中的负数是()A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为()A.5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.⼀个⾃然数a 的算术平⽅根为x ,则a+1的⽴⽅根是()A B C D8.下列结论中正确的个数为() 72233722331512512515152)1(-662)2(-1622(1)零是绝对值最⼩的实数;(2)数轴上所有的点都表⽰实数;(3)⽆理数就是带根号的数;(4)-的⽴⽅根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是()A.81 B .27C .9 D.310.若有理数a 和b 在数轴上所表⽰的点分别在原点的右边和左边,则-︱a -b ︱等于()A .aB .-aC .2b +aD .2b -a⼆、填空题(每⼩题3分,共30分)11.在下列各数中⽆理数有个。
7-5实数单元复习-学生-春季班
学科教师辅导讲义学员学校:年级:初一课时数:2 学员姓名:辅导科目:数学学科教师:课题实数全章复习授课时间:备课时间:教学目标1、理解实数的分类,了解无理数的概念2、会求无理数的绝对值、相反数,会对实数进行大小比较.3、理解平方根、算术平方根和立方根等概念会求一个数的平方根和立方根4、掌握实数间的运算法则,会计算简单的实数运算。
重点及难点1、理解平方根、算术平方根和立方根等概念会求一个数的平方根和立方根2、掌握实数间的运算法则,会计算简单的实数运算。
教学内容知识精讲一、主要知识点:注意:(1)实数还可按正数,零,负数分类.(2)整数可分为奇数,偶数,零是偶数,偶数一般用2n (n 为整数)表示;奇数一般用2n -1或2n +1(n 为整数)表示.(3)正数和零常称为非负数.1.1.2平方根、算术平方根:如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根),即如果a x =2,那么x 就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.正数a 的平方根,记作:a ±.正数a 的正的平方根叫做a 的算术平方根.记作:a .正数和零的算术平方根都只有一个.零的算术平方根是零.⎩⎨⎧<-≥==.,)0()0(2a a a a a a注意:a 的“双重非负性” :⎩⎨⎧≥≥.,00a a1.1.3立方根:如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或叫做a 的三次方根),即如果a x =3,那么x 就叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:33a a -=-,这说明三次根号内的负号可以移到根号外面.例题精讲(一)、有理数无理数的判别:1. 在-1.732,2,π, 3.41 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( ).A.5B.2C.3D.4(二)、算术平方根、平方根、立方根的概念:1. 若1-m 与3m+1是同一个数的平方根,则这个数可能是2.一个正数x 的平方根为2a-3和5-a ,则x=.巩固练习1、36的平方根是 ;16的算术平方根是 ;2、8的立方根是 ;327-= ;3、37-的相反数是 ;绝对值等于3的数是4、23的倒数的平方是 ,2的立方根的倒数的立方是 。
人教版七年级下册 实数 章末复习分类训练(含详解)
第6章实数章末复习精选分类训练基础篇A1. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个2.如图,在数轴上标注了四段范围,则表示的点落在()A.段①B.段②C.段③D.段④3.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20B.x20=2C.x±20=20D.x3=±204.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b5.下列选项中正确的是()A.27的立方根是±3B.的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是16.下列结论正确的是()A.B.C .D .7.有下列说法①无理数一定是无限不循环小数 ②算术平方根最小的数是零 ③﹣6是(﹣6)2的一个算术平方根 ④﹣=其中正确的是( ) A .①②③B .②③④C .①②④D .①③④8.在4-,3.14 ,π,10,••15.1 ,72中无理数的个数是 ( )A .2个B .3个C .4个D .5个9.比较三个数﹣3,﹣π,﹣的大小,下列结论正确的是( )A .﹣π>﹣3>﹣B .﹣>﹣π>﹣3C .﹣>﹣3>﹣π D .﹣3>﹣π>﹣10.的算术平方根是() A .3±B.3-C.3D .311.设的整数部分为a ,小整数部分为,则的值为( ). A . B C . D . 12.计算:(1)+×﹣÷ (2)3+|﹣3|﹣(﹣3)2﹣(﹣1)94b 1a b--11-13.计算:(2)2395--+(3)322769----)(;(43-B1.下列实数中,是无理数的为( )A .0B .-13CD .3.142.下列计算正确的是( )A3 B .236= C .2015(1)1-=- D .|﹣2|=﹣2 3.4的平方根是( )AB.2C .±2D .4.在下列各数:3.1415926;49100;0.2;;;13111;;中,无理数的个数( )A .2B .3C .4D .55.化简︱3-π︱-π得( )A .3B .-3C .2π-3D .3-2π61的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间7.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的解C.a是8的算术平方根D.a满足不等式组3040 aa--⎧⎨⎩><8.的立方根是()A.-1 B .0 C.1 D.±19.如图所示,数轴上表示1A、点B.若点A是BC的中点,则点C所表示的数为()A1B.1C2D.2第9题图10.若a=b2﹣3,且a的算术平方根为1,则b的值是.11.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.12.已知实数m满足+=,则m=.13.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.32)1(-14.有一个数值转换器,原理如下:当输入的x =16时,输出的y 等于15.已知,则c ·(a +b )= ____________.16.如果013-=++b a ,则____________17.若一个正数的平方根是2a +1和-a -4,则这个正数是 。
七年级数学下册第六章【实数】复习题(含答案)
一、选择题1.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( ) A .1B .2C .3D .42.在实数﹣34,0,9,215中,是无理数的是( ) A .﹣34B .0C .9D .2153.下列各数中无理数共有( ) ①–0.21211211121111,②3π,③227,④8,⑤39.A .1个B .2个C .3个D .4个4.下列说法中,正确的是 ( ) A .64的平方根是8 B .16的平方根是4和-4 C .()23-没有平方根D .4的平方根是2和-25.下列说法正确的是( ) A .2的平方根是2 B .(﹣4)2的算术平方根是4 C .近似数35万精确到个位 D .无理数21的整数部分是56.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+7.已知实数a 的一个平方根是2-,则此实数的算术平方根是( ) A .2±B .2-C .2D .48.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 139.下列计算正确的是( ) A 11-=-B 2(3)3-=-C 42=±D 31182-=-10.和数轴上的点一一对应的数是( ) A .自然数B .有理数C .无理数D .实数11.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 42=±D .()515-=-二、填空题12.计算: (13168-. (2)()23540.255(4)8⨯--⨯⨯-.13.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-; (3)23(2)|21|27-+;(4)311()()(2)424-⨯-÷-.14.求满足条件的x 值:(1)()23112x -= (2)235x -=15.解方程:(1)24(1)90--=x (2)31(1)7x +-=-16.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.17.把下列各数填在相应的集合里: 4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …} 负有理数集合{ …} 非负整数集合{ …} 无理数集合{ …}.18.27-的立方根是___________;81的平方根是___________;| 3.14|π-的绝对值是___________. 19.求下列各式中的x : (1)2940x -=;(2)3(1)8x -=20.已知21a -的平方根是17±,31a b +-的算术平方根是6,求4a b +的平方根. 21.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.三、解答题22.已知31a +的算数平方根是4,421c b +-的立方根是3,c 1322a b c +-的平方根.23.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值; (2)如果x y ,都是同一个数的平方根,求这个数.24.计算:()23143282--⨯--() 25.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.一、选择题1.16的算术平方根是( ) A .2 B .4C .2±D .-42.-18的平方的立方根是( ) A .4 B .14C .18D .1643.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .64.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S581 ) A .3B .﹣3C .±3D .66.下列选项中,属于无理数的是( ) A .πB .227-C 4D .0764 ) A .8B .8-C .22D .22±8.在 -1.414216π,3 3.212212221…,227,3.14这些数中,无理数的个数为( ) A .2B .3C .4D .59.下列说法正确的有( ) (1)带根号的数都是无理数; (2)立方根等于本身的数是0和1; (3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数. A .1个B .2个C .3个D .4个10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.计算下列各题(1)﹣2;(2)﹣(结果保留2位有效数字). 13.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”. (1)试举一个例子来判断上述结论的猜测是否成立?(21-的值. 14.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.15.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.17.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)18.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.19.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +求23c d -的平方根.20.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.21.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎣=8→82⎡=⎣→2⎤⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-380,134-23.求x 的值:(1)2(3)40x +-= (2)33(21)240x ++=24.求下列各式中x 的值 (1)21(1)64x +-=;(2)3(1)125x -=.25.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值; (2)求3a b c -+的平方根.一、选择题1.27(7)0y z ++-=,则x y z -+的平方根为( ) A .±2B .4C .2D .±42.下列命题是真命题的是( ) A .两个无理数的和仍是无理数 B .有理数与数轴上的点一一对应 C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等 3.下列实数中,是无理数的为( )A .3.14B .13C D 4.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( ) A .135B .220C .345D .4075.下列说法中,正确的是( ) A .正数的算术平方根一定是正数 B .如果a 表示一个实数,那么-a 一定是负数 C .和数轴上的点一一对应的数是有理数 D .1的平方根是16.1的值( ) A .在7和8之间 B .在6和7之间 C .在5和6之间D .在4和5之间7.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★ab b;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .① B .②C .①②D .①②③8.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个B .4个C .3个D .2个9.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .10.设,A B 均为实数,且A B ==,A B 的大小关系是( )A .AB >B .A B =C .A B <D .A B ≥11.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个二、填空题12.解方程:(1)24(1)90--=x (2)31(1)7x +-=-13.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.14.定义新运算:对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:252(25)12(3)1615⊕=⨯-+=⨯-+=-+=-,则(2)3-⊕=________.15.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.16.<x 的所有整数x 的和是_____.17.计算:(1)(1)|2|3-⨯-+ (2)2111(3)2⎛⎫-+--- ⎪⎝⎭18. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________; (22的小数部分是a,7-b ,那么a b +=__________;(3x的小数部分为y,求1(x y --的平方根. 19.定义一种新运算“”规则如下:对于两个有理数a ,b ,ab ab b =-,若()()521x -=-,则x =______20.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______.21.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______.三、解答题22.计算:(1)﹣12﹣(﹣2)(21)+2| 23.1 24.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324) (1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.25.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.。
2020—2021学年人教版七年级下册数学第5-9章综合复习训练卷 含答案
2021年人教版七年级下册数学第5-9章综合复习训练卷一.选择题1.下列命题中的真命题是()A.在同一平面内,a、b、c是直线,如果a∥b,b⊥c,则a∥cB.在同一平面内,a、b、c是直线,如果a⊥b,b⊥c,则a⊥cC.在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥cD.在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a⊥c2.如图,矩形纸片ABCD.沿着BE折叠,使C、D两点分别落在C1、D1处,若∠ABC1=45°,则∠ABE的度数为()A.21°B.21.5°C.22°D.22.5°3.将一个矩形纸片折叠成如图所示的图形,若∠ABC=25°,则∠ACD的度数为()A.125°B.130°C.135°D.150°4.若有+=0,则x和y的关系是()A.x=y=0B.x﹣y=0C.xy=1D.x+y=05.下列整数中,与9﹣最接近的是()A.4B.5C.6D.76.下列说法:①±3都是27的立方根;②的算术平方根是±;③﹣=2;④的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个7.在平面直角坐标系中,平行于坐标轴的线段PQ=5,若点P坐标是(﹣2,1),则点Q不在第()象限.A.一B.二C.三D.四8.如图,已知点A1(1,1),将点A1向上平移1个单位长度,再向右平移2个单位长度得到点A2;将点A2向上平移2个单位长度,再向右平移4个单位长度得到点A3;将点A3向上平移4个单位长度,再向右平移8个单位长度得到点A4,…按这个规律平移下去得到点A n(n为正整数),则点A n的坐标是()A.(2n,2n﹣1)B.(2n﹣1,2n)C.(2n﹣1,2n+1)D.(2n﹣1,2n﹣1)9.已知点P的坐标为(2﹣a,3a+6),且P到两坐标轴的距离相等,P点的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(6,﹣6)或(3,3)10.若(a+b)2011=﹣1,a﹣b=1,则a2011+b2011的值是()A.2B.1C.0D.﹣111.某运输队接到给武汉运输物资的任务,该队有A型卡车和B型卡车,A型卡车每次可运输6t物资,每天可来回6次,B型卡车每次可运输10t物资,每天可来回4次,若每天派出20辆卡车,刚好运输860t物资,设该运输队每天派出A型卡车x辆,B型卡车y 辆,则所列方程组正确的是()A.B.C.D.12.二元一次方程2x+5y=25的正整数解个数是()A.1个B.2个C.3个D.4个13.下列变形中不正确的是()A.由a>b,得b<aB.若a>b,则ac2>bc2(c为有理数)C.不等式x≤9的解一定是不等式x<10的解D.由﹣x<y得x>﹣2y14.若方程组的解满足x+y>1,则k的取值范围是()A.k>2B.k<2C.k>0D.k<015.某闹市区新建一个小吃城,设计一个进口和一个出口,内设n个摊位,预估进口和出口的客流量都是每分钟10人,每人消费25元,摊位的毛利润为40%,若平均每个摊位一天(按10个小时计)的毛利润不低于1000元,则n的最大值为()A.30B.40C.50D.60二.填空题16.如图,直线m与∠AOB的一边射线OB相交,∠1=30°,向上平移直线m得到直线n,与∠AOB的另一边射线OA相交,则∠2+∠3=.17.如图,同旁内角有对.18.如果一个角的两边分别与另一个角的两边平行,且其中一个角大小是52°,那么另一个角的度数是°.19.若(x﹣15)2=169,(y﹣1)3=﹣0.125,则=.20.比较下列各数的大小关系:①2;②2;③.21.已知≈0.6993,≈1.507,则≈.22.如图,在平面直角坐标系中A(3,0),B(0,4),AB=5,P是线段AB上的一个动点,则OP的最小值是.23.在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN∥y轴,则a=.24.在平面直角坐标系中,已知A(1,4),B(5,2)将线段AB平移后得线段CD,若C (3,﹣1),则D的坐标是.25.在国新办4月2日举行的疫情期间中国海外留学人员安全问题新闻发布会上,外交部副部长马朝旭透露,3月份全球疫情加速扩散后,中国已经安排A与B两种型号的包机9架次,从伊朗、意大利等国接回包括留学人员在内的中国公民1457人.其中A型包机每架次坐满158人,B型包机每架次坐满163人,则A型包机有架,B型包机有架.26.有甲,乙,丙三种不同重量的重物,它们的重量分别为a,b,c,天平一端放2个甲,另一端放一个乙和一个丙天平平衡;或者天平一端放一个甲和一个乙,另一端放一个丙,天平平衡.问a:b:c的值为.27.A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时千米.28.若关于x的不等式组恰有两个整数解,则a的取值范围是.29.把一些书分给几个学生,如果每人分3本,那么余8本:如果每人分5本,那么恰有一人分不到3本,则这些书有本,学生有人.30.若方程组的解为x、y,且x+y>0,则k的取值范围是.31.已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是;(2)若m2x+(m+b)2x=4,则x=.32.已知点P(2x,3x﹣1)是平面直角坐标系内的点.(1)若点P到两坐标轴的距离相等,则x的值是;(2)若点P在第三象限,且到两坐标轴的距离之和为16,则x的值.三.解答题33.如图,在方格纸内将△ABC经过一次平移得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定的方格纸中画出平移后的△A′B′C′;(2)画出BC边上的高AE;(3)如果P点在格点上,且满足S△P AB=S△ABC(点P与点C不重合),满足这样条件的P点有个.34.已知:如图,点C在∠AOB的一边OA上,过点C作DE∥OB,CF平分∠ACD,CG 平分∠DCO.(1)若∠O=50°,求∠DCF的度数;(2)当∠O为多少度时,CD平分∠OCF,并说明理由.35.如图,已知AM∥BN,∠A=58°,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是度;②∵AM∥BN,∴∠ACB=∠.(2)求∠CBD的度数.(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.(直接写出结果)36.解方程:(1)(x+3)2=25;(2)x3+1=﹣3.37.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案.38.若m是不等式组的最大整数解,求:1+m+m2+…+m2020的值.39.某商店销售A、B两种商品,每件的售价分别为20元、30元.五一期间,该商店决定对这两种商品进行促销活动,如图所示,若小红打算到该商店购买m件A商品和20件B 商品,根据以上信息,请(1)分别用含m的代数式表示按照方案一和方案二所需的费用w1和w2;(2)就m的不同取值,说明选择哪种方案购买更实惠(两种优惠方案不能同时享受)?40.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?参考答案一.选择题1.解:A、在同一平面内,a、b、c是直线,如果a∥b,b⊥c,则a⊥c,原命题是假命题;B、在同一平面内,a、b、c是直线,如果a⊥b,b⊥c,则a∥c,原命题是假命题;C、在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥c,是真命题;D、在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥c,原命题是假命题;故选:C.2.解:设∠ABE=x,根据折叠前后角相等可知,∠C1BE=∠CBE=45°+x,∵∠ABC=90°,∴45°+x+x=90°,解得x=22.5°.故选:D.3.解:延长DC至E,由题意可得:∠ABC=∠BCE=∠BCA=25°,则∠ACD=180°﹣25°﹣25°=130°.故选:B.4.解:∵+=0,∴=﹣,∴x=﹣y,∴x与y的关系是x+y=0.故选:D.5.解:∵16<17<25,∴4<<5,∴最接近的整数为4,∴9﹣最接近的整数为5.故选:B.6.解:①3是27的立方根,原来的说法错误;②的算术平方根是,原来的说法错误;③﹣=2是正确的;④=4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A.7.解:如图所示,过点P(﹣2,1)作平行于坐标轴的直线,分别取线段PQ1=PQ2=PQ3=PQ4=5,点Q不在第四象限.故选:D.8.解:由题意知,A1(1,1),A2(3,2),A3(7,4),A4(15,8),…A n(2n﹣1,2n﹣1).故选:D.9.解:∵点P的坐标为(2﹣a,3a+6),且点P到两坐标轴的距离相等,∴2﹣a=3a+6或(2﹣a)+(3a+6)=0;解得:a=﹣1或a=﹣4,∴P点坐标为(3,3)或(6,﹣6),故选:D.10.解:∵(a+b)2011=﹣1,a﹣b=1,∴,解得:,则原式=0﹣1=﹣1.故选:D.11.解:依题意,得:.故选:B.12.解:∵2x+5y=25,∴y=,当x=5时,y=3;当x=10时,y=1;故选:B.13.解:A、∵a>b,∴b<a,原变形正确,故本选项不符合题意;B、∵a>b,∴ac2≥bc2,原变形不正确,故本选项符合题意;C、不等式x≤9的解一定是不等式x<10的解,原说法正确,故本选项不符合题意;D、∵﹣x<y,∴x>﹣2y,原变形正确,故本选项不符合题意;故选:B.14.解:将两个方程相加可得3x+3y=3﹣3k,则x+y=1﹣k,∵x+y>1,∴1﹣k>1,解得k<0,故选:D.15.解:依题意,得:•n≤10×60×10×25,解得:n≤60.故选:D.二.填空题16.解:作OC∥m,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴OC∥n,∴∠1=∠OBC=30°,∠2+∠AOC=180°,∴∠2+∠3=180°+30°=210°.故答案为210°.17.解:∠1和∠2,∠1和∠6,∠2和∠6,∠3和∠7是同旁内角,共4对,故答案为:4.18.解:∵一个角的两边与另一个角的两边分别平行,∴这两个角相等或互补,∵一个角为52°,∴另一角为128°或52°.故答案为:128°或52.19.解:方程(x﹣15)2=169两边开平方得x﹣15=±13,解得:x1=28,x2=2,方程(y﹣1)3=﹣0.125两边开立方得y﹣1=﹣0.5,解得y=0.5,当x=28,y=0.5时,=3;当x=2,y=0.5时,=1.故答案为:1或3.20.解:①2<;②<2;③<.故答案为:<,<,<.21.解:∵≈0.6993,∴≈0.06993,故答案为:0.06993.22.解:当OP⊥AB时,OP的值最小.∵A(3,0),B(0,4),∴OB=4,OA=3.OA•OB=AB•OP.∴OP===.故答案为.23.解:∵MN∥y轴,∴点M(a﹣3,a+4)与点N(5,9)的横坐标相同,∴a﹣3=5,∴a=8.故答案为:8.24.解:若A与C对应,则D(7,﹣3),若B与C对应,则D(﹣1,1).故答案为(7,﹣3)或(﹣1,1).25.解:设A型包机有x架,B型包机有y架,依题意,得:,解得:.故答案为:2;7.26.解:由题意,得.解得,,∴a:b:c=2b:b:3b=2:1:3.故答案是:2:1:3.27.解:设这艘船在静水中的速度和水流速度分别为x千米/小时,y千米/小时,依题意得,解得:,答:这艘船在静水中的速度为17千米/小时,故答案为:17.28.解:,由①得:x>﹣,由②得:x<2a,不等式组的解集为:﹣<x<2a,∵不等式组只有两个整数解为0、1,∴1<2a≤2,∴<a≤1.故答案为<a≤1.29.解:设学生有x人,则这些书有(3x+8)本,依题意,得:,解得:5<x≤.又∵x为正整数,∴x=6,∴3x+8=26.故答案为:26;6.30.解:将两个方程相加可得6x+6y=k+3,即6(x+y)=k+3,∵x+y>0,则6(x+y)=k+3>0,解得k>﹣3,故答案为:k>﹣3.31.解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.故答案为:(1)4;(2).32.解:(1)根据题意知2x=3x﹣1或﹣2x=3x﹣1,解得x=1或x=0.2,故答案为:1或0.2;(2)根据题意知﹣2x+1﹣3x=16,解得x=﹣3,故答案为:﹣3.三.解答题33.解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,垂线段AE即为所求;(3)如图所示,满足这样条件的点P有8个,故答案为:8.34.解:(1)∵DE∥OB,∴∠ACE=∠O,∵∠O=50°,∴∠ACE=50°,∴∠DCA=130°,∵CF平分∠ACD,∴∠DCF=65°;(2)结论:当∠O=60°时,CD平分∠OCF,法1:当∠O=60°时,∵DE∥OB,∴∠DCO=∠O=60°,∴∠ACD=120°,又∵CF平分∠ACD,∴∠DCF=60°,∴∠DCO=∠DCF,即CD平分∠OCF;法二:若CD平分∠OCF,∴∠DCO=∠DCF,∵∠ACF=∠DCF,∴∠ACF=∠DCF=∠DCO,∵∠AOC=180°,∴∠DCO=60°,∵DE∥OB,∴∠O=∠DCO,∴∠O=60°.35.解:(1)①∵AM∥BN,∠A=58°,∴∠A+∠ABN=180°,∴∠ABN=122°;②∵AM∥BN,∴∠ACB=∠CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣58°=122°,∴∠ABP+∠PBN=122°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=122°,∴∠CBD=∠CBP+∠DBP=61°;(3)不变,∠APB:∠ADB=2:1.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)可知∠ABN=122°,∠CBD=61°,∴∠ABC+∠DBN=61°,∴∠ABC=30.5°.故答案为:122,CBN;30.5°.36.解:(1)(x+3)2=25,,x+3=±5,x+3=5或x+3=﹣5,解得x=2或x=﹣8;(2)x3+1=﹣3,,x3=﹣8,,x=﹣2.37.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:.答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴,,,∴共3种购买方案,方案一:购进A型车6辆,B型车5辆;方案二:购进A型车4辆,B型车10辆;方案三:购进A型车2辆,B型车15辆.38.解:,由不等式①,得x≥﹣2,由不等式②,得x<0,所以不等式组的解集为:﹣2≤x<0,解集中最大的整数为:﹣1,则m=﹣1,所以1+m+m2+…+m2018=1+(﹣1)+(﹣1)2+…+(﹣1)2020=1﹣1+1﹣1+…+1=1.39.解:(1)如果m≤15,那么w1=20m+30×0.9×20=20m+540,如果m>15,那么w1=20×15+20×0.5(m﹣15)+30×0.9×20=10m+690.综上,可知w1=;w2=(20m+30×20)×0.8=16m+480;(2)当m≤15时,20m+540>16m+480,故应该按方案二购买,选择方案二购买更实惠;当m>15时,10m+690>16m+480时,解得m<35;10m+690<16m+480时,解得m>35;10m+690=16m+480时,解得m=35,故当m<35时,按方案二购买;当m=35时,两种方案都一样;当m>35时,按方案一购买.40.解:(1)设每辆车A型车的售价为x万元,每辆车B型车的售价为y万元,依题意,得:,解得:,答:每辆车A型车的售价为18万元,每辆车B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得:,解得:3.5≥m≥2.∵m为整数,∴m=2或3,答:有2种购车方案:购进A型车2辆,购B型5辆;购进A型车3辆,购B型4辆.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 《实数》 精典单元检测题(五)
2013年 6月12 日
一、选择题(每题3分,共24分)
1.下列说法错误的是( )
A .3-是9的平方根
B .5的平方等于5
C .1-的平方根是1±
D .9的算术平方根是3
2.如果一个实数的平方根与它的立方根相等,则这个数是( )
A . 0 B. 0,和±1 C .0和1 D . 1
3. 下列说法正确的是( )
A . 0.25是0.5 的一个平方根
B ..正数有两个平方根,且这两个平方根之和等于0
C . 7 2 的平方根是7
D . 负数有一个平方根
4.下列运算中,
①1251144251=,②4)4(2±=-,③3311-=- ④20
95141251161=+=+错误的有( ) A .1 B .2 C .3 D .4
5.下列说法:(1)无理数就是开方开不尽的数; (2)无理数包括正无理数、零、
负无理数;(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )
A .1
B .2
C .3
D .4
6. 下列各数:-7,81 3.14,3125-,0,35-,13
,6.0 ,2π,0.1010010001…中,无理数有( )个
A. 2
B.3
C.4
D. 5
7.()20.7-的平方根是( )A .0.7- B .0.7± C .0.7 D .0.49
8、当14+a 的值为最小值时,a 的值为( )
A .1-
B .4
1- C .0 D .1 二、填空题 (每空3分,共48分)
9.9的算术平方根是 ;16的平方根是 ,-125的立方是 . 10. 35-的相反数是 ,32-= ;数轴上表示38-的点与原点距离是_______。
11. =-2)4( ; =-33)6( ; 2)196(= . (38-)3= .
12. 比较大小:2
15- 5.0; (填“>”或“<”) 13. 要使62-x 有意义,x 应满足的条件是
14. 已知213+的整数部分为 ,小数部分为 。
15.10.1== ;
16.实数a 、b 互为相反数,c 、d 互为倒数,x =7,则
2()x a b cd x +++= 。
三、解答题 (共48分)
17.计算(每小题6分,共18分) ①41)2(823+
--- ②3+32—53(结果精确到0.01)
③ |23- | + |23-|- |12- |
18.解方程(每小题6分,12分)
(1)012142=-x (2)8125)2(3=+x
19. 一个正数a 的平方根是3x ―4与2―x ,则a 是多少?(6分)
20.已知053a 2=-++b )(,求b a -的立方根(6分)
22.已知x 、y 都是实数,且
4y ,求x y 的平方根。
(6分)。