高中物理第2章原子结构2.4氢原子光谱与能级结构教案鲁科版选修
2.4 氢原子光谱与能级结构 课件(鲁科版选修3-5)
教 学 方 案 设 计
1 1 1 - 7 当 n=3 时, =1.10×10 ×( 2- 2) m 1 λ1 2 3 解得 λ1=6.5×10
-7
m.
当 堂 双 基 达 标
1 1 1 - 7 当 n=4 时, =1.10×10 ×( 2- 2) m 1 λ2 2 4 解得 λ2=4.8×10
-7
课 前 自 主 导 学
当 堂 双 基 达 标
课 前 自 主 导 学
反映了氢原子辐射波长的分立特征.
课 时 作 业
菜
单
LK·物理 选修 3-5
教 学 教 法 分 析 课 堂 互 动 探 究
本节是本章的最后一节,所以应说明玻尔理论的局限 性, 玻尔理论是一种半经典的理论, 一方面引入了量子假设;
教 学 方 案 设 计
另一方面又应用经典理论计算电子轨道半径和能量.因此, 玻尔理论在解释复杂的微观现象时遇到困难,乃是必然 的.回顾人类探索原子结构的历程,使学生认识到:科学家 对原子结构的认识是不断深入的,科学探索是曲折而长期的
课 时 作 业
LK·物理 选修 3-5
教 学 教 法 分 析 课 堂 互 动 探 究
教 学 方 案 设 计
当 堂 双 基 达 标
课 前 自 主 导 学 菜 单
课 时 作 业
LK·物理 选修 3-5
教 学 教 法 分 析 课 堂 互 动 探 究
教 学 方 案 设 计
当 堂 双 基 达 标
课 前 自 主 导 学 菜 单
m.
课 时 作 业
菜
单
LK·物理 选修 3-5
教 学 教 法 分 析 课 堂 互 动 探 究
(2)n=3 时,对应着氢原子巴尔末系中波长最长的光, 设其波长为 λ,因此
最新鲁科版化学必修2《原子结构》教案.doc
化学:鲁科版必修2《原子结构》教案(1)第一章原子结构与元素周期律【教学目的】1. 熟悉原子核、核外电子排布的综合知识2. 掌握元素周期律内容、元素周期表的结构,理解“位-性-构”的关系【重点、难点】原子核结构、元素周期律和周期表[【教学过程】1. 原子结构原子原子核质子个,带正电荷中子个,不带电荷质子数质子数中子数决定原子种类核素:、至少一项不同同位素:同异质子数决定元素的种类核外电子电子数个最外层电子数决定主族元素的化学性质最高正价、族序数质子数和电子数决定原子呈电中性运动特征体积小运动速率高接近光速无固定轨道电子云比喻小黑点的意义原子轨道轨道球形、轨道纺锤形、轨道梅花形等排布规律ZA XZNA Z NZ NZ NZs p d()()()()(),()(),(),()()()()()()⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪⎧⎨⎪⎪⎩⎪⎪→=+→→→→12123():()()(),,12223821832能量最低原理核外电子排布总是尽先排布在能量最低的电子层里各电子层最多容纳的电子数是个最外层电子数不超过个层不超过个次外层电子数不超过个倒数第三层电子数不超过个nK⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪2. 元素周期律和元素周期表元素周期律随着原子序数的递增:原子结构呈周期性变化最外层电子数原子半径呈周期性变化大小元素主要化合价呈周期性变化正价:,负价:--元素的得失电子能力呈周期性变化金属非金属,稀有气体()()()()()()()()1182317 414→→+→+→→⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪元素周期表排列原则按原子序数递增的顺序从左到右排成横行将电子层数相同的元素排成一个横行把最外层电子数相同的元素个别除外按电子层数递增的顺序从上到下排成纵列结构周期个短周期、、周期-含、、种元素长周期、、周期-含、、种元素不完全周期周期最多容纳种元素族个主族由长周期、短周期共同构成共个副族完全由长周期构成共个族,,纵列族稀有气体()()()()()()()()()()(~)()(~)()()123712328845618183273216778910⎧⎨⎪⎪⎩⎪⎪-⎧⎨⎪⎩⎪--⎧⎨⎪⎪⎪IA VIIAIB VIIBVIII⎩⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪元素性质递变规律原子半径化合价金属性和非金属性同周期同主族()()123. 元素周期表中的周期、同主族元素性质递变规律4. 元素在周期表中的位置、元素原子结构与元素性质三者之间的关系。
1、原子结构-鲁科版必修二教案
原子结构-鲁科版必修二教案教学目标1.了解原子结构的基本概念和性质;2.掌握质子数、中子数和电子数之间的关系;3.学习能级模型、电子排布规律及元素周期律,理解它们的实际应用。
教学内容原子结构的基本概念原子的含义原子是由相同种类的原子核和不同数量的电子组成的粒子。
原子核由质子和中子组成,电子围绕原子核中心运动。
原子也是构成物质的最小单元。
原子的稳定性原子核的稳定性由质子数和中子数的比例决定。
如果质子数和中子数比例失衡,则原子核会不稳定,可能发生放射性衰变。
质子数、中子数和电子数的关系原子的质量数等于质子数和中子数之和,原子的电荷数等于质子数-电子数。
通过这些公式可以计算出原子的质子数、中子数和电子数之间的关系。
能级模型能级模型描述了原子中电子的排列方式。
在原子外层,电子处于能量最高的位置。
电子朝着能量最低的位置移动时,会发射光子并释放能量。
电子排布规律电子排布符合一定的规律,即:1.每个能级最多只能容纳一定数量的电子;2.在某个能级上填满电子后,才能进入下一个能级。
元素周期律元素周期律是指基于元素的化学性质规律所形成的周期性表格。
它描述了元素周期性变化的规律,通常用于预测元素的化学性质和反应性。
教学方法讲授老师采用讲授法,向学生介绍原子结构的基本概念和性质,以及质子数、中子数和电子数之间的关系。
实验通过实验让学生探究能级模型、电子排布规律和元素周期律的实际应用。
比如,通过光谱仪观察不同元素的发光情况,让学生深入理解元素周期律的表达方式。
课堂练习和讨论在教学过程中,老师可适时引导学生进行计算实践,鼓励学生彼此讨论问题。
同时,老师可以通过练习、测试和互动让学生逐渐熟悉所学内容,进一步理解原子结构的基本概念和实际应用。
总结在原子结构的教学中,要让学生掌握原子的基础性质和结构,理解电子的排布规律及元素周期律表达的规律。
同时,让学生了解原子结构的实际应用,比如在生活、工业生产和科学研究等方面的应用。
通过教学实践,让学生深入理解原子结构的意义,提升化学学科素养,从而促进综合素质的提升。
高中物理第2章原子结构第3节玻尔的原子模型第4节氢原子光谱与能级结构教学案鲁科版选修3_5
第3节玻尔的原子模型第4节氢原子光谱与能级结构1.了解玻尔理论的主要内容.2.掌握氢原子能级和轨道半径的规律.(重点+难点)3.了解氢原子光谱的特点,知道巴尔末公式及里德伯常量. 4.理解玻尔理论对氢光谱规律的解释.(重点+难点)一、玻尔原子模型1.卢瑟福的原子核式结构模型能够很好的解释α粒子与金箔中原子碰撞所得到的信息,但不能解释原子光谱是特征光谱和原子的稳定性.2.玻尔理论的内容基本假设内容定态假设原子只能处于一系列能量不连续的状态中,在这些状态中,原子是稳定的,电子虽然做加速运动,但并不向外辐射能量,这些状态叫做定态.电子绕原子核做圆周运动,只能处在一些分立的轨道上,它只能在这些轨道上绕核转动而不产生电磁辐射跃迁假设原子从一种定态跃迁到另一定态时,吸收(或辐射)一定频率的光子能量hν,假如,原子从定态E2跃迁到定态E1,辐射的光子能量为hν=E2-E1轨道假设原子的不同能量状态对应于电子的不同运行轨道.原子的能量状态是不连续的,电子不能在任意半径的轨道上运行,只有轨道半径r跟电子动量m e v的乘积满足下式m e vr=nh2π(n=1,2,3,…)这些轨道才是可能的.n是正整数,称为量子数1.(1)玻尔的原子结构假说认为电子的轨道是量子化的.( )(2)电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态.( )(3)电子能吸收任意频率的光子发生跃迁.( )提示:(1)√(2)√(3)×二、氢原子的能级结构1.能级:在玻尔的原子理论中,原子只能处于一系列不连续的能量状态,在每个状态中,原子的能量值都是确定的,各个不连续能量值叫做能级.2.氢原子能级结构图根据玻尔理论,氢原子在不同能级上的能量和相应的电子轨道半径为E n =E 1n(n =1,2,3,…) r n =n 2r 1(n =1,2,3,…)式中,E 1≈-13.6__eV ,r 1=0.53×10-10__m .根据以上结果,把氢原子所有可能的能量值画在一张图上,就得到了氢原子的能级结构图(如图所示).n =∞————————E ∞=0⋮n =5 ————————E 5=-0.54 eVn =4 ————————E 4=-0.85 eVn =3 ————————E 3=-1.51 eVn =2 ————————E 2=-3.4 eVn =1 ————————E 1=-13.6 eV3.玻尔理论对氢原子光谱特征的解释(1)在正常或稳定状态时,原子尽可能处于最低能级,电子受核的作用力最大而处于离核最近的轨道,这时原子的状态叫做基态. (2)电子吸收能量后,从基态跃迁到较高的能级,这时原子的状态叫做激发态. (3)当电子从高能级跃迁到低能级时,原子会辐射能量;当电子从低能级跃迁到高能级时,原子要吸收能量.因为电子的能级是不连续的,所以原子在跃迁时吸收或辐射的能量都不是任意的.这个能量等于电子跃迁时始末两个能级间的能量差.能量差值不同,发射的光频率也不同,我们就能观察到不同颜色的光.1.只要原子吸收能量就能发生跃迁吗?提示:原子在跃迁时吸收或辐射的能量都不是任意的,只有这个能量等于电子跃迁时始末两个能级的能量差,才会发生跃迁.三、氢原子光谱1.氢原子光谱的特点(1)从红外区到紫外区呈现多条具有确定波长(或频率)的谱线; (2)从长波到短波,H α~H δ等谱线间的距离越来越小,表现出明显的规律性.2.巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5…)其中R 叫做里德伯常量,其值为R =1.096 775 81×107 m -1.3.红外区和紫外区:其谱线也都遵循与巴尔末公式类似的关系式.2.(1)光是由原子核内部的电子运动产生的,光谱研究是探索原子核内部结构的一条重要途径.( )(2)稀薄气体的分子在强电场的作用下会变成导体并发光.( )(3)巴耳末公式中的n 既可以取整数也可以取小数.( )提示:(1)× (2)√ (3)×四、玻尔理论对氢光谱的解释1.理论推导:由玻尔理论可知,当激发到高能级E 2的电子跃迁到低能级E 1时,就会释放出能量.根据 E n =-13.6n2 eV(n =1,2,3,…) 得E 2=-13.6n 22 eV ,E 1=-13.6n 21eV 再根据hν=E 2-E 1,得ν=13.6h ⎝ ⎛⎭⎪⎫1n 21-1n 22 此式在形式上与氢原子光谱规律的波长公式一致,当n 1=2,n 2=3,4,5,6,…时就是巴尔末公式.2.巴尔末系:氢原子从相应的能级跃迁到n =2的能级得到的线系.2.玻尔理论是量子化的理论吗?提示:不是,玻尔理论的电子轨道是量子化的,并根据量子化能量计算光的发射和吸收频率,这是量子论的方法;而电子轨道的半径是用经典电磁理论推导的,所以玻尔理论是半经典的量子论.对玻尔原子模型的理解1.轨道量子化:轨道半径只能够是一些不连续的、某些分立的数值.模型中保留了卢瑟福的核式结构,但他认为核外电子的轨道是不连续的,它们只能在某些可能的、分立的轨道上运动,而不是像行星或卫星那样,能量大小可以是任意的量值.例如,氢原子的电子最小轨道半径为r 1=0.053 nm ,其余可能的轨道半径还有0.212 nm 、0.477 nm 、…不可能出现介于这些轨道半径之间的其他值.这样的轨道形式称为轨道量子化.2.能量量子化:与轨道量子化对应的能量不连续的现象.电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态.由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的.这样的能量形式称为能量量子化.3.跃迁:原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即h ν=E 2-E 1(或E 1-E 2).可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式改变半径大小的,而是从一个轨道上“跳跃”到另一个轨道上.玻尔将这种现象叫做电子的跃迁.4.总而言之:根据玻尔的原子理论假设,电子只能在某些可能的轨道上运动,电子在这些轨道上运动时不辐射能量,处于定态.只有电子从一条轨道跃迁到另一条轨道上时才辐射能量,辐射的能量是一份一份的,等于这两个定态的能量差.这就是玻尔理论的主要内容.(1)处于基态的原子是稳定的,而处于激发态的原子是不稳定的.(2)原子的能量与电子的轨道半径相对应,轨道半径大,原子的能量大,轨道半径小,原子的能量小.按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量________(选填“越大”或“越小”).已知氢原子的基态能量为E 1(E 1<0),电子质量为m ,基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为________(普朗克常量为h ).[思路点拨] 根据玻尔原子理论与能量守恒定律求解.[解析] 根据玻尔理论,氢原子中电子离原子核越远,氢原子能量越大,根据能量守恒定律可知:h ν+E 1=12mv 2,所以电子速度为:v =2(hν+E 1)m . [答案] 越大2(hν+E 1)m电子被电离后可认为离原子核无限远,即电子的电势能为零,所以此时电子的能量等于电子的动能.1.(多选)按照玻尔原子理论,下列表述正确的是( )A.核外电子运动轨道半径可取任意值B.氢原子中的电子离原子核越远,氢原子的能量越大C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=E m-E n(m>n) D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量解析:选BC.根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A 错误;氢原子中的电子离原子核越远,能级越高,能量越大,B正确;由跃迁规律可知C正确;氢原子从激发态向基态跃迁的过程中,应辐射能量,D错误.对氢原子能级跃迁的理解1.能级跃迁处于激发态的原子是不稳定的,它会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.如图带箭头的竖线表示原子由较高能级向较低能级的跃迁.所以一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为:N=n(n-1)2=C2n.2.根据玻尔理论,当氢原子从高能级跃迁到低能级时以光子的形式放出能量.原子在始、末两个能级E m和E n(m>n)间跃迁时,辐射光子的能量等于前后两个能级之差(hν=E m-E n),由于原子的能级不连续,所以辐射的光子的能量也不连续,因此产生的光谱是分立的线状光谱.3.原子能量的变化(1)光子的发射原子由高能级向低能级跃迁时以光子的形式放出能量,发射光子的频率由下式决定.hν=E m-E n(E m、E n是始、末两个能级且m>n)能级差越大,放出光子的频率就越高.(2)光子的吸收由于原子的能级是一系列不连续的值,任意两个能级差也是不连续的,故原子发射一些特定频率的光子,同样也只能吸收一些特定频率的光子,原子吸收光子后会从较低能级向较高能级跃迁,吸收光子的能量仍满足hν=E m -E n .(m >n )(3)原子能量的变化当轨道半径减小时,库仑引力做正功,原子的电势能E p 减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.4.原子跃迁时需注意的几个问题(1)注意一群原子和一个原子氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.(2)注意直接跃迁与间接跃迁原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁.两种情况的辐射(或吸收)光子的频率不同.(3)注意跃迁与电离原子跃迁时,不管是吸收还是辐射光子,其光子的能量都必须等于这两个能级的能量差.若想把处于某一定态上的原子的电子电离出去,就需要给原子一定的能量.如基态氢原子电离,其电离能为13.6 eV ,只要能量等于或大于13.6 eV 的光子都能被基态氢原子吸收而电离,只不过入射光子的能量越大,原子电离后产生的电子具有的动能越大.(1)对于处于高能级状态的一群氢原子,每个原子都能向低能级状态跃迁,且跃迁存在多种可能,有的可能一次跃迁到基态,有的可能经几次跃迁到基态.同样,处于基态的氢原子吸收不同能量时,可以跃迁到不同的激发态.(2)实物粒子和原子碰撞时,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的动能大于或等于原子某两定态能量之差,就可使原子受激发而向较高能级跃迁.大量氢原子处于不同能量激发态,发生跃迁时放出三种不同能量的光子,其能量值分别是:1.89 eV ,10.2 eV ,12.09 eV.跃迁发生前这些原子分布在________个激发态能级上,其中最高能级的能量值是________eV(基态能量为-13.6 eV).[思路点拨] 由于发出三种不同能量的光子,由N =n (n -1)2可知,大量氢原子跃迁前处于n =2和n =3两个激发态上.[解析] 大量氢原子跃迁发出三种不同能量的光子,跃迁情况为n =3的激发态到n =2的激发态或直接到n =1的基态,也可能是n =2的激发态到n =1的基态,所以跃迁发生前这些原子分布在2个激发态能级上,最高能量值满足E =-13.6 eV +12.09 eV ,即E 为-1.51 eV.[答案] 2 -1.51解答本题的关键是对氢原子的能级跃迁有深刻的理解.2.如图为氢原子能级示意图的一部分,则氢原子( )A .从n =4能级跃迁到n =3能级比从n =3能级跃迁到n =2能级辐射出电磁波的波长长B .从n =5能级跃迁到n =1能级比从n =5能级跃迁到n =4能级辐射出电磁波的速度大C .若要从低能级跃迁到高能级,必须吸收光子D .从高能级向低能级跃迁时,氢原子核一定向外放出能量解析:选A.氢原子跃迁时辐射出电磁波,h ν=hc λ=E m -E n =ΔE .可见λ与ΔE 成反比,由能级图可得从n =4能级跃迁到n =3能级时,ΔE =0.66 eV ,从n =3能级跃迁到n =2能级时,ΔE =1.89 eV ,所以A 正确;电磁波的速度都等于光速,B 错误;若有电子去碰撞氢原子,入射电子的动能可全部或部分被氢原子吸收,所以只要入射电子的动能大于氢原子两个能级之间的能量差,也可使氢原子由低能级向高能级跃迁,C 错误;从高能级向低能级跃迁时,是氢原子向外放出能量,而非氢原子核,D 错误.对氢原子光谱的理解1.对氢原子光谱的几点说明氢原子是自然界中最简单的原子,通过对它的光谱线的研究,可以了解原子的内部结构和性质.氢原子光谱线是最早发现、研究的光谱线.(1)氢光谱是线状的,不连续的,波长只能是分立的值.(2)谱线之间有一定的关系,可用一个统一的公式1λ=R ⎝ ⎛⎭⎪⎫1m 2-1n 2表达.式中m =2对应巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5….其谱线称为巴尔末线系,是氢原子核外电子由高能级跃迁至n =2的能级时产生的光谱,其中H α~H δ在可见光区.由于光的频率不同,其颜色不同.m =1 对应赖曼线系;m =3 对应帕邢线系即赖曼线系(在紫外区)1λ=R ⎝ ⎛⎭⎪⎫112-1n 2,n =2,3,4… 帕邢线系(在红外区)1λ=R ⎝ ⎛⎭⎪⎫132-1n 2,n =4,5,6… 2.玻尔理论对氢光谱的解释(1)理解导出的氢光谱规律:按玻尔的原子理论,氢原子的电子从能量较高的轨道n 跃迁到能量较低的轨道2时辐射出的光子能量:hν=E n -E 2,但E n =E 1n 2,E 2=E 122,由此可得:hν=-E 1⎝ ⎛⎭⎪⎫122-1n 2,由于ν=c λ,所以上式可写作:1λ=-E 1hc ⎝ ⎛⎭⎪⎫122-1n 2,此式与巴尔末公式比较,形式完全一样.由此可知,氢光谱的巴尔末系是电子从n =3,4,5,6等能级跃迁到n =2的能级时辐射出来的.(2)成功方面①运用经典理论和量子化观念确定了氢原子的各个定态的能量,并由此画出了其能级图.②处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合的很好,由于能级是分立的,辐射光子的波长也是不连续的.③导出了巴尔末公式,并从理论上算出了里德伯常量R 的值,并很好地解释甚至预言了氢原子的其他谱线系.④能够解释原子光谱,每种原子都有特定的能级,原子发生跃迁时,每种原子都有自己的特征谱线,即原子光谱是线状光谱,利用光谱可以鉴别物质和确定物质的组成成分.(3)局限性和原因①局限性:成功地解释了氢原子光谱的实验规律,但不能解释稍微复杂原子的光谱.②原因:保留了经典粒子的观念,把电子的运动仍然看作经典力学描述下的轨道运动.(多选)关于巴尔末公式1λ=R ⎝ ⎛⎭⎪⎫122-1n 2的理解,正确的是( ) A .此公式是巴尔末在研究氢光谱特征时发现的B .公式中n 可取任意值,故氢光谱是连续谱C .公式中n 只能取不小于3的整数,故氢光谱是线状谱D .公式不但适用于氢光谱的分析,也适用于其他原子的光谱分析[思路点拨] 根据巴尔末公式及氢原子能量的量子化解答.[解析] 此公式是巴尔末在研究氢光谱在可见光区的谱线时得到的,只适用于氢光谱的分析,且n 只能取大于等于3的正整数,则λ不能取连续值,故氢原子光谱是线状谱.故选AC.[答案] AC3.对于巴尔末公式下列说法正确的是( )A .所有氢原子光谱的波长都与巴尔末公式相对应B .巴尔末公式只确定了氢原子发光的可见光部分的光的波长C .巴尔末公式确定了氢原子发光的一个线系的波长,其中既有可见光,又有紫外光D .巴尔末公式确定了各种原子发光中的光的波长解析:选C.巴尔末公式只确定了氢原子发光中一个线系波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A 、D 错误;巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,该线系包括可见光和紫外光,B 错误,C 正确.原子的能量与能量变化1.原子的能量包括电子绕核运动的动能和电子与核系统具有的电势能.(1)电子的动能电子绕核做圆周运动所需向心力由库仑力提供k e 2r 2=m v 2r ,故E k n =12mv 2n =ke 22r n. (2)系统的电势能电子在半径为r n 的轨道上所具有的电势能E p n =-ke 2r n(E p ∞=0). (3)原子的能量E n =E k n +E p n =ke 22r n +-ke 2r n =-ke 22r n. 即电子在半径大的轨道上运动时,动能小,电势能大,原子能量大.2.跃迁时电子动能、原子电势能与原子能量的变化:当原子从高能级向低能级跃迁时,轨道半径减小,库仑引力做正功,原子的电势能E p 减小,电子动能增大,向外辐射能量,原子能量减小.反之,原子电势能增大,电子动能减小,原子能量增大.氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV.电子的质量m =9.1×10-31kg ,电荷量e =1.6×10-19 C .求氢原子处于基态时:(1)电子的动能;(2)原子的电势能.[思路点拨] 电子绕核运动的动能可根据库仑力充当向心力求出,电子在某轨道上的动能与电势能之和,为原子在该定态的能量E n ,即E n =E k n +E p n ,由此可求得原子的电势能.[解析] (1)设处于基态的氢原子核外电子速度为v 1,则k e 2r 21=mv 21r 1所以电子动能E k1=12mv 21=ke 22r 1=9×109×(1.6×10-19)22×0.53×10-10×1.6×10-19 eV ≈13.6 eV. (2)因为E 1=E k1+E p1所以E p1=E 1-E k1=-13.6 eV -13.6 eV =-27.2 eV.[答案] (1)13.6 eV (2)-27.2 eV该类问题是玻尔氢原子理论与经典电磁理论的综合应用,用电子绕核的圆周运动规律与轨道半径公式、能级公式的结合求解.4.氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中( )A .原子要吸收光子,电子的动能增大,原子的电势能增大B .原子要放出光子,电子的动能减小,原子的电势能减小C .原子要吸收光子,电子的动能增大,原子的电势能减小D .原子要吸收光子,电子的动能减小,原子的电势能增大解析:选D.根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B 错误;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即:k e 2r 2=m v 2r,又E k=12mv 2,所以E k =ke22r .由此式可知:电子离核越远,即r 越大时,电子的动能越小,故A 、C 错误;由r 变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D 正确.[随堂检测]1.(多选)由玻尔理论可知,下列说法中正确的是( ) A .电子绕核运动有加速度,就要向外辐射电磁波B .处于定态的原子,其电子做变速运动,但它并不向外辐射能量C .原子内电子的可能轨道是连续的D .原子的轨道半径越大,原子的能量越大解析:选BD.按照经典物理学的观点,电子绕核运动有加速度,一定会向外辐射电磁波,很短时间内电子的能量就会消失,与客观事实相矛盾,由玻尔假设可知选项A 、C 错误,B 正确;原子轨道半径越大,原子能量越大,选项D 正确.2.白炽灯发光产生的光谱是( ) A .连续光谱 B .明线光谱 C .原子光谱D .吸收光谱解析:选A.白炽灯发光属于炽热的固体发光,所以发出的是连续光谱.3.如图所示是某原子的能级图a 、b 、c 为原子跃迁所发出的三种波长的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )解析:选C.能量越大,频率越高,波长越短,根据能级图可以看出,三种光的能量按a 、c 、b 的顺序依次降低,所以波长也是按这个顺序依次增大.4.试计算氢原子光谱中巴尔末系的最长波和最短波的波长各是多少?解析:根据巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5,…可得λ=1R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5,…).当n =3时波长最长,其值为λmax =1R ⎝ ⎛⎭⎪⎫122-1n 2=1536R=1536×1.10×107 m ≈6.55×10-7m ,当n →∞时,波长最短,其值为λmin =1R ⎝ ⎛⎭⎪⎫122-0=4R=41.10×107 m ≈3.64×10-7m.答案:6.55×10-7m 3.64×10-7m[课时作业]一、单项选择题1.关于玻尔的原子模型理论,下列说法正确的是( ) A .原子可以处于连续的能量状态中 B .原子的能量状态不是连续的C .原子中的核外电子绕核做变速运动一定向外辐射能量D .原子中的电子绕核运动的轨道半径是连续的解析:选B.玻尔依据经典物理在原子结构问题上遇到了困难,引入量子化观念建立了新的原子模型理论,主要内容为:电子轨道是量子化的,原子的能量是量子化的,处在定态的原子不向外辐射能量.由此可知B 正确.2.关于光谱,下列说法正确的是( ) A .一切光源发出的光谱都是连续谱 B .一切光源发出的光谱都是线状谱 C .稀薄气体发出的光谱是线状谱D .作光谱分析时,利用连续谱和线状谱都可以鉴别物质和确定物质的化学组成 解析:选C.不同光源发出的光谱有连续谱,也有线状谱,故A 、B 错误.稀薄气体发出的光谱是线状谱,C 正确.利用线状谱和吸收光谱都可以进行光谱分析,D 错误.3.一个氢原子从n =3能级跃迁到n =2能级,该氢原子( ) A .放出光子,能量增加 B .放出光子,能量减少 C .吸收光子,能量增加D .吸收光子,能量减少解析:选B.由玻尔理论可知,氢原子由高能级向低能级跃迁时,辐射出光子,原子能量减少.4.汞原子的能级图如图所示,现让一束单色光照射到大量处于基态的汞原子上,汞原子只发出三种不同频率的单色光,那么,关于入射光的能量,下列说法正确的是( )A.可能大于或等于7.7 eVB.可能大于或等于8.8 eVC.一定等于7.7 eVD.包含2.8 eV,5 eV,7.7 eV三种解析:选C.由玻尔理论可知,轨道是量子化的,能级是不连续的,只能发射不连续的单色光,于是要发出三种不同频率的光,只有从基态跃迁到n=3的激发态上,其能量差ΔE =E3-E1=7.7 eV,选项C正确,A、B、D错误.5.已知处于某一能级n上的一群氢原子向低能级跃迁时,能够发出10种不同频率的光,下列能表示辐射光波长最长的那种跃迁的示意图是( )解析:选A.根据玻尔理论,波长最长的跃迁对应着频率最小的跃迁,根据氢原子能级图,频率最小的跃迁对应的是从5到4的跃迁,选项A正确.6.如图甲所示的a、b、c、d为四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为( )A.a元素B.b元素C.c元素D.d元素解析:选B.把矿物的线状谱与几种元素的特征谱线进行对照,b元素的谱线在该线状谱中不存在,故选项B正确,与几个元素的特征谱线不对应的线说明该矿物中还有其他元素.二、多项选择题7.根据玻尔理论,氢原子中量子数n越大( )A.电子的轨道半径越大B.核外电子的速率越大C.氢原子能级的能量越大D.核外电子的电势能越大解析:选ACD.根据玻尔理论,氢原子中量子数n越大,电子的轨道半径就越大,A正确;核外电子绕核做匀速圆周运动,库仑力提供向心力k e 2r 2=m v 2r,则半径越大,速率越小,B 错误;量子数n 越大,氢原子所处的能级能量就越大,C 正确;电子远离原子核的过程中,电场力做负功,电势能增大,D 正确.8.关于经典电磁理论与氢原子光谱之间的关系,下列说法正确的是( ) A .经典电磁理论很容易解释原子的稳定性B .根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上C .根据经典电磁理论,原子光谱应该是连续的D .氢原子光谱彻底否定了经典电磁理论解析:选BC.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上,经典物理学无法解释原子的稳定性,并且原子光谱应该是连续的.氢原子光谱并没有完全否定经典电磁理论,而是要引入新的观念.故正确答案为B 、C.9.如图所示,氢原子可在下列各能级间发生跃迁,设从n =4到n =1能级辐射的电磁波的波长为λ1,从n =4到n =2能级辐射的电磁波的波长为λ2,从n =2到n =1能级辐射的电磁波的波长为λ3,则下列关系式中正确的是( )A .λ1<λ3B .λ3<λ2C .λ3>λ2D .1λ3=1λ1+1λ2解析:选AB.已知从n =4到n =1能级辐射的电磁波的波长为λ1,从n =4到n =2能级辐射的电磁波的波长为λ2,从n =2到n =1能级辐射的电磁波的波长为λ3,则λ1、λ2、λ3的关系为h c λ1>h c λ3>h c λ2,即1λ1>1λ3,λ1<λ3,1λ3>1λ2,λ3<λ2,又h c λ1=h c λ3+h cλ2,即1λ1=1λ3+1λ2,则1λ3=1λ1-1λ2,即正确选项为A 、B.10.氢原子能级如图,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm.以下判断正确的是( )A .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nmB .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级C .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线。
2019_2020学年高中物理第2章原子结构第3节玻尔的原子模型第4节氢原子光谱与能级结构教学案鲁科版选修3_
第3节玻尔的原子模型第4节氢原子光谱与能级结构1.了解玻尔理论的主要内容.2.掌握氢原子能级和轨道半径的规律.(重点+难点)3.了解氢原子光谱的特点,知道巴尔末公式及里德伯常量. 4.理解玻尔理论对氢光谱规律的解释.(重点+难点)一、玻尔原子模型1.卢瑟福的原子核式结构模型能够很好的解释α粒子与金箔中原子碰撞所得到的信息,但不能解释原子光谱是特征光谱和原子的稳定性.2.玻尔理论的内容基本假设内容定态假设原子只能处于一系列能量不连续的状态中,在这些状态中,原子是稳定的,电子虽然做加速运动,但并不向外辐射能量,这些状态叫做定态.电子绕原子核做圆周运动,只能处在一些分立的轨道上,它只能在这些轨道上绕核转动而不产生电磁辐射跃迁假设原子从一种定态跃迁到另一定态时,吸收(或辐射)一定频率的光子能量hν,假如,原子从定态E2跃迁到定态E1,辐射的光子能量为hν=E2-E1轨道假设原子的不同能量状态对应于电子的不同运行轨道.原子的能量状态是不连续的,电子不能在任意半径的轨道上运行,只有轨道半径r跟电子动量m e v的乘积满足下式m e vr=nh2π(n=1,2,3,…)这些轨道才是可能的.n是正整数,称为量子数1.(1)玻尔的原子结构假说认为电子的轨道是量子化的.( )(2)电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态.( )(3)电子能吸收任意频率的光子发生跃迁.( )提示:(1)√(2)√(3)×二、氢原子的能级结构1.能级:在玻尔的原子理论中,原子只能处于一系列不连续的能量状态,在每个状态中,原子的能量值都是确定的,各个不连续能量值叫做能级.2.氢原子能级结构图 根据玻尔理论,氢原子在不同能级上的能量和相应的电子轨道半径为 E n =E 1n 2(n =1,2,3,…) r n =n 2r 1(n =1,2,3,…)式中,E 1≈-13.6__eV ,r 1=0.53×10-10__m .根据以上结果,把氢原子所有可能的能量值画在一张图上,就得到了氢原子的能级结构图(如图所示).n =∞————————E ∞=0⋮n =5 ————————E 5=-0.54 eVn =4 ————————E 4=-0.85 eVn =3 ————————E 3=-1.51 eVn =2 ————————E 2=-3.4 eVn =1 ————————E 1=-13.6 eV3.玻尔理论对氢原子光谱特征的解释(1)在正常或稳定状态时,原子尽可能处于最低能级,电子受核的作用力最大而处于离核最近的轨道,这时原子的状态叫做基态.(2)电子吸收能量后,从基态跃迁到较高的能级,这时原子的状态叫做激发态.(3)当电子从高能级跃迁到低能级时,原子会辐射能量;当电子从低能级跃迁到高能级时,原子要吸收能量.因为电子的能级是不连续的,所以原子在跃迁时吸收或辐射的能量都不是任意的.这个能量等于电子跃迁时始末两个能级间的能量差.能量差值不同,发射的光频率也不同,我们就能观察到不同颜色的光.1.只要原子吸收能量就能发生跃迁吗?提示:原子在跃迁时吸收或辐射的能量都不是任意的,只有这个能量等于电子跃迁时始末两个能级的能量差,才会发生跃迁.三、氢原子光谱1.氢原子光谱的特点(1)从红外区到紫外区呈现多条具有确定波长(或频率)的谱线; (2)从长波到短波,H α~H δ等谱线间的距离越来越小,表现出明显的规律性.2.巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5…)其中R 叫做里德伯常量,其值为R =1.096 775 81×107 m -1.3.红外区和紫外区:其谱线也都遵循与巴尔末公式类似的关系式.2.(1)光是由原子核内部的电子运动产生的,光谱研究是探索原子核内部结构的一条重要途径.( )(2)稀薄气体的分子在强电场的作用下会变成导体并发光.( )(3)巴耳末公式中的n 既可以取整数也可以取小数.( )提示:(1)× (2)√ (3)×四、玻尔理论对氢光谱的解释1.理论推导:由玻尔理论可知,当激发到高能级E 2的电子跃迁到低能级E 1时,就会释放出能量.根据 E n =-13.6n2 eV(n =1,2,3,…) 得E 2=-13.6n 22 eV ,E 1=-13.6n 21eV 再根据hν=E 2-E 1,得ν=13.6h ⎝ ⎛⎭⎪⎫1n 21-1n 22 此式在形式上与氢原子光谱规律的波长公式一致,当n 1=2,n 2=3,4,5,6,…时就是巴尔末公式.2.巴尔末系:氢原子从相应的能级跃迁到n =2的能级得到的线系.2.玻尔理论是量子化的理论吗?提示:不是,玻尔理论的电子轨道是量子化的,并根据量子化能量计算光的发射和吸收频率,这是量子论的方法;而电子轨道的半径是用经典电磁理论推导的,所以玻尔理论是半经典的量子论.对玻尔原子模型的理解1.轨道量子化:轨道半径只能够是一些不连续的、某些分立的数值.模型中保留了卢瑟福的核式结构,但他认为核外电子的轨道是不连续的,它们只能在某些可能的、分立的轨道上运动,而不是像行星或卫星那样,能量大小可以是任意的量值.例如,氢原子的电子最小轨道半径为r 1=0.053 nm ,其余可能的轨道半径还有0.212 nm 、0.477 nm 、…不可能出现介于这些轨道半径之间的其他值.这样的轨道形式称为轨道量子化.2.能量量子化:与轨道量子化对应的能量不连续的现象.电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态.由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的.这样的能量形式称为能量量子化.3.跃迁:原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即h ν=E 2-E 1(或E 1-E 2).可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式改变半径大小的,而是从一个轨道上“跳跃”到另一个轨道上.玻尔将这种现象叫做电子的跃迁.4.总而言之:根据玻尔的原子理论假设,电子只能在某些可能的轨道上运动,电子在这些轨道上运动时不辐射能量,处于定态.只有电子从一条轨道跃迁到另一条轨道上时才辐射能量,辐射的能量是一份一份的,等于这两个定态的能量差.这就是玻尔理论的主要内容.(1)处于基态的原子是稳定的,而处于激发态的原子是不稳定的.(2)原子的能量与电子的轨道半径相对应,轨道半径大,原子的能量大,轨道半径小,原子的能量小.按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量________(选填“越大”或“越小”).已知氢原子的基态能量为E 1(E 1<0),电子质量为m ,基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为________(普朗克常量为h ).[思路点拨] 根据玻尔原子理论与能量守恒定律求解.[解析] 根据玻尔理论,氢原子中电子离原子核越远,氢原子能量越大,根据能量守恒定律可知:h ν+E 1=12mv 2,所以电子速度为:v =2(hν+E 1)m .[答案] 越大2(hν+E1)m电子被电离后可认为离原子核无限远,即电子的电势能为零,所以此时电子的能量等于电子的动能.1.(多选)按照玻尔原子理论,下列表述正确的是( )A.核外电子运动轨道半径可取任意值B.氢原子中的电子离原子核越远,氢原子的能量越大C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=E m-E n(m>n) D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量解析:选BC.根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A 错误;氢原子中的电子离原子核越远,能级越高,能量越大,B正确;由跃迁规律可知C正确;氢原子从激发态向基态跃迁的过程中,应辐射能量,D错误.对氢原子能级跃迁的理解1.能级跃迁处于激发态的原子是不稳定的,它会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.如图带箭头的竖线表示原子由较高能级向较低能级的跃迁.所以一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为:N=n(n-1)2=C2n.2.根据玻尔理论,当氢原子从高能级跃迁到低能级时以光子的形式放出能量.原子在始、末两个能级E m和E n(m>n)间跃迁时,辐射光子的能量等于前后两个能级之差(hν=E m-E n),由于原子的能级不连续,所以辐射的光子的能量也不连续,因此产生的光谱是分立的线状光谱.3.原子能量的变化(1)光子的发射原子由高能级向低能级跃迁时以光子的形式放出能量,发射光子的频率由下式决定.hν=E m-E n(E m、E n是始、末两个能级且m>n)能级差越大,放出光子的频率就越高.(2)光子的吸收由于原子的能级是一系列不连续的值,任意两个能级差也是不连续的,故原子发射一些特定频率的光子,同样也只能吸收一些特定频率的光子,原子吸收光子后会从较低能级向较高能级跃迁,吸收光子的能量仍满足hν=E m-E n.(m>n)(3)原子能量的变化当轨道半径减小时,库仑引力做正功,原子的电势能E p减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.4.原子跃迁时需注意的几个问题(1)注意一群原子和一个原子氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.(2)注意直接跃迁与间接跃迁原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁.两种情况的辐射(或吸收)光子的频率不同.(3)注意跃迁与电离原子跃迁时,不管是吸收还是辐射光子,其光子的能量都必须等于这两个能级的能量差.若想把处于某一定态上的原子的电子电离出去,就需要给原子一定的能量.如基态氢原子电离,其电离能为13.6 eV,只要能量等于或大于13.6 eV的光子都能被基态氢原子吸收而电离,只不过入射光子的能量越大,原子电离后产生的电子具有的动能越大.(1)对于处于高能级状态的一群氢原子,每个原子都能向低能级状态跃迁,且跃迁存在多种可能,有的可能一次跃迁到基态,有的可能经几次跃迁到基态.同样,处于基态的氢原子吸收不同能量时,可以跃迁到不同的激发态.(2)实物粒子和原子碰撞时,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的动能大于或等于原子某两定态能量之差,就可使原子受激发而向较高能级跃迁.大量氢原子处于不同能量激发态,发生跃迁时放出三种不同能量的光子,其能量值分别是:1.89 eV,10.2 eV,12.09 eV.跃迁发生前这些原子分布在________个激发态能级上,其中最高能级的能量值是________eV(基态能量为-13.6 eV).[思路点拨] 由于发出三种不同能量的光子,由N =n (n -1)2可知,大量氢原子跃迁前处于n =2和n =3两个激发态上.[解析] 大量氢原子跃迁发出三种不同能量的光子,跃迁情况为n =3的激发态到n =2的激发态或直接到n =1的基态,也可能是n =2的激发态到n =1的基态,所以跃迁发生前这些原子分布在2个激发态能级上,最高能量值满足E =-13.6 eV +12.09 eV ,即E 为-1.51 eV.[答案] 2 -1.51解答本题的关键是对氢原子的能级跃迁有深刻的理解.2.如图为氢原子能级示意图的一部分,则氢原子( )A .从n =4能级跃迁到n =3能级比从n =3能级跃迁到n =2能级辐射出电磁波的波长长B .从n =5能级跃迁到n =1能级比从n =5能级跃迁到n =4能级辐射出电磁波的速度大C .若要从低能级跃迁到高能级,必须吸收光子D .从高能级向低能级跃迁时,氢原子核一定向外放出能量解析:选A.氢原子跃迁时辐射出电磁波,h ν=hc λ=E m -E n =ΔE .可见λ与ΔE 成反比,由能级图可得从n =4能级跃迁到n =3能级时,ΔE =0.66 eV ,从n =3能级跃迁到n =2能级时,ΔE =1.89 eV ,所以A 正确;电磁波的速度都等于光速,B 错误;若有电子去碰撞氢原子,入射电子的动能可全部或部分被氢原子吸收,所以只要入射电子的动能大于氢原子两个能级之间的能量差,也可使氢原子由低能级向高能级跃迁,C 错误;从高能级向低能级跃迁时,是氢原子向外放出能量,而非氢原子核,D 错误.对氢原子光谱的理解1.对氢原子光谱的几点说明氢原子是自然界中最简单的原子,通过对它的光谱线的研究,可以了解原子的内部结构和性质.氢原子光谱线是最早发现、研究的光谱线.(1)氢光谱是线状的,不连续的,波长只能是分立的值.(2)谱线之间有一定的关系,可用一个统一的公式1λ=R ⎝ ⎛⎭⎪⎫1m 2-1n 2表达. 式中m =2对应巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5….其谱线称为巴尔末线系,是氢原子核外电子由高能级跃迁至n =2的能级时产生的光谱,其中H α~H δ在可见光区.由于光的频率不同,其颜色不同.m =1 对应赖曼线系;m =3 对应帕邢线系即赖曼线系(在紫外区)1λ=R ⎝ ⎛⎭⎪⎫112-1n 2,n =2,3,4… 帕邢线系(在红外区)1λ=R ⎝ ⎛⎭⎪⎫132-1n 2,n =4,5,6… 2.玻尔理论对氢光谱的解释(1)理解导出的氢光谱规律:按玻尔的原子理论,氢原子的电子从能量较高的轨道n 跃迁到能量较低的轨道2时辐射出的光子能量:hν=E n -E 2,但E n =E 1n 2,E 2=E 122,由此可得:hν=-E 1⎝ ⎛⎭⎪⎫122-1n 2,由于ν=c λ,所以上式可写作:1λ=-E 1hc ⎝ ⎛⎭⎪⎫122-1n 2,此式与巴尔末公式比较,形式完全一样.由此可知,氢光谱的巴尔末系是电子从n =3,4,5,6等能级跃迁到n =2的能级时辐射出来的.(2)成功方面①运用经典理论和量子化观念确定了氢原子的各个定态的能量,并由此画出了其能级图.②处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合的很好,由于能级是分立的,辐射光子的波长也是不连续的.③导出了巴尔末公式,并从理论上算出了里德伯常量R的值,并很好地解释甚至预言了氢原子的其他谱线系.④能够解释原子光谱,每种原子都有特定的能级,原子发生跃迁时,每种原子都有自己的特征谱线,即原子光谱是线状光谱,利用光谱可以鉴别物质和确定物质的组成成分.(3)局限性和原因①局限性:成功地解释了氢原子光谱的实验规律,但不能解释稍微复杂原子的光谱.②原因:保留了经典粒子的观念,把电子的运动仍然看作经典力学描述下的轨道运动.(多选)关于巴尔末公式1λ=R⎝⎛⎭⎪⎫122-1n2的理解,正确的是( )A.此公式是巴尔末在研究氢光谱特征时发现的B.公式中n可取任意值,故氢光谱是连续谱C.公式中n只能取不小于3的整数,故氢光谱是线状谱D.公式不但适用于氢光谱的分析,也适用于其他原子的光谱分析[思路点拨] 根据巴尔末公式及氢原子能量的量子化解答.[解析] 此公式是巴尔末在研究氢光谱在可见光区的谱线时得到的,只适用于氢光谱的分析,且n只能取大于等于3的正整数,则λ不能取连续值,故氢原子光谱是线状谱.故选AC.[答案] AC3.对于巴尔末公式下列说法正确的是( )A.所有氢原子光谱的波长都与巴尔末公式相对应B.巴尔末公式只确定了氢原子发光的可见光部分的光的波长C.巴尔末公式确定了氢原子发光的一个线系的波长,其中既有可见光,又有紫外光D.巴尔末公式确定了各种原子发光中的光的波长解析:选 C.巴尔末公式只确定了氢原子发光中一个线系波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A、D错误;巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,该线系包括可见光和紫外光,B错误,C正确.原子的能量与能量变化1.原子的能量包括电子绕核运动的动能和电子与核系统具有的电势能.(1)电子的动能电子绕核做圆周运动所需向心力由库仑力提供 k e 2r 2=m v 2r ,故E k n =12mv 2n =ke 22r n. (2)系统的电势能电子在半径为r n 的轨道上所具有的电势能E p n =-ke 2r n(E p ∞=0). (3)原子的能量E n =E k n +E p n =ke 22r n +-ke 2r n =-ke 22r n. 即电子在半径大的轨道上运动时,动能小,电势能大,原子能量大.2.跃迁时电子动能、原子电势能与原子能量的变化:当原子从高能级向低能级跃迁时,轨道半径减小,库仑引力做正功,原子的电势能E p 减小,电子动能增大,向外辐射能量,原子能量减小.反之,原子电势能增大,电子动能减小,原子能量增大.氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV.电子的质量m =9.1×10-31kg ,电荷量e =1.6×10-19 C .求氢原子处于基态时:(1)电子的动能;(2)原子的电势能.[思路点拨] 电子绕核运动的动能可根据库仑力充当向心力求出,电子在某轨道上的动能与电势能之和,为原子在该定态的能量E n ,即E n =E k n +E p n ,由此可求得原子的电势能.[解析] (1)设处于基态的氢原子核外电子速度为v 1,则k e 2r 21=mv 21r 1所以电子动能E k1=12mv 21=ke 22r 1=9×109×(1.6×10-19)22×0.53×10-10×1.6×10-19 eV ≈13.6 eV. (2)因为E 1=E k1+E p1所以E p1=E 1-E k1=-13.6 eV -13.6 eV =-27.2 eV.[答案] (1)13.6 eV (2)-27.2 eV该类问题是玻尔氢原子理论与经典电磁理论的综合应用,用电子绕核的圆周运动规律与轨道半径公式、能级公式的结合求解.4.氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中( )A .原子要吸收光子,电子的动能增大,原子的电势能增大B .原子要放出光子,电子的动能减小,原子的电势能减小C .原子要吸收光子,电子的动能增大,原子的电势能减小D .原子要吸收光子,电子的动能减小,原子的电势能增大解析:选 D.根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B 错误;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即:k e 2r 2=m v 2r,又E k=12mv 2,所以E k =ke22r .由此式可知:电子离核越远,即r 越大时,电子的动能越小,故A 、C 错误;由r 变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D 正确.[随堂检测]1.(多选)由玻尔理论可知,下列说法中正确的是( ) A .电子绕核运动有加速度,就要向外辐射电磁波B .处于定态的原子,其电子做变速运动,但它并不向外辐射能量C .原子内电子的可能轨道是连续的D .原子的轨道半径越大,原子的能量越大解析:选BD.按照经典物理学的观点,电子绕核运动有加速度,一定会向外辐射电磁波,很短时间内电子的能量就会消失,与客观事实相矛盾,由玻尔假设可知选项A 、C 错误,B 正确;原子轨道半径越大,原子能量越大,选项D 正确.2.白炽灯发光产生的光谱是( ) A .连续光谱 B .明线光谱 C .原子光谱D .吸收光谱解析:选A.白炽灯发光属于炽热的固体发光,所以发出的是连续光谱.3.如图所示是某原子的能级图a 、b 、c 为原子跃迁所发出的三种波长的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )解析:选C.能量越大,频率越高,波长越短,根据能级图可以看出,三种光的能量按a 、c 、b 的顺序依次降低,所以波长也是按这个顺序依次增大.4.试计算氢原子光谱中巴尔末系的最长波和最短波的波长各是多少?解析:根据巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5,…可得λ=1R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5,…).当n =3时波长最长,其值为λmax =1R ⎝ ⎛⎭⎪⎫122-1n 2=1536R=1536×1.10×107 m ≈6.55×10-7m ,当n →∞时,波长最短,其值为λmin =1R ⎝ ⎛⎭⎪⎫122-0=4R=41.10×107 m ≈3.64×10-7m.答案:6.55×10-7m 3.64×10-7m[课时作业]一、单项选择题1.关于玻尔的原子模型理论,下列说法正确的是( ) A .原子可以处于连续的能量状态中 B .原子的能量状态不是连续的C.原子中的核外电子绕核做变速运动一定向外辐射能量D.原子中的电子绕核运动的轨道半径是连续的解析:选B.玻尔依据经典物理在原子结构问题上遇到了困难,引入量子化观念建立了新的原子模型理论,主要内容为:电子轨道是量子化的,原子的能量是量子化的,处在定态的原子不向外辐射能量.由此可知B正确.2.关于光谱,下列说法正确的是( )A.一切光源发出的光谱都是连续谱B.一切光源发出的光谱都是线状谱C.稀薄气体发出的光谱是线状谱D.作光谱分析时,利用连续谱和线状谱都可以鉴别物质和确定物质的化学组成解析:选C.不同光源发出的光谱有连续谱,也有线状谱,故A、B错误.稀薄气体发出的光谱是线状谱,C正确.利用线状谱和吸收光谱都可以进行光谱分析,D错误.3.一个氢原子从n=3能级跃迁到n=2能级,该氢原子( )A.放出光子,能量增加B.放出光子,能量减少C.吸收光子,能量增加D.吸收光子,能量减少解析:选 B.由玻尔理论可知,氢原子由高能级向低能级跃迁时,辐射出光子,原子能量减少.4.汞原子的能级图如图所示,现让一束单色光照射到大量处于基态的汞原子上,汞原子只发出三种不同频率的单色光,那么,关于入射光的能量,下列说法正确的是( )A.可能大于或等于7.7 eVB.可能大于或等于8.8 eVC.一定等于7.7 eVD.包含2.8 eV,5 eV,7.7 eV三种解析:选 C.由玻尔理论可知,轨道是量子化的,能级是不连续的,只能发射不连续的单色光,于是要发出三种不同频率的光,只有从基态跃迁到n=3的激发态上,其能量差ΔE =E3-E1=7.7 eV,选项C正确,A、B、D错误.5.已知处于某一能级n上的一群氢原子向低能级跃迁时,能够发出10种不同频率的光,下列能表示辐射光波长最长的那种跃迁的示意图是( )解析:选 A.根据玻尔理论,波长最长的跃迁对应着频率最小的跃迁,根据氢原子能级图,频率最小的跃迁对应的是从5到4的跃迁,选项A正确.6.如图甲所示的a、b、c、d为四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为( )A.a元素B.b元素C.c元素D.d元素解析:选B.把矿物的线状谱与几种元素的特征谱线进行对照,b元素的谱线在该线状谱中不存在,故选项B正确,与几个元素的特征谱线不对应的线说明该矿物中还有其他元素.二、多项选择题7.根据玻尔理论,氢原子中量子数n越大( )A.电子的轨道半径越大B.核外电子的速率越大C.氢原子能级的能量越大D.核外电子的电势能越大解析:选ACD.根据玻尔理论,氢原子中量子数n越大,电子的轨道半径就越大,A正确;核外电子绕核做匀速圆周运动,库仑力提供向心力k e2r2=mv2r,则半径越大,速率越小,B错误;量子数n越大,氢原子所处的能级能量就越大,C正确;电子远离原子核的过程中,电场力做负功,电势能增大,D正确.8.关于经典电磁理论与氢原子光谱之间的关系,下列说法正确的是( )A.经典电磁理论很容易解释原子的稳定性B.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上C.根据经典电磁理论,原子光谱应该是连续的D .氢原子光谱彻底否定了经典电磁理论解析:选BC.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上,经典物理学无法解释原子的稳定性,并且原子光谱应该是连续的.氢原子光谱并没有完全否定经典电磁理论,而是要引入新的观念.故正确答案为B 、C.9.如图所示,氢原子可在下列各能级间发生跃迁,设从n =4到n =1能级辐射的电磁波的波长为λ1,从n =4到n =2能级辐射的电磁波的波长为λ2,从n =2到n =1能级辐射的电磁波的波长为λ3,则下列关系式中正确的是( )A .λ1<λ3B .λ3<λ2C .λ3>λ2D .1λ3=1λ1+1λ2解析:选AB.已知从n =4到n =1能级辐射的电磁波的波长为λ1,从n =4到n =2能级辐射的电磁波的波长为λ2,从n =2到n =1能级辐射的电磁波的波长为λ3,则λ1、λ2、λ3的关系为h c λ1>h c λ3>h c λ2,即1λ1>1λ3,λ1<λ3,1λ3>1λ2,λ3<λ2,又h c λ1=h c λ3+h c λ2,即1λ1=1λ3+1λ2,则1λ3=1λ1-1λ2,即正确选项为A 、B.10.氢原子能级如图,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm.以下判断正确的是( )A .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nmB .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级C .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线D .用波长为633 nm 的光照射,不能使氢原子从n =2跃迁到n =3的能级解析:选CD.根据氢原子的能级图和能级跃迁规律,当氢原子从n =2能级跃迁到n =1的能级时,辐射光的波长一定小于656 nm ,因此A 选项错误;根据发生跃迁只能吸收和辐。
高中物理 第2章 原子结构 第4讲 氢原子光谱与能级结构学案 鲁科版选修
高中物理第2章原子结构第4讲氢原子光谱与能级结构学案鲁科版选修1、知道氢原子光谱的实验规律,了解巴尔末公式及里德伯常量、2、理解玻尔理论对氢原子光谱规律的解释、一、氢原子光谱1、氢原子光谱的特点:(1)从红外区到紫外区呈现多条具有确定波长的谱线;(2)从长波到短波,Hα~Hδ等谱线间的距离越来越小,表现出明显的规律性、2、巴尔末公式:=R(n=3,4,5,…)其中R叫做里德伯常量,其值为R=1、09677581107 m-1、二、玻尔理论对氢原子光谱的解释1、巴尔末系氢原子从n≥3的能级跃迁到n=2的能级得到的线系、2、玻尔理论的局限性玻尔理论解释了原子结构和氢原子光谱的关系,但无法计算光谱的强度,对于其他元素更为复杂的光谱,理论与实验差别很大、一、氢原子光谱的实验规律1、氢原子的光谱从氢气放电管可以获得氢原子光谱,如图1所示、图12、氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性、3、巴尔末公式(1)巴尔末对氢原子光谱的谱线进行研究得到了下面的公式:=R(-)n=3,4,5…该公式称为巴尔末公式、(2)公式中只能取n≥3的整数,不能连续取值,波长是分立的值、4、赖曼线系和帕邢线系:氢原子光谱除了存在巴尔末线系外,还存在其他一些线系、例如:赖曼线系(在紫外区):=R(n=2,3,4,…)帕邢线系(在红外区):=R(n=4,5,6,…)例1 下列关于巴尔末公式=R的理解,正确的是()A、此公式是巴尔末在研究氢原子光谱特征时发现的B、公式中n可取任意值,故氢原子光谱是连续的光谱C、公式中n只能取不小于3的整数值,故氢原子光谱是分立的光谱D、公式不但适用于氢原子的光谱,也适用于其他原子的光谱答案AC解析此公式是巴尔末在研究氢原子光谱在可见光区的14条谱线中得到的,只适用于氢原子光谱的分析,且n只能取大于等于3的整数,则λ不能取连续值,故氢原子光谱是分立的光谱,故A、C对,B、D错、二、玻尔理论对氢原子光谱的解释1、理论导出的氢光谱规律:按照玻尔的原子理论,氢原子的电子从能量较高的轨道n跃迁到能量较低的轨道2时辐射出的光子能量hν=En-E2,又En=,E2=,由此可得hν=-E1,由于ν=,所以上式可写作=-,此式与巴尔末公式比较,形式完全一样、由此可知,氢光谱的巴尔末线系是电子从n=3,4,5,…等能级跃迁到n=2的能级时辐射出来的、2、玻尔理论的成功之处(1)运用经典理论和量子化观念确定了氢原子的各个定态的能量,并由此画出了氢原子的能级图、(2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合得很好,由于能级是分立的,辐射光子的波长是不连续的、(3)导出了巴尔末公式,并从理论上算出了里德伯常量R的值,并很好地解释甚至预言了氢原子的其他谱线系、(4)能够解释原子光谱,每种原子都有特定的能级,原子发生跃迁时,每种原子都有自己的特征谱线,即原子光谱是线状光谱,利用光谱可以鉴别物质和确定物质的组成成分、例2 氢原子光谱的巴尔末公式是=R(n=3,4,5,…),对此,下列说法正确的是()A、巴尔末依据核式结构理论总结出巴尔末公式B、巴尔末公式反映了氢原子发光的连续性C、巴尔末依据对氢原子光谱的分析总结出巴尔末公式D、巴尔末公式准确反映了氢原子所有光谱的波长,其波长的分立值不是人为规定的答案C解析巴尔末公式只确定了氢原子发光中的一个线系波长,不能描述氢原子发出的各种光的波长,也不能描述其他原子发出的光,故D错误、巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,故A、B错误,C正确、借题发挥巴尔末公式的应用方法及注意问题(1)巴尔末公式反映了氢原子发光的规律特征,不能描述其他原子、(2)公式中n只能取大于等于3的整数,不能连续取值,因此波长也只是分立的值、(3)公式是在对可见光区的四条谱线分析时总结出的,但在紫外区的谱线也适用、(4)应用时熟记公式,当n取不同值时求出对应的波长λ、氢原子光谱的基本概念1、下列有关氢原子光谱、巴尔末公式和玻尔理论的说法,正确的是()A、氢原子光谱说明氢原子只能发出特定频率的光B、氢原子光谱说明氢原子能级是分立的C、氢原子光谱线的频率与氢原子能级的能量差无关D、所有氢原子光谱的波长都与巴尔末公式相对应答案AB2、仔细观察氢原子的光谱,发现它只有几条不连续的亮线,其原因是()A、氢原子只有几个能级B、氢原子只能发出平行光C、氢原子有时发光,有时不发光D、氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的答案D氢原子光谱的实验规律3、下列对于巴尔末公式的说法正确的是()A、所有氢原子光谱的波长都与巴尔末公式相对应B、巴尔末公式只确定了氢原子发出的可见光部分的光的波长C、巴尔末公式确定了氢原子发光的一个线系的波长,其中既有可见光,又有紫外光D、巴尔末公式确定了各种原子发光中的光的波长答案C解析巴尔末公式只确定了氢原子发光中一个线系的波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A、D错误;巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,该线系包括可见光和紫外光,B错误,C正确、4、巴尔末系谱线波长满足巴尔末公式=R(-),n=3,4,5,……在氢原子光谱可见光(400 nm<λ<700 nm)区,最长波长与最短波长之比为()A、B、C、D、答案D解析巴尔末系的前四条谱线在可见光区,n的取值分别为3、4、5、6、n越小,λ越大,故n=3时波长最大,λmax =;n=6时对应的可见光波长最小,λmin=,故=,D正确、(时间:60分钟)题组一对氢原子光谱和特征谱线的理解1、下列叙述中符合物理学史实的有()A、汤姆孙通过研究阴极射线实验,发现了电子的存在B、卢瑟福通过对α粒子散射实验现象的分析,证明了原子是可以再分的C、巴尔末根据氢原子光谱分析,总结出了氢原子光谱可见光区波长公式D、玻尔提出的原子模型,彻底否定了卢瑟福的原子核式结构学说答案AC解析汤姆孙通过研究阴极射线实验,发现了电子,证实了原子是可以再分的,A对、B错;玻尔提出的原子模型继承了卢瑟福原子核式结构模型的部分内容,而不是彻底否定,D 错;巴尔末总结出了氢原子光谱的巴尔末公式,故C正确、2、下列对氢原子光谱实验规律的认识中,正确的是()A、因为氢原子核外只有一个电子,所以氢原子只能产生一种波长的光B、氢原子产生的光谱是一系列波长不连续的谱线C、氢原子产生的光谱是一系列亮度不连续的谱线D、氢原子产生的光的波长大小与氢气放电管放电强弱有关答案B解析氢原子光谱是线状谱,波长是一系列不连续的、分立的特征谱线,并不是只含有一种波长的光,也不是亮度不连续的谱线,B对,A、C错;氢原子光谱是氢原子的特征谱线,只要是氢原子发出的光的光谱就相同,与放电管的放电强弱无关,D错、3、如图1甲所示的a、b、c、d为四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为( )图1A、a元素B、b元素C、c元素D、d元素答案B解析由矿物的线状谱与几种元素的特征谱线进行对照,b元素的谱线在该线状谱中不存在,故选B、与几个元素的特征谱线不对应的线说明该矿物中还有其他元素、题组二氢原子光谱规律的应用4、已知氢原子的基态能量为E1,激发态能量En=,其中n=2,3,…,用h表示普朗克常量,c表示真空中的光速、能使氢原子从第一激发态电离的光子的最大波长为()A、-B、-C、-D、-答案C解析根据从第一激发态到电离状态吸收的能量ΔE=0-=-,根据ΔE=hν,ν=,可知λ===-,因此正确答案为C、5、氢原子光谱巴尔末系最小波长与最大波长之比为()A、B、C、D、答案A解析由巴尔末公式=R(-),n=3,4,5,…当n =∞时,有最小波长λ1,=R,当n=3时,有最大波长λ2,=R(-),得=、6、氢原子光谱的巴尔末系中波长最长的光波的光子能量为E1,其次为E2,则为()A、B、C、D、答案A解析由=R得:当n=3时,波长最长,=R,当n=4时,波长次之,=R,解得:=,由E=h得:==,故A对、7、密立根油滴实验进一步证实了电子的存在、1885年瑞士的中学教师巴尔末发现,氢原子光谱中可见光部分的四条谱线的波长可归纳成一个简单的经验公式:=R(-),n为大于2的整数,R 为里德伯常量、1913年,丹麦物理学家玻尔受到巴尔末公式的启发,同时还吸取了普朗克的量子假说、爱因斯坦的光子假说和卢瑟福的原子核式结构模型,提出了自己的原子理论、根据玻尔理论,推导出了氢原子光谱谱线的波长公式:=R(-),m与n都是正整数,且n>m、当m取定一个数值时,不同数值的n得出的谱线属于同一个线系、如:m=1,n=2、3、4、……组成的线系叫赖曼系;m=2,n=3、4、5、……组成的线系叫巴尔末系;m=3,n=4、5、6、……组成的线系叫帕邢系;m=4,n=5、6、7、……组成的线系叫布喇开系;m=5,n=6、7、8、……组成的线系叫普丰德系;以上线系只有一个在紫外光区,这个线系是()A、赖曼系B、帕邢系C、布喇开系D、普丰德系答案A解析在真空中,电磁波的波长和频率互成反比例关系,波长最长的频率最小、紫外光区的频率较大,根据氢原子光谱谱线的波长公式:=R(-)得这个线系是赖曼系、故A正确,B、C、D错误、8、氢原子光谱除了巴尔末系外,还有赖曼系、帕邢系等,其中帕邢系的公式为=R,n=4、5、6…,R=1、10107 m-1、若已知帕邢系的氢原子光谱在红外线区域,试求:(1)n=6时,对应的波长;(2)帕邢系形成的谱线在真空中的波速为多大?n=6时,光的频率为多大?答案(1)1、0910-6 m(2)3、0108 m/s2、751014 Hz解析(1)由帕邢系公式=R,当n=6时,得λ≈1、0910-6 m、(2)帕邢系形成的谱线在红外区域,而红外线属于电磁波,在真空中以光速传播,故波速为光速c=3、0108 m/s,由v==λν,得ν===Hz≈2、751014 Hz、9、在氢原子的光谱的紫外区的谱线系中有多条谱线,试利用莱曼系的公式=R,n=2,3,4,…,计算氢原子光谱紫外线的最长波和最短波的波长、(R=1、10107m-1,结果均保留三位有效数字)答案1、2110-7 m9、0910-8 m解析根据莱曼系公式:=R,n=2,3,4,…可得λ=、当n=2时波长最长,其值为λ===m≈1、2110-7 m、当n=∞时,波长最短,其值为λ===m≈9、0910-8 m、第 1 页共 1 页。
高中物理第2章原子结构2.4氢原子光谱与能级结构教案鲁科版选修3_5 (2)
第四节氢原子光谱与能级结构三维教学目标1、知识与技能(1)了解光谱的定义和分类;(2)了解氢原子光谱的实验规律,知道巴耳末系;(3)了解经典原子理论的困难。
2、过程与方法:通过本节的学习,感受科学发展与进步的坎坷。
3、情感、态度与价值观:培养我们探究科学、认识科学的能力,提高自主学习的意识。
教学重点:氢原子光谱的实验规律。
教学难点:经典理论的困难。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备。
(一)引入新课粒子散射实验使人们认识到原子具有核式结构,但电子在核外如何运动呢?它的能量怎样变化呢?通过这节课的学习我们就来进一步了解有关的实验事实。
(二)进行新课1、光谱(结合课件展示)早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。
(如图所示)光谱是电磁辐射(不论是在可见光区域还是在不可见光区域)的波长成分和强度分布的记录。
有时只是波长成分的记录。
(1)发射光谱物体发光直接产生的光谱叫做发射光谱。
发射光谱可分为两类:连续光谱和明线光谱。
问题:什么是连续光谱和明线光谱?(连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。
只含有一些不连续的亮线的光谱叫做明线光谱。
明线光谱中的亮线叫谱线,各条谱线对应不同波长的光)炽热的固体、液体和高压气体的发射光谱是连续光谱。
例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。
如图所示。
稀薄气体或金属的蒸气的发射光谱是明线光谱。
明线光谱是由游离状态的原子发射的,所以也叫原子的光谱。
实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。
如图所示。
(2)吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。
各种原子的吸收光谱中的每一条暗线都跟该种原子的原子的发射光谱中的一条明线相对应。
鲁科版物理选修3-5课件:第2章 第4节 氢原子光谱与能级结构
返回首页
下一页
2.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所
对应的 n,并计算其波长. 【解析】 对应的 n 越小,波长越长,故当 n=3 时,氢原子发光所对应的
波长最长.
当 n=3 时,λ11=1.10×107×212-312m-1 解得 λ1=6.55×10-7 m.
尔理论还预言了当时尚未发现的氢原子的其他光谱线系,这些线系后来相继被发
现,也都跟玻尔理论的预言相符.
上一页
返回首页
下一页
2.局限性及原因 (1)局限性:成功地解释了氢原子光谱的实验规律,但不能解释稍复杂原子 的光谱现象. (2)原因:保留了经典粒子的观念,把电子的运动仍然看作经典力学描述下 的轨道运动.
上一页
返回首页
下一页
1.一群氢原子由 n=3 能级自发跃迁至低能级发出的谱线中属于巴尔末线 系的有________条.
【解析】 在氢原子光谱中,电子从较高能级跃迁到 n=2 能级发光的谱线属于巴尔末线系.因此只有由 n=3 能级跃迁至 n=2 能级的 1 条谱线属巴尔末 线系.
【答案】 1
上一页
上一页
返回首页
下一页
[核心点击]
1.成功方面
(1)运用经典理论和量子化观念确定了氢原子的各个定态的能量并由此画出
能级图.
(2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际
符合的很好,由于能级是分立的,辐射光子的波长也是不连续的.
(3)不仅成功地解释了氢光谱的巴尔末系,计算出了里德伯常数,而且,玻
上一页
返回首页
下一页
[后思考] 氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同? 【提示】 氢原子光谱是分立的线状谱.它在可见光区的谱线满足巴耳末 公式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.
鲁科版选修3-5 2.4 氢原子光谱与能级结构 学案
第4节氢原子光谱与能级结构学案学习目标:1.了解光谱、连续谱和线状谱等概念.2.知道氢原子光谱的实验规律.3.知道巴耳末公式、里德伯常量的概念.根底知识:一、氢原子光谱1.气体发光原理(1)气体放电:玻璃管中稀薄气体在强电场的作用下会电离,形成自由移动的正负电荷,于是气体变成导体,导电时会发光.(2)氢光谱:从氢气放电管可以获得氢原子光谱.2.巴耳末公式(1)公式:1λ=R⎝⎛⎭⎪⎫122-1n2(n=3,4,5…).(2)意义:巴耳末公式以简洁的形式反映了氢原子的线状光谱,即辐射波长的分立特征.二.玻尔理论对氢光谱的解释(1)解释巴耳末公式①按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=E n-E m。
②巴耳末公式中的正整数n和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n和2。
并且理论上的计算和实验测量的里德伯常量符合得很好。
(2)解释氢原子光谱的不连续性原子从较高能级向低能级跃迁时放出光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线。
2.玻尔理论的局限性(1)成功之处玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律。
(2)局限性保存了经典粒子的观念,把电子的运动仍然看做经典力学描述下的轨道运动。
重难点理解:1.氢原子的光谱从氢气放电管可以获得氢原子光谱,如下图.2.氢原子光谱的特点在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性.3.巴耳末公式(1)巴耳末对氢原子光谱的谱线进行研究得到了下面的公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5…该公式称为巴耳末公式.(2)公式中只能取n ≥3的整数,不能连续取值,波长是分立的值.4.其他谱线除了巴耳末系,氢原子光谱在红外和紫外光区的其他谱线,也都满足与巴耳末公式类似的关系式.典例1、(多项选择)巴耳末通过对氢光谱的研究总结出巴耳末公式1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5…),以下说法正确的选项是( ) A .巴耳末依据核式结构理论总结出巴耳末公式B .巴耳末公式反映了氢原子发光的连续性C .巴耳末依据氢光谱的分析总结出巴耳末公式D .巴耳末公式准确反映了氢原子发光的分立性,其波长的分立值并不是人为规定的CD [由于巴耳末是利用当时的在可见光区的4条谱线做了分析总结出的巴耳末公式,并不是依据核式结构理论总结出来的,巴耳末公式反映了氢原子发光的分立性,也就是氢原子实际只有假设干特定频率的光,C 、D 正确.] 稳固练习:1.(多项选择)对原子光谱,以下说法正确的选项是( )A.原子光谱是不连续的B.原子光谱是连续的C.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的D.各种原子的原子结构不同,所以各种原子的原子光谱也不相同2.(多项选择)玻尔在他提出的原子模型中所作的假设有()A.原子处在具有一定能量的定态中,虽然电子做加速运动,但不向外辐射能量B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率3.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所对应的n,并计算其波长.参考答案:1.AD2.ABC3.[解析]对应的n越小,波长越长,故当n=3时,氢原子发光所对应的波长最长.当n=3时,1λ1×107×⎝⎛⎭⎪⎫122-132m-1解得λ1×10-7 m.当n=∞时,波长最短,1λ=R⎝⎛⎭⎪⎫122-1n2=R×14,λ=4R=4×107×10-7 m.[答案]当n=3时,×10-7 m 当n=∞时,×10-7 m。
《氢原子光谱与能级结构》优秀教案(鲁科选修)
第四节氢原子光谱与能级结构学案【学习目标】(1)了解光谱地定义和分类;(2)了解氢原子光谱地实验规律,知道巴耳末系;(3)了解经典原子理论地困难.【学习重点】氢原子光谱地实验规律.【知识要点】1、光谱早在17世纪,牛顿就发现了日光通过三棱镜后地色散现象,并把实验中得到地彩色光带叫做光谱.(1)发射光谱物体发光直接产生地光谱叫做发射光谱.发射光谱可分为两类:连续光谱和明线光谱.稀薄气体或金属地蒸气地发射光谱是明线光谱.明线光谱是由游离状态地原子发射地,所以也叫原子地光谱.实践证明,原子不同,发射地明线光谱也不同,每种原子只能发出具有本身特征地某些波长地光,因此明线光谱地谱线也叫原子地特征谱线.(2)吸收光谱高温物体发出地白光(其中包含连续分布地一切波长地光)通过物质时,某些波长地光被物质吸收后产生地光谱,叫做吸收光谱.各种原子地吸收光谱中地每一条暗线都跟该种原子地原子地发射光谱中地一条明线相对应.这表明,低温气体原子吸收地光,恰好就是这种原子在高温时发出地光.因此吸收光谱中地暗谱线,也是原子地特征谱线.(3)光谱分析由于每种原子都有自己地特征谱线,因此可以根据光谱来鉴别物质和确定地化学组成.这种方法叫做光谱分析.原子光谱地不连续性反映出原子结构地不连续性,所以光谱分析也可以用于探索原子地结构.2、氢原子光谱地实验规律氢原子是最简单地原子,其光谱也最简单.(课件展示)4、玻尔理论对氢光谱地解释(1)基态和激发态基态:在正常状态下,原子处于最低能级,这时电子在离核最近地轨道上运动,这种定态,叫基态.激发态:原子处于较高能级时,电子在离核较远地轨道上运动,这种定态,叫激发态.(2)原子发光:原子从基态向激发态跃迁地过程是吸收能量地过程.原子从较高地激发态向较低地激发态或基态跃迁地过程,是辐射能量地过程,这个能量以光子地形式辐射出去,吸收或辐射地能量恰等于发生跃迁地两能级之差.5、玻尔理论地局限性玻尔理论虽然把量子理论引入原子领域,提出定态和跃迁概念,成功解释了氢原子光谱,但对多电子原子光谱无法解释,因为玻尔理论仍然以经典理论为基础.如粒子地观念和轨道.量子化条件地引进没有适当地理论解释.【典型例题】例题1:氦原子被电离一个核外电子,形成类氢结构地氦离子.已知基态地氦离子能量为E1=-54.4 eV,氦离子能级地示意图如图所示.在具有下列能量地光子中,不能被基态氦离子吸收而发生跃迁地是()A.40.8 eV B.43.2 eVC.51.0 eV D.54.4 eV解析:根据玻尔理论,氢原子吸收光子能量发生跃迁时光子地能量需等于能级差或大于基态能级地绝对值.氦离子地跃迁也是同样地.因为 E2-E1=-13.6-(-54.4) eV=40.8 eV,选项A是可能地.E3-E1=-6.0-(-54.4) eV=48.4 eVE4-E1=-3.4-(-54.4) eV=51.0 eV,选项C是可能地.E∞-E1=0-(-54.4)=54.4 eV,选项D是可能地. 所以本题选B.【达标训练】1.氢原子光谱在可见光部分只有四条谱线,一条红色、一条蓝色、两条紫色,它们分别是从n=3、4、5、6能级向n=2能级跃迁时产生地,则()(A)红色光谱是氢原子从n=6能级向n=2能级跃迁时产生地(B)蓝色光谱是氢原子从n=6能级或n=5能级向n=2能级跃迁时产生地(C)若从n=6能级向n=1能级跃迁时,则能够产生紫外线(D)若原子从n=6能级向n=1能级跃迁时所产生地辐射不能使某金属发生光电效应,则原子从n=6能级向n=2能级跃迁时将可能使该金属发生光电效应2.如图是氢原子能级图.有一群氢原子由n=4能级向低能级跃迁,已知普朗克常数h=6.63×10-34J·s,求:(1)这群氢原子地光谱共有几条谱线;(2)这群氢原子发出光地最大波长.答案:1.C2. 解析:(1)62)14(42)1(=-=-n n 条(或画图得出6条) (2)光子地能量越小,则频率越小,波长越大.从n=4能级向n=3跃迁时,辐射地光子能量最小J eV eV eV E E E 193410056.166.0)51.1(85.0-⨯==---=-=∆光子地最大波长为版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.rqyn1。
高三物理:2.4《氢原子的光谱与能级结构》课件(鲁科版选修3-5)
ks5u精品课件
一、光谱
复色光经过色散系统(如棱镜、光栅)分光后,被色散 开的单色光按波长(或频率)大小而依次排列的图案
ks5u精品课件
观察光谱实验
1. 实 验
ks5u精品课件
玻璃管充进氢气
连续光谱经过氢气的光谱
ks5u精品课件
2. 氢原子的光谱图
(紫绿色) Hδ
E1 hc
1 (n2
1 22
)
n=6
n=5 n=4
E4= -0.85ev
n=3
E3= -1.51ev
n=2
Hα Hβ
Hγ Hδ
E2= -3.4ev
n=1
E1= -13.6ev
Hδ Hγ Hβ
410.1nm
486.1nm
434.0nm
Hα
652.2nm
λ/nm
ks5u精)
434.0nm
Hβ (蓝绿色)
486.1nm
1.几种特定频率的光
2.光谱是分立的亮线
ks5u精品课件
Hα (红色)
652.2nm
λ/nm
原子光谱
每一种光谱-------印记
每一种原子都有自己特定的原子光谱,不同原子,其原子 光谱均不同
ks5u精品课件
巴尔末的研究氢原子光谱
(可见光区)
(里德伯常数:R=1.09677581×107m-1)
ks5u精品课件
R E1 hc
巴尔末公式
N > 6 的符合巴耳末公式的光谱线(大部分在紫外区) 巴尔末系
人们把一系列符合巴耳末公式的光谱线统称为巴耳末系 适用区域: 可见光区、紫外线区
ks5u精品课件
高中物理第2章第4节氢原子光谱与能级结构学案鲁科版选修35
氢原子光谱与能级结构氢原子光谱的特点之一是从红外区到紫外区呈现多条具有确定波长的谱线Hα、Hβ、Hγ、Hδ等,这些谱线可以帮助我们判断化合物中是否含有氢。
2.氢原子光谱的特点之二是从长波到短波, Hα~Hδ等谱线间的距离越来越小,表现出明显的规律111性,即λ=R2-2(n=3,4,5,6,)。
2n3.玻尔理论的成功之处是引入了量子化的概念,解释了原子结构和氢原子光谱的关系。
但在推导过程中仍采用了经典力学的方法,因此是一种半经典的量子论。
11.氢原子光谱的特点从红外区到紫外区呈现多条具有确定波长的谱线;Hα~Hδ的这几个波长数值成了氢原子的“印记〞,不管是何种化合物的光谱,只要它里面含有这些波长的光谱线,就能断定这种化合物里一定含有氢。
从长波到短波,Hα~Hδ等谱线间的距离越来越小,表现出明显的规律性。
2.巴尔末公式1117λ=R22-n2(n=3,4,5,),其中R叫做里德伯常量,数值为R=81×10_m1。
3.玻尔理论对氢光谱的解释理论推导按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n=2的能级上时,辐射出E1E1的光子能量应为hν=E n-E2,根据氢原子的能级公式E n=n2可得E2=22,由此可得hν=-1111-111E2n,由于c=λν,所以上式可写成λ=hc2n,把这个式子与巴尔末公式比-E1E17-1较,可以看出它们的形式是完全一样的,并且R=hc,计算出-hc的值为×10m与里德伯常量的实验值符合得很好。
这就是说,根据玻尔理论,不但可以推导出表示氢原子光谱规律性的公式,而且还可以从理论上来计算里德伯常量的值。
由此可知,氢原子光谱的巴尔末系是电子从n=3,4,5,6,能级跃迁到n=2的能级时辐射出来的。
其中Hα~Hδ在可见光区。
玻尔理论的成功和局限性成功冲破了能量连续变化的束缚,认为能量是量子化的之处根据量子化能量计算光的发射频率和吸收频率局限性利用经典力学的方法推导电子轨道半径,是一种半经典的量子论1.自主思考——判一判(1)氢原子光谱是不连续的,是由假设干频率的光组成的。
2013鲁科版选修(3-5)第4节《氢原子光谱与能级结构》word教案
平和正兴学校高中部2010-2011学年下学期课程讲授15分钟1、光谱(结合课件展示)早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。
(如图所示)光谱是电磁辐射(不论是在可见光区域还是在不可见光区域)的波长成分和强度分布的记录。
有时只是波长成分的记录。
(1)发射光谱物体发光直接产生的光谱叫做发射光谱。
发射光谱可分为两类:连续光谱和明线光谱。
问题:什么是连续光谱和明线光谱?(连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。
只含有一些不连续的亮线的光谱叫做明线光谱。
明线光谱中的亮线叫谱线,各条谱线对应不同波长的光)炽热的固体、液体和高压气体的发射光谱是连续光谱。
例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。
如图所示。
稀薄气体或金属的蒸气的发射光谱是明线光谱。
明线光谱是由游离状态的原子发射的,所以也叫原子的光谱。
实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。
如图所示。
(2)吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。
各种原子的吸收光谱中的每一条暗线都跟该种原子的原子的发射光谱中的一条明线相对应。
这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光。
因此吸收光谱中的暗谱线,也是原子的特征谱线。
太阳的光谱是吸收光谱。
如图所示。
课件展示:氢、钠的光谱、太阳光谱:投影各种光谱的特点及成因知识结构图:(3)光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定的化学组成。
这种方法叫做光谱分析。
原子光谱的不连续性反映出原子结构的不连续性,所以光谱分析也可以用于探索原子的结构。
2、氢原子光谱的实验规律氢原子是最简单的原子,其光谱也最简单。
(课件展示)4、玻尔理论对氢光谱的解释(1)基态和激发态基态:在正常状态下,原子处于最低能级,这时电子在离核最近的轨道上运动,这种定态,叫基态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节氢原子光谱与能级结构
三维教学目标
1、知识与技能
(1)了解光谱的定义和分类;
(2)了解氢原子光谱的实验规律,知道巴耳末系;
(3)了解经典原子理论的困难。
2、过程与方法:通过本节的学习,感受科学发展与进步的坎坷。
3、情感、态度与价值观:培养我们探究科学、认识科学的能力,提高自主学习的意识。
教学重点:氢原子光谱的实验规律。
教学难点:经典理论的困难。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备。
(一)引入新课
粒子散射实验使人们认识到原子具有核式结构,但电子在核外如何运动呢?它的能量怎样变化呢?通过这节课的学习我们就来进一步了解有关的实验事实。
(二)进行新课
1、光谱(结合课件展示)
早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。
(如图所示)
光谱是电磁辐射(不论是在可见光区域还是在不可见光区域)的波长成分和强度分布的记录。
有时只是波长成分的记录。
(1)发射光谱
物体发光直接产生的光谱叫做发射光谱。
发射光谱可分为两类:连续光谱和明线光谱。
问题:什么是连续光谱和明线光谱?(连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。
只含有一些不连续的亮线的光谱叫做明线光谱。
明线光谱中的亮线叫谱线,各条谱线对应不同波长的光)
炽热的固体、液体和高压气体的发射光谱是连续光谱。
例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。
如图所示。
稀薄气体或金属的蒸气的发射光谱是明线光谱。
明线光谱是由游离状态的原子发射的,所以也叫原子的光谱。
实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。
如图所示。
(2)吸收光谱
高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。
各种原子的吸收光谱中的每一条暗线都跟该种原子的原子的发射光谱中的一条明线相对应。
这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光。
因此吸收光谱中的暗谱线,也是原子的特征谱线。
太阳的光谱是吸收光谱。
如图所示。
课件展示:氢、钠的光谱、太阳光谱:
投影各种光谱的特点及成因知识结构图:
(3)光谱分析
由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定的化学组成。
这种方法叫做光谱分析。
原子光谱的不连续性反映出原子结构的不连续性,所以光谱分析也可以用于探索原子的结构。
2、氢原子光谱的实验规律
氢原子是最简单的原子,其光谱也最简单。
(课件展示)
4、玻尔理论对氢光谱的解释
(1)基态和激发态
基态:在正常状态下,原子处于最低能级,这时电子在离核最近的轨道上运动,这种定态,叫基态。
激发态:原子处于较高能级时,电子在离核较远的轨道上运动,这种定态,叫激发态。
(2)原子发光:原子从基态向激发态跃迁的过程是吸收能量的过程。
原子从较高的激发态向较低的激发态或基态跃迁的过程,是辐射能量的过程,这个能量以光子的形式辐射出去,吸收或辐射的能量恰等于发生跃迁的两能级之差。
说明:氢原子中只有一个核外电子,这个电子在某个时刻只能在某个可能轨道上,或者说在某个时间内,由某轨道跃迁到另一轨道——可能情况只有一种。
可是,通常容器盛有的氢气,总是千千万万个原子在一起,这些原子核外电子跃迁时,就会有各种情况出现了。
但是这些跃迁不外乎是能级图中表示出来的那些情况。
(1)夫兰克—赫兹实验的历史背景及意义
1911年,卢瑟福根据α粒子散射实验,提出了原子核式结构模型。
1913年,玻尔将普朗克量子假说运用到原子核式结构模型,建立了与经典理论相违背的两个重要概念:原子定态能级和能级跃迁概念。
电子在能级之间跃迁时伴随电磁波的吸收和发射,电磁波频率的大小取决于原子所处两定态能级间的能量差。
随着英国物理学家埃万斯对光谱的研究,玻尔理论被确立。
但是任何重要的物理规律都必须得到至少两种独立的实验方法的验证。
随后,在1914年,德国科学家夫兰克和他的助手赫兹采用电子与稀薄气体中原子碰撞的方法(与光谱研究相独立),简单而巧妙地直接证实了原子能级的存在,从而为玻尔原子理论提供了有力的证据。
1925年,由于他二人的卓越贡献,他们获得了当年的诺贝尔物理学奖(1926年于德国洛
丁根补发)。
夫兰克-赫兹实验至今仍是探索原子内部结构的主要手段之一。
所以,在近代物理实验中,仍把它作为传统的经典实验。
(2)夫兰克—赫兹实验的理论基础
根据玻尔的原子理论,原子只能处于一系列不连续的稳定状态之中,其中每一种状态相应于一定的能量值E n (n=1,2,3‥),这些能量值称为能级。
最低能级所对应的状态称为基态,其它高能级所对应的态称为激发态。
当原子从一个稳定状态过渡到另一个稳定状态时就会吸收或辐射一定频率的电磁波,频率大小决定于原子所处两定态能级间的能量差。
n m E E h -=ν(h 为普朗克恒量)本实验中是利用一定能量的电子与原子碰撞交换能量而实现,并满足能量选择定则: n m E E eV -= (V 为激发电位)夫兰克-赫兹实验玻璃容器充以需测量的气体,本实验用的是汞。
电子由阴级K 发出,K 与栅极G 之间有加速电场,G 与接收极A 之间有减速电场。
当电子在KG 空间经过加速、碰撞后,进入KG 空间时,能量足以冲过减速电场,就成为电流计的电流。
(3)实验原理
改进的夫兰克-赫兹管的基本结构如下图所示。
电子由阴极K发出,阴极K和第一栅极G1之间的加速电压V G1K及与第二栅极G2之间的加速电压V G2K使电子加速。
在板极A和第二栅极G2
之间可设置减速电压V G2A。
设汞原子的基态能量为E0,第一激发态的能量为E1,初速为零的电子在电位差为V的加速电场作用下,获得能量为eV,具有这种能量的电子与汞原子发生碰撞,当电子能量eV<E1-E0时,电子能量几乎不损失。
如果eV≥E1-E0=ΔE,则汞原子从电子中取得能量ΔE,而由基态跃迁到第一激发态,ΔE=eV C。
相应的电位差VC即为汞原子的第一激发电位。
在实验中,逐渐增加V G2K,由电流计读出板极电流I A,得到如下图所示的变化曲线:
(4)实验结论
夫兰克—赫兹实验证明了原子被激发到不同的状态时,吸收的能量是不连续的,进而说明原子能量是量子化的。
6、玻尔理论的局限性
玻尔理论虽然把量子理论引入原子领域,提出定态和跃迁概念,成功解释了氢原子光谱,但对多电子原子光谱无法解释,因为玻尔理论仍然以经典理论为基础。
如粒子的观念和轨道。
量子化条件的引进没有适当的理论解释。