第88题+频率分布直方图-2018精品之高中数学(理)黄金100题系列+Word版含解析
高中数学频率分布直方图
频率分布直方图作频率分布直方图的方法为:(1)把横轴分成若干段,每一线段对应一个组的组距;(2)以此线段为底作矩形,它的高等于该组的组距频率,这样得出一系列的矩形;(3)每个矩形的面积恰好是该组上的频率.频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图.作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.知识点1:利用频率分布直方图分析总体分布例题1: 2000辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有 A .30辆 B .60辆 C .300辆 D .600辆变式:某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是 [96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是A.90B.75C. 60D.45变式:某初一年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .知识点2:用样本分估计总体例题2某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,96 98 100 102 104 106 0.1500.125 0.1000.0750.050 克 频率/组距100 110 120130 140 150 身高频率|组距0.0050.0100.020a0.035(Ⅰ) 完成频率分布表;(Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
高考频率分布直方图知识点
高考频率分布直方图知识点高考题频率分布直方图知识点在学生的学习生涯中,高考是一个极为重要的里程碑。
为了能在高考中取得好成绩,学生们不仅要掌握各学科的基础知识,还需要熟悉高考题型和考点。
而对于数学科目来说,直方图是高考频率分布的一个重要知识点。
下面将以直方图为主题,讨论其相关知识点。
直方图是一种用来表示数据分布情况的图形。
它由一系列高度不等的矩形组成,每个矩形代表一个数据区间,高度表示该区间内数据的频数或频率。
首先,我们先来了解一下直方图的构成。
直方图的横轴通常表示数据的取值范围,纵轴表示频数或频率。
每个矩形的宽度可以根据数据的分布情况来确定,它们可以等宽也可以不等宽。
矩形的高度则代表了数据的频数或频率。
直方图的制作需要经过以下几个步骤。
首先,根据给定的数据集,将数据按照一定的区间进行分组。
一般来说,划分区间时需要保证每个区间的宽度相等,并且包含足够多的数据点。
然后,统计每个区间内的数据个数或频率,并将其绘制成对应高度的矩形。
最后,根据实际需要,可以给直方图添加标题和坐标轴标签等。
直方图不仅能够展示数据的分布情况,还可以帮助我们观察和分析数据的特征和规律。
通过观察直方图,我们可以了解到数据的集中趋势、离散程度以及异常值等重要信息。
比如,直方图的峰度可以反映数据的分布形态是平坦还是陡峭,而直方图的偏度可以反映数据的偏斜程度。
在考试中,直方图也被广泛应用于频率分布题目中。
考生需要根据给定的数据分布情况,回答一些与直方图相关的问题。
例如,考生可以根据直方图估计数据的平均值、中位数和众数等统计指标。
同时,直方图还可以帮助考生判断数据是否满足正态分布或其他特定分布形态。
此外,在解答与直方图相关的题目时,考生还需要熟悉直方图的性质和特点。
例如,直方图的面积表示数据的频数或频率总和。
而不同的数据分布形态会对直方图的形状产生影响。
当数据分布近似正态分布时,直方图呈现出钟形曲线,对称分布的数据则呈现出对称形状的直方图。
高二数学频率分布直方图练习题
高二数学频率分布直方图练习题在高二数学学习中,频率分布直方图是一个重要的概念和工具。
它能够帮助我们直观地了解数据的分布情况,并能够进行一些有关数据分析的操作。
下面是一些高二数学频率分布直方图练习题,希望能对同学们的学习有所帮助。
1. 一家超市通过调查了解到顾客每天购买的饮料数量,数据如下:2, 3, 2, 4, 1, 2, 4, 2, 3, 2, 1, 3, 2, 1, 2, 4, 2, 3, 2, 1根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。
2. 某班级同学们的体重数据如下:52, 55, 53, 57, 54, 56, 55, 51, 58, 60, 59, 62, 63, 64, 61, 56, 55, 54, 57, 59根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。
3. 某城市某月份的降水量数据如下:20, 15, 18, 22, 17, 19, 23, 16, 21, 20, 15, 20, 19, 23, 20, 18, 16, 22, 19, 17根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。
4. 下面是一组学生在一次月考中的数学成绩数据:90, 85, 78, 92, 88, 79, 81, 85, 86, 90, 84, 88, 92, 89, 77, 82, 84, 87, 91, 83根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。
5. 某工厂生产了一批产品,产品的重量数据如下:2.5, 2.7, 2.8, 2.6, 2.9, 2.7, 2.6, 2.8, 2.7, 2.6, 2.8, 2.7, 2.5, 2.8, 2.6, 2.9根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。
以上是几道关于频率分布直方图的练习题。
通过解决这些题目,我们可以巩固对频率分布直方图的理解和应用,提高数据分析的能力。
在实际问题中,频率分布直方图也可以用来对比不同数据集的分布情况,帮助我们做出更好的决策。
频率分布直方图
高一数学巩固练习 2016-6-61.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A.抽签法B.系统抽样法C.分层抽样法D.随机数法2.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关,下列结论中正确的是( )A. x与y正相关, x与z负相关B.x与y正相关,x与z正相关C. x与y负相关, x与z负相关D. x与y负相关,x与z正相关3.重庆市2013年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是 ( )A.19B.20C.21.5D.234.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为 ( )A.64B.54C.48D.275.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( )A.8B.15C.16D.326.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论不正确的是( )A. 2007年我国治理二氧化硫排放显现成效B. 2006年以来我国二氧化硫年排放量呈减少趋势C.逐年比较,2008年减少二氧化硫排放量的效果最显著D.2006年以来我国二氧化硫年排放量与年份正相关7.为比较甲、乙两地14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为 ( )A.①③B.①④C.②③D.②④8.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.9.某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 .10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是___________;样本容量是__________;(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是________.11.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填 ,输出的S = . 12.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1, 450]的人做问卷A ,编 号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中, 做问卷B 的人数为___________.13. A,B,C,D,E 五位学生的数学成绩x 与物理成绩y (单位:分)如表:(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的回归方程=x+;参考数值:80×70+75×66+70×68+65×64+60×62=23190,802+752+702+652+602=24750)(2)若学生F 的数学成绩为90分,试根据(1)求出的回归方程,预测其物理成绩(结果保留整数).第11题1.【解析】选C.2.【解析】选C.3.【解析】选B.4.【解析】选B.前两组中的频数为100×(0.05+0.11)=16.5.【解析】选C6.【解析】选D.7.【解析】选B.==29,==30,s甲==,s乙==.7.答案:258.答案:909.【解析】(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:=0.08;又因为第二小组频率=,所以样本容量===150.(2)由图可估计该学校高一学生的达标率约为×100%=88%.10【解析】由题意可知,程序框图是要统计6名队员投进的三分球的总数,由程序框图的循环逻辑知识可知,判断框应填i≤6?,输出的结果就是6名队员投进的三分球的总数,而6名队员投进的三分球数分别为a1,a2,a3,a4,a5,a6,故输出的S=a1+a2+…+a6.答案:i≤6?(i<7?) a1+a2+a3+a4+a5+a612.【解析】选D.能使所有数据点都在它附近的直线不止一条,而据回归直线的定义知,只有按最小二乘法求得回归系数,得到的直线=x+才是回归直线,所以①不对;②正确;将x=25代入=0.50x-0.81,解得=11.69,所以③正确;④正确.13【解析】选C.采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即l=30,第k组的号码为30(k-1)+9,令451≤30(k-1)+9≤750,而k∈Z,解得16≤k≤25,则满足16≤k≤25的整数k有10个.14.【解析】(1)因为==70,==66,=80×70+75×66+70×68+65×64+60×62=23190,=802+752+702+652+602=24750,所以===0.36,=-=66-0.36×70=40.8.故所求线性回归方程为=0.36x+40.8.(2)由(1),当x=90时,=0.36×90+40.8=73.2≈73, 答:预测学生F的物理成绩为73分.。
(完整版)频率分布直方图和茎叶图练习
频率分别直方图与茎叶图练习题1第三组的频数和频率分别是 ( ) A .14和0.14 B .0.14和14 C .141和0.14 D . 31和1412.为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了(1)求出表中,,,m n M N 所表示的数分别是多少? (2)画出频率分布直方图.(3)全体女生中身高在哪组范围内的人数最多?3.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在[60,70)的汽车大约有( ) (A) 30辆 (B) 40辆(C) 60辆(D) 80辆)4年降水量/mm [ 100, 150 ) [ 150, 200 ) [ 200, 250 ) [ 250, 300 ] 概率0.21 0.16 0.13 0.125.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.5---89.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)6. 某班有50名学生,在学校组织的一次数学质量抽测中,如果按照抽测成绩的分数段[60,65),[65,70),…[95,100)进行分组,得到的分布情况如图所示.求:(Ⅰ)该班抽测成绩在[70,85)之间的人数;(Ⅱ)该班抽测成绩不低于85分的人数占全班总人数的百分比.5101520成绩人数60 65 70 75 80 85 90 95 1007 观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(]2700,3000的频率为8 从两个班中各随机的抽取10名学生,他们的数学成绩如下:画出茎叶图9.某中学对高三年级进行身高统计,测量随机抽取的40名学生的身高,其结果如下(单位:cm)(1)列出频率分布表;(2)画出频率分布直方图;(3)估计数据落在[150,170]范围内的概率。
频率分布直方图 PPT
将数据进行适当的分组,并画出相应的频率分布直方图和频率分布
折线图.
【解】 以 4 为组距,列表如下:
分组
频率累计
[41.5,45.5)
[45.5,49.5)
[49.5,53.5)
[53.5,57.5)
[57.5,61.5)
[61.5,65.5)
[65.5,69.5)
频数 2 7 8 16 5 4 2
示,但第 3 组被墨汁污染,则第三组的频率为( )
组号
1
234
5
6
78
频数 10 13
14 15 13 12 9
A.0.14
B.0.12
C.0.03
D.0.10
解析:选 A.第三组的频数为 100-(10+13+14+15+13+12+9)
=14.故第三组的频率为11040=0.14.
(2019·四川省绵阳市教学质量测试)某高速公路移动雷达测速检 测车在某时段对某段路过往的 400 辆汽车的车速进行检测,根据检 测的结果绘制出如图所示的频率分布直方图,根据直方图的数据估 计 400 辆汽车中时速在区间[90,110)的约有____________辆.
【解】 (1)频率分布直方图以面积的形式反映数据落在各小组 内的频率大小,因此第二小组的频率为2+4+17+4 15+9+3= 0.08.
第二小组的频数 又因为第二小组的频率= 样本量 , 所以样本容量=第第二二小小组组的的频频率数=01.028=150.
(2) 由 直 方 图 可 估 计 该 校 高 一 年 级 学 生 的 达 标 率 为 2+147++1715++159++93+3×100%=88%. (3)由(1)(2)知达标率为 88%,样本量为 150,不达标的学生频率 为 1-0.88=0.12. 所以样本中不达标的学生人数为 150×0.12=18(人). (4)第三小组的频率为2+4+171+715+9+3=0.34. 又因为样本量为 150, 所以第三组的频数为 150×0.34=51.
【高三数学试题精选】2018高中数学黄金100题—分段函数(有解析)
2018高中数学黄金100题—分段函数(有解析)
5 c
I.题探究黄金母题
【例1】已知函数求,,的值.
【解析】因为,
所以,,
II.考场精彩真题回放
【例2】【2018高考江苏卷】设是定义在上且周期为2的函数,在区间上,.其中,若,则的值是_____.
【答案】
【解析】∵ ,
∴ ,即,
因此.
【例3】【2018高考北京理】设函数
①若,则的最大值为______________;
②若无最大值,则实数的取值范围是________
【答案】,
【解析】如图作出函数与直线的图象,它们的交点是,,,由,知是函数的极大值点,
①当时,,因此的最大值是;
②由图象知当时,有最大值是;只有当时,由,得无最大值,∴所求的范围是
精彩解读
【试题】人教版A版必修一第45页B组第
4题
【母题评析】本题以分段函数为载体,考查函数的求值问题.本类考查方式是近几年高考试题常常采用的命题形式,达到既考查运算。
数学知识点总结之频数分布直方图
通常采纳分组分解法,最终运用十字相乘法分解因式。因此,可以
是等式④
概括为:“一提”、“二套”、“三分组”、“四十字”。
因式分解与整式乘法的关系:m(a+b+c)
留意:因式分解肯定要分解到每一个因式都不能再分解为止,否则
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式
就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解, 各项的公因式。
魏
第4页共4页
通过上面对平面直角坐标系的构成学问的讲解学习,盼望同学们对 上面的内容都能很好的把握,同学们仔细学习吧。
初中数学学问点:点的坐标的性质
下面是对数学中点的坐标的性质学问学习,同学们仔细看看哦。 点的坐标的性质 建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们 可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平 面内确定它所表示的一个点。 对于平面内任意一点 C,过点 C 分别向X轴、Y轴作垂线,垂足 在X轴、Y轴上的对应点 a,b 分别叫做点 C 的横坐标、纵坐标,有序 实数对〔a,b〕叫做点 C 的坐标。 一个点在不同的象限或坐标轴上,点的坐标不一样。 盼望上面对点的坐标的性质学问讲解学习,同学们都能很好的把 握,信任同学们会在考试中取得优异成果的。 初中数学学问点:因式分解的一般步骤 关于数学中因式分解的一般步骤内容学习,我们做下面的学问讲 解。
魏
第2页共4页
本文格式为 Word 版,下载可任意编辑
因式分解的一般步骤
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫
假如多项式有公因式就先提公因式,没有公因式的多项式就考虑运
把这个多项式因式分解。
用公式法;若是四项或四项以上的多项式,
高一数学频率直方图知识点
高一数学频率直方图知识点频率直方图是数学中常见的一种图形表示方法,它主要用于展示数据集中各个数值出现的频率分布情况。
在高一数学学习中,频率直方图是一个重要的知识点,通过学习频率直方图,可以帮助我们更好地理解和分析数据的分布特征。
本文将介绍频率直方图的定义、构建和应用等相关知识。
一、频率直方图的定义和构建1. 频率直方图的定义频率直方图是一种图形表示方法,用矩形的高度表示该数值所对应的频率,横坐标表示数据的取值范围,纵坐标表示频率。
每个矩形的面积正比于该数值所对应的频率。
2. 频率直方图的构建步骤构建频率直方图的步骤如下:(1)确定数据的取值范围,划分成若干个区间;(2)统计每个区间内数据的频数;(3)用矩形的高度表示频数,绘制频率直方图。
二、频率直方图的特点和应用1. 频率直方图的特点频率直方图的特点如下:(1)矩形的高度表示频率,横坐标表示数据的取值范围;(2)每个矩形的面积正比于该数值所对应的频率;(3)频率直方图可以直观地显示出数据的分布情况。
2. 频率直方图的应用频率直方图的应用范围广泛,常见的应用有:(1)数据分析:通过频率直方图可以观察数据的分布情况,进而分析数据的特点和规律;(2)比较分析:可以通过绘制不同数据集的频率直方图,进行数据的比较和分析,找出其中的差异和相似之处;(3)预测分析:通过对历史数据的频率直方图进行分析,可以预测未来的数据分布趋势。
三、频率直方图的例题分析下面通过一个实际的例题来进行频率直方图的分析。
某班级的学生身高数据如下(单位:cm):160, 165, 168, 170, 172, 175, 175, 176, 178, 180, 182, 185, 188, 190, 195按照身高的整数位数进行分组,得到频率直方图如下:身高区间频数频率160-164 2 0.133165-169 1 0.067170-174 2 0.133175-179 3 0.2180-184 2 0.133185-189 2 0.133190-195 1 0.067通过这个例题,我们可以清晰地看到学生身高的分布情况。
(学习指导) 频率分布直方图Word版含解析
3.2频率分布直方图学习目标核心素养1.学会用频率分布表,画频率分布直方图表示样本数据.(重点)2.能通过频率分布表或频率分布直方图对数据做出总体统计.(难点、易混点)1.通过对频率分布直方图画法的学习,培养数据分析素养.2.通过与频率分布直方图有关的计算,培养数学运算素养.频率分布直方图中每个矩形的底边长是该组的组距,矩形的高是该组的频率与组距的比,从而矩形的面积等于这个组的频率,即矩形的面积=组距×频率组距=频率.我们把这样的图叫作频率分布直方图.频率分布直方图以面积的形式反映了数据落在各个小组的频率的大小.2.频率分布直方图的应用当考虑数据落在若干个组内的频率之和时,可以用相应矩形面积之和来表示.3.画频率分布直方图的步骤(1)计算极差:即一组数据中最大值和最小值的差;(2)确定组距与组数:当数据在120个以内时,通常按照数据的多少分成5~12组,在实际操作中,一般要求各组的组距相等.(3)分组:按组距将数据分组,分组时,各组均为左闭右开区间,最后一组是闭区间.(4)列表:一般分四列:宽度分组、频数、频率、频率组距.其中频数合计应是样本容量,频率合计是1.(5)画频率分布直方图:画图时,应以横轴表示分组,纵轴表示频率组距组距上的频率等于该组上的小长方形的面积.即每个小长方形的面积=组距×频率组距=频率.4.频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.有时也用它来估计总体的分布情况.随着样本容量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来越接近于一条光滑曲线.思考:1.为什么需要用频率分布直方图对原始数据进行整理?[提示]因为通过抽样获得的原始数据多而且杂乱,无法直接从中理解它们的含义,并提取信息,也不便于我们用它来传递信息.正因为如此我们才用频率分布直方图来整理数据.2.为什么要对样本数据进行分组?[提示]不分组很难看出样本中的数字所包含的信息,分组后,计算出频率,从而估计总体的分布特征.1.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为()A.20B.30C.40D.50B[样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.]2.已知样本10,8,10,8,6,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么频率为0.2的范围是()A.5.5~7.5 B.7.5~9.5C.9.5~11.5 D.11.5~13.5D[由题意知,共20个数据,频率为0.2,在此范围内的数据有20×0.2=4个,只有在11.5~13.5范围内有4个数据:13,12,12,12,故选D.]3.某地为了了解该地区10 000户家庭的用电情况,采用分层随机抽样的方法抽取了500户家庭的月平均用电量,并根据这500户家庭的月平均用电量画出频率分布直方图如图所示,则该地区10 000户家庭中月平均用电度数在[70,80)的家庭有________户.1 200[根据频率分布直方图得该地区10 000户家庭中月平均用电度数在[70,80)的家庭有10 000×0.012×10=1 200(户).]频率分布直方图的绘制【例1】考察某校初二年级男生的身高,随机抽取40名初二男生,实测身高数据(单位:cm)如下:171 163 163 166 166 168 168 160 168 165171 169 167 169 151 168 170 160 168 174165 168 174 159 167 156 157 164 169 180176 157 162 161 158 164 163 163 167 161(1)作出频率分布表;(2)画出频率分布直方图和频率折线图.[解](1)最低身高151,最高身高180,它们的极差为180-151=29.确定组距为3,组数为10,列表如下:(2)频率分布直方图和频率折线图如图所示.绘制频率分布直方图应注意的问题(1)在绘制出频率分布表后,画频率分布直方图的关键就是确定小矩形的高.一般地,频率分布直方图中两坐标轴上的单位长度是不一致的,合理的定高方法是“以一个恰当的单位长度”(没有统一规定),然后以各组的“频率组距”所占的比例来定高.如我们预先设定以“”为1个单位长度,代表“0.1”,则若一个组的频率组距为0.2,则该小矩形的高就是“”(占两个单位长度),如此类推.(2)数据要合理分组,组距要选取恰当,一般尽量取整,数据为30~100个左右时,应分成5~12组,在频率分布直方图中,各个小长方形的面积等于各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和为1.[跟进训练]1.如表所示给出了在某校500名12岁男孩中,用随机抽样得出的120人的身高(单位:cm).区间界限[122,126)[126,130)[130,134)[134,138)[138,142) 人数58102233区间界限[142,146)[146,150)[150,154)[154,158]人数201165(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.[解](1)样本频率分布表如下:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28(2)其频率分布直方图如下:(3)由样本频率分布表可知,身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.频率分布直方图的应用【例2】为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?[解](1)第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校高一年级学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.频率分布直方图的性质(1)因为小矩形的面积=组距×频率组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1.(3)样本容量=频数相应的频率.[跟进训练]2.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140D[由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.]频率分布与数字特征的综合应用[探究问题]1.什么是一组数据的众数,中位数,平均数?提示:设一组数据为x1,x2,…,x n,则其中出现次数最多的数是众数,把这n个数据按照从小到大的顺序排列,最“中间”的数就是中位数,即当n为奇数时,中间的一个数就是本组数据的中位数;当n为偶数时,中间的两个数的平均数就是本组数据的中位数.本组数据的平均数x=x1+x2+…+x nn.2.如何利用频率分布直方图估计数据的众数、中位数和平均数?提示:(1)众数是最高的矩形的底边的中点;(2)中位数左右两侧小矩形的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.【例3】某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.求:(1)高一参赛学生成绩的众数、中位数;(2)高一参赛学生的平均成绩.[思路点拨](1)根据频率分布直方图的数据,最高小矩形的底边中点就是数据的众数,数据的中位数左右两边的面积和相等,都等于0.5;(2)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.[解](1)由题图可知众数为65,又∵第一个小矩形的面积为0.3,∴设中位数为60+x,则0.3+x×0.04=0.5,得x=5,∴中位数为60+5=65.(2)依题意,x=55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,∴平均成绩约为67分.1.利用频率分布直方图估计数字特征(1)众数是最高的矩形的底边的中点;(2)中位数左右两侧小矩形的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2.当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.3.绘制频率分布直方图的步骤:(1)计算极差,(2)决定组距与组数,(3)分组,(4)列频率分布表,(5)绘制频率分布直方图.1.思考辨析(正确的画“√”,错误的画“×”)(1)频率分布直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值.()(2)频率分布直方图中小矩形的面积表示该组的个体数.()(3)频率分布直方图中所有小长方形面积之和为1.()[提示](1)正确.(2)错误.频率分布直方图中小矩形的面积表示该组的频率.(3)正确.[答案](1)√(2)×(3)√2.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18C[志愿者的总人数为20(0.24+0.16)×1=50,所以第三组人数为50×0.36×1=18,所以有疗效的人数为18-6=12.]3.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分).现将高一两个班参赛学生的成绩进行整理后分成5组,绘制成频率分布直方图如图所示.已知图中从左到右的第一、三、四、五小组的频率分别为0.30、0.15、0.10、0.05,而第二小组的频数是40,则参赛的人数是________,成绩优秀的频率是________.1000.15[设参赛的人数为n,第二小组的频率为0.4,依题意40n=0.4,∴n=100,优秀的频率=0.10+0.05=0.15.]4.随机抽取100名学生,测得他们的身高(单位:cm),按照区间[160,165),[165,170),[170,175),[175,180),[180,185]分组,得到样本身高的频率分布直方图如图所示.(1)求频率分布直方图中x的值及身高在170 cm以上的学生人数;(2)将身高在[170,175),[175,180),[180,185]区间内的学生依次记为A,B,C三个组,用分层随机抽样的方法从这三个组中抽取6人,求这三个组分别抽取的学生人数.[解](1)由频率分布直方图可知5×(0.01+0.02+0.04+x+0.07)=1,解得x=0.06.身高在170 cm以上的学生人数为100×(0.06×5+0.04×5+0.02×5)=60(人).(2)A组人数为100×0.06×5=30(人),B组人数为100×0.04×5=20(人),C组人数为100×0.02×5=10(人),由题意可知抽样比k=660=1 10,故应从A,B,C三组中分别抽取30×110=3(人),20×110=2(人),10×110=1(人).。
频率分布直方图练习题
频率分布直方图练习题1、根据《中华人民共和国道路交通安全法》,酒后驾车的血液酒精浓度在20~80mg/100mL(不含80)组距之间,而醉酒驾车的血液酒精浓度在80mg/100mL(含0.080)以上。
在某地区一周内,共查处500名酒后驾车和醉酒驾车的司机。
通过对这些司机血液中酒精含量的检测,得到了频率分布直方图。
根据直方图,可估算醉酒驾车的司机人数约为70人。
2、对100名学生进行随机抽样,测得他们的身高(单位cm)。
将身高分为区间[155,160),[160,165),[165,170),[170,175),[175,180),[180,185),并得到样本身高的频率分布直方图。
根据直方图,可以得到身高在170cm以上的学生人数为30人。
将身高在[170,175),[175,180),[180,185)三个区间内的学生分别记为A、B、C三组,从这三组中分层抽样选取6人,则从A、B、C三组中分别抽取的人数为2、2、2人。
3、某部门为了确定对某路段进行限速60km/h是否合理,对通过该路段的500辆汽车的车速进行检测,并将所得数据按照组距[40,50),[50,60),[60,70),[70,80]分组,得到频率分布直方图。
根据直方图,可以得出这500辆汽车中车速低于限速的汽车有90辆。
4、某校从参加高三年级期末考试的学生中抽出60名学生,并统计了他们的历史成绩(成绩均为整数且满分为100分)。
将不低于50分的成绩分为五段,得到部分频率分布直方图。
根据直方图,历史成绩在[70,80)的学生人数为16人。
5、给定XXX青年歌手大奖赛上某位选手得分的茎叶图,去掉一个最高分和一个最低分后,所剩数据的方差为25.4.6、从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图。
根据直方图,可得到a=141.若要从身高在[120,130),[130,140),[140,150)三组内的学生中,用分层抽样的方法选取18人参加活动,则应从每组中分别选取6人。
高一数学《频率分布直方图》
第一步: 求极差: (数据组中最大值与最小值的差距) 最大值= 4.3 最小值= 0.2 所以极差= 4.3-0.2 = 4.1
第二步: 决定组距与组数: (强调取整) 当样本容量不超过100时, 按照数据的多少, 常
分成5~12组.
为方便组距的选择应力求“取整”.
本题如果组距为0.5(t).
则
组数=
第三步: 将数据分组 ( 给出组的界限)
第四步: 列频率分布表. (包括分组、频数、频率、频
率/组距)
第五步: 画频率分布直方图(在频率分布表的基础上
绘制,横坐标为样本数据尺寸,纵坐标为频率/组距.)
作业:
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1220. 12.12Sa turday, December 12, 2020
[12.5, 15.5) 3 [24.5, 27.5) 10 [15.5, 18.5) 8 [27.5, 30.5) 5 [18.5, 21.5) 9 [30.5, 33.5) 4 [21.5, 24.5) 11
(1)列出样本的频率分布表; (2)画出频率分布直方图;
解:组距为3
分组
频数
[12.5, 15.5) 3
第一步:写出样本可能出现的一切数值,即: 1,2,3,4,5,6 共6个数.(数据分组)
第二步:列出频率分布表: 组距=1
样本 1 2 3
频数 7
7
8
频率 0.16 0.16 0.18
第三步: 画频率分布直方图 0.18
4 8 0.18
频率/组距
5 7 0.16
6 7 0.16
0.175
0.17
0.165
极差 组距
高考数学复习点拨 频率分布直方图典型例题析
频率分布直方图典型例题析频率分布直方图是表达和分析数据的重要工具,还可以直观、准确地理解相应的有用的信息,所以成为新高考的重点,我们必须总结其重要题型及有关计算。
一、基本概念类例1、关于频率 分布直方图的下列说法中,正确的是( )(A )、直方图的高表示某数的频率;(B )、直方图的高表示该组上的个体在样本中出现的频率;(C )、直方图的高表示该组上的个体与组距的比值;(D )、直方图的高表示该组上的个体在样本中出现的频率与组距的比值;解析:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,其面积表示数据的取值落在相应区间上的频率,因此每一个小矩形的高表示该组上的个体在样本中出现的频率与组距的比值,所以选(D )。
二、识图计算类例2、为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是 ( )(A)20 (B)30(C)40 (D )50解:本题主要考查频率分布直方图和总体分布的估计等知识,同时考查图形的识别能力。
由频率直方图可知组距为2,故学生中体重在[56.5,64.5)的频率为:(0.03+0.05+0.05+0.07)×2=0.4,所以100名学生中体重在[56.5,64.5)的学生人数有: 0. 4×100=40人。
故选择C 点评:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数。
例3:某校高一某班共有64名学生,下图是该班某次数学考试成绩的频率分布直方图,根据该图可知,成绩在110120间的同学大约有( )A 、 10B 、11C 、13D 、16解析:通过直方图可知:成绩在110120的频率是:2.023.015.01.005.01=----,所以成绩在110120之间的同学大约有:64×0.2=12.813≈人。
频率分布直方图题型归纳
频率分布直方图题型归纳1.频率、频数、样本容量三个量产生的知二求一2.补全频率分布表3.做频率分布直方图4.性质“面积和为1”的应用,补全直方图5.估计总体的频率分布,区间内的频数问题1. 如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11.2. 若某产品的直径长与标准值的差的绝对值不超过...1 mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:(1)将上面表格中缺少的数据填在答题卡...的相应位置.(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.3. 从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.4.20(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.5.某家庭记录了使用了节水龙头50天的日用水量频数分布表频数(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 的概率;3m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第88题 频率分布直方图I .题源探究·黄金母题【例1】若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是 ( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92 【答案】A【例2】如图是某城市100位居民去年的月均用水量(单位:t )的频率分布直方图,月均用水量在区间[)1.5,2.5的居民大约有 ( )A .37位B .40位C .47位D .52位 【答案】C【解析】由频率分布直方图月均用水量在区间[)1.5,2的频率为0.450.50.225⨯=,月均用水量在区间[)2,2.5的居民的频率 为0.50050.25⨯=..月均用水量在区间[)1.5,2.5的居民的频数大约为精彩解读【试题来源】例1:人教A 版必修3P 70改编;例2:人教A 版必修3P 65例题改编.【母题评析】这类题主要考查平均数、方差的计算以及茎叶图与频率分布直方图的简单应用. 【思路方法】用样本估计总体是统计的基本方法:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.()0.2250.2510047+⨯=,故选C.II.考场精彩·真题回放【例1】【2017高考新课标3理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A客量波动性大,D选项正确.故选A.【例2】【2017高考新课标1文2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【命题意图】这类重点题考查分层抽样和系统抽样的计算.考查考生基本计算能力.【考试方向】这类试题在考查题型上,主要以选择题或填空题为主,属于中低档题.【难点中心】1.将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.2.分清几个样本特征数:众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B.【例3】【2017高考山东文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A.3,5 B.5,5 C.3,7 D.5,7【答案】A得3x .故选A.【例4】【2017高考北京文17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.3.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.4.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数学不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例. 【答案】(Ⅰ)0.4;(Ⅱ)20;(Ⅲ):32.(Ⅱ)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=,分数在区间[40,50)内的人数为1001000.955-⨯-=.所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=,所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=,男生和女生人数的比例为60:403:2=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3:2.III .理论基础·解题原理⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1. ⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等. ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写. 3.总体特征数的估计:⑴平均数:nx x x x x n++++=321;取值为n x x x ,,,21 的频率分别为n p p p ,,,21 ,则其平均数为n n p x p x p x +++ 2211;注意:频率分布表计算平均数要取组中值.⑵方差与标准差:一组样本数据n x x x ,,,21 方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小,说明样本数据越稳定.平均数反映数据总体水平;方差与标准差反映数据的稳定水平.IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等. 【技能方法】1.解题模板:第一步,根据频率分布直方图计算出相应的频率;第二步,运用样本的频率估计总体的频率;第三步,得出结论.2.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.3.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大. 4.茎叶图、频率分布表和频率分布直方图都可直观描述样本数据的分布规律. 【易错指导】1.在使用茎叶图时,一定要注意看清楚所有的样本数据,弄清楚这个图中的数字特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.直方图与条形图不要搞混频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.V .举一反三·触类旁通考向1 茎叶图及其应用【例1】【2018黑龙江齐齐哈尔高三第一次模】某校连续12天对同学们的着装进行检查,着装不合格的人数用茎叶图表示,如图,则该组数据的中位数是A .24B .26C .27D .32 【答案】CC . 【例2】【2018江西上饶高三下学期二模】如图1是某学习小组学生在某次数学考试中成绩的茎叶图,1号到20号同学的成绩依次为1220,,,a a a ,图2是统计茎叶图中成绩在一定范围内的学生人数的程序框图,那么该框图的输出结果是( )A .8B .9C .11D .12 【答案】A【例3】某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【答案】(1)75,75;(2)0.1,0.16;(3)该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.规律方法 (1)茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况. (2)①作样本的茎叶图时先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.②根据茎叶图中数据数字特征进行分析判断考查识图能力,判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息. 【跟踪练习】1.【2018河南安阳高三二模】在某校连续5次考试成绩中,统计甲,乙两名同学的数学成绩得到如图所示的茎叶图.已知甲同学5次成绩的平均数为81,乙同学5次成绩的中位数为73,则x y +的值为( )A .3B .4C .5D .6 【答案】A 【解析】77728680908105x x +++++=∴=因为乙同学5次成绩的中位数为73,所以33,y x y =∴+=选A .2.【2018山西平遥中学高三3月高考适应性调研】某学校A、B两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两班数学兴趣小组成绩的平均值及方差①A班数学兴趣小组的平均成绩高于B班的平均成绩②B班数学兴趣小组的平均成绩高于A班的平均成绩③A班数学兴趣小组成绩的标准差大于B班成绩的标准差④B班数学兴趣小组成绩的标准差大于A班成绩的标准差其中正确结论的编号为()A.①③B.①④C.②③D.②④【答案】B【解析】A班:53,63,64,76,74,78,78,76,81,85,86,88,82,92,95;B班:45,48,51,3.【2018湖北武汉武昌区高三1月调研】将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以x表示,则5个剩余分数的方差为________.【答案】6【解析】依题意8793909190915x+++++=,解得4x=.则方差为1641965+++=.【名师点睛】本题主要考查茎叶图的分辨,考查平均数的计算,考查方差的计算.从茎叶图可以看出最低分是87,最高分是99,去掉这两个分数后,可利用平均数的公式列方程来求出x的值.根据前面求出的值再利用方差的计算公式()211n i i x x n =-∑来计算方差.考向2 频率分布直方图【例4】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A .56B .60C .120D .140【答案】D【解析】由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140,故选D .【例5】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如下图所示),则分数在[70,80)内的人数是 .【答案】30【解析】由频率分布直方图知小长方形面积为对应区间概率,所有小长方形面积和为1,因此分数在[70,80)内的概率为3.010)005.0010.02015.0025.0(1=⨯++⨯+-,人数为301003.0=⨯【例6】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.【答案】(1)0.30;(2)36 000;(3)2.04.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.【名师点睛】(1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率和条形图混淆.(2)“命题角度二”的例题中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键.而利用频率分布直方图可以估计总体分布.【跟踪练习】1.【2018江西高三毕业班新课程教学质量监测】如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是()A .0.9B .0.75C .0.8D .0.7 【答案】B同样可得,60分及以上的频率=(0.015+0.03+0.025+0.005)×10=0.75 估计这次数学竞赛竞赛的及格率(大于或等于60分为及格)为75%, 故选:B .【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.【2018贵州黔东南州联考】近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在[)30,40岁的有2500人,年龄在[)20,30岁的有1200人,则m 的值为( )A .0.013B .0.13C .0.012D .0.12 【答案】C3.【2018河南六市高三第一次联考(一模)】为了解学生在课外活动方面的支出情况,抽取了n 个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[]10,50,其中支出金额在[]30,50的学生有117人,频率分布直方图如图所示,则n =( )A .180B .160C .150D .200 【答案】A【解析】[]30,50对应的概率为()10.010.025100.65-+⨯=,所以117=1800.65n =,选A . 4.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[)2500,3500(元)月收入段应抽出 人.【答案】40【解析】由图(2500,3500元/月)收入段的频率是0.0005×500+0.0003×500=0.4,故用分层抽样方法抽出100人作进一步调查,则在(2500,3500元/月)收入段应抽出人数为0.4×100=40. 考向3 样本的数字特征【例7】【2018内蒙古呼和浩特高三第一次质量调研】如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全.已知该班学生投篮成绩的中位数是5,则根据统计图,无法确定下列哪一选项中的数值( )A .3球以下(含3球)的人数B .4球以下(含4球)的人数C .5球以下(含5球)的人数D .6球以下(含6球)的人数 【答案】C【解析】因为共有35人,而中位数应该是第18个数,所以第18个数是5,从图中看出第四个柱状图故选C .【例8】【2018湖南衡阳高三第二次联考(二模)】已知样本12,,,n x x x 的平均数为x ;样本12,,,m y y y 的平均数为()y x y ≠,若样本12,,,n x x x ,12,,,m y y y 的平均数()z ax 1a y =+-;其中10a 2<<,则()*,,n m n m N ∈的大小关系为( ) A .n m = B .n m ≥ C .n m < D .n m > 【答案】C【解析】由题得()11,,n n n z nx my x y a n m n m n m n m ⎛⎫=+=+-∴= ⎪++++⎝⎭110,0,.22n a n m n m <<∴<<∴<+故选C .【例9】【2018长沙一中高三模拟】某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b )(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.(2)记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.因此事件E 发生的频率为715.用频率估计概率,即得所求概率为P (E )=715.【名师点睛】(1)平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行平均数与方差的计算,关键是正确运用公式;(2)平均数与方差所反映的情况有着重要的实际意义,一般可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种可以做出评价或选择. 【跟踪练习】1.【2018贵州黔东南州高三下学期二模】甲乙两名同学6次考试的成绩统计如下图,甲乙两组数据的平均数分别为x 甲、x 乙,标准差分别为σσ甲乙,,则A .x x σσ<<甲乙甲乙,B .x x σσ甲乙甲乙,C .x x σσ><甲乙甲乙,D .x x σσ>>甲乙甲乙,【答案】C【解析】由图可知,甲同学除第二次考试成绩略低与乙同学,其他次考试都远高于乙同学,可知x x >甲乙,图中数据显示甲同学的成绩比乙同学稳定,故σσ<甲乙.故选C .2.【2018云南昆明高三教学质量检查(二统)】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A .这半年中,网民对该关键词相关的信息关注度呈周期性变化B .这半年中,网民对该关键词相关的信息关注度不断减弱C .从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 【答案】D【解析】根据走势图可知:这半年中,网民对该关键词相关的信息关注度不呈周期性变化,A 错;这半年中,网民对该关键词相关的信息关注度增减不确定,B 错;从网民对该关键词的搜索指数来看,去年10月份的搜索指数的稳定性小于11 月份的搜索指数的稳定性,所以去年10月份的方差大于11 月份的方差,C 错;从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值,D正确,故选D.3.【2018陕西榆林高三二模】为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.由2016年1月至2017年7月的调查数据得出的中国仓储指数,绘制出如下的折线图.根据该折线图,下列结论正确的是()A.2016年各月的合储指数最大值是在3月份B.2017年1月至7月的仓储指数的中位数为55C.2017年1月与4月的仓储指数的平均数为52D.2016年1月至4月的合储指数相对于2017年1月至4月,波动性更大D【答案】则这5 天中,每天最高气温较为稳定(方差较小)的城市为_______.(填甲或乙). 【答案】甲【解析】甲、乙两个城市的最高气温平均值都是30,甲的方差为419914.85++++=,乙的方差为2516116369318.6,55++++==∴每天最高气温较为稳定(方差较小)的城市为甲,故答案为甲.5.【2018山东枣庄高三二模】随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:(]0,10、(]10,20、(]20,30、(]30,40、(]40,50、(]50,60,整理得到如下频率分布直方图:根据一周内平均每天学习数学的时间t ,将学生对于数学的喜好程度分为三个等级:(Ⅰ)试估计甲高中学生一周内平均每天学习数学的时间的中位数m 甲(精确到0.01);(Ⅱ)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值X 甲与X 乙及方差2S 甲与2S 乙的大小关系(只需写出结论),并计算其中的X 甲、2S 甲(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从甲高中与乙高中随机抽取的80名同学中数学喜好程度为“痴迷”的学生中随机抽取2人,求选出的2人中甲高中与乙高中各有1人的概率.【答案】(Ⅰ) 26.67m ≈甲;(Ⅱ)答案见解析;(Ⅲ)37. 【解析】试题分析:()1根据频率分布直方图,由样本估计总体的思想可求得()0.50.10.2200.3m -+=+甲1026.67⨯≈;()2根据所给数据求出X 甲,X 乙,2S 甲,2S 乙,然后对比即可得到答案;()3求出甲高中随机选取的40名学生中“痴迷”的学生的个数,记为1A ,2A ;乙高中随机选取的40名的概率解析:(Ⅰ)由样本估计总体的思想,甲高中学生一周内平均每天学习数学的时间的中位数()0.50.10.2200.3m -+=+甲 1026.67⨯≈;(Ⅱ)X X <甲乙;22S S >甲乙;50.1150.2250.3X =⨯+⨯+⨯甲 350.2450.15550.0527.5+⨯+⨯+⨯=;()()221[527.5400.140S =⨯-⨯⨯甲 ()()21527.5400.2+-⨯⨯ ()()22527.5400.3+-⨯⨯ ()()23527.5400.2+-⨯⨯ ()()24527.5400.15+-⨯⨯ ()()25527.5400.05]+-⨯⨯178.75=.(Ⅲ)甲高中随机选取的40名学生中“痴迷”的学生有()400.005102⨯⨯=人,记为1A ,2A ;乙高中随机选取的40名学生中“痴迷”的学生有()400.015106⨯⨯=人,记为1B ,2B ,3B ,4B ,5B ,6B .随机选出2人有以下28种可能:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()14,A B ,()15,A B ,()16,A B , ()21,A B ,()22,A B ,()23,A B ,()24,A B ,()25,A B ,()26,A B ,()12,B B , ()13,B B ,()14,B B ,()15,B B ,()16,B B ,()23,B B ,()24,B B ,()25,B B , ()26,B B ,()34,B B ,()35,B B ,()36,B B ,()45,B B ,()46,B B ,()56,B B ,所以,从甲、乙两所高中数学喜好程度为“痴迷”的同学中随机选出2人,选出的2人中甲、乙两所高中各有1人的概率为123287=. 6.【2018海南高三第二次联合考试】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如下.(1)求频率分布直方图中x 的值并估计这50户用户的平均用电量;(2)若将用电量在区间[)50,150内的用户记为A 类用户,标记为低用电家庭,用电量在区间[)250,350内的用户记为B 类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:①从B 类用户中任意抽取1户,求其打分超过85分的概率;②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有95%的把握认为“满意度与用电量高低有关”?附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.【答案】(1)0.0044x =,186(2)23,没有【解析】试题分析:(1)由矩形面积和为1,求得x ,再由每一个矩形的中点横坐标乘以矩形面积求和可得平均值;试题解析: 解:(1)1(0.0060.00360.002450x =-++ 20.0012)0.0044⨯+=, 按用电量从低到高的六组用户数分别为6,9,15,11,6,3, 所以估计平均用电量为675912515175112256275332550⨯+⨯+⨯+⨯+⨯+⨯ 186=度.(2)①B 类用户共9人,打分超过85分的有6人,所以从B 类用户中任意抽取3户,恰好有2户打分超过85分的概率为2163391528C C C =. ②12因为2K的观测值()22469631212915k⨯⨯-⨯=⨯⨯⨯1.6 3.841=<,所以没有95%的把握认为“满意与否与用电量高低有关”.【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.。